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Abstract—With analog current accumulation feature, resistive
memory (ReRAM) crossbars are widely studied to accelerate
neural network applications. The ReRAM crossbar based accel-
erators have many advantages over conventional CMOS-based
accelerators, such as high performance and energy efficiency.
However, due to the limited cell endurance, these accelerators
suffer from short programming cycles when weights that stored
in ReRAM cells are frequently updated during the neural
network training phase.

In this paper, by exploiting the wearing out mechanism of
ReRAM cell, we propose a novel comprehensive framework,
ReNEW, to enhance the lifetime of the ReRAM crossbar based
accelerators, particularly for neural network training. Evaluation
results show that, our proposed schemes reduce the total effective
writes to ReRAM crossbar based accelerators by up to 500.3x,
50.0x, 2.83x and 1.60x over two MLC ReRAM crossbar
baselines, one SLC ReRAM crossbar baseline and an SLC
ReRAM crossbar design with optimal timing, respectively.

I. INTRODUCTION

In recent years, the neural networks have gained increasing
attentions and been successfully applied to a wide range
of applications [1]-[4]. The increasingly growth in the size
of datasets and the number of layers in neural networks
help to achieve a better prediction accuracy, but also result
in dramatically increased computations and expensive data
movement from off-chip memory. Conventional CMOS-based
general purpose processor such as multi-core CPU [5] and
GPGPU [1], or specialized hardware accelerators, such as
FPGA [6] and ASIC designs [7], [8], are intensively studied
and proposed with software and hardware optimizations for
neural network applications, however, they still suffer from the
large energy consumption and limited memory bandwidth [9].

To address these issues, resistive memory (ReRAM), with
adopting crossbar array structure, is proposed to implement
dot-product calculations by leveraging its analog current ac-
cumulation feature [9]-[14]. ReRAM crossbars are able to
accelerate neural networks computation with low energy con-
sumption and minimized data movement [11], since they
have almost zero leakage power and intrinsically support the
processing-in-memory (PIM) computation paradigm.

Though ReRAM crossbar based neural network acceler-
ators own these advantages over conventional CMOS-based
accelerators, due to the limited cell endurance [13]-[16], they
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suffer from short programming cycles as weight data stored
in ReRAM cells are frequently updated during the neural
network training. The write endurance of an ReRAM chips can
range from 10 to 10'2 [13], [17], [18] with adopting various
resistive materials and different programming schemes. On the
other hand, training the state-of-the-art deep neural networks
usually demands at least 5 orders of magnitudes of weight
updates, which essentially leads to frequent ReRAM cell
programming. Therefore, enhancing the lifetime of ReRAM
crossbars is the key to facilitate its widespread adoption as
hardware accelerators for neural network training.

Conventional wear-leveling techniques for NVM (non-
volatile memory) based main memory have been well-studied,
mostly with a focus on evenly distributing write requests
across pages [19]-[22]. With distinct programming patterns,
ReRAM crossbar based neural network accelerators may po-
tentially demand for an innovative approach. Prior efforts on
extending ReRAM crossbar based neural network accelerators
either manage to squeeze the endurance of the degraded
MLC ReRAM cells [14] or exploit the gradient sparsification
and regularly perform row-swapping [14]. However, in order
to further improve the endurance of ReRAM crossbars for
neural network training, it is necessary to investigate op-
timal programming strategies by exploiting the mechanism
of endurance degradation in ReRAM crossbars, while taking
characteristics of the target application, i.e., neural network
training, as well as crossbar array features into account.

Our goal in this paper is to enhance lifetime for ReRAM
crossbar based neural network accelerators. To achieve this, we
propose a comprehensive framework, ReREW, which consists
of techniques that can effectively prolong ReRAM crossbar
lifetime during neural network training. A summary of our
main contributions is listed as follows.

Unlike many of prior studies, we propose to program
ReRAM cells in crossbars in SLC (Single Level Cell)
mode for neural network training and in MLC (Multi-Level
Cell) mode during the inference, in order to fully take the
advantage of longer endurance of SLC ReRAM cells during
the training and larger capacity of MLC ReRAM cells for
the inference.

Prior studies show that different in-memory data patterns
lead to discrepancies in programming latency and voltage
stress, which further causes the disparity of actual wearing
out degrees of ReRAM cells. Based on this observation,
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we adopt the optimal programming latency and propose to

update weights in an optimized order that can maximize the

lifetime of ReRAM crossbars.

o We analyze the trade-off between endurance and program-
ming conditions, and then present an endurance analyti-
cal model for ReRAM cell in SLC mode with different
programming strengths. In addition, an analytical study of
the trade-off between programming latency and switching
probability is presented. Based on these analyses along with
the intrinsic error-tolerance of neural network training, we
propose to intentionally shorten the programming time to
enhance lifetime of ReRAM crossbars at a cost of possibly
unsuccessful ReRAM cell switching.

« Inspired by a conventional wear-leveling technique for NVM
based main memory, we also propose to shift and update
a group of columns between training iterations, which can
effectively spread out writes across the whole crossbar.

e Our experiment evaluations prove that our proposed tech-
niques reduce the total effective writes to ReRAM crossbar
based accelerators by up to 500.3x, 50.0x, 2.83x and
1.60x over two MLC baselines, SLC baseline and SLC
design with optimal timing respectively.

In the rest of this paper, we first introduce the basics of
ReRAM cell basics, ReRAM crossbar based accelerators and
neural network training in Section II. Then we present the
motivation of proposed schemes in Section III. In Section IV,
we elaborate design details for enhancing lifetime of ReRAM
crossbar based accelerators. Experimental results are presented
in Section V. We briefly discuss related work in Section VI
and conclude the whole paper in Section VII.

II. BACKGROUND

In this section, we discuss about the fundamentals of
ReRAM and its applications as neural network accelerators,
and also briefly introduce the neural network training.

A. ReRAM Fundamentals

ReRAM is a passive resistive based non-volatile memory
technology, which uses different resistance states to represent
data values. Fig. 1 illustrates the structure of an ReRAM
cell, which consists of a metal oxide layer sandwiched by
two metal electrodes on the top and bottom. According to
a prior study [18], different classes of ReRAM with various
metal oxide and electrode materials, such as CuTe,/H fOq
and CuTe,/Al203, exhibit diverse characteristics such as
endurance, retention and scalability.
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Fig. 1: ReRAM cell structure and basic (SET/RESET) pro-
gramming operations.
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Fig. 1 also depicts two basic programming procedures for
ReRAM — RESET and SET, which are reversible switching
operations and used to store data in an ReRAM cell. For an
SLC ReRAM cell, with a positive voltage larger than a certain
threshold applied to the top electrode, the current flowing
through cell enables a formation of the conductive filaments
(CF) in the metal oxide layer, switching the ReRAM cell to
low resistance state (LRS). On the contrary, during the RESET
process, which is initialized with a negative voltage on the
top electrode, the CFs are ruptured and consequently the cell
is switched to high resistance state (HRS). To program an
MLC ReRAM cell is much more complicated with consuming
significantly more power and time [17], [23] and thereby wears
out cells much faster, since an iterative programming, i.e.,
Program & Verify (P&V), is used to accurately achieve the
intermediate resistance levels.

B. ReRAM crossbar and Its Application for Neural Network
Computing

Fig. 2 illustrates an ReRAM crossbar architecture, in which
each ReRAM cell is connected to a worldline and bitline
at their crosspoint. With a voltage stress, ReRAM cell be-
haves as resistive devices obeying Ohm’s law. Hence, the
current flowing through each cell depends on its resistance
and voltage stress. With a vector of n input voltages V =
Vo, ey Vi3, Viu—a, Viu—1] from wordlines to one particular
column of ReRAM cells, as highlighted in red in Fig. 2,
aggregated analog current I = ZZ;}) Vi - G; outputs from
the bitline, where G; is the conductance (the reciprocal of
resistance, G; = 1/R;) of the ReRAM cell. If we treat the
voltage V and conductance G as input vectors, the output
I = V-G is naturally a result from a mathematical dot-product
calculation by V and G. Since such dot-product operations are
predominantly performed in neural network computing, with
weight matrices represented by different resistance levels in
ReRAM cells, they can be efficiently processed inside ReRAM
crossbars.

ReRAM based Dot-Product Engine
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Fig. 2: An ReRAM crossbar based dot-product engine.

C. Neural Network Training

Fig. 3 shows an example of neural network training, which
is composed of a forward and a backward propagation. In
forward propagation, an input vector [xg, Z1, ..., T,] is fed into
the network while calculating the intermediate neurons with
weight matrices Wy, W, ...,Wy in each layer. Afterwards,
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an output vector [yo, Y1, ..., Ym] is computed and taken by a
loss function to estimate the difference with labeled data. As
soon as the loss is obtained, a backward propagation starts
by sending the loss back to all layers of the neural network.
During this stage, weight matrices are frequently updated with
the loss by using: AW; = —LR - %, where AW;j is the
update to each of weight matrix, LR is the learning rate, and
i=1,2,...,4 denotes the number of the layer.
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x0 70

x1
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Input Output
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Fig. 3: Neural network training with weight updates.

III. MOTIVATION

In this section, we analyze the ReRAM wearing out mech-
anism and stochastic switching behaviors, which motivate
us to propose innovative solutions for mitigating endurance
degradation of ReRAM crossbars during the training.

A. ReRAM Cell Endurance Model

The wearing out mechanism of ReRAM cell has been long
studied [18], [24]-[26], which all generally believe excessive
programming conditions, such as long programming pulse
width and strong pulse amplitude than necessary, i.e., over-
SET/-RESET, degrade ReRAM cell endurance. In order to
analytically model ReRAM endurance degradation, it is nec-
essary to identify the key factor that can limit the write cycles
of an ReRAM cell.

1) Tunneling Gap Distance and Roff/Ron: Fig. 4 shows
the how resistance level is determined during ReRAM cell
switching. As we discussed, a formation/rupture of CFs in an
ReRAM cell happens during SET/RESET processes. For an
instance of RESET process shown in Fig. 4, with a negative
voltage stress on top electrode, the CFs are dissolved. A
stronger RESET condition can lead to less amount of residual
CFs, which thereby exhibits a larger resistance. Based on the
ReRAM cell model presented in previous work [27]-[29], the
concept of tunneling gap distance g, which denotes an average
distance from the top of residual CFs to the top electrode layer,
is used to indicate the resistance level of an ReRAM cell dur-
ing switching. An [ — V' characteristic equation in an ReRAM
cell can be represented as I = Ipexp(—g/go)sinh(V/Vh),
where Iy, go and V| are fitting constants [28]. In the figure,
a tunneling gap ¢2 is larger than g1, which implies that a
stronger programming condition is needed for switching the
cell to g2 than gl. Consequently, an ReRAM cell with a
tunneling gap ¢g2 has a larger resistance than the one with
gl.

Recent studies [30], [31] report that the SET process is
abrupt and RESET process is more gradual, and prior stud-
ies [27], [32]-[34] also present that RESET takes much longer
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time and consumes much more energy than SET operation.
Therefore, in this paper, we assume SET operation is fast and
accurate without consuming much energy, and the endurance
degradation principally comes from RESET operation. We
also assume that each SET operation accurately switches the
cell to R,y,, and thus the R,fs/R,y, ratio is determined by
RESET operation condition. However, it is worth noting that
our proposed schemes also apply to different ReRAM switch-
ing assumptions, such as symmetric SET/RESET operations.
With a fixed or variable R,f¢/R,, ratio, the relationship
between endurance degradation and programming strategies
are different, which consequently results in different endurance
enhancement solutions.
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Fig. 4: ReRAM cell switching and its resistance.

2) Fixed Roff/Ron During Programming: With a fixed
R,/ Ron ratio, recent studies [16], [24] reveal a tradeoff
between endurance and programming latency that a longer
programming pulse without over-RESET the cell can prolong
the cell endurance. The hypothesis of this argument is to
switch an ReRAM cell to a fixed resistance level, that is to
say, the ¢ is unchanged under different switches [24]. The
tradeoff of endurance and write latency can be approximated
as: Endurance = (tw /to)C, where tyy is the write latency
and tg and C are fitting parameters. We use the same C' = 2
as [16], [19] in this paper. Based on this observation, a concept
of effective write is proposed in [19] to estimate the endurance
degradation in ReRAM crossbars with taking sneak current
issue and RESET latency discrepancy into consideration. As
reported in [19], [34], it is necessary to adopt optimal RESET
latency at runtime to avoid excessive write strength. In this
paper, the effective write is adopted as the metric to estimate
the degrees of wearing out an ReRAM cell:

EW = [(*£)?] 1)
where ¢ is the variable latency and ¢y, is the longest latency
in a crossbar with given Rof¢/Ron.

3) Variable Ry ¢/ Royn During Programming: In contrast to
a fixed R,y s/ Rop scenario where prolonging RESET duration
to mitigate endurance degradation can be used, with a flexible
R, ¢/ Ron, the endurance is improved in a different approach.
A recent research [18] demonstrates that the ReRAM en-
durance is significantly correlated to Rofs/R,, ratio. The
larger R,fs/Ron is, the shorter the lifetime of an ReRAM
cell can have. Additionally, the programming pulse width, i.e.,
RESET latency in this paper, is proportional to R,¢¢/Ron ra-
tio. Based on above two observations, we present an analytical
model by using data from [18] with CuTe,/H fOs material
(which has the best endurance and hence is suitable for neural
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network training) to estimate the lifetime of an ReRAM cell
in different RESET latencies:

Endurance ~ a - WM

2

and

WM = pgy-t+p; €))

where WM denotes the Ryf7/Ron, t is RESET latency and
a, b, po, p1 are fitting constants. While shortening the RESET
latency linearly decreases the R,¢f/Ron ratio, the endurance
is exponentially improved by a reduced R, s/ Rop. Equation 2
and 3 together imply that appropriately optimizing RESET
latency may help to achieve better endurance.

B. ReRAM Stochastic Switching

Though with an appropriate RESET condition, ReRAM cell
can switch to a targeted resistance level by forming a certain
tunneling gap g. However, we should also realize that the
programming on ReRAM cell is a stochastic switching [35].
Previous studies [35]-[37] report that the switching behaviors
of an ReRAM cell is stochastic, and its probability is pre-
dictable with modeling the correlation between programming
conditions and successful switching rate. It is worth noting
that, a successful switching rate here is defined as — how
many successful read-out values (SLC reading mode with
values ‘0’/‘1°) are as expected out of total read attempts under
the same read voltage condition [36], which indicates that a
targeted Rorf/Ron should be achieved in order to provide
enough read margin. Otherwise, a reduced R, /R, can lead
to a uncertain switching.

Two major programming conditions — RESET pulse width
(time) and height (amplitude), have significant impact on
switching probability. They both in fact affect on R,/ Rop, as
discussed before. In this work, we use following Equation 4,
as reported in [37] with RESET conditions from [34], to model
the correlation between switching probability and RESET time
under different pulse heights:

1 Int, —InTt
P=_—erfe(———m— 4
2 fel V20 ) @

where the P is the ReRAM cell switching probability, er fc(z)
is a complementary error function, t,, represents RESET pulse
width (write latency), 7 and o are fitting parameters.

Fig. 5 plots a group of curves with ReRAM cell switching
probabilities at different RESET voltage widths and heights.
In this work, we assume these optimized RESET latencies
from [34] guarantee a 100% cell switching. When applying a
shorter RESET timing than those under the same data pattern,
the switching probability is smaller than 100% and can be
predictably computed with Equation 4.

IV. PROPOSED DESIGNS

In this section, we elaborate our proposed framework, Re-
NEW, which can effectively improve the endurance of ReRAM
crossbar based neural network accelerators.
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A. Training CNN with SLC ReRAM

As shown in Fig. 6, the ReRAM crossbar based neu-
ral network accelerator adopted in this paper has a similar
architecture to PRIME [9]. This architecture is composed
of several banks, each of which further consists of many
ReRAM crossbars. The ReRAM crossbars can be partitioned
into memory array and compute array based on their usage.
Memory arrays are to store temporary data, while compute
arrays primarily perform in-memory dot-product calculations.

Different from most of prior work [12]-[14], [38] where
Multi-Level Cell (MLC) ReRAM crossbars are adopted for
neural network training, we propose to program ReRAM
crossbars in Single-Level Cell (SLC) mode for training, but
well-trained weight matrices for inference task are still pro-
grammed in MLC mode. This is because, compared to MLC
ReRAM crossbars, using SLC ReRAM crossbars for neural
network training owns following advantages: (1) Since an
iterative scheme and a large Ryprs/Rrrs ratio are usually
necessary for MLC ReRAM programming, write endurance of
an SLC ReRAM cell can be as much as 4-6 magnitudes better
than MLC ReRAM according to prior study [17]. (2) With
similar reasons to (1), programming an SLC ReRAM cell also
performs better than an MLC ReRAM [23] cell in performance
and energy-efficiency. As shown in Fig. 6, we use 8-bit fixed-
point numbers to represent weight data. It is worth noting that,
though we assume bits within the same weight data are stored
consecutively in one row, our proposed schemes also apply
to different weight mapping approaches without significant
changes. To store each of this 8-bit weight data, 8 cells in SLC
ReRAM crossbars are required, however, only 2 cells (if 4-bit
per cell is assumed) are enough in an MLC crossbar array.
Even though MLC ReRAM is several times denser than SLC
ReRAM (depends on the resistance levels), the capacity loss is
possibly compensated by reloading weights onto SLC ReRAM
crossbars for a few times. A comparison of MLC and SLC
ReRAM crossbars for neural network training is presented
in the experiment section. To enable using multiple cells for
representing one weight data, a bit slicing technique [39] is
adopted to support dot-product calculations on SLC ReRAM
crossbars. In addition, necessary compute units for shift-add
operations are also needed to generate final results.

After the completion of neural network training, the trained
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weights shall be re-programmed into ReRAM crossbar arrays
in MLC mode. This is because, during the training, partition-
ing and reloading weights onto crossbars are possibly needed
due to limited capacity of SLC ReRAM cells. However,
an inference task usually demands near real-time response.
Hence, reloading weights with using crossbars in SLC mode
may be not suitable for inference. Besides, writing well-trained
weights into crossbars is not a frequent operation during the
inference, therefore, the energy and performance cost are more
acceptable than during the training.

Fixed-point weight<0:3>:<4:7>

‘ ReRAM banks I
ReRAM banks (i,

ReRAM banks, 7~ 1/
unekl
S
Compute Arrays

Compute Arrays
CPU |<—f—|

Memory Arrays Memory Arrays

SLC mode
during NN training

MLC mode
during NN inference

Fig. 6: An overview of ReRAM crossbar based accelerator for
neural network computing.

B. Optimized Programming Order

A prior study [19] on write endurance variation shows that
having more LRS cells along bitlines benefits the lifetime of
ReRAM cells under the premise of no over-SET/-RESET cells.
This observation motivates us to optimize the weight updates
order by programming cells from ‘0’ to ‘1’ (SET operations)
before performing RESET operations. Fig. 7 illustrates a
comparison of a sequential weight update, which is row-major
order, and the proposed optimized programming scheme that
first performs SET operations to increase the number LRS
cells in ReRAM crossbars, and then RESET the rest of cells.

By employing the optimized programming order, the effec-
tive writes brought by each RESET are expected to decrease,
since more LRS cells have been generated beforehand. As a
side note, this optimization guarantees successful switching
since the targeted R,fs/R,, shall be achieved, and it only
prolongs endurance as Equation 1. Therefore, it can be safely
applied to either LSB (least-significant bits) columns or MSB
(most-significant bits) ! columns as it basically does not
introduce switching errors. Moreover, this optimized program-
ming order does not introduce latency penalty since separate
SET and RESET programming phases are also needed in the
baseline row-major order [32].

C. Shortened RESET operation

As discussed in Section III, by shrinking Rof¢/Ron, the
lifetime of ReRAM cells can be exponentially improved.
Equation 3 proves that a shortened RESET latency linearly
reduces Ry /Ron. With observations above, we propose
to shorten RESET time on selected columns in ReRAM
crossbars, such as those contain LSB, to extend their lifetime.

In this paper, we denote MSB/LSB as the most/least significant half in
each weight data, e.g., 4 most-significant bits and 4 least-significant bits for
an 8-bit weight number.
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Fig. 7: A comparison of the baseline weight update in row-
major order and the proposed optimized programming order.
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Though a shortened RESET duration significantly mitigates
endurance degradation, in the meantime it potentially brings
switching errors, which possibly further results in an accuracy
loss. To address this, we propose to exploit the intrinsic error-
tolerance characteristic of neural network training, which has
been widely reported in prior studies [40], [41], to mitigate
the accuracy loss. Intuitively, we are able to achieve a sweet
spot in the tradeoff between accuracy and ReRAM crossbar
lifetime by tuning the programming time. Table I shows our
study on the accuracy degradation with different switching
probabilities 2. Compared to the 8-bit fixed point weight
scheme with 100% switching probability, a 95% of switching
probability in LSB for both of MLP and CNN model only
slightly degrades accuracy by 0.33% and 0.14% respectively.
However, if a 95% of switching probability applies to both
of MSB and LSB in weight matrices, training of neural
network models cannot converge. Therefore, we propose to
only shorten the RESET timing on LSB columns in order to
avoid a significant accuracy loss.

TABLE I: Model accuracy degradation with different switch-
ing probabilities.

CNN
90.31%
90.17%
19.56%

Weight Precision I
Zb-MSB (100%)-4b-LSB (100%)
4b-MSB (100%)-4b-LSB (95%)
4b-MSB (95%)-4b-LSB (95%)

MLP_ |
97.86%
97.53%
2741%

A basic workflow of the proposed scheme is shown in Fig. 8.
A neural network dependent switching error tolerance, such as
5% of switching error tolerance used in this paper by default, is
first decided. This tolerance value is then sent to a look-up ta-
ble, which maps switching probabilities to their corresponding
RESET latencies, to determine the shortened RESET timing.
After this, programming commands with optimized RESET
timing are issued to LSB columns, while precise programming
is applied to MSB columns.

D. Column Group Shift and Update

With shortened RESET operations on LSB columns applied,
intuitively there will be a discrepancy in effective writes across
LSB and MSB columns in a crossbar array. Besides, a recent
study [13] also observed a severe unbalance writes distribution
in ReRAM crossbars during the neural network training. To
address this issue, we propose to shift and update each half
length of weight data within column groups for every training

>The experimental methodologies are presented in Section V in detail.
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Fig. 8: The precise RESET on MSB columns and shortened
RESET on LSB columns.

iteration, as illustrated in Fig. 9. Each column group has all
MSB or LSB columns from different weight data that are
stored along same bitlines. With assuming 4-bit MSB/LSB and
512 rows in an array, a column group is a 512 x 4 data chunk
that contains 512 4-bit LSB or MSB columns. This technique
is inspired by a conventional wear-leveling technique for NVM
based main memory [42], which proposed to periodically
shift rows and swap pages to improve endurance. However,
our design proposes to shift and update weight data on all
column groups in each iteration. In addition, shifting and
swapping techniques for NVM based main memory incur a
huge performance overhead by data exchanging, whereas our
proposed shift and update scheme between only requires the
address remapping and can perform in each iteration, since
weight matrices are updated in each training iteration and not
necessarily preserved.

MSB, LSB,, MSB, LSB, MSB, LSB MSB;

MSB,, 1 LSB, , MSB, LSB LSE MSB 1 LSB, 1 MSB,

Iteration: i
Fig. 9: The proposed column group shift and update scheme.
V. EVALUATIONS

In this section, we first introduce our experimental method-
ologies, and then present the evaluation results.

A. Experimental Setup

As summarized in Table II, we build two neural network
models — MLP and CNN, with Theano [43], and then gen-
erate weight matrices by training two models on MNIST [44]
and SVHN [45] datasets respectively. In this paper, we test
model accuracy with using different precisions of fixed-point
weight matrices, and assume input data and intermediate
feature maps are accurate. Batch normalization is also adopted
in neural network models. For the purpose of evaluating the
effectiveness of proposed techniques, we develop a simulator
to estimate lifetime of ReRAM crossbars, each of which is
a 512 x 512 array and can contain up to 64 8-bit fixed-
point weights per row. This simulator takes weight matrices
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generated from neural network training as inputs. With a fixed-
size of ReRAM crossbar, weight matrices are partitioned and
reloaded onto crossbars when the size of matrix is too large for
a single crossbar. In opposition, multiple small weight matrices
can reside in the same physical ReRAM crossbar to maximize
the utilization. The effective write [19], which is computed
with Equation 1, is used to accumulate wearing out effect on
each cell. We adopt RESET latencies from [19] with different
bitline data patterns as the optimal programming strategy, and
use a conservative timing for the naive solution [34]. We
also compare our proposed techniques with 512 x 512 MLC
ReRAM crossbar baselines. We assume one MLC ReRAM
cell has 16 resistance levels, i.e., 4-bit data per cell, and it is
worn out 1000x (MLC1000) and 100x (MLC100) faster than
SLC [17]. We summarize all evaluated schemes as below:
MLC100 and MLC1000 are MLC ReRAM crossbar base-
lines, assuming to have 100x and 1000x effective writes
than baseline SLC for each write respectively.

SLC is an SLC ReRAM crossbar baseline with a conven-
tional programming strategy.

SLC-0OP is an SLC ReRAM crossbar baseline with an
optimized programming strategy [19].

ReNEW has all proposed techniques to enhance lifetime
of ReRAM crossbars. We evaluate ReNEW with differ-
ent switching probabilities, ReNEW-0.95 (95%, default),
ReNEW-0.90 (90%) and ReNEW-0.85 (85%).

TABLE II: Neural networks and datasets.
Model [ Dataset | Network Topology

MLP [ MNIST [ 784-240-240-10
CNN [ SVHN [ conv5x32-pool3-conv4x64-pool3-1000-400-10

B. Accuracy and Lifetime of ReRAM Crossbars Tradeoff

Table III summarizes a tradeoff among the model accuracy,
bit-width selection and switching probability of MLP and
CNN. Our baseline is a 16-bit fixed-point weight scheme,
which consists of §-bit MSB and 8-bit LSB, without switching
errors (100% switching probability). In either MLP or CNN
model, this baseline weight precision can achieve the best
accuracy.

As reported in recent studies [46]-[48], using low bit-width
weights for neural network training can reduce computation
complexity, energy consumption while maintaining acceptable
accuracy. By storing a less number of bits in weight matrices,
the lifetime of ReRAM crossbars can be improved. To prove
that our proposed schemes can further mitigate endurance
degradation with low bit-width weight matrices, we compare
16-bit, 8-bit and 4-bit weights with no errors (100% switching
probability) schemes for MLP and CNN models, and conclude
that an 8-bit weight scheme for both models achieves the best
tradeoff between accuracy and weight length. The 4-bit weight
matrices used in either of two models result in a failure of
convergence to an acceptable accuracy.

With the 8-bit weight scheme selected, we further evaluate
the impact of switching probability on accuracy. As discussed
in Section IV, a 95% switching probability in both MSB
and LSB of a weight data results in unsuccessful conver-
gence. We then compare the accuracy with different switching
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probabilities, i.e., 95%, 90% and 85%, for LSB in weight
data from both of MLP and CNN models. With decreased
switching probabilities from 95% to 85%, the accuracy loss
slightly increases in MLP model by 0.35%, 0.51% and 0.54%
compared to the 16-bit weight scheme respectively, however,
the accuracy loss of CNN model dramatically increases by
0.51%, 3.23% and 34.3% respectively. Therefore, we select
the 95% switching probability for MLP model by default but
a sensitivity study of different switching probabilities for LSB
in weight matrices is presented in later section. For CNN
model, we also select the switching probability of 95% in
LSB due to an unacceptable accuracy degradation incurred by
other schemes.

C. Lifetime Improvement

To show the effectiveness of our proposed techniques,
we evaluate total effective writes, the maximum number of
writes in the worst-case cell for a fully connected layer
(FC-784%240) in MLP model and a convolutional layer
(CONV4x64) in CNN model, and also conduct a sensitivity
study for ReNEW with different switching probabilities.

1) Total Effective Writes: Fig. 10 shows a comparison in
total effective writes for MLP layer FC-784x240 and CNN
layer CONV4x64. Specifically, in Fig. 10a, we compare the
total effective writes among all schemes on ReRAM crossbars
until their training converges to the best accuracy. For the
FC-784x240 in MLP, ReNEW saves 500.3x, 50.0x, 2.83x
and 1.60x total effective writes compared to MLC1000,
MLC100, SLC and SLC-OP respectively. For CONV4x64
layer in CNN, ReNEW reduces 432.6x, 43.3x, 2.04x and
1.17x total effective writes compared to MLC1000, MLC100,
SLC and SLC-OP respectively. Since training with ReNEW
only has 84 epochs, which is 14 less than the ones with
100% switching probability, we also compare the total number
of effective writes for MLP layer FC-784x240 among all
schemes with the same number of 84 training epochs (ReNEW
and baselines for CNN layer CONV4x64 all experience 98
epochs of training.). Fig. 10b shows that, even with the same
number of training epochs, ReNEW can still reduce total
effective writes by 431.68x, 43.17x, 2.42x and 1.37x than
MLC1000, MLC100, SLC and SLC-OP respectively.

Additionally, we investigate and show the contribution ratio
of two techniques — shortened RESET timing and optimized
programming order, used to reduce total effective writes,
with MLP layer FC-784x240 in Fig. 11a and CNN layer
CONV4x64 in Fig. 11b. In both of two layers, the major
contribution to the reduction in effective writes is from the
shortened RESET timing (85.77% and 60.25% respectively).
Therefore, with a greater shortened RESET timing, a larger
reduction in effective writes is expected to be achieved,
especially for those highly error tolerant neural networks.

2) The Maximum Number of Effective Writes in Worst-case
Cell: In addition to the evaluation for total effective writes,
we also compare the maximum number of effective writes
in the worst-case ReRAM cell, which experiences the most
accumulated effective writes during the training, among all
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schemes with MLP layer FC-784x240 in Fig. 12a, and CNN
layer CONV4x64 in Fig. 12b. For the FC-784x240 in MLP,
with 14 less epochs of training, ReNEW reduces the maximum
number of effective writes by 212.79x, 21.28x, 3.60x and
1.70x compared to MLC1000, MLC100, SLC and SLC-OP
respectively. However, even with the same number of training
epoch of 84, ReNEW can still reduce the maximum effective
writes by 182.67x, 18.27x, 3.13x and 1.48x than MLC1000,
MLC100, SLC and SLC-OP respectively. For CONV4x64
layer in CNN, ReNEW can help to improve the maximum
effective writes by 460.03x, 46.00x, 2.82x and 1.33x in 98
training epochs when compared to MLC1000, MLC100, SLC
and SLC-OP respectively. These experimental results prove
that our proposed techniques can help to evenly distribute
writes across all ReRAM cells during the neural network
training.
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3) Sensitivity to Switching Probability: As discussed pre-
viously, by decreasing the switching probability for MLP

Authorized licensed use limited to: University of Pittsburgh. Downloaded on June 03,2020 at 05:30:51 UTC from IEEE Xplore. Restrictions apply.



TABLE III: Tradeoff between model accuracy loss and precisions of weight data.

MLP CNN
Weight Precision (Switching Prob.) ( Ac?ifz;?oss) Epoch Weight Precision (Switching Prob.) ( Ac?;:;l;?’oss) Epoch
{7/
8b-MSB (100%)-8b-LSB (100%) 97.:88% 85 8b-MSB (100%)-8b-LSB (100%) 90.68% 97
0 (¥
4b-MSB (100%)-4b-LSB (100%) (?(Zg;t;:) 98 4b-MSB (100%)-4b-LSB 100%) 25’3371‘7/; 98
4b-MSB (100%)-4b-LSB (95%) 23;53;20) 84 4b-MSB (100%)-4b-LSB (95%) (?(())5130‘77":) 98
4b-MSB (100%)-4b-LSB (90%) (?3;7;;2) 97 4b-MSB (100%)-4b-LSB (90%) (?;;SZZ) 57
0 (¥
4b-MSB (100%)-4b-LSB (85%) (?353:;:) 71 4b-MSB (100%)-4b-LSB (85%) (_5333;:‘{,2) 100
4b-MSB (95%)-4b-LSB (95%) (72770'?7(:7,2) 92 4b-MSB (95%)-4b-LSB (95%) (71791‘516;2) 17
2b-MSB (100%)-2b-LSB (100%) (_186]'2“5;52) 20 2b-MSB (100%)-2b-LSB (100%) (_1791'516222) 0

model from 95% to 85%, the accuracy loss does not signif-
icantly increases. To better understand the tradeoff between
endurance improvement and switching probability, we test
the lifetime enhancement for ReNEW with different switching
probabilities, i.e., 95% (ReNEW-0. 95), 90% (ReNEW-0. 90)
and 85% (ReNEW-0.85), as shown in Fig. 13. Specifi-
cally, Fig. 13a compares the total effective writes and ac-
curacy loss in MLP layer FC-784x240 for ReNEW-0. 95,
ReNEW-0.90 and ReNEW-0.85. Overall, ReNEW-0.85
outperforms ReNEW-0.95 and ReNEW-0.90 by 1.19x
and 1.31x in total effective writes reduction, while at a
cost of 0.19% and 0.03% degraded accuracy respectively.
ReNEW-0.90 has a larger number of total effective writes
than ReNEW-0. 95 since it is trained with more epochs. As
shown in Fig. 13b, with a same number of 77 training epochs,
ReNEW-0.90 reduces a greater number of effective writes
than ReNEW-0. 95, and ReNEW-0. 85 still has the smallest
number of effective writes (1.09%x and 1.04x smaller than
ReNEW-0.95 and ReNEW-0. 90 respectively). This proves
that, the smaller switching probability is, a greater endurance
improvement is achieved with given the same amount of
updates. Fig. 13c presents a comparison of maximum number
of effective writes for MLP layer FC-784x240, wherein
ReNEW-0. 85 achieves a smaller number maximum effective
writes than ReNEW-0.95 and ReNEW-0.90 by 1.28x and
1.20x when all three schemes converge to the best accuracy.
With the same number of 77 training epochs, ReNEW-0. 85
outperforms ReNEW-0. 95 and ReNEW-0. 90 by 1.10x and
1.07x respectively.

VI. RELATED WORK

Neural network computing with ReRAM. Recent studies
on neural network accelerators exploit the natural analog
current accumulation feature of ReRAM crossbar architecture
to implement dot-product calculations [9], [11]-[13], [38],
[39], [49]-[61], wherein there are many [12]-[14], [38], [61]
supporting neural networks training in ReRAM crossbars.

Wear leveling techniques for Crossbar ReRAM. Wear-
leveling techniques for NVM based memories have been
widely studied, which share a general idea of evenly dis-
tributing write accesses across pages [19]-[22]. To address
the endurance issue of ReRAM crossbar based neural net-
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work accelerators, a software and hardware co-optimization
is proposed [14]. Unfortunately, this scheme only works for
MLC ReRAM crossbars. Prior work [13] exploits gradient
sparsification in neural networks and a row remapping scheme
to improve ReRAM endurance, which is in fact complemen-
tary to our designs. A recent study on using low-precision
weights [46] for CNN training can be also used to mitigate
ReRAM crossbar endurance degradation. As shown in our
evaluations, this is also orthogonal to our design since ReNEW
can further improve endurance in low bit-width weight matri-
ces during the training.

Improving endurance by exploiting stochastic switching.
An approximate switching scheme is also proposed to improve
the endurance in [62] for NVM based FF design, but this work
is lack of an analytical study between switching probability
and enhanced lifetime.

VII. CONCLUSION

In this paper, we are motivated by analyses of the endurance
degradation mechanism in ReRAM cell, and then propose
a novel framework, ReNEW, to enhance the lifetime of the
ReRAM crossbar based neural network accelerators, especially
for neural network training that requires frequent weight
updates. The experimental evaluations show that, our proposed
ReNEW reduces the total effective writes to ReRAM crossbar
based accelerators by up to 500.3x, 50.0x, 2.83x and 1.60x
over two MLC baselines, SLC baseline and SLC design with
optimal timing respectively.
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