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Abstract—With analog current accumulation feature, resistive
memory (ReRAM) crossbars are widely studied to accelerate
neural network applications. The ReRAM crossbar based accel-
erators have many advantages over conventional CMOS-based
accelerators, such as high performance and energy efficiency.
However, due to the limited cell endurance, these accelerators
suffer from short programming cycles when weights that stored
in ReRAM cells are frequently updated during the neural
network training phase.

In this paper, by exploiting the wearing out mechanism of
ReRAM cell, we propose a novel comprehensive framework,
ReNEW, to enhance the lifetime of the ReRAM crossbar based
accelerators, particularly for neural network training. Evaluation
results show that, our proposed schemes reduce the total effective
writes to ReRAM crossbar based accelerators by up to 500.3×,
50.0×, 2.83× and 1.60× over two MLC ReRAM crossbar
baselines, one SLC ReRAM crossbar baseline and an SLC
ReRAM crossbar design with optimal timing, respectively.

I. INTRODUCTION

In recent years, the neural networks have gained increasing

attentions and been successfully applied to a wide range

of applications [1]–[4]. The increasingly growth in the size

of datasets and the number of layers in neural networks

help to achieve a better prediction accuracy, but also result

in dramatically increased computations and expensive data

movement from off-chip memory. Conventional CMOS-based

general purpose processor such as multi-core CPU [5] and

GPGPU [1], or specialized hardware accelerators, such as

FPGA [6] and ASIC designs [7], [8], are intensively studied

and proposed with software and hardware optimizations for

neural network applications, however, they still suffer from the

large energy consumption and limited memory bandwidth [9].

To address these issues, resistive memory (ReRAM), with

adopting crossbar array structure, is proposed to implement

dot-product calculations by leveraging its analog current ac-

cumulation feature [9]–[14]. ReRAM crossbars are able to

accelerate neural networks computation with low energy con-

sumption and minimized data movement [11], since they

have almost zero leakage power and intrinsically support the

processing-in-memory (PIM) computation paradigm.

Though ReRAM crossbar based neural network acceler-

ators own these advantages over conventional CMOS-based

accelerators, due to the limited cell endurance [13]–[16], they
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suffer from short programming cycles as weight data stored

in ReRAM cells are frequently updated during the neural

network training. The write endurance of an ReRAM chips can

range from 106 to 1012 [13], [17], [18] with adopting various

resistive materials and different programming schemes. On the

other hand, training the state-of-the-art deep neural networks

usually demands at least 5 orders of magnitudes of weight

updates, which essentially leads to frequent ReRAM cell

programming. Therefore, enhancing the lifetime of ReRAM

crossbars is the key to facilitate its widespread adoption as

hardware accelerators for neural network training.
Conventional wear-leveling techniques for NVM (non-

volatile memory) based main memory have been well-studied,

mostly with a focus on evenly distributing write requests

across pages [19]–[22]. With distinct programming patterns,

ReRAM crossbar based neural network accelerators may po-

tentially demand for an innovative approach. Prior efforts on

extending ReRAM crossbar based neural network accelerators

either manage to squeeze the endurance of the degraded

MLC ReRAM cells [14] or exploit the gradient sparsification

and regularly perform row-swapping [14]. However, in order

to further improve the endurance of ReRAM crossbars for

neural network training, it is necessary to investigate op-

timal programming strategies by exploiting the mechanism

of endurance degradation in ReRAM crossbars, while taking

characteristics of the target application, i.e., neural network

training, as well as crossbar array features into account.
Our goal in this paper is to enhance lifetime for ReRAM

crossbar based neural network accelerators. To achieve this, we

propose a comprehensive framework, ReREW, which consists

of techniques that can effectively prolong ReRAM crossbar

lifetime during neural network training. A summary of our

main contributions is listed as follows.

• Unlike many of prior studies, we propose to program

ReRAM cells in crossbars in SLC (Single Level Cell)

mode for neural network training and in MLC (Multi-Level

Cell) mode during the inference, in order to fully take the

advantage of longer endurance of SLC ReRAM cells during

the training and larger capacity of MLC ReRAM cells for

the inference.

• Prior studies show that different in-memory data patterns

lead to discrepancies in programming latency and voltage

stress, which further causes the disparity of actual wearing

out degrees of ReRAM cells. Based on this observation,
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we adopt the optimal programming latency and propose to

update weights in an optimized order that can maximize the

lifetime of ReRAM crossbars.

• We analyze the trade-off between endurance and program-

ming conditions, and then present an endurance analyti-

cal model for ReRAM cell in SLC mode with different

programming strengths. In addition, an analytical study of

the trade-off between programming latency and switching

probability is presented. Based on these analyses along with

the intrinsic error-tolerance of neural network training, we

propose to intentionally shorten the programming time to

enhance lifetime of ReRAM crossbars at a cost of possibly

unsuccessful ReRAM cell switching.

• Inspired by a conventional wear-leveling technique for NVM

based main memory, we also propose to shift and update

a group of columns between training iterations, which can

effectively spread out writes across the whole crossbar.

• Our experiment evaluations prove that our proposed tech-

niques reduce the total effective writes to ReRAM crossbar

based accelerators by up to 500.3×, 50.0×, 2.83× and

1.60× over two MLC baselines, SLC baseline and SLC

design with optimal timing respectively.

In the rest of this paper, we first introduce the basics of

ReRAM cell basics, ReRAM crossbar based accelerators and

neural network training in Section II. Then we present the

motivation of proposed schemes in Section III. In Section IV,

we elaborate design details for enhancing lifetime of ReRAM

crossbar based accelerators. Experimental results are presented

in Section V. We briefly discuss related work in Section VI

and conclude the whole paper in Section VII.

II. BACKGROUND

In this section, we discuss about the fundamentals of

ReRAM and its applications as neural network accelerators,

and also briefly introduce the neural network training.

A. ReRAM Fundamentals

ReRAM is a passive resistive based non-volatile memory

technology, which uses different resistance states to represent

data values. Fig. 1 illustrates the structure of an ReRAM

cell, which consists of a metal oxide layer sandwiched by

two metal electrodes on the top and bottom. According to

a prior study [18], different classes of ReRAM with various

metal oxide and electrode materials, such as CuTex/HfO2

and CuTex/Al2O3, exhibit diverse characteristics such as

endurance, retention and scalability.

Fig. 1: ReRAM cell structure and basic (SET/RESET) pro-

gramming operations.

Fig. 1 also depicts two basic programming procedures for

ReRAM — RESET and SET, which are reversible switching

operations and used to store data in an ReRAM cell. For an

SLC ReRAM cell, with a positive voltage larger than a certain

threshold applied to the top electrode, the current flowing

through cell enables a formation of the conductive filaments

(CF) in the metal oxide layer, switching the ReRAM cell to

low resistance state (LRS). On the contrary, during the RESET

process, which is initialized with a negative voltage on the

top electrode, the CFs are ruptured and consequently the cell

is switched to high resistance state (HRS). To program an

MLC ReRAM cell is much more complicated with consuming

significantly more power and time [17], [23] and thereby wears

out cells much faster, since an iterative programming, i.e.,

Program & Verify (P&V), is used to accurately achieve the

intermediate resistance levels.

B. ReRAM crossbar and Its Application for Neural Network
Computing

Fig. 2 illustrates an ReRAM crossbar architecture, in which

each ReRAM cell is connected to a worldline and bitline

at their crosspoint. With a voltage stress, ReRAM cell be-

haves as resistive devices obeying Ohm’s law. Hence, the

current flowing through each cell depends on its resistance

and voltage stress. With a vector of n input voltages V =
[V0, ..., Vn−3, Vn−2, Vn−1] from wordlines to one particular

column of ReRAM cells, as highlighted in red in Fig. 2,

aggregated analog current I =
∑n−1

n=0 Vi · Gi outputs from

the bitline, where Gi is the conductance (the reciprocal of

resistance, Gi = 1/Ri) of the ReRAM cell. If we treat the

voltage V and conductance G as input vectors, the output

I = V·G is naturally a result from a mathematical dot-product

calculation by V and G. Since such dot-product operations are

predominantly performed in neural network computing, with

weight matrices represented by different resistance levels in

ReRAM cells, they can be efficiently processed inside ReRAM

crossbars.

Fig. 2: An ReRAM crossbar based dot-product engine.

C. Neural Network Training

Fig. 3 shows an example of neural network training, which

is composed of a forward and a backward propagation. In

forward propagation, an input vector [x0, x1, ..., xn] is fed into

the network while calculating the intermediate neurons with

weight matrices W1,W2, ...,W4 in each layer. Afterwards,
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an output vector [y0, y1, ..., ym] is computed and taken by a

loss function to estimate the difference with labeled data. As

soon as the loss is obtained, a backward propagation starts

by sending the loss back to all layers of the neural network.

During this stage, weight matrices are frequently updated with

the loss by using: ΔWi = −LR · ∂Loss
∂Wi

, where ΔWi is the

update to each of weight matrix, LR is the learning rate, and

i = 1, 2, ..., 4 denotes the number of the layer.

Fig. 3: Neural network training with weight updates.

III. MOTIVATION

In this section, we analyze the ReRAM wearing out mech-

anism and stochastic switching behaviors, which motivate

us to propose innovative solutions for mitigating endurance

degradation of ReRAM crossbars during the training.

A. ReRAM Cell Endurance Model

The wearing out mechanism of ReRAM cell has been long

studied [18], [24]–[26], which all generally believe excessive

programming conditions, such as long programming pulse

width and strong pulse amplitude than necessary, i.e., over-

SET/-RESET, degrade ReRAM cell endurance. In order to

analytically model ReRAM endurance degradation, it is nec-

essary to identify the key factor that can limit the write cycles

of an ReRAM cell.

1) Tunneling Gap Distance and Roff/Ron: Fig. 4 shows

the how resistance level is determined during ReRAM cell

switching. As we discussed, a formation/rupture of CFs in an

ReRAM cell happens during SET/RESET processes. For an

instance of RESET process shown in Fig. 4, with a negative

voltage stress on top electrode, the CFs are dissolved. A

stronger RESET condition can lead to less amount of residual

CFs, which thereby exhibits a larger resistance. Based on the

ReRAM cell model presented in previous work [27]–[29], the

concept of tunneling gap distance g, which denotes an average

distance from the top of residual CFs to the top electrode layer,

is used to indicate the resistance level of an ReRAM cell dur-

ing switching. An I−V characteristic equation in an ReRAM

cell can be represented as I = I0exp(−g/g0)sinh(V/V0),
where I0, g0 and V0 are fitting constants [28]. In the figure,

a tunneling gap g2 is larger than g1, which implies that a

stronger programming condition is needed for switching the

cell to g2 than g1. Consequently, an ReRAM cell with a

tunneling gap g2 has a larger resistance than the one with

g1.

Recent studies [30], [31] report that the SET process is

abrupt and RESET process is more gradual, and prior stud-

ies [27], [32]–[34] also present that RESET takes much longer

time and consumes much more energy than SET operation.

Therefore, in this paper, we assume SET operation is fast and

accurate without consuming much energy, and the endurance

degradation principally comes from RESET operation. We

also assume that each SET operation accurately switches the

cell to Ron, and thus the Roff/Ron ratio is determined by

RESET operation condition. However, it is worth noting that

our proposed schemes also apply to different ReRAM switch-

ing assumptions, such as symmetric SET/RESET operations.

With a fixed or variable Roff/Ron ratio, the relationship

between endurance degradation and programming strategies

are different, which consequently results in different endurance

enhancement solutions.

Fig. 4: ReRAM cell switching and its resistance.

2) Fixed Roff/Ron During Programming: With a fixed

Roff/Ron ratio, recent studies [16], [24] reveal a tradeoff

between endurance and programming latency that a longer

programming pulse without over-RESET the cell can prolong

the cell endurance. The hypothesis of this argument is to

switch an ReRAM cell to a fixed resistance level, that is to

say, the g is unchanged under different switches [24]. The

tradeoff of endurance and write latency can be approximated

as: Endurance ≈ (tW /t0)
C , where tW is the write latency

and t0 and C are fitting parameters. We use the same C = 2
as [16], [19] in this paper. Based on this observation, a concept

of effective write is proposed in [19] to estimate the endurance

degradation in ReRAM crossbars with taking sneak current

issue and RESET latency discrepancy into consideration. As

reported in [19], [34], it is necessary to adopt optimal RESET

latency at runtime to avoid excessive write strength. In this

paper, the effective write is adopted as the metric to estimate

the degrees of wearing out an ReRAM cell:

EW = �( tL
t
)2� (1)

where t is the variable latency and tL is the longest latency

in a crossbar with given Roff/Ron.

3) Variable Roff/Ron During Programming: In contrast to

a fixed Roff/Ron scenario where prolonging RESET duration

to mitigate endurance degradation can be used, with a flexible

Roff/Ron, the endurance is improved in a different approach.

A recent research [18] demonstrates that the ReRAM en-

durance is significantly correlated to Roff/Ron ratio. The

larger Roff/Ron is, the shorter the lifetime of an ReRAM

cell can have. Additionally, the programming pulse width, i.e.,

RESET latency in this paper, is proportional to Roff/Ron ra-

tio. Based on above two observations, we present an analytical

model by using data from [18] with CuTex/HfO2 material

(which has the best endurance and hence is suitable for neural
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network training) to estimate the lifetime of an ReRAM cell

in different RESET latencies:

Endurance ≈ a · eb·WM (2)

and

WM ≈ p0 · t+ p1 (3)

where WM denotes the Roff/Ron, t is RESET latency and

a, b, p0, p1 are fitting constants. While shortening the RESET

latency linearly decreases the Roff/Ron ratio, the endurance

is exponentially improved by a reduced Roff/Ron. Equation 2

and 3 together imply that appropriately optimizing RESET

latency may help to achieve better endurance.

B. ReRAM Stochastic Switching

Though with an appropriate RESET condition, ReRAM cell

can switch to a targeted resistance level by forming a certain

tunneling gap g. However, we should also realize that the

programming on ReRAM cell is a stochastic switching [35].

Previous studies [35]–[37] report that the switching behaviors

of an ReRAM cell is stochastic, and its probability is pre-

dictable with modeling the correlation between programming

conditions and successful switching rate. It is worth noting

that, a successful switching rate here is defined as — how

many successful read-out values (SLC reading mode with

values ‘0’/‘1’) are as expected out of total read attempts under

the same read voltage condition [36], which indicates that a

targeted Roff/Ron should be achieved in order to provide

enough read margin. Otherwise, a reduced Roff/Ron can lead

to a uncertain switching.

Two major programming conditions — RESET pulse width

(time) and height (amplitude), have significant impact on

switching probability. They both in fact affect on Roff/Ron as

discussed before. In this work, we use following Equation 4,

as reported in [37] with RESET conditions from [34], to model

the correlation between switching probability and RESET time

under different pulse heights:

P =
1

2
erfc(− ln tw − ln τ√

2σ
) (4)

where the P is the ReRAM cell switching probability, erfc(x)
is a complementary error function, tw represents RESET pulse

width (write latency), τ and σ are fitting parameters.

Fig. 5 plots a group of curves with ReRAM cell switching

probabilities at different RESET voltage widths and heights.

In this work, we assume these optimized RESET latencies

from [34] guarantee a 100% cell switching. When applying a

shorter RESET timing than those under the same data pattern,

the switching probability is smaller than 100% and can be

predictably computed with Equation 4.

IV. PROPOSED DESIGNS

In this section, we elaborate our proposed framework, Re-

NEW, which can effectively improve the endurance of ReRAM

crossbar based neural network accelerators.
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Fig. 5: The correlation between switching probability and

RESET voltage width with different RESET pulse heights.

A. Training CNN with SLC ReRAM

As shown in Fig. 6, the ReRAM crossbar based neu-

ral network accelerator adopted in this paper has a similar

architecture to PRIME [9]. This architecture is composed

of several banks, each of which further consists of many

ReRAM crossbars. The ReRAM crossbars can be partitioned

into memory array and compute array based on their usage.

Memory arrays are to store temporary data, while compute

arrays primarily perform in-memory dot-product calculations.

Different from most of prior work [12]–[14], [38] where

Multi-Level Cell (MLC) ReRAM crossbars are adopted for

neural network training, we propose to program ReRAM

crossbars in Single-Level Cell (SLC) mode for training, but

well-trained weight matrices for inference task are still pro-

grammed in MLC mode. This is because, compared to MLC

ReRAM crossbars, using SLC ReRAM crossbars for neural

network training owns following advantages: (1) Since an

iterative scheme and a large RHRS/RLRS ratio are usually

necessary for MLC ReRAM programming, write endurance of

an SLC ReRAM cell can be as much as 4-6 magnitudes better

than MLC ReRAM according to prior study [17]. (2) With

similar reasons to (1), programming an SLC ReRAM cell also

performs better than an MLC ReRAM [23] cell in performance

and energy-efficiency. As shown in Fig. 6, we use 8-bit fixed-

point numbers to represent weight data. It is worth noting that,

though we assume bits within the same weight data are stored

consecutively in one row, our proposed schemes also apply

to different weight mapping approaches without significant

changes. To store each of this 8-bit weight data, 8 cells in SLC

ReRAM crossbars are required, however, only 2 cells (if 4-bit

per cell is assumed) are enough in an MLC crossbar array.

Even though MLC ReRAM is several times denser than SLC

ReRAM (depends on the resistance levels), the capacity loss is

possibly compensated by reloading weights onto SLC ReRAM

crossbars for a few times. A comparison of MLC and SLC

ReRAM crossbars for neural network training is presented

in the experiment section. To enable using multiple cells for

representing one weight data, a bit slicing technique [39] is

adopted to support dot-product calculations on SLC ReRAM

crossbars. In addition, necessary compute units for shift-add

operations are also needed to generate final results.

After the completion of neural network training, the trained
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weights shall be re-programmed into ReRAM crossbar arrays

in MLC mode. This is because, during the training, partition-

ing and reloading weights onto crossbars are possibly needed

due to limited capacity of SLC ReRAM cells. However,

an inference task usually demands near real-time response.

Hence, reloading weights with using crossbars in SLC mode

may be not suitable for inference. Besides, writing well-trained

weights into crossbars is not a frequent operation during the

inference, therefore, the energy and performance cost are more

acceptable than during the training.

Fig. 6: An overview of ReRAM crossbar based accelerator for

neural network computing.

B. Optimized Programming Order

A prior study [19] on write endurance variation shows that

having more LRS cells along bitlines benefits the lifetime of

ReRAM cells under the premise of no over-SET/-RESET cells.

This observation motivates us to optimize the weight updates

order by programming cells from ‘0’ to ‘1’ (SET operations)

before performing RESET operations. Fig. 7 illustrates a

comparison of a sequential weight update, which is row-major

order, and the proposed optimized programming scheme that

first performs SET operations to increase the number LRS

cells in ReRAM crossbars, and then RESET the rest of cells.

By employing the optimized programming order, the effec-

tive writes brought by each RESET are expected to decrease,

since more LRS cells have been generated beforehand. As a

side note, this optimization guarantees successful switching

since the targeted Roff/Ron shall be achieved, and it only

prolongs endurance as Equation 1. Therefore, it can be safely

applied to either LSB (least-significant bits) columns or MSB

(most-significant bits) 1 columns as it basically does not

introduce switching errors. Moreover, this optimized program-

ming order does not introduce latency penalty since separate

SET and RESET programming phases are also needed in the

baseline row-major order [32].

C. Shortened RESET operation

As discussed in Section III, by shrinking Roff/Ron, the

lifetime of ReRAM cells can be exponentially improved.

Equation 3 proves that a shortened RESET latency linearly

reduces Roff/Ron. With observations above, we propose

to shorten RESET time on selected columns in ReRAM

crossbars, such as those contain LSB, to extend their lifetime.

1In this paper, we denote MSB/LSB as the most/least significant half in
each weight data, e.g., 4 most-significant bits and 4 least-significant bits for
an 8-bit weight number.

Fig. 7: A comparison of the baseline weight update in row-

major order and the proposed optimized programming order.

Though a shortened RESET duration significantly mitigates

endurance degradation, in the meantime it potentially brings

switching errors, which possibly further results in an accuracy

loss. To address this, we propose to exploit the intrinsic error-

tolerance characteristic of neural network training, which has

been widely reported in prior studies [40], [41], to mitigate

the accuracy loss. Intuitively, we are able to achieve a sweet

spot in the tradeoff between accuracy and ReRAM crossbar

lifetime by tuning the programming time. Table I shows our

study on the accuracy degradation with different switching

probabilities 2. Compared to the 8-bit fixed point weight

scheme with 100% switching probability, a 95% of switching

probability in LSB for both of MLP and CNN model only

slightly degrades accuracy by 0.33% and 0.14% respectively.

However, if a 95% of switching probability applies to both

of MSB and LSB in weight matrices, training of neural

network models cannot converge. Therefore, we propose to

only shorten the RESET timing on LSB columns in order to

avoid a significant accuracy loss.

TABLE I: Model accuracy degradation with different switch-

ing probabilities.

Weight Precision MLP CNN
4b-MSB (100%)-4b-LSB (100%) 97.86% 90.31%

4b-MSB (100%)-4b-LSB (95%) 97.53% 90.17%

4b-MSB (95%)-4b-LSB (95%) 27.41% 19.56%

A basic workflow of the proposed scheme is shown in Fig. 8.

A neural network dependent switching error tolerance, such as

5% of switching error tolerance used in this paper by default, is

first decided. This tolerance value is then sent to a look-up ta-

ble, which maps switching probabilities to their corresponding

RESET latencies, to determine the shortened RESET timing.

After this, programming commands with optimized RESET

timing are issued to LSB columns, while precise programming

is applied to MSB columns.

D. Column Group Shift and Update

With shortened RESET operations on LSB columns applied,

intuitively there will be a discrepancy in effective writes across

LSB and MSB columns in a crossbar array. Besides, a recent

study [13] also observed a severe unbalance writes distribution

in ReRAM crossbars during the neural network training. To

address this issue, we propose to shift and update each half

length of weight data within column groups for every training

2The experimental methodologies are presented in Section V in detail.
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Fig. 8: The precise RESET on MSB columns and shortened

RESET on LSB columns.

iteration, as illustrated in Fig. 9. Each column group has all

MSB or LSB columns from different weight data that are

stored along same bitlines. With assuming 4-bit MSB/LSB and

512 rows in an array, a column group is a 512× 4 data chunk

that contains 512 4-bit LSB or MSB columns. This technique

is inspired by a conventional wear-leveling technique for NVM

based main memory [42], which proposed to periodically

shift rows and swap pages to improve endurance. However,

our design proposes to shift and update weight data on all

column groups in each iteration. In addition, shifting and

swapping techniques for NVM based main memory incur a

huge performance overhead by data exchanging, whereas our

proposed shift and update scheme between only requires the

address remapping and can perform in each iteration, since

weight matrices are updated in each training iteration and not

necessarily preserved.

Fig. 9: The proposed column group shift and update scheme.

V. EVALUATIONS

In this section, we first introduce our experimental method-

ologies, and then present the evaluation results.

A. Experimental Setup

As summarized in Table II, we build two neural network

models — MLP and CNN, with Theano [43], and then gen-

erate weight matrices by training two models on MNIST [44]

and SVHN [45] datasets respectively. In this paper, we test

model accuracy with using different precisions of fixed-point

weight matrices, and assume input data and intermediate

feature maps are accurate. Batch normalization is also adopted

in neural network models. For the purpose of evaluating the

effectiveness of proposed techniques, we develop a simulator

to estimate lifetime of ReRAM crossbars, each of which is

a 512 × 512 array and can contain up to 64 8-bit fixed-

point weights per row. This simulator takes weight matrices

generated from neural network training as inputs. With a fixed-

size of ReRAM crossbar, weight matrices are partitioned and

reloaded onto crossbars when the size of matrix is too large for

a single crossbar. In opposition, multiple small weight matrices

can reside in the same physical ReRAM crossbar to maximize

the utilization. The effective write [19], which is computed

with Equation 1, is used to accumulate wearing out effect on

each cell. We adopt RESET latencies from [19] with different

bitline data patterns as the optimal programming strategy, and

use a conservative timing for the naive solution [34]. We

also compare our proposed techniques with 512 × 512 MLC

ReRAM crossbar baselines. We assume one MLC ReRAM

cell has 16 resistance levels, i.e., 4-bit data per cell, and it is

worn out 1000× (MLC1000) and 100× (MLC100) faster than

SLC [17]. We summarize all evaluated schemes as below:

• MLC100 and MLC1000 are MLC ReRAM crossbar base-

lines, assuming to have 100× and 1000× effective writes

than baseline SLC for each write respectively.

• SLC is an SLC ReRAM crossbar baseline with a conven-

tional programming strategy.

• SLC-OP is an SLC ReRAM crossbar baseline with an

optimized programming strategy [19].

• ReNEW has all proposed techniques to enhance lifetime

of ReRAM crossbars. We evaluate ReNEW with differ-

ent switching probabilities, ReNEW-0.95 (95%, default),

ReNEW-0.90 (90%) and ReNEW-0.85 (85%).

TABLE II: Neural networks and datasets.
Model Dataset Network Topology
MLP MNIST 784-240-240-10

CNN SVHN conv5x32-pool3-conv4x64-pool3-1000-400-10

B. Accuracy and Lifetime of ReRAM Crossbars Tradeoff

Table III summarizes a tradeoff among the model accuracy,

bit-width selection and switching probability of MLP and

CNN. Our baseline is a 16-bit fixed-point weight scheme,

which consists of 8-bit MSB and 8-bit LSB, without switching

errors (100% switching probability). In either MLP or CNN

model, this baseline weight precision can achieve the best

accuracy.

As reported in recent studies [46]–[48], using low bit-width

weights for neural network training can reduce computation

complexity, energy consumption while maintaining acceptable

accuracy. By storing a less number of bits in weight matrices,

the lifetime of ReRAM crossbars can be improved. To prove

that our proposed schemes can further mitigate endurance

degradation with low bit-width weight matrices, we compare

16-bit, 8-bit and 4-bit weights with no errors (100% switching

probability) schemes for MLP and CNN models, and conclude

that an 8-bit weight scheme for both models achieves the best

tradeoff between accuracy and weight length. The 4-bit weight

matrices used in either of two models result in a failure of

convergence to an acceptable accuracy.

With the 8-bit weight scheme selected, we further evaluate

the impact of switching probability on accuracy. As discussed

in Section IV, a 95% switching probability in both MSB

and LSB of a weight data results in unsuccessful conver-

gence. We then compare the accuracy with different switching
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probabilities, i.e., 95%, 90% and 85%, for LSB in weight

data from both of MLP and CNN models. With decreased

switching probabilities from 95% to 85%, the accuracy loss

slightly increases in MLP model by 0.35%, 0.51% and 0.54%

compared to the 16-bit weight scheme respectively, however,

the accuracy loss of CNN model dramatically increases by

0.51%, 3.23% and 34.3% respectively. Therefore, we select

the 95% switching probability for MLP model by default but

a sensitivity study of different switching probabilities for LSB

in weight matrices is presented in later section. For CNN

model, we also select the switching probability of 95% in

LSB due to an unacceptable accuracy degradation incurred by

other schemes.

C. Lifetime Improvement

To show the effectiveness of our proposed techniques,

we evaluate total effective writes, the maximum number of

writes in the worst-case cell for a fully connected layer

(FC-784x240) in MLP model and a convolutional layer

(CONV4x64) in CNN model, and also conduct a sensitivity

study for ReNEW with different switching probabilities.

1) Total Effective Writes: Fig. 10 shows a comparison in

total effective writes for MLP layer FC-784x240 and CNN

layer CONV4x64. Specifically, in Fig. 10a, we compare the

total effective writes among all schemes on ReRAM crossbars

until their training converges to the best accuracy. For the

FC-784x240 in MLP, ReNEW saves 500.3×, 50.0×, 2.83×
and 1.60× total effective writes compared to MLC1000,

MLC100, SLC and SLC-OP respectively. For CONV4x64
layer in CNN, ReNEW reduces 432.6×, 43.3×, 2.04× and

1.17× total effective writes compared to MLC1000, MLC100,

SLC and SLC-OP respectively. Since training with ReNEW
only has 84 epochs, which is 14 less than the ones with

100% switching probability, we also compare the total number

of effective writes for MLP layer FC-784x240 among all

schemes with the same number of 84 training epochs (ReNEW
and baselines for CNN layer CONV4x64 all experience 98

epochs of training.). Fig. 10b shows that, even with the same

number of training epochs, ReNEW can still reduce total

effective writes by 431.68×, 43.17×, 2.42× and 1.37× than

MLC1000, MLC100, SLC and SLC-OP respectively.

Additionally, we investigate and show the contribution ratio

of two techniques — shortened RESET timing and optimized

programming order, used to reduce total effective writes,

with MLP layer FC-784x240 in Fig. 11a and CNN layer

CONV4x64 in Fig. 11b. In both of two layers, the major

contribution to the reduction in effective writes is from the

shortened RESET timing (85.77% and 60.25% respectively).

Therefore, with a greater shortened RESET timing, a larger

reduction in effective writes is expected to be achieved,

especially for those highly error tolerant neural networks.

2) The Maximum Number of Effective Writes in Worst-case
Cell: In addition to the evaluation for total effective writes,

we also compare the maximum number of effective writes

in the worst-case ReRAM cell, which experiences the most

accumulated effective writes during the training, among all

(a) (b)
Fig. 10: Total effective writes comparison for MLP and CNN

models. (a) Training with different epochs until a convergence

to the best accuracy. (b) Effective writes comparison for the

MLP layer FC-784x240 among all schemes with the same

number of 84 training epochs.

(a) (b)
Fig. 11: The contribution ratio of shortened RESET timing and

optimized programming order techniques for the reduction in

effective writes with (a) MLP layer FC-784x240 and (b)

CNN layer CONV4x64.

schemes with MLP layer FC-784x240 in Fig. 12a, and CNN

layer CONV4x64 in Fig. 12b. For the FC-784x240 in MLP,

with 14 less epochs of training, ReNEW reduces the maximum

number of effective writes by 212.79×, 21.28×, 3.60× and

1.70× compared to MLC1000, MLC100, SLC and SLC-OP
respectively. However, even with the same number of training

epoch of 84, ReNEW can still reduce the maximum effective

writes by 182.67×, 18.27×, 3.13× and 1.48× than MLC1000,

MLC100, SLC and SLC-OP respectively. For CONV4x64
layer in CNN, ReNEW can help to improve the maximum

effective writes by 460.03×, 46.00×, 2.82× and 1.33× in 98

training epochs when compared to MLC1000, MLC100, SLC
and SLC-OP respectively. These experimental results prove

that our proposed techniques can help to evenly distribute

writes across all ReRAM cells during the neural network

training.

(a) (b)
Fig. 12: A comparison of the maximum number of effective

writes in the worst-case ReRAM cell for (a) MLP layer

FC-784x240 and (b) CNN layer CONV4x64.

3) Sensitivity to Switching Probability: As discussed pre-

viously, by decreasing the switching probability for MLP
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TABLE III: Tradeoff between model accuracy loss and precisions of weight data.
MLP CNN

Weight Precision (Switching Prob.) Accuracy
(Accuracy Loss) Epoch Weight Precision (Switching Prob.) Accuracy

(Accuracy Loss) Epoch

8b-MSB (100%)-8b-LSB (100%)
97.88%

-
85 8b-MSB (100%)-8b-LSB (100%)

90.68%
-

97

4b-MSB (100%)-4b-LSB (100%)
97.86%

(-0.02%)
98 4b-MSB (100%)-4b-LSB 100%)

90.31%
(-0.37%)

98

4b-MSB (100%)-4b-LSB (95%)
97.53%

(-0.35%)
84 4b-MSB (100%)-4b-LSB (95%)

90.17%
(-0.51%)

98

4b-MSB (100%)-4b-LSB (90%)
97.37%

(-0.51%)
97 4b-MSB (100%)-4b-LSB (90%)

87.45%
(-3.23%)

57

4b-MSB (100%)-4b-LSB (85%)
97.34%

(-0.54%)
77 4b-MSB (100%)-4b-LSB (85%)

56.34%
(-34.34%)

100

4b-MSB (95%)-4b-LSB (95%)
27.41%

(-70.47%)
92 4b-MSB (95%)-4b-LSB (95%)

19.56%
(-71.12%)

17

2b-MSB (100%)-2b-LSB (100%)
16.45%

(-81.43%)
20 2b-MSB (100%)-2b-LSB (100%)

19.56%
(-71.12%)

0

model from 95% to 85%, the accuracy loss does not signif-

icantly increases. To better understand the tradeoff between

endurance improvement and switching probability, we test

the lifetime enhancement for ReNEW with different switching

probabilities, i.e., 95% (ReNEW-0.95), 90% (ReNEW-0.90)

and 85% (ReNEW-0.85), as shown in Fig. 13. Specifi-

cally, Fig. 13a compares the total effective writes and ac-

curacy loss in MLP layer FC-784x240 for ReNEW-0.95,

ReNEW-0.90 and ReNEW-0.85. Overall, ReNEW-0.85
outperforms ReNEW-0.95 and ReNEW-0.90 by 1.19×
and 1.31× in total effective writes reduction, while at a

cost of 0.19% and 0.03% degraded accuracy respectively.

ReNEW-0.90 has a larger number of total effective writes

than ReNEW-0.95 since it is trained with more epochs. As

shown in Fig. 13b, with a same number of 77 training epochs,

ReNEW-0.90 reduces a greater number of effective writes

than ReNEW-0.95, and ReNEW-0.85 still has the smallest

number of effective writes (1.09× and 1.04× smaller than

ReNEW-0.95 and ReNEW-0.90 respectively). This proves

that, the smaller switching probability is, a greater endurance

improvement is achieved with given the same amount of

updates. Fig. 13c presents a comparison of maximum number

of effective writes for MLP layer FC-784x240, wherein

ReNEW-0.85 achieves a smaller number maximum effective

writes than ReNEW-0.95 and ReNEW-0.90 by 1.28× and

1.20× when all three schemes converge to the best accuracy.

With the same number of 77 training epochs, ReNEW-0.85
outperforms ReNEW-0.95 and ReNEW-0.90 by 1.10× and

1.07× respectively.

VI. RELATED WORK

Neural network computing with ReRAM. Recent studies

on neural network accelerators exploit the natural analog

current accumulation feature of ReRAM crossbar architecture

to implement dot-product calculations [9], [11]–[13], [38],

[39], [49]–[61], wherein there are many [12]–[14], [38], [61]

supporting neural networks training in ReRAM crossbars.

Wear leveling techniques for Crossbar ReRAM. Wear-

leveling techniques for NVM based memories have been

widely studied, which share a general idea of evenly dis-

tributing write accesses across pages [19]–[22]. To address

the endurance issue of ReRAM crossbar based neural net-

(a) (b) (c)

Fig. 13: A sensitivity study for ReNEW with different switching

probabilities in MLP layer FC-784x240: (a) total effective

writes and accuracy with different training epochs, (b) total

effective writes with a same number of training epochs, and

(c) the maximum number of effective writes.

work accelerators, a software and hardware co-optimization

is proposed [14]. Unfortunately, this scheme only works for

MLC ReRAM crossbars. Prior work [13] exploits gradient

sparsification in neural networks and a row remapping scheme

to improve ReRAM endurance, which is in fact complemen-

tary to our designs. A recent study on using low-precision

weights [46] for CNN training can be also used to mitigate

ReRAM crossbar endurance degradation. As shown in our

evaluations, this is also orthogonal to our design since ReNEW
can further improve endurance in low bit-width weight matri-

ces during the training.

Improving endurance by exploiting stochastic switching.
An approximate switching scheme is also proposed to improve

the endurance in [62] for NVM based FF design, but this work

is lack of an analytical study between switching probability

and enhanced lifetime.

VII. CONCLUSION

In this paper, we are motivated by analyses of the endurance

degradation mechanism in ReRAM cell, and then propose

a novel framework, ReNEW, to enhance the lifetime of the

ReRAM crossbar based neural network accelerators, especially

for neural network training that requires frequent weight

updates. The experimental evaluations show that, our proposed

ReNEW reduces the total effective writes to ReRAM crossbar

based accelerators by up to 500.3×, 50.0×, 2.83× and 1.60×
over two MLC baselines, SLC baseline and SLC design with

optimal timing respectively.
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