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Abstract
Previous research has shown that individuals with greater cognitive abilities display a greater speed of higher-order cognitive
processing. These results suggest that speeded neural information processing may facilitate evidence accumulation during
decision making and memory updating and thus yield advantages in general cognitive abilities. We used a hierarchical
Bayesian cognitive modeling approach to test the hypothesis that individual differences in the velocity of evidence
accumulation mediate the relationship between neural processing speed and cognitive abilities. We found that a higher
neural speed predicted both the velocity of evidence accumulation across behavioral tasks and cognitive ability test scores.
However, only a negligible part of the association between neural processing speed and cognitive abilities was mediated by
individual differences in the velocity of evidence accumulation. The model demonstrated impressive forecasting abilities
by predicting 36% of individual variation in cognitive ability test scores in an entirely new sample solely based on
their electrophysiological and behavioral data. Our results suggest that individual differences in neural processing speed
might affect a plethora of higher-order cognitive processes, that only in concert explain the large association between
neural processing speed and cognitive abilities, instead of the effect being entirely explained by differences in evidence
accumulation speeds.

Keywords Cognitive abilities · Processing speed · Cognitive latent variable model · Reaction times · ERP latencies ·
Diffusion model

Introduction

Individual differences in cognitive abilities are important
predictors for real-world achievements such as job perfor-
mance and highest level of educational attainment (Schmidt
and Hunter 2004). Cognitive ability differences also predict
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differences in individuals’ health (Deary 2008; Der et al.
2009), happiness (Nikolaev and McGee 2016), and well-
being (Pesta et al. 2010). However, what remains largely
unexplored are the fundamental biological processes that
give rise to individual differences in cognitive abilities
across individuals. In this study, we explore how individual
differences in cognitive abilities are associated with indi-
vidual differences in neural processing speed, and how this
association can be explained by individual differences in
the velocity of evidence accumulation as an intermediate
cognitive process.

Previous research has suggested that those individuals
with greater cognitive abilities have a higher speed of
information processing, typically measured as reaction
or inspection times in elementary cognitive tasks on a
behavioral level (Kyllonen and Zu 2016; Sheppard and
Vernon 2008), or as latencies of event-related potential
(ERP) components on a neurophysiological level (e.g.,
Bazana and Stelmack 2002; Schubert et al. 2015; Troche
et al. 2015). Neuroimaging studies have shown that the
association between the speed of information processing
and cognitive abilities may reflect individual differences
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in white-matter tract integrity, either as an overall brain
property (Penke et al. 2012) or in specific brain regions such
as the forceps minor and the corticospinal tract (Kievit et al.
2016).

However, those with greater cognitive abilities do not
seem to benefit from a higher speed of information
processing during all stages of information processing.
Instead, individuals with greater cognitive abilities show
a higher speed of information processing only in higher-
order cognitive processes such as decision making and
memory updating (Schmiedek et al. 2007; Schubert et al.
2017). In particular, the velocity of evidence accumulation
during decision making has been repeatedly associated
with individual differences in cognitive abilities (Schmiedek
et al. 2007; Schmitz and Wilhelm 2016; Schubert et al.
2015; van Ravenzwaaij et al. 2011). Moreover, cognitive
abilities have been specifically associated with the latencies
of ERP components reflecting higher-order cognitive
functions such as memory and context updating (Bazana
and Stelmack 2002; McGarry-Roberts et al. 1992; Schubert
et al. 2017; Troche et al. 2009). Taken together, these results
suggest that a greater speed of information processing may
facilitate evidence accumulation during decision making
and memory updating and may give rise to advantages in
general cognitive abilities. In the present study, we explore
this hypothesis by using a hierarchical Bayesian cognitive
modeling approach to investigate if individual differences
in the velocity of evidence accumulation mediate the
relationship between neural processing speed and general
cognitive abilities.

Measuring the Speed of Higher-Order Cognitive
Processes

Reaction time measures are affected by a variety of
cognitive and motivational processes and differences across
individuals are not solely due to differences in the specific
processes of interest (Nunez et al. 2015; Schubert et al.
2015). Therefore, mean reaction times and differences in
reaction times between certain experimental conditions can
only provide very imprecise measurements of the speed of
specific higher-order cognitive processes. One approach to
measure the speed of higher-order cognitive processes is
to use validated mathematical models of decision making,
which allow estimating the speed and efficiency of specific
cognitive processes (Voss et al. 2004). One of the most
influential model types used to jointly describe reaction
time distributions and accuracies in binary choice tasks are
diffusion models. Diffusion models assume that information
accumulation follows a continuous, stochastic Wiener
process that terminates once one of two decision thresholds
has been reached (Stone 1960; Ratcliff 1978; Ratcliff and
McKoon 2008). That is, it is assumed that on any given trial

an individual will accumulate evidence for one choice over
another in a random walk evidence accumulation process
with an infinitesimal time step (while neural coding may be
more sequential in nature, the infinitesimal approximation
should hold true for small time steps). It is predicted
that the change in relative evidence Et follows a Wiener
(i.e., Brownian motion) process with an average evidence
accumulation rate δ and instantaneous variance ς2 (Ross
2014).

Typically, the variance ς2 is fixed to some standardized
value for reasons of identifiability (but see Nunez et al.
2017). The drift rate (δ) measures the relative velocity
of evidence accumulation during decision making and
individual differences in this parameter have been suggested
to be associated with individual differences in cognitive
abilities (Schmiedek et al. 2007; Ratcliff et al. 2010; 2011;
Schubert et al. 2015; Schmitz and Wilhelm 2016). The
evidence units per second of the drift rate (δ) are relative to
a predetermined decision criterion for evidence (α), which
reflects speed–accuracy trade-offs (Voss et al. 2004). In
addition, a basic diffusion model consists of one more
additional parameter describing and complementing the
decision process: The non-decision time (ter ) encompasses
all non-decisional processes such as encoding and motor
reaction time.

It is not surprising that the drift rate parameter
in particular has become widely popular in individual
differences research (Frischkorn and Schubert 2018),
because it allows quantifying the speed of information
uptake free of confounding process parameters such
as encoding and motor times or decision cautiousness,
which are captured by other model parameters and are
largely irrelevant for cognitive abilities research. Individual
differences in drift rates have been shown to exhibit trait-
like properties (i.e., they show temporal stability and trans-
situational consistency; Schubert et al. 2016) and to be
associated with individual differences in cognitive abilities
(Ratcliff et al. 2010; 2011; Schmiedek et al. 2007; Schmitz
and Wilhelm 2016; Schubert et al. 2015), attention (Nunez
et al. 2015), and word recognition (Yap et al. 2012). The
drift rate can even be interpreted in the framework of
item response theory (IRT), in which it can under certain
assumptions be decomposed into an ability and difficulty
parameter (van der Maas et al. 2011).

Moreover, several studies suggest a direct link between
drift rates and neural processing correlates in the EEG.
In particular, it has been shown that the P3, an ERP
component occurring typically about 250–500 ms after
stimulus onset with a positive deflection that is maximal
at parietal electrodes (Polich 2007), is a neural correlate
of the evidence accumulation process captured in the
drift rate (Kelly and O’Connell 2013; O’Connell et al.
2012; Ratcliff et al. 2009, 2016; van Ravenzwaaij et al.
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2017). O’Connell et al. (2012) and Kelly and O’Connell
(2013) even suggested that the buildup rate of this positive
centroparietral positive potential may directly reflect the
rate of evidence accumulation on a neural level.

Particularly intriguing from an individual-differences
perspective is the observation that individual differences
in P3 amplitudes across conditions have been shown to
explain about 74% of the variance in drift rates δ (Ratcliff
et al. 2009). Because both individual differences in drift
rates and individual differences in P3 characteristics have
been shown to explain cognitive abilities, a theoretical
framework of the neurocognitive processes underlying
cognitive abilities needs to specify if individual differences
in P3 characteristics and drift rates contribute jointly or
independently to intelligence differences.

Bridging the Gap Between Neural and Behavioral
Correlates of Cognitive Abilities to Outline
a Cognitive Theory of Intelligence

As of yet, researchers from the fields of mathematical mod-
eling and cognitive neuroscience have largely independently
contributed to our understanding of the basic processes
underlying individual differences in cognitive abilities.
While mathematical modeling researchers have suggested
that the velocity of evidence accumulation may be specif-
ically related to cognitive abilities (Ratcliff et al. 2010;
2011; Schmiedek et al. 2007; Schubert et al. 2015), cog-
nitive neuroscience researchers have characterized the time
course of information processing and identified structural
and function neural correlates of cognitive abilities(Basten
et al. 2015; Neubauer and Fink 2009; Jung and Haier 2007).
However, neurophysiological correlates of cognitive abili-
ties still need to be integrated into a theoretical framework
that outlines how advantages in neural processing trans-
late into advantages in cognitive information processing that
give rise to advantages in cognitive abilities to meaningfully
explain the processes underlying individual differences in
intelligence.

Based on the associations of P3 latencies and drift rates
with intelligence, it may be proposed that the relationship
between ERP latencies reflecting higher-order cognition
and cognitive abilities is mediated by individual differences
in drift rates. Such a mediation account is empirically
supported by the result that reaction times partly mediate the
relationship between ERP latencies and cognitive abilities
(Schubert et al. 2015). Moreover, it has been shown that
advantages in a larger number of white-matter tract integrity
measures gave rise to advantages in a smaller number
of behavioral processing speed measures, which in turn
explained about 60% of variance in fluid intelligence in a
many-to-one way (Kievit et al. 2016). On the other hand,
individual differences in both neural processing speed and

drift rates may reflect some confounding variable (e.g.,
functional brain properties) that is also substantially related
to cognitive abilities. This confounding variable account
was supported by a recent study that failed to find any
transfer of an experimentally induced increase in both
neural and behavioral processing speed by transdermal
nicotine administration on intelligence test scores (Schubert
et al. 2018). Candidate confounding variables may be
properties of the salience network that have been associated
both with P3 elicitation and individual differences in
cognitive abilities (Hilger et al. 2017; Menon and Uddin
2010; Soltani and Knight 2000).

Recent advancements in the emerging field of model-
based cognitive neuroscience have demonstrated the advan-
tages of integrating mathematical modeling and cognitive
neuroscience to generate and test theoretical accounts that
jointly account for neural correlates and cognitive models of
psychological processes (e.g., Forstmann et al. 2011; Nunez
et al. 2017; Palmeri et al. 2017; Turner et al. 2017). In
the present study, we used a model-based cognitive neuro-
science approach to test the hypothesis that the relationship
between ERP latencies reflecting higher-order cognition and
cognitive abilities is mediated by individual differences in
drift rates. If evidence in favor of the mediation hypothesis is
found, the mediation model will provide a clear theoretical
outline how advantages in neural processing speed give rise
to advantages in cognitive abilities. However, if evidence
against the mediation model is found, this will imply that a
confounding variable is likely to explain the association of
neural processing and drift rates with cognitive abilities.

AModel-Based Cognitive Neuroscience Account
of Individual Differences in Cognitive Abilities

Jointly analyzing behavioral and brain data improves
inferences about human cognition, because it is assumed
that both measures reflect properties of the same latent
cognitive process. In particular, the joint analysis of
both behavioral and brain data allows to explicitly test
theories regarding the cognitive processes and mechanisms
governing the association between neural correlates and
observable behavior. This simultaneous analysis can be
achieved in a hierarchical Bayesian framework using
formal mathematical models such as the diffusion model
to constrain or inform inferences based on the brain
data (Forstmann et al. 2011; Turner et al. 2017). The
hierarchical Bayesian framework provides many advantages
(Lee 2011; Shiffrin et al. 2008). First and foremost,
joint models are fit to all data simultaneously and do
not require separate parameter estimation stages that
lead to an underestimation of parameter uncertainty or
standard errors (Vandekerckhove 2014). Both empirical and
simulation studies have shown that ignoring the hierarchy



Comput Brain Behav

in hierarchically structured data can bias inferences drawn
from these data (Boehm et al. 2018; Vandekerckhove 2014).

Second, hierarchical Bayesian models can easily handle
low observation counts or missing data structures (Lee and
Wagenmakers 2014), which is an ideal property when the
cost of collecting neural measurements is high. In particular,
Bayesian Markov Chain Monte Carlo (MCMC) sampling
finds posterior distributions of model parameters without
the need for strong assumptions regarding the sampling
distribution of these parameters (Levy and Choi 2013).
Moreover, Bayesian statistical modeling approaches do not
rely on asymptotic theory (Lee and Song 2004). These
two properties make convergence issues in multivariate
regression models in smaller samples less likely. Another
favorable property of Bayesian hierarchical modeling is
shrinkage, which describes the phenomenon that individual
parameter estimates are informed by parameter estimates
for the rest of the sample. Because less reliable and outlier
estimates are pulled toward the group mean, shrinkage
has been used in neuroimaging research to improve the
reliability of individual functional connectivity estimates
by 25 to 30% (Dai and Guo 2017; Mejia et al. 2018;
Shou et al. 2014). Taken together, these desirable properties
of hierarchical Bayesian models open up the possibility
to use multivariate regression models such as structural
equation models (SEM) or latent growth curve models
in neuroimaging research, where sample sizes are usually
smaller than in behavioral research due to the cost
associated with the collection of neural measures.

The joint analysis of behavioral and neural data can be
expanded into a cognitive latent variable model (CLVM)
by including data from multiple conditions and/or tasks
and by introducing covariates such as cognitive ability
tests or personality questionnaires into the hierarchical
model (Vandekerckhove et al. 2011; Vandekerckhove
2014). In addition to jointly modeling behavioral and
neural data, the cognitive latent variable framework allows
estimating correlations between higher-order variables,
which reflect the covariances between behavioral, neural,
and cognitive abilities data across experimental tasks or
ability tests. As such, a CLVM is a computationally
expensive, but a highly flexible, tool that strongly resembles
structural equation modeling (SEM) in the way that it
allows specifying associations between latent variables and
distinguishing between constructs and their measurements.
Vandekerckhove (2014) demonstrated the advantages of a
CLVM in comparison to a more conventional two-stage
analysis when modeling the latent association between
evidence accumulation rates in executive function tasks and
psychometric measures of dysphoria.

In the present study, we constructed CLVMs to assess the
latent relationship between latencies of ERP components
reflecting higher-order processing (P2, N2, P3), reaction

times and accuracies in elementary cognitive tasks, and
general cognitive abilities (see Fig. 1). For this purpose, we
reanalyzed data from a study with multiple measurement
occasions previously reported in Schubert et al. (2017). In
particular, we wanted to test if the association between
latencies of ERP components associated with higher-
order cognitive functions and general cognitive abilities
established with conventional structural equation modeling
could be explained by individual differences in the velocity
of evidence accumulation.

For this purpose, we constructed one measurement
model for each of the three variable domains (ERP
latencies, behavioral data, intelligence test performance). In
each of these measurement models, a superordinate latent
variable provides an estimate of the common variance of
conditions or subtests within each variable domain. This
latent variable can be considered a latent trait free of
measurement error and task-specific variances. The main
reason for estimating those latent traits is that they allow the
estimation of individual differences on the construct level
and are therefore not restricted to specific measurements
or operationalizations of constructs. For ERP latencies,
this latent variable reflects an error-free estimate of the
neural processing speed of higher-order cognitive processes.
For behavioral data, this latent variable reflects an error-
free estimate of velocity of evidence accumulation across
different elementary cognitive tasks and their conditions.
While we used a cognitive model (the diffusion model)
to describe performance in these cognitive tasks, we could
also have estimated behavioral processing speed as mean
reaction times in these tasks. Finally, for intelligence
test performance, the superordinate latent variable reflects

Fig. 1 Simple visualization of both linking models (such that
the mediation-linking model includes dashed connections). Shaded
nodes represent observed data across participants i. Bi , δI , and gi

represent the highest latent variables of neural processing speed
(left, describing shared variance across ERP latencies), evidence
accumulation velocity (top, describing shared variance across reaction
time distributions), and cognitive ability (right, describing shared
variance across intelligence test scores)
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an error-free measurement of general intelligence across
different intelligence subtests.

Each of these latent traits contain a surplus meaning
that allows the generalization of any results to other
measurements of the same construct, i.e., any association
between general intelligence and neural processing speed
should not only hold for the specific tests used in the present
study, but also for similar cognitive ability tests. To test
the mediation hypothesis, we only used those superordinate
latent variables and regressed general intelligence on neural
processing speed and evidence accumulation velocity,
which was in turn regressed on neural processing speed.
Hence, the core of our hypothesis that individual differences
in the velocity of evidence accumulation mediate the
association between neural processing speed and general
intelligence is reflected in this regression model of latent
variables. The measurement models giving rise to the latent
variables only serve to provide error-free and task-/test-
general estimates of these three traits.

We also conducted out-of-sample forecasts to validate
how well this mediation model was able to predict
individual cognitive ability test scores solely based on
new participants’ electrophysiological and behavioral data.
We expected that a greater speed of neural information-
processing would facilitate evidence acquisition during
decision making and memory updating, and that this
advantage in the velocity of evidence accumulation would
mediate the predicted association between neural processing
speed and general cognitive abilities.

Materials andMethods

Participants

N = 122 participants (72 females, 50 males) from different
occupational and educational backgrounds participated in
three sessions of the study. They were recruited via local
newspaper advertisements, social media platforms, and
flyer distributions in the Rhine-Neckar metropolitan region.
Participants were between 18 and 60 years old (M = 36.7,
Med = 35.0, SD = 13.6), had normal or corrected to
normal vision, and reported no history of mental illness.
All participants signed an informed consent prior to their
participation in the experiment. The study was approved
by the ethics committee of the faculty of behavioral and
cultural studies, Heidelberg University.

Procedure

The study consisted of three sessions that were each
approximately 4 months apart. Participants completed the
experimental tasks in the first and third sessions while their

EEG was recorded in a dimly lit, sound-attenuated cabin.
The order of tasks (choice reaction time task, recognition
memory task, letter matching task) was the same for
all participants and both sessions. During the second
session, participants completed the cognitive ability tests,
a personality questionnaire (data reported in Kretzschmar
et al. 2018), and a demographic questionnaire. Each session
lasted approximately 3–3.5 h in duration with EEG being
collected for approximately 2.5 h. Participants were given
breaks between tasks and conditions to reduce mental
fatigue.

Measures

Experimental Tasks

Choice Reaction Time Task (CR) Participants completed a
choice reaction time task with two conditions, a two-
alternative (CR2) and a four-alternative (CR4) choice
condition. Four white squares were presented in a row
on a black screen. Participants’ middle and index fingers
rested on four keys directly underneath the squares. After
a delay of 1000–1500 ms, a cross appeared in one of the
four squares and participants had to press the corresponding
key as fast and accurate as possible. The screen remained
unchanged for 1000 ms after their response to allow
the recording of post-decision neural processes. Then,
a black screen was shown for 1000–1500 ms between
subsequent trials; the length of the inter-trial interval (ITI)
was uniformly distributed. See the left part of Fig. 2 for
an overview of the experimental procedure. While the task
may suggest that the stimulus might simply “pop out,”
resulting in immediate stimulus detection after its onset,
this is not corroborated by empirical data. An increase
in the logarithm of stimulus alternatives leads to a linear
increase in RTs (Hick’s law, Hick 1952), which indicates
that evidence is accumulated continuously until a decision
point is reached and that this process takes longer the more
stimulus alternatives are presented, either because more
evidence has to be considered or because the process gets
noisier. The slope of a regression across choice alternatives
in Hick-like tasks is supposed to reflect the “rate of gain
of information” (Hick 1952), which is conceptually very
similar to the drift rate as a measure of the rate of evidence
accumulation.

In the two-choice response time condition, the number
of choices was reduced to two squares in which the
cross could appear for 50 subsequent trials. In the four-
choice response time condition, the cross could appear
in any of the four squares. Both conditions began with
ten practice trials with immediate feedback followed by
200 test trials without feedback. The order of conditions
was counterbalanced across participants. In the four-choice
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Fig. 2 Participants completed three experimental tasks. The choice
reaction time task (CR) consisted of 2-choice (CR2) and 4-choice
(CR4) conditions with 200 trials each, the letter matching task of a

physical identity (PI) and name identity (NI) condition with 300 trials
each, and the recognition memory task (RM) of memory set sizes 1
(RM1), 3 (RM3), and 5 (RM5) with 100 trials each

condition, we treated all three responses that were not the
correct one as incorrect, allowing us to model the decision
process with two decisions thresholds. Due to the high
accuracy in the four-choice condition, it is unlikely that
this simplification of the decision process has distorted the
results, which is also supported by the similar and high
factor loadings of the latent choice reaction time factor on
the two- and four-choice conditions (see “Results”).

Letter Matching Task (LM) Participants saw two white
letters on a black screen and had to decide whether
they were physically (physical identity condition) or
semantically (name identity condition) identical by pressing
one of two keys. Letters were identical in 50% of the trials.
Each trial was followed by an inter-trial interval (ITI) of
1000–1500 ms. See the middle part of Fig. 2 for an overview
of the experimental procedure. Conditions were presented
block-wise. Each condition began with ten practice trials
with immediate feedback followed by 300 test trials without
feedback. All participants completed the physical identity
condition first at the first measurement occasion, and second
at the second measurement occasion.

Recognition Memory Task (RM) Participants viewed mem-
ory sets of white, numerical digits (0 to 9) on a black screen.
Digits were presented sequentially for 1000 ms each fol-
lowed by a blank inter-stimulus interval shown for 400–600
ms. After the final digit was presented, participants saw a
black screen with a white question mark for 1800–2200 ms.

Subsequently, they were shown a single digit and had to
decide whether the digit had been included in the previ-
ously presented memory set by pressing one of two keys.
Each trial was followed by a uniformly distributed ITI of
1000–1500 ms. The probe digit was included in the mem-
ory set in 50% of the trials. There were three conditions
of the experiment with the memory set consisting of either
one, three, or five digits. See the right part of Fig. 2 for
an overview of the experimental procedure in the set size 3
condition. The three conditions were presented block-wise
and the order of presentation was counterbalanced across
participants. Each condition consisted of ten practice trials
with immediate feedback followed by 100 test trials without
feedback.

Cognitive Abilities Tests

Berlin Intelligence Structure Test (BIS) We administered the
Berlin intelligence structure test (Jäger and Süß 1997),
which distinguishes between four operation-related (pro-
cessing speed, memory, creativity, processing capacity) and
three content-related (verbal, numerical, figural) compo-
nents of cognitive abilities. Each of the 45 tasks included
in the test consists of a combination of one operation-
(related) with one content-related component. Following
the manual, we calculated participants’ scores in the four
operation-related components by aggregating the norma-
lized z-scores of tasks reflecting the specific operatio-
nal components irrespective of content. The mean score of
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the processing capacity (PC) component was M = 101.70
(SD = 7.99), the mean score of the processing speed (PS)
component wasM = 98.00 (SD = 7.10), the mean score of
the memory (M) component was M = 99.40 (SD = 6.51),
and the mean score of the creativity (C) component was
M = 98.02 (SD = 6.14). We then transformed these scores
to z-scores for further analyses.

Advanced Progressive Matrices (APM) Participants com-
pleted a computer-adapted version of Raven’s Advanced
Progressive Matrices (Raven et al. 1994). The APM is a
fluid intelligence test that consists of 36 items. Each item
consists of a 3×3-matrix with geometric figures that follow
certain logical rules and symmetries. The last element of the
matrix is missing and must be chosen out of eight alterna-
tives without time limit (see Fig. 3 for a fictional sample
item). Following the manual, participants’ performance was
calculated as the number of correctly solved items of the
second set. Moreover, we calculated performance in the odd
and even trials of the test separately to construct two indica-
tors of latent APM performance. We then transformed these
raw test sores to z-scores for further analyses. Participants
solved on average M = 23.43 (SD = 6.71) items cor-
rectly, which corresponds to a mean IQ score of M = 98.80
(SD = 15.68). Performance on even trials, Meven = 12.23
(SD = 3.51) correctly solved items, was comparable to
performance on odd trials, Modd = 11.20 (SD = 3.52)
correctly solved items.

Fig. 3 Example stimuli of Raven’s Progressive Matrices. Each item
consists of a 3 × 3-matrix with geometric figures that follow certain
logical rules and symmetries. The last element of the matrix is missing
and must be chosen out of eight alternatives

EEG Recording

Participants’ EEG was recorded with 32 equidistant silver-
silver chloride electrodes, a 32-channel BrainAmp DC am-
plifier (Brain Products,Munich), and a sampling rate of 1000
Hz (software bandpass filter of 0.1–100 Hz with a slope
of 12 db/octave). In addition, participants’ electrooculo-
gram (EOG) was recorded bipolarly with two electrodes
positioned above and below the left eye and two elec-
trodes positioned at the outer corners of the eyes. Electrode
impedances were kept below 5 k� during recording. Data
were collected with a central electrode reference but later
offline re-referenced to the average activity of all electrodes
(average reference). The data were filtered offline with a
low-pass filter of 16 Hz with a slope of 12 db/octave.

Data Analysis

Behavioral Data

To remove outliers in the behavioral data, we discarded any
reaction time faster than100msor slower than3000ms. In the
second step, we discarded any trial with logarithmized reac-
tion times exceeding ± 3 standard deviations from the mean
reaction time of each condition. Deviations in criteria (i.e.,
less strict criteria) did not affect the covariance structure
between variables, suggesting adequate robustness.

Evoked Electrophysiological Measures

Event-related potentials (ERPs) were analyzed separately
for each task and condition. ERPs were calculated by
averaging all experimental trials, time-locked to the onset
of the task-relevant visual stimuli, with windows of interest
that were 1000 ms long with a preceding baseline of 200
ms. We corrected for ocular artifacts with the regression
procedure suggested by Gratton et al. (1983). Windows of
EEG data with amplitudes exceeding ± 70 μV at least once
within the time window, with amplitude changes exceeding
100 μV within 100 ms, or with activity lower than 0.5 μV

were discarded as artifacts.
Latencies of three ERP components were calculated

for each participant in each experiment. Grand-average
waveforms of event-related potentials are presented in
Fig. 4. P2 peak latencies were determined with regard
to the greatest positive local maxima at the fronto-central
electrode on the midline, which roughly corresponds to the
Fz electrode in the 10-20 system, in a 120 to 320 ms time
window. N2 and P3 peak latencies were determined with
regard to the greatest negative and positive local maxima
at the parietal electrode on the midline, which roughly
corresponds to the Pz electrode in the 10-20 system, in a
140 to 370 ms time window (N2) and a 200 to 630 ms time
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Fig. 4 Grand averages of event-related potentials at frontal, central, and parietal electrodes over midline. ERPs were elicited by stimulus onset
and averaged across laboratory sessions and conditions for each experimental task

window (P3), respectively. Peak latencies were determined
separately for each condition of each experimental task, then
averaged across conditions within each experiment, and
then z-standardized for further analyses. Prior to averaging
across experimental conditions, we discarded any peak
latencies exceeding ± 3 SDs from the mean peak latency
of each condition. If any peak latencies were discarded,
the average across conditions was calculated based on the
remaining conditions.

Cognitive Latent Variable Models

We constructed hierarchical Bayesian models to assess the
latent relationship between reaction times, latencies of the
three ERP components (P2, N2, P3), and cognitive ability
test scores. For this purpose, we defined three separate sub-
models describing the domain-specific associations between
(a) ERP latencies in experimental tasks across two measure-
ment occasions, (b) behavioral data in experimental tasks
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across two measurement occasions, and (c) performance in
cognitive ability tests.

Then, we constructed two models using either (1) only
ERP latencies or (2) ERP latencies and behavioral data
to predict performance in cognitive ability tests. To test
the hypothesis that drift rates mediate the relationship
between neural processing speed and cognitive abilities,
we compared performance of a direct regression model,
in which ERP latencies predicted cognitive abilities
(“Regression Model”), to a mediation model, in which the
effect of ERP latencies on cognitive abilities was mediated
by drift rates (“Mediation Model”).

We used Just Another Gibbs Sampler (JAGS; Plummer
2003) with a module that adds a diffusion model distribution
to JAGS (jags-wiener; Wabersich and Vandekerckhove
2014) to find parameter estimates for the hierarchical
model. Each model was fit with three Markov Chain Monte
Carlo (MCMC) chains run in parallel. Each chain contained
2000 burn-in samples and 100,000 additional samples with
a thinning parameter of 10, resulting in 10,000 posterior
samples per chain. Posterior samples from the three chains

were combined to one posterior sample consisting of 30,000
samples for each model parameter. Model convergence was
evaluated based on the Gelman-Rubin convergence statistic
R̂, which compares the estimated between-chains and
within-chain variances for each model parameter (Gelman
and Rubin 1992). Negligible differences between these
variances were indicated by R̂ values close to 1.

Submodel: ERP Latencies in Experimental Tasks ERP laten-
cies were modeled in a hierarchical structural equation
model (SEM) inspired by the parameter expansion approach
suggested by Merkle and Rosseel (2018). Each of the three
ERP latencies (P2, N2, P3) was quantified in three tasks at
two sessions. Hence, six observed variables (3 tasks j × 2
sessions m) loaded onto each of the three first-order compo-
nent (c)-specific ERP factors η(P 2), η(N2), and η(P 3). These
three latent components were loaded onto a second-order
latent factor B that was estimated per participant i.

Latent factors and observed variables had normally
distributed prior and hyperprior distributions. The means
of these priors reflected linear regressions of the respective

Fig. 5 Graphical visualization of both the regression-linking and
mediation-linking models (such that the mediation-linking model
includes dashed connections). An alternate way of understanding
the neurocognitive models presented in this manuscript is by view-
ing the graphical notation for hierarchical models as described by
Lee and Wagenmakers (2014). Shaded nodes represent observed data
while unshaded nodes represent unknown (fitted) parameters. Arrows

represent direction of influence such that hierarchical parameters influ-
ence lower level parameters and observed data. Plates denote the
number of observations for each variable and data point of partici-
pant i, experimental task j , experimental condition k, measurement
occasion m, ERP component c, cognitive abilities task t , and trial
n. Behavioral data y is a vector of both reaction time and accuracy
observations
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higher-order factors. For reasons of identifiability, the
loading γ(P 2) of the first lower-order factor ηP 2 on the
higher-order factor B was fixed to 1, while the other
loadings, γ(N2) and γ(P 3), were given standard normal
priors: γ(P 2) = 1 and γ(N2), γ(P 3) ∼ N (0, 1).

Finally, precisions ψ (inverses of variances) of all latent
variables were modeled as gamma distributed variables:
	B, ψ(P 2), ψ(N2), ψ(P 3) ∼ 
(1, 0.5).

ηi(P 2) ∼ N (γ(P 2) · Bi , ψ(P 2))

ηi(N2) ∼ N (γ(N2) · Bi , ψ(N2))

ηi(P 3) ∼ N (γ(P 3) · Bi , ψ(P 3))

For the second-order latent factor,

Bi ∼ N (0 , 	B)

Subsequently, the observed latencies ERPicjm of ERP
components c, tasks j, and measurement occasions m for
each participant i were regressed onto the first-order latent
variables. These regressions were defined by the respective
factor loadings λcjm, the respective higher-order latent
variables ηic, and the respective precisions θcjm . Factor
loadings λcjm on the first-order latent variables were fixed
to 1 for task j = CR and measurement occasion m = 1

for all three ERP components for reasons of identifiability.
See the bottom left parts of Figs. 5, 6, and 7 for a graphical
illustration of the measurement model of ERP latencies.

ERPicjm ∼ N (λcjm · ηic , θcjm)

λc(CR)1 = 1

λcjm ∼ N (0, 1) ∀ (j, m) /∈ {j = CR} ∩ {m = 1}
θcjm ∼ 
(1, 0.5)

Submodel: Behavioral Data in Experimental Tasks We used
a combination of the SEM approach based on parameter
expansion described above and the hierarchical diffusion
model approach described by Vandekerckhove et al. (2011)
to model individual differences in reaction times and
accuracies in experimental tasks j, conditions k, and
measurement occasions m.

In a first step, we modeled task-, condition-, and
measurement occasion-specific drift rates in a hierarchical
SEM with three task-specific first-order factors ηij . These
three latent components loaded onto a second-order latent
factor 
i . Again, latent factors and observed variables had
normally distributed priors and hyperpriors. The means of

Fig. 6 Structural equation modeling visualization of the regression
linking model. Posterior medians of standardized regression weights
are shown next to paths. Asterisks indicate factor loadings fixed to 1.
CR/CR2/CR4 = choice reaction time task with two or four alternatives;

RM/RM1/RM3/RM5 = recognition memory task with memory set size
of 1, 3, or 5; LM/PI/NI = letter matching task with physical identity or
name identity condition; PC, ; PS, processing speed; M, memory; C,
creativity
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Fig. 7 Structural equation modeling visualization of the mediation
linking model. Posterior medians of standardized regression weights
are shown next to paths. Asterisks indicate factor loadings fixed to 1.
CR/CR2/CR4 = choice reaction time task with two or four alternatives;

RM/RM1/RM3/RM5 = recognition memory task with memory set size
of 1, 3, or 5; LM/PI/NI = letter matching task with physical identity
or name identity condition; PC, processing capacity; PS, processing
speed; M, memory; C, creativity

these priors reflected linear regressions of the respective
higher-order factors.

For reasons of identifiability, the loading γ(CR) of the
first lower-order factor η(CR) on the higher-order factor

 was fixed to 1, while the other loadings, γ(RM) and
γ(LM), were given standard normal priors: γ(CR) = 1
and γ(RM), γ(LM) ∼ N (0, 1). Precisions ψ (inverses of
variances) of all latent variables were modeled as gamma
distributed variables: ψ(CR), ψ(RM), ψ(LM) ∼ 
(1, 0.5).

ηi(CR) ∼ N (γ(CR) · 
i , ψ(CR))

ηi(RM) ∼ N (γ(RM) · 
i , ψ(RM))

ηi(LM) ∼ N (γ(LM) · 
i , ψ(LM))

Subsequently, the condition, task-, and measurement-
occasion-specific drift rates δijkm were regressed onto
the first-order latent variables ηij . Factor loadings on the
respective first-order latent variables were fixed to 1 for
condition k = 1, referring to the condition with lowest
information processing demands within each task, and
measurement occasion m = 1 for all three tasks for
reasons of identifiability. The other loadings λjkm were
given standard normal priors: λjkm ∼ N (0, 1). Precisions

of drift rates were modeled as gamma distributed variables:
θjkm ∼ 
(1, 0.5). In addition, we estimated intercepts νjkm

for the lowest-order drift rates, because the behavioral data
were not z-standardized: νjkm ∼ N (2, 1.52).

δijkm ∼ N (νjkm + λjkm · ηij , θjkm)

In a second step, these drift rates were entered into the
diffusion model distribution in addition to task-, condition-,
measurement occasion-, and person-specific boundary
separation αijkm and non-decision time τijkm parameters
(with the starting point parameter fixed at 0.5). Both
boundary separation parameters and non-decision times
were given standard normal priors: αijkm ∼ N (1, 0.52),
τijkm ∼ N (0.3, 0.22). See the top parts of Figs. 5, 6, and
7 for a graphical illustration of the measurement model of
behavioral data in experimental tasks.

yijkmn ∼ Wiener(αijkm, 0.5, τijkm, δijkm)

Submodel: Performance in Cognitive Abilities Tests Perfor-
mance in the two cognitive abilities tests was modeled
with a SEM. The four operation-related components of the
BIS and the two halves of the APM were loaded onto a
first-order latent factor gi .
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Subsequently, the observed test scores IQit per cognitive
ability test t were regressed onto the first-order latent
variable gi . For reasons of identifiability, the loading λ1 of
the processing capacity score of the BIS η1 on the higher-
order factor g was fixed to 1, while the other loadings, λ2,
λ3, λ4, λ5, λ6 were given standard normal priors: λ1 = 1
and λ2, λ3, λ4, λ5, λ6 ∼ N (0, 1). Precisions θ (inverse
of variances) of observed IQ scores were given gamma
distributed priors: θt ∼ 
(1, 0.5). See the bottom right
parts of Figs. 5, 6, and 7 for a graphical illustration of the
measurement model of cognitive abilities tests.

IQit ∼ N (λt · gi , θt )

Linking Models Finally, we linked all submodels in two
linking structures. Whereas the three submodels only
established latent measurement models for each of the
three variable domains (neural data, behavioral data, and
cognitive abilities data), the two linking structures specified
structural associations between variable domains. Hence,
the comparison of the two linking models contained
the critical comparison: If the velocity of evidence
accumulation mediated the relationship between neural
speed and cognitive abilities, the mediation model should
outperform a direct regression of cognitive abilities on ERP
latencies.

We therefore specified two linking structures. In the
first linking structure, we specified a regression model and
predicted cognitive abilities test scores solely through neural
processing speed by regressing the latent cognitive abilities
factor gi on the latent ERP latency factor Bi (see Fig. 1 and
compare to Fig. 6), while the latent drift rate factor 
i was
unrelated to the other two latent variables.

gi ∼ N (β · Bi , 	g),


i ∼ N (0 , 	
),

β ∼ N (0, 1),

	g, 	
 ∼ 
(1, 0.5)

The second linking structure consisted of a mediation
model, in which the latent cognitive abilities factor gi was
regressed onto both the latent ERP latency factor Bi and the
latent drift rate factor 
i , which was in turn regressed onto
the latent ERP latency factor Bi (see Fig. 7).

gi ∼ N (β1 · Bi + β2 · 
i, 	g),


i ∼ N (β3 · Bi, 	δ),

β1, β2, β3 ∼ N (0, 1),

	g, θδ ∼ 
(1, 0.5)

The data of 92 randomly drawn participants (of 114
total; drawn without replacement) were used as a training

set to find posterior distributions of cognitive latent
variables (i.e., samples from probability distributions that
reflect certainty/uncertainty about parameter estimates as
reflected by the data). Standardized regression weights
were calculated by multiplying unstandardized regression
weights with the quotient between the ratio of standard
deviation between the predictor (the higher-order latent
variable) to the criterion (the lower-order latent or observed
variable): β = b · σy

σx
. The indirect mediation effect βindirect

was calculated by multiplying the standardized regression
weights β2 and β3 in the Mediation model as discussed by
Baron and Kenny (1986). We report the median and 2.5th,
and 97.5th percentiles, forming a 95% credible interval
(CI) as an equal-tailed interval to describe the posterior
distributions of standardized regression weights.

Model Evaluation The performance of both linking struc-
tures was compared based on their in-sample prediction
ability, their Deviance Information Criterion (Spiegelhalter
et al. 2014), and, crucially, their out-of-sample-prediction
ability of new participants’ data.

In-Sample Prediction Fitting the model with the training
set, we created posterior predictive distributions by simu-
lating new neural, behavioral, and cognitive abilities data
separately for each participant based on each participant’s
posterior distributions of model parameters and on model
specifications. Hence, we simulated two posterior predic-
tive data sets for each of the 92 participants in the training
set: One of these posterior predictive data sets was based on
model specifications and parameter estimates of the regres-
sion model, and the other one based on model specifications
and parameter estimates of the mediation model. Subse-
quently, we assessed how strongly these simulated data were
related to the observed data for the whole sample of 92 par-
ticipants separately for each of the two candidate models.
For this purpose, we compared (a) observed and predicted
ERP latencies for each ERP component c, experimental task
j, and sessionm; (b) observed and predicted RT distributions
and accuracies for each condition c, experimental task j, and
session m; and (c) observed and predicted IQ test scores for
each subtest t. Because accuracies in elementary cognitive
tasks are typically near ceiling, the prediction of accuracies
was considered less critical than the prediction of the other
three variables in the present study. RT distributions were
compared by comparing the 25th, 50th, and 75th percentiles
of the observed and predicted RT distributions. To quantify
the association between observed and predicted values, we
calculated R2

pred as the proportion of variance of values T

(ERP latencies, percentiles of the RT distribution, accura-
cies in the experimental tasks, cognitive abilities test scores)
explained by model predictions. This statistic is based
on the mean squared error of prediction of T, MSEPT ,
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and the estimated variance of T across participants,
̂V ar(T ).

R2
pred =1−

∑I
i=1(T(i) − Tpred(i))

2/(I − 1)
∑I

i=1(T(i) − T )2/(I − 1)
=1−MSEPT

̂V ar(T )

Deviance Information Criterion (DIC) DIC is a measure
of goodness-of-fit for hierarchical models that provides
a penalty for model complexity (Spiegelhalter et al.
2014). DIC can be thought of as an extension of Akaike
information criterion (AIC) for hierarchical models that
enforce shrinkage, such that the number of parameters k is
no longer useful as a penalty for model complexity. Another
alternative is the Bayesian information criterion (BIC),
which approximates the logarithm of the Bayes Factor
(i.e., the ratio of Bayesian probabilities for two comparison
hypotheses), but which is difficult to estimate in most
hierarchical models (Kass and Raftery 1995). Due to ease
of estimation and implementation in JAGS (Plummer 2003),
we used DIC as a known model comparison metric. Smaller
DIC values indicate more favorable models. However, we
consider out-of-sample prediction of new participants to be
the ultimate test of models that natively penalizes model
complexity due to overfitting of in-sample data.

Out-of-Sample Prediction A test set of 22 new participants
(the randomly drawn remaining participants) was used to
find a second set of posterior predictive distributions for
each participant. This test set allowed us to assess how
well models were able to predict new participants’ data
in one domain (e.g., cognitive abilities) based on data
from the other two domains (e.g., electrophysiological and
behavioral data). We iteratively predicted data from each
of the three domains (electrophysiological, behavioral, and

cognitive abilities data) by the other two for each new
participant and each of the two models. Out-of-sample
prediction was then evaluated in each of the three data
domains using R2

pred as a measure of variance explained
in variables of one domain by variables from the other two
domains. Note that there is no constraint of R2

pred in out-
of-sample evaluation to values above 0. Negative values
indicate that there is more deviation of the predicted values
from the true values than there is variance in the true values
themselves.

Open-Source Data and Analysis Code

MATLAB, Python, and JAGS analysis code and data
are available at https://osf.io/de75n/ and in the following
repository (as of February 2018): https://github.com/
mdnunez/ERPIQRT/

Results

Mean performance (reaction times and accuracies) in the
three experimental tasks is shown in Table 1. Grand-
average waveforms of event-related potentials are presented
in Fig. 4. See Table 2 for mean ERP latencies in both
sessions.

In-Sample Prediction

The first linking model (see Figs. 5 and 6), in which cog-
nitive abilities were solely predicted by neural processing
speed, provided an acceptable account of the training data.
On average, it explained 63% of the variance in cognitive
abilities tests, 62% of the variance in ERP latencies, 87%

Table 1 Mean RTs (SD in parentheses) for all conditions of the three experimental tasks

Session 1 Session 2

Task Accuracies RTs Accuracies RTs

Choice reaction time task

CRT2 .99 (.01) 382.79 (58.02) 1.00 (.01) 381.27 (61.01)

CRT4 .99 (.01) 477.22 (82.64) .98 (.02) 467.31 (85.70)

Recognition memory task

Set size 1 .97 (.02) 590.96 (115.67) .98 (.02) 584.02 (135.64)

Set size 3 .97 (.02) 728.46 (167.21) .98 (.03) 706.61 (176.81)

Set size 5 .97 (.03) 890.03 (240.74) .95 (.09) 850.98 (223.18)

Letter matching task

Physical identity .98 (.02) 617.79 (93.93) .98 (.02) 605.19 (102.41)

Name identity .98 (.02) 699.50 (113.02) .97 (.02) 704.38 (126.36)

https://osf.io/de75n/
https://github.com/mdnunez/ERPIQRT/
https://github.com/mdnunez/ERPIQRT/
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Table 2 Mean ERP Latencies (SD in parentheses) averaged across conditions of each of the three experimental tasks

Task P2 N2 P3

Session 1

Choice reaction time task 211.54 (32.82) 206.15 (27.71) 330.67 (44.26)

Recognition memory task 234.08 (34.48) 251.11 (42.05) 374.35 (74.76)

Letter matching task 222.26 (33.74) 247.87 (36.80) 414.97 (86.45)

Session 2

Choice reaction time task 208.44 (33.77) 210.38 (29.62) 324.40 (42.04)

Recognition memory task 230.35 (28.19) 248.48 (43.74) 382.39 (81.13)

Letter matching task 218.16 (25.27) 240.02 (44.65) 377.74 (75.09)

of the variance in the 25th percentile of the RT distribu-
tion, 89% of the variance in the 50th (median) percentile
of the RT distribution, 83% of the variance in the 75th per-
centile of the RT distribution, and 30% of the variance in
accuracies in reaction time tasks. Note that the cognitive
latent variable model may have explained more variance in
reaction times than in ERP latencies and cognitive abilities
tests because the measurement model of reaction times was
more complex (allowing the task-, condition-, and session-
specific estimation of boundary separation and non-decision
time models not depicted in the structural equation model
visualization) than the other two more parsimonious mea-
surement models. The DIC of the overall hierarchical model
with the first linking structure was −3.2012 × 105 and was
thus the favored model by the DIC (compared to the second
linking structure DIC below). The latent neural processing
speed variable predicted the latent cognitive abilities vari-
able to a large degree, β = .84, CI 95% [.75; .91], suggesting
that participants with greater cognitive abilities showed a
substantially higher neural processing speed.

The second linking model (see Figs. 7 and 5), in which
the effect of neural processing speed was partly mediated by
drift rates, also provided a good account of the training data.
It explained on average 63% of the variance in cognitive
abilities tests, 63% of the variance in ERP latencies, 89%
of the variance in the 25th percentile of the RT distribution,
90% of the variance in the 50th (median) percentile of the
RT distribution, 83% of the variance in the 75th percentile
of the RT distribution, and 25% of the variance in accuracies
in reaction time tasks. The explained variance is therefore
nearly identical to the first linking model. The DIC of the
model with the second linking structure was −3.2007×105,
a larger, and thus unfavored, DIC compared to the previous
model. Again, the latent neural processing speed variable
predicted the latent cognitive abilities variable, β1 = .78, CI
95% [.63; .89]. Individual latent neural processing speeds
also predicted individual latent drift rates, β3 = .17, CI

95% [.05; .33]. However, there was only weak evidence that
greater latent drift rates predicted greater cognitive abilities,
β2 = .23, CI 95% [−.05; .52]. In addition, we found some
evidence for a negligible indirect effect of neural processing
speed on cognitive ability test scores that was mediated
by drift rates, βindirect = .04, CI 95% [−.01; .09]. See
Fig. 8 for posterior density distributions of the standardized
regression weights. To compare both models, we calculated
DICs as measures of model fit. The difference between
DICs of 
DIC = 43.27 indicated that the mediation model
could not provide a better account of the data than the more
parsimonious regression model.

Fig. 8 Posterior density distributions of the standardized regression
weights of the mediation linking model. Boxes indicate the
interquartile range with the median as a horizontal line. β1, regression
of latent cognitive abilities factor on latent neural processing speed
factor; β2, regression of latent cognitive abilities factor on latent drift
rate factor; β3, regression of latent drift rate factor on latent neural
processing speed factor; βindirect , indirect effect
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Out-of-Sample Prediction of New Participants

To evaluate the ability to predict unknown data of a
new participant in one domain (e.g., unknown cognitive
ability test scores) from observed data in another domain
(e.g., observed ERP latencies), we assessed out-of-sample-
prediction ability for both models in a test set of 22
randomly drawn participants.

Given a new participant’s ERP and RT data, the
regression linking model (see Fig. 6) yielded the ability to
make somewhat accurate predictions of that participant’s
cognitive abilities test scores and ERP latencies. That is,
out-of-sample prediction explained 39% of the variance in
cognitive abilities tests across participants and tasks and
22% of the variance in ERP latencies across participants
and tasks. However, out-of-sample prediction of reaction
time data was not successful, R2 = −.51 in the 25th
percentile of the RT distribution, R2 = −.50 in the 50th
(median) percentile of the RT distribution, and R2 = −.67
in the 75th percentile of the RT distribution. Accuracies
could also not be predicted successfully, R2 = −1.22.
Note that R2

pred is not constrained to values above 0 in
out-of-sample prediction. Hence, negative values indicated
that there was more deviation of the predicted values
from the true values than there was variance in the true
values themselves. The lack of a successful prediction
of behavioral data is not surprising, as the regression
model contained no link between drift rates and the other
covariates.

The mediation linking model (see Fig. 7) produced
very similar predictions of participants’ cognitive ability
test scores and ERP latencies. Out-of-sample prediction
explained 36% of the variance in cognitive abilities tests
across participants and tasks and 23% of the variance
in ERP latencies across participants and tasks. Again,
prediction of out-of-sample reaction time data was not
successful, R2 = −1.10 in the 25th percentile of the
RT distribution, R2 = −.96 in the 50th (median)
percentile of the RT distribution, R2 = −2.09 in the
75th percentile of the RT distribution, and R2 = −1.46
for accuracies in the reaction time tasks. This lack of
a successful prediction of the behavioral data indicates
that the covariation of drift rates with ERP latencies and
intelligence test scores on the latent level was insufficient
to account for observed reaction time data in specific
tasks and conditions. The predictive failure likely results
from the small latent association of drift rates with
ERP latencies and cognitive abilities, but also from large
proportions of task- and condition-specific variances in
condition-specific drift rates that were not predicted by any
covariates.

Discussion

We investigated whether the association between neural
processing speed and general cognitive abilities was
mediated by the velocity of evidence accumulation.
For this purpose, we used a Bayesian cognitive latent
variable modeling approach that allowed the joint modeling
of behavioral, neural, and cognitive abilities data and
estimation of relationships between higher-order latent
variables. The cognitive latent variable model was able
to predict a substantial amount of variance in cognitive
ability test scores in new participants solely based on those
participants’ cortical processing speeds.

We observed a strong association between neural
processing speed and general cognitive abilities in the
way that individuals with greater cognitive abilities showed
shorter latencies of ERP components associated with
higher-order cognition. Moreover, we found that individuals
with greater neural processing speed also showed a greater
velocity of evidence accumulation. Given an individual’s
speed of neural information processing and evidence
accumulation, we could predict about 40 percent of their
variance in intelligence test scores. However, the association
between neural processing and general cognitive abilities
was only mediated by drift rates to a very small degree, and
the more complex mediation model did not provide a better
account of the data than the more parsimonious regression
model.1

These results support the idea that a greater speed of
neural information processing facilitates evidence accumu-
lation, and that this increase in the velocity of evidence
accumulation translates to some negligible degree to advan-
tages in general cognitive abilities. Although previous stud-
ies reported substantial correlations between drift rates and
cognitive abilities (Schmiedek et al. 2007; Schmitz andWil-
helm 2016; van Ravenzwaaij et al. 2011), and although
preliminary results suggested that measures of neural

1We fitted another variant of the mediation model, in which reaction
times were described by a normal distribution instead of a diffusion
model distribution to evaluate the benefits of diffusion modeling and
the generalizability of our results (for details regarding modeling
choices and results, see the online repository). The model predicted the
same amount of in-sample variance in ERP latencies and intelligence
test scores, but was less accurate in predicting reaction time data
(75–84% of explained variance in percentiles of the RT distribution).
The out-of-sample prediction of both reaction time data and cognitive
ability test scores also deteriorated, with R2s ranging from −1.79
to −2.40 for the percentiles of the RT distribution and only 30%
of explained variance in cognitive ability test scores. Taken together,
these results illustrate the benefits of diffusion modeling and support
the notion of a small mediating effect of drift rate, as predictability of
cognitive abilities decreased when drift was not included in the model.
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processing speed and drift rates can load onto the same
factor (Schubert et al. 2015), the present study provided
the first direct test of the hypothesis that the velocity of
evidence accumulation mediates the relationship between
neural processing speed and cognitive abilities. Our results
suggest that only a very small amount of the shared variance
between neural processing speed and cognitive abilities can
be explained by individual differences in the velocity of evi-
dence accumulation as a mediating cognitive process. In the
following sections, we provide three conceptual explana-
tions why the velocity of evidence accumulation may only
explain little of the natural variation in human cognitive
abilities associated with cerebral processing speed. Subse-
quently, we discuss methodological advantages, challenges,
and possible extensions of the cognitive latent variable
model used in the present study.

1. A Common Latent Process

Both neural processing speed and the velocity of evidence
accumulation may reflect properties of the same latent
process that is related to general cognitive abilities.
However, the drift rate may be a more impure measure of
this latent process or may be contaminated by properties
of other processes unrelated to cognitive abilities. This
position is supported by the observation that we found an
association between ERP latencies and drift rates, and by
our result that drift rates mediated the relationship between
ERP latencies and cognitive abilities at least partially.
Moreover, this explanation is consistent with previous
research, which suggested that the P3 may be a neural
correlate of the evidence accumulation process captured
by drift rates (Kelly and O’Connell 2013; O’Connell
et al. 2012; Ratcliff et al. 2009, 2016; van Ravenzwaaij
et al. 2017). The fact that the associations between neural
processing speed and drift rates were lower than the
correlations reported in the literature may be due to
deviations from previous studies: First, the current study
focused on ERP latencies as measures of neural processing
speed, whereas previous studies analyzed the relationship
between amplitude and capacity-related measures of the
EEG and drift rates. Second, previous studies focused
mostly on late centro-parietal potentials, whereas the current
study included a more diverse time course and topography
of ERP components. Third, we only related the latent
neural processing speed factor, which reflected the shared
variance between different ERP latencies across different
tasks, to the latent drift rate factor, and did not inspect
task- or component-specific correlations. Considering the
psychometric properties of both ERP latencies and drift
rates (Schubert et al. 2015; Schubert et al. 2017), it is highly
likely that associations between ERP latencies and drift
rates would have been higher if we had modeled correlations

separately for each condition of each experimental task.
However, this task- or condition-specific variance in ERP
latencies and drift rates is not of interest regarding general
cognitive abilities.

2. Other Candidate Cognitive Processes

The velocity of evidence accumulation may not be the
appropriate candidate process mediating the relationship
between neural processing speed and cognitive abilities.
Instead, shorter latencies of ERP components associated
with higher-order cognitive processing may reflect a faster
inhibition of extraneous processes and may thus be a
neural correlate of the efficiency of selective attention
(Polich 2007). The idea that attentional processes underlie
individual differences in cognitive abilities has been
discussed numerous times. Process overlap theory (Kovacs
and Conway 2016), for example, proposes that a limited
number of domain-general and domain-specific cognitive
processes contribute to individual differences in general
cognitive abilities. In the framework of process overlap
theory, attentional processes represent a central domain-
general bottleneck that constrains cognitive performance
across different tasks. This notion is supported by several
studies reporting substantial associations between measures
of attentional control and executive processes and general
cognitive abilities (e.g., Unsworth et al. 2014; Wongupparaj
et al. 2015).

Additionally, a greater neural processing speed may
directly facilitate the storage and updating of information
in working memory (Polich 2007), and may thus lead to
a greater working memory capacity, which may positively
affect performance in a large number of cognitive tasks.
This notion is supported by numerous studies reporting
large and even near-unity correlations between measures
of cognitive abilities and working memory capacity (e.g.,
Engle et al. 1999; Conway et al. 2002; Kyllonen and
Christal 1990). Individual differences in these working
memory processes may not be reflected in drift rates
estimated in simple binary decision tasks. Instead, future
studies could use mathematical models of working memory,
such as mathematical implementations of the time-based
resource sharing model (Barrouillet et al. 2004) or the SOB-
CS (Oberauer et al. 2012), to explicitly model individual
differences in parameters of working memory processes and
relate these parameters to neural data in a cognitive latent
variable model.

Finally, it might even be possible that several cognitive
processes mediate the relationship between neural process-
ing speed and cognitive abilities, and that parameters of
each single cognitive process only account for a small
amount of the substantial association. Larger multivariate
studies incorporating cognitive models of these candidate
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cognitive processes would be required to quantify additive
and multiplicative effects of different cognitive processes
on the relationship between neural processing speed and
general cognitive abilities.

3. Brain Properties as Confounding Variables

Individual differences in neural processing speed may
reflect structural properties of the brain that give rise to
individual differences in cognitive abilities. Brain properties
may be related both to neural processing speed and general
cognitive abilities and may thus explain the substantial
association between the two variables. Previous research
has shown that individuals with greater cognitive abilities
showed greater nodal efficiency in the right anterior insula
and the dorsal anterior cingulate cortex (Hilger et al. 2017).
These brain regions are core components of the salience
network that is assumed to be responsible for the detection
of salient information and its evaluation with regard to
behavioral relevance and an individual’s goals (Downar
et al. 2002; Menon and Uddin 2010; Seeley et al. 2007).
Dynamic source imaging and lesion studies have revealed
that the relative timing of responses of the anterior insula
and the dorsal anterior cingulate cortex to stimuli can be
indexed by the N2b/P3a component of the ERP, followed
by an elicitation of the P3b in neocortical regions in
response to the attentional shift (Soltani and Knight 2000;
Menon and Uddin 2010). Hence, a more efficient functional
organization of the salience network may affect the timing
of these ERP components and may also positively affect
performance in cognitive ability tests by facilitating the
goal-driven selection of task-relevant information.

Cognitive Latent Variable Models

The use of cognitive latent variable models allows
the simultaneous modeling of cognitive, neural, and
behavioral data across different tasks and ability tests.
CLVMs thus allow estimating latent correlations between
different measurement areas that are free of unsystematic
measurement error. This property is particularly useful
when dealing with time-related electrophysiological data,
which have been shown to be very inconsistent in their
reliability (Cassidy et al. 2012; Schubert et al. 2017).
Moreover, CLVMs allow modeling the shared variance
between diffusion model parameters across different tasks
and conditions in a hierarchical way and can thus solve
the problem of low-to-moderate consistencies of model
parameters in individual differences research (Schubert
et al. 2016).

Three advantages of the hierarchical Bayesian approach
have been highlighted by the present study: First, the CLVM
demonstrated advantages over classical structural equation

modeling approaches in its predictive abilities in small-
to-moderate sample sizes. The model has been developed
based on only 92 participants and has successfully predicted
62 to 89% of the within-sample variance in neural,
behavioral, and cognitive abilities data. A conventional
structural equation model with the same number of free
parameters would require a substantially larger sample
size. Following the rule of thumb to collect at least five
observations per estimated parameter (Bentler and Chou
1987), the same model would require a sample size of at
least 480 participants in a conventional SEM framework.
Taking into account the ratio of indicators to free parameters
r (r = number of indicators/number of free parameters), a
sample size of at least 930 participants would be required
according to the equation n = 50 · r2 − 450 · r + 1100
proposed by Westland (2010) based on the simulation
results by Marsh et al. (1998). Such large sample sizes
are hardly feasible for neuroimaging research except in
large-scale collaborative research projects. The Bayesian
approach presented here enabled us to fit a structural
equation model of great complexity to a sample of only
92 participants. Most importantly, one of the main results
previously shown in a more parsimonious conventional
structural equation model applied to the same data set (i.e.,
the great association between neural processing speed and
cognitive abilities reported by Schubert et al. 2017) was
adequately recovered by the Bayesian model.

Moreover, the latent drift rate trait and task-, condition-,
and state-specific boundary separation and non-decision
time parameters could account for nearly 90% of the in-
sample reaction time data. In comparison, latent diffusion
model parameter traits have been shown to account for only
36 to 39% of variance in single-task parameter estimates
in a conventional structural equation model (Schubert et al.
2016). This in-sample prediction ability demonstrates that
it may be beneficial to model only parameters with known
trait properties (e.g., drift rate, see Schubert et al. 2016) as
hierarchical factors, while the other model parameters that
are known to be more strongly affected by task-specific
influences (e.g., non-decision time and boundary separation,
see Schubert et al. 2016) are estimated separately for each
task and condition.

Second, both the cognitive model and the structural
model were fitted to the data in a single step, allowing
an accurate representation of parameter uncertainty in
posterior distributions (Vandekerckhove 2014), whereas
previous studies relating diffusion model parameters to
cognitive abilities tests have relied on a two-step process
(e.g., Schmiedek et al. 2007; Schmitz and Wilhelm 2016;
Schubert et al. 2015).

Third, posterior distributions of model parameters were
used to predict cognitive ability test scores from neural
and behavioral data in a second independent sample. This
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is the first study to show that posterior predictives of
regression weights relating ERP latencies, behavioral data,
and cognitive ability test scores may be used to successfully
generalize predictions to another independent sample and to
predict a substantial amount of new individuals’ cognitive
ability test scores solely based on their electrophysiological
and behavioral data. That about 40% of new participants’
variance in intelligence test scores could be predicted by the
model demonstrates that individual differences in cortical
and behavioral processing speed are closely related to
general intelligence, and that both models retained their
ability to predict previously unseen data despite their
complexity.

The model developed in the present study can be easily
adjusted to include different sources of neural data, such as
functional magnetic resonance imaging or diffusion tensor
imaging data, and to relate these data to diffusion model
parameters and cognitive ability tests. Within the same
hierarchical framework, parameters of different cognitive
models could be related to neural and cognitive abilities
data. This would, for example, allow testing hypotheses
about the relationship between parameters of working
memory processes and neural and cognitive abilities data.
The flexibility of the hierarchical Bayesian approach allows
specifying model and linking structures directly guided
by theoretical assumptions, which in turn allows direct
comparisons of contradicting theories. In related areas of
research, the joint modeling of neural and behavioral data
has contributed to our understanding of episodes of mind
wandering (Mittner et al. 2014; Hawkins et al. 2015),
the dynamic inhibitory processes underlying intertemporal
choice (Turner et al. 2018), stopping behavior (Sebastian
et al. 2018), the role of attention in perceptual decision
making (Nunez et al. 2017), the neurocognitive processes
contributing to individual differences in mental rotation
(van Ravenzwaaij et al. 2017), and the neurocognitive
mechanisms underlying several other cognitive processes.
All of these fields of research are of great relevance
for individual differences research and may contribute
to our understanding of the neurocognitive mechanisms
underlying general cognitive abilities. In order to relate
covariates to joint models of neural and cognitive behavioral
data, different linking strategies have been suggested,
ranking from simple regression models to multivariate
factor-analytical approaches (e.g., Turner et al. 2017; Turner
et al. 2017; Ly et al. 2017; de Hollander et al. 2016).

Limitations

One limitation of the present study is that the tasks
used to assess individual differences in the efficiency of
information processing are so-called elementary cognitive
tasks. Elementary cognitive tasks are cognitively relatively

undemanding tasks typically used in individual differences
research to minimize the influence of individual differences
in strategy use and of previous experience with these
tasks on task performance. However, cognitively more
demanding tasks might yield a stronger association between
the velocity of evidence accumulation and cognitive
abilities. Whether drift rates based on performance in more
demanding tasks such as working memory tasks mediate the
association between neural processing speed and cognitive
abilities remains an open question. In addition, low error
rates may have limited the estimation and interpretation of
diffusion model parameters. In particular, identifying drift
rate and boundary separation parameters becomes difficult
in tasks with few incorrect responses. Although diffusion
model parameters provided a good account of the behavioral
data in all three tasks, drift rate parameters might have
reflected participants’ decision times to a larger degree than
their evidence accumulation rates.

Conclusions

We used a cognitive latent variable model approach
to show that a higher neural information processing
speed predicted both the velocity of evidence acquisi-
tion and general cognitive abilities, and that a negli-
gible part of the association between neural processing
speed and cognitive abilities was mediated by individ-
ual differences in the velocity of evidence accumulation.
The model demonstrated impressive forecasting abilities
by predicting 35 to 40% of the variance of individual
cognitive ability test scores in an entirely new sample
solely based on their electrophysiological and behavioral
data.

Our results illustrate, however, that the assumption of
a unidirectional causal cascade model, in which a higher
neural processing speed facilitates evidence accumulation,
which may in turn give rise to advantages in general
cognitive abilities, was not supported by the data. This result
provides important novel insights for intelligence research,
because the great associations between both neural and
behavioral processing speed and cognitive abilities reported
in previous studies may have suggested that a greater neural
processing speed gives rise to greater cognitive abilities
by facilitating the velocity of evidence accumulation
(Schmiedek et al. 2007; Schubert et al. 2017). Our results
contradict this hypothesis and instead suggest that neural
correlates of higher-order information processing and drift
rates might reflect the same latent process that is strongly
related to general intelligence. Future research will reveal
whether structural or functional brain properties may act
as confounding variables giving rise to the association
between mental speed and mental abilities by affecting both
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the speed of information processing and general cognitive
abilities.

Acknowledgments The authors thank Gidon T. Frischkorn, Ramesh
Srinivasan, and members of the Human Neuroscience Laboratory for
their constructive criticism on work related to this manuscript.

Funding Information This work was supported by the National
Science Foundation [No. 1658303] and the G.A.-Lienert-Foundation.

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

References

Baron, R.M., & Kenny, D.A. (1986). The moderator–mediator variable
distinction in social psychological research: conceptual, strategic,
and statistical considerations. Journal of Personality and Social
Psychology, 51(6), 1173.

Barrouillet, P., Bernardin, S., Camos, V. (2004). Time constraints and
resource sharing in adults’ working memory spans. Journal of
Experimental Psychology: General, 133(1), 83–100. https://doi.
org/10.1037/0096-3445.133.1.83.

Basten, U., Hilger, K., Fiebach, C.J. (2015). Where smart brains are
different: a quantitative meta-analysis of functional and structural
brain imaging studies on intelligence. Intelligence, 51, 10–27.
https://doi.org/10.1016/j.intell.2015.04.009.

Bazana, P.G., & Stelmack, R.M. (2002). Intelligence and information
processing during an auditory discrimination task with backward
masking: an event-related potential analysis. Journal of Personal-
ity and Social Psychology, 83(4), 998–1008.

Bentler, P.M., & Chou, C.-P. (1987). Practical issues in struc-
tural modeling. Sociological Methods Research, 16(1), 78–117.
https://doi.org/10.1177/0049124187016001004.

Boehm, U., Marsman, M., Matzke, D., Wagenmakers, E.-J. (2018).
On the importance of avoiding shortcuts in applying cogni-
tive models to hierarchical data. Behavior Research Methods.
https://doi.org/10.3758/s13428-018-1054-3.

Cassidy, S.M., Robertson, I.H., O’Connell, R.G. (2012). Retest
reliability of event-related potentials: evidence from a variety of
paradigms. Psychophysiology, 49(5), 659–664. https://doi.org/10.
1111/j.1469-8986.2011.01349.x.

Conway, A.R., Cowan, N., Bunting, M.F., Therriault, D.J., Minkoff,
S.R. (2002). A latent variable analysis of working mem-
ory capacity, short-term memory capacity, processing speed,
and general fluid intelligence. Intelligence, 30(2), 163–183.
https://doi.org/10.1016/S0160-2896(01)00096-4.

Dai, T., & Guo, Y. (2017). Predicting individual brain functional
connectivity using a bayesian hierarchical model. NeuroImage,
147, 772–787. https://doi.org/10.1016/j.neuroimage.2016.11.048.

Deary, I. (2008). Why do intelligent people live longer? Nature,
456(7219), 175–176. https://doi.org/10.1038/456175a.

de Hollander, G., Forstmann, B.U., Brown, S.D. (2016). Different
ways of linking behavioral and neural data via computational
cognitive models. Biological Psychiatry: Cognitive Neuroscience
and Neuroimaging, 1(2), 101–109. https://doi.org/10.1016/j.bpsc.
2015.11.004. Retrieved from http://www.sciencedirect.com/
science/article/pii/S2451902215000166.

Der, G., Batty, G.D., Deary, I.J. (2009). The association between iq in
adolescence and a range of health outcomes at 40 in the 1979 us
national longitudinal study of youth. Intelligence, 37(6), 573–580.
https://doi.org/10.1016/j.intell.2008.12.002.

Downar, J., Crawley, A.P., Mikulis, D.J., Davis, K.D. (2002). A corti-
cal network sensitive to stimulus salience in a neutral behavioral
context across multiple sensory modalities. Journal of Neurophys-
iology, 87(1), 615–620. https://doi.org/10.1152/jn.00636.2001.

Engle, R.W., Tuholski, S.W., Laughlin, J.E., Conway, A.R. (1999).
Working memory, short-term memory, and general fluid intelli-
gence: a latent-variable approach. Journal of Experimental Psy-
chology: General, 128(3), 309–331.

Forstmann, B.U., Wagenmakers, E.-J., Eichele, T., Brown, S., Ser-
ences, J.T. (2011). Reciprocal relations between cognitive neuro-
science and formal cognitive models: opposites attract? Trends in
Cognitive Sciences, 15(6), 272–279. https://doi.org/10.1016/j.tics.
2011.04.002.

Frischkorn, G.T., & Schubert, A.-L. (2018). Cognitive mod-
els in intelligence research: Advantages and recommenda-
tions for their application. Journal of Intelligence 6(3), 1–22.
https://doi.org/10.3390/jintelligence6030034.

Gelman, A., & Rubin, D.B. (1992). Inference from iterative simulation
using multiple sequences. Statistical Science, 7(4), 457–472.
https://doi.org/10.1214/ss/1177011136.

Gratton, G., Coles, M.G., Donchin, E. (1983). A new method for off-
line removal of ocular artifact. Electroencephalography and Clin-
ical Neurophysiology, 55(4), 468–484. https://doi.org/10.1016/
0013-4694(83)90135-9.

Hawkins, G.E., Mittner, M., Boekel, W., Heathcote, A., Forstmann,
B.U. (2015). Toward a model-based cognitive neuroscience of
mind wandering. Neuroscience, 310, 290–305. https://doi.org/10.
1016/j.neuroscience.2015.09.053.

Hick, W.E. (1952). On the rate of gain of information. Quar-
terly Journal of Experimental Psychology, 4(1), 11–26.
https://doi.org/10.1080/17470215208416600.

Hilger, K., Ekman, M., Fiebach, C.J., Basten, U. (2017). Efficient
hubs in the intelligent brain: nodal efficiency of hub regions in
the salience network is associated with general intelligence. Intel-
ligence, 60(Supplement C), 10–25. https://doi.org/10.1016/j.intell.
2016.11.001.
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