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   Abstract—In this paper, we use the cycle basis from graph the-
ory  to  reduce  the  size  of  the  decision  variable  space  of  optimal
network flow  problems  by  eliminating  the  aggregated  flow  con-
servation  constraint.  We use  a  minimum cost  flow problem and
an  optimal  power  flow  problem  with  generation  and  storage  at
the nodes to demonstrate our decision variable reduction method.
The  main  advantage  of  the  proposed  technique  is  that  it  retains
the natural sparse/decomposable structure of network flow prob-
lems.  As  such,  the  reformulated  problems  are  still  amenable  to
distributed solutions.  We  demonstrate  this  by  proposing  a  dis-
tributed  alternating  direction  method  of  multipliers  (ADMM)
solution for a minimum cost flow problem. We also show that the
communication cost of the distributed ADMM algorithm for our
proposed  cycle-based  formulation  of  the  minimum  cost  flow
problem is lower than that of a distributed ADMM algorithm for
the original arc-based formulation.
    Index Terms—ADMM, cycle basis, distributed optimization, optimal
network Flow.

I.  Introduction

IN a network flow problem, a physical system consisting of
several routes between source and sink points  transfers  in-

put  flows  from  the  source  points  to  the  sink  points.  The
primary  objective  of  optimal  network  flow  problems  is  to
minimize  the  overall  cost  of  transporting  flow  [1].  Network
flow problems appear in many important applications, such as
software-defined  networking  [2],  wireless  sensor  networks
[3],  transportation  systems  [4],  [5],  and  power  networks
[6]–[8]. In  power  network problems,  variants  of  optimal  net-
work  flow  problems  also  aim  to  include  optimal  generation
and storage costs [9]–[12].

With  the  advent  of  new  technologies,  the  amount  of
available  data  and  network  size  has  been  increasing,  which
necessitate  various  performance  improvement  techniques  in
cyber-physical  systems  [13],  [14],  and  increase  the  size  of
optimization  problems.  However,  the  number  of  decision
variables  is  directly  related  with  the  time  and  space
(resources1)  computation  complexity  of  optimization  solvers.

Decision  variable  reduction  techniques,  as  well  as
parallel/distributed  optimization  solutions,  are  therefore
investigated  to  manage  the  complexity  of  large-scale
optimization problems.  Distributed solutions are  of  particular
interest in decentralized cyber-physical operations, which aim
to  solve  network  flow  problems  in  a  scalable,  fast,  and
decentralized  manner.  Although  the  computational  cost  of
distributed algorithms in an optimal network flow problem is
distributed  among the  cyber-layer  nodes,  the  high  number  of
decision  variables  normally  translates  to  a  large  number  of
cyber  nodes  or  large  in-network  communication  overhead.
Additionally  limitations  of  these  solutions  include  network
congestion  and  the  direct  effect  of  communication  cost  on
life-expectancy  of  battery-operated  cyber  nodes.  To  address
these  limitations,  our  objective  is  to  construct  a  variable
reduction  technique  that  reduces  the  size  of  the  decision
variables  in  optimal  network  flow  problems,  while
maintaining  a  sparse  structure  amenable  to  distributed
solutions at a lower communication cost.

Variable fixing techniques [15], dominance techniques [16],
and  constraint  pairing  techniques  [17]  are  general  variable
reduction  techniques  in  integer  quadratic  problems.  Also,  in
multi-objective optimization problems data mining techniques
are  used  to  reduce  less  effective  variables  [18].  For
evolutionary  optimization  problems,  [19]  presents  how
variable  reduction  techniques  can  be  applied  to  obtain  the
variable  relations  from  the  partial  derivatives  of  an
optimization function. For optimization problems of the form
(1), eliminating affine equality constraint, as discussed below,
is  also  a  method  for  reducing  the  number  of  the  search
variables of the problem (see [20])

x⋆ = argmin
x∈Rm

ϕ(x), s.t. Ax = b; g(x) ≤ 0, (1)

ϕ : Rm→ R g : Rm→ Rr
A ∈ Rn×m

rank(A) = ρ ≤ n < m

where  and  are  the  cost  function  and
the inequality constraint  function,  respectively,  and 
satisfies .

The affine feasible set for this optimization problem can be
characterized as

{x ∈ Rm | Ax = b} = {Fz+xp | z ∈ Rm−ρ}, (2)

F ∈ Rm×(m−ρ)
A xp ∈ Rm Ax = b

x⋆ x⋆ = Fz⋆+xp

where  is a matrix whose columns span the null-
space  of  and  is  a  particular  solution  of .
Then,  in (1) satisfies  where
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1Resources are generically categorized as CPUs (number of independent com-
putational units), primary storage (amount of memory/RAM), secondary stor-
age (disk, cloud, etc.).

IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL. 6, NO. 5, SEPTEMBER 2019 1251 

http://ieeexplore.ieee.org
https://doi.org/10.1109/JAS.2019.1911705


z⋆ =argmin
z∈Rn−ρ

ϕ̄(z) = ϕ(Fz+xp), s.t.

ḡ(z) = g(Fz+xp) ≤ 0. (3)

m
m−ρ

Compared  to  (1),  in  (3),  the  equality  constraint  is  eliminated
and the number of the decision variables are reduced from 
to .

m−n+1

ρ = m−n+1

m
n

N N(m−n+1)

F xp

Optimal network flow problems are normally in the form of
the optimization problem (1), where the cost is the sum of the
convex  cost  of  the  flow  through  the  arcs  subject  to  capacity
bounds  for  each  arc  and  flow conservation  equations  at  each
node.  In variations of  the optimal  network flow problem, the
cost can be augmented to include the cost of, e.g., generation
and storage at  nodes,  and the  constraints  can be  expanded to
include  other  components.  Nevertheless,  an  affine  equality
constraint  that  always is  present in network flow problems is
the flow conservation equation.  The coefficient  matrix of  the
linear  equation  describing  the  flow  conservation  constraints
has a nullity of . Therefore, one can employ the affine
equality  elimination  method  (2)  to  reduce  the  decision
variables  of  the  optimal  flow  problems  by 
counts.  This  variable  reduction  can  be  substantial,  since  in
network flow problems, the number of arcs  is usually much
larger  than  the  number  of  the  nodes .  In  time-varying
problems where a network flow problem is solved over a time
horizon of length ,  the variable reduction is of 
counts.  However,  the  lack  of  efficient  methods  to  construct
matrix  and  particular  solution  in  (2)  can  be  an
impediment  when  using  the  affine  equality  constraint
elimination method.

A ∈ Rn×m

F

F

Various matrix factorization techniques, including LU, QR,
LQ,  SVD,  and  Gauss-Jordan  elimination  are  proposed  to
compute  the  span  of  the  null-space  of  a  matrix 
[21]–[23].  However,  such  techniques  result  in  either  a  full
matrix ,  which  destroys  the  sparsity  of  the  constraints  and
separability  of  the  cost  function  of  the  optimal  network  flow
problems, or a sparse , whose sparsity is not aligned with the
physical  layer  of  the  network,  and  as  a  result  produces  an
equivalent  optimization  problem  that  is  hard  to  decentralize.
Distributed  solutions  for  network  flow problems,  e.g.,  in  [1],
[13],  [24],  [25]  all  take advantage of  the sparsity  of  the flow
conservation  equation  and  separability  of  the  cost  function
equations  of  the  optimal  network  flow  formulations  in  their
developments.  Moreover,  arc-based  DC  and  AC  power  flow
with ADMM is studied in [26], [27].

1

Statement  of  Contribution:  In  this  paper,  we  use  a  graph
theoretic approach to reduce the decision variables of optimal
network  flow problems  by  eliminating  the  flow conservation
constraint. In particular, we show that all solutions of the flow
conservation equation are characterized explicitly in terms of
the  span  of  the  columns  of  the  transpose  of  a  cycle  basis
matrix  of  the  oriented  network  plus  a  particular  solution.
Cycle  basis  of  a  graph  can  be  computed  in  polynomial  time
using  efficient  algorithms  such  as  those  in  [28],  [29].  To
compute  a  particular  solution,  we  then  propose  a  graph
theoretic  approach.  We  show that  for  any  given  input/output
flow  vector,  a  particular  solution  can  be  efficiently
constructed from a set of elementary solutions, each obtained
from  tracing  a  flow  of  value  over  the  network  from  each

node  to  a  single  common  sink  node.  An  advantage  of  our
proposed variable reduction method is that, for fixed physical
layer  networks,  we  only  need  to  compute  the  cycle  basis
matrix and the fundamental particular solutions once. That is,
the constituting components of our method are independent of
the  numerical  values  of  the  cost,  the  arc  capacities  or  the
input/output  flow  values.  We  demonstrate  the  application  of
our  flow  conservation  equation  elimination  over  a  minimum
cost flow problem (i.e., a static optimization problem), as well
as an optimal power flow problem with storage and generation
at  the  nodes  (i.e.,  a  time-varying  optimization  problem).  Our
next  contribution  is  to  show  that  our  proposed  cycle  basis
reduced-decision-variable  formulation  is  amenable  to
distributed  solutions–this  is  due  to  the  sparse  and  particular
composition  of  the  cycle  basis  matrices  that  result  in  a
tangible  and  topologically  traceable  cycle  flow definition  for
the  variables  in  the  reduced  space.  In  this  regard,  we
demonstrate an implantation of a distributed ADMM solution
method  (see  [30]  and  [31])  for  our  reduced-variable
reformulation of the minimum cost network flow problem. To
implement this distributed solution, we propose a cyber-layer
whose nodes are defined based on the cycles of the cycle basis
of  the  physical-layer  graph,  used  in  the  variable  reduction
stage.  This  architecture  is  of  particular  interest  for  physical
networks  with  articulation  points2.  For  such  networks,  we
show  that  the  minimum  cost  optimal  network  flow  problem
decomposes into two or more decoupled smaller optimization
problems,  and  each  can  be  solved  in  a  distributed  manner
independent from the others. Our final contribution is to show
that  distributed  solutions  for  reduced-decision-variable
reformulations  can  also  be  developed  for  conventional  node-
based  cyber-layers.  We  use  an  example  to  show  that  the
communication  cost  of  the  distributed  ADMM  algorithm  for
our  proposed  cycle-based  formulation  of  the  minimum  cost
flow  problem  is  lower  than  that  of  a  distributed  ADMM
algorithm  for  the  original  arc-based  formulation.  A
preliminary  version  of  parts  of  our  results  in  this  paper  has
appeared in [33].

R R>0 R≥0 R≤0

1n n A⊤
A [A]i ith

[{zk}nk=1]
{zk}nk=1

{pi}Ni=1⊂R N N N
p= [{pi}Ni=1]∈R

N

B A
A\B= {x∈A| x < B}

Notations: , , ,  and  denote  the  set  of  real,
positive  real,  non-negative  real,  and  non-positive  real
numbers,  respectively.  is  the  vector  of  ones.  is  the
transpose  of  a  matrix  and  indicate  its  column.

 is  the  column  vector  obtained  from  stacking  the
elements  of  an  ordered  set .  For  network  variables

,  defined  over  nodes,  arcs,  or  cycles,  the
aggregate  vector  of  these  variables  is .  The
relative  complement  of  a  set  in  a  set  is

.
Organization of the Paper:  Section II defines graph-related

terminologies  and  some  of  the  basic  properties  of  the  cycle
basis  method.  Section  III  formally  presents  our  decision
variable  reduction  method  and  its  application  in  a  minimum
cost  flow  and  an  optimal  power  flow  problems.  Section  IV
presents  a  distributed  ADMM  solution  for  the  cycle-flow-
  
2An articulation point  of  an undirected connected graph is  a  node whose re-
moval along with its incident edges disconnects the graph [32].
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formulated  minimum  cost  network  flow  problem  and
discusses  the  communication  reduction  on  some  example
networks.  Section  V  demonstrates  the  performance  of  the
distributed  cycle  basis  ADMM  on  a  numerical  example  in
terms of convergence to optimum solution and the number of
communications. Section VI provides the conclusions.

II.  A Review of Cycle Basis in Graphs

n m
G = (V,E) V = {v1,v2, . . . ,vn}
E = {e1, . . . ,em} ∈ V×V

In this section, following [34], we review our graph-related
terminology and conventions, and introduce our graph-related
notations.  We  represent  a  graph  of  nodes  and  arcs  with

,  where  is  the  node  set  and
 is  the  arc  set.  The  graph  is  assumed

to  be  undirected  and  with  no  self-loop.  A walk is  an
alternating sequence of nodes and connecting arcs. A path is a
walk that does not include any node twice, except for its first
and last nodes which can be the same. A graph is connected if
there  is  a  path  from its  every  node  to  every  other  node.  The
degree  of  a  node  in  a  graph  is  the  total  number  of  arcs
connected to that node.

G = (V,E) Go = (V,Eo)
ek = (vi,v j) ∈ Eo ek vi

v j (vi,v j) ∈ Eo (v j,vi) < Eo
Go

Io ∈ R|V|×|E| Ioi j = 1
e j vi Ioi j = −1 e j vi

Ioi j = 0 n
Io n−1

When there is an orientation assigned to the arcs of a graph
, we represent the oriented graph by .

We  write  if  arc  points  from  node 
towards  node .  If  then ,  i.e.,  there  is
no  symmetric  arc  in  the  oriented  graph.  For ,  the oriented
incidence matrix  is  the  matrix ,  where  if
arc  leaves  node ,  if  arc  enters  node ,
otherwise .  For  a  connected  graph  of  nodes  with  a
given orientation, the rank of  is .

G

Go
G

co ∈ Rm coi = 1 ei
coi = −1 ei

coi = 0 ei

A cycle of  is any sub-graph in which each node has even
degree.  A simple  cycle is  a  path  that  begins  and  ends  on  the
same node with no other  repetitions of  nodes.  A cycle in the
oriented  graph  is  a  cycle  in  the  underlying  undirected
graph .  We  assign  the  counter  clockwise  direction  as
positive  cycles  orientation.  Associated  with  each  cycle  is  a
oriented cycle  vector  with  if  is  in  the  cycle
and aligned with its direction,  if  is in the cycle but
opposing  the  direction  of  the  cycle  and  finally  if  is
not  in  the  cycle.  The  following  relationship  exists  between
every oriented cycle vector and the oriented incidence matrix.

Go co
Io

Io co = 0n

Lemma  1 (Relationship  between  the  oriented  incidence
matrix and an oriented cycle vector (see [34] for proof)): In an
oriented graph , every oriented cycle vector  is orthogonal
to  every  row  of  oriented  incident  matrix ,  i.e.,

.  ■

Go
G

µ = m−n+1
Bo ∈ Rµ×m

rank(Bo) = m−n+1 1
Go

Go

Next, note that the vector space over Q, the Galois field of
2, generated by the oriented cycle vectors is the cycle space of

. A set of cycles is called a cycle basis if it forms a basis for
this  vector  space.  When  is  connected,  the  cycle  space  has
dimension .  Given  a  cycle  basis,  we  define  an
oriented cycle basis matrix  as a matrix whose rows
are  each  the  transpose  of  the  oriented  cycle  vector  of  the
cycles  of  this  cycle  basis.  This  matrix  satisfies

.  We  associate  a  weight  to  each  arc  of
. The weight of a cycle basis is the sum of the weights of its

cycles.  A minimum  cycle  basis  of  is  a  cycle  basis  of
minimum weight.

III.  Decision Variable Reduction in Optimal Network
Flow Problems

n

Gphysic = (Vphysic,Ephysic) |Vphysic| = n
|Ephysic| = m

Gphysic
Gophysic = (Vphysic,Eophysic)

xi
ei ∈ Eophysic = {e1,e2, . . . ,em}

ei ∈ Eophysic bi ≤ xi ≤ ci
bi,ci ∈ R fi

fi > 0 fi < 0
fi = 0

In this section, we show how two well-known network flow
problems can benefit from affine equality elimination method
to  reduce  their  search  variables.  We  study  our  optimal
network flow problems of interest over a network of  nodes,
where each node is connected to a subset of other nodes with
an  arc.  For  example,  in  a  power  network  the  arc  is  a
transmission line, while in a transportation network the arc is
the  road connecting  two conjunction  nodes  on the  road map.
The physical layer topology is described by a connected graph

,  where  and
.  The  flow  can  travel  in  both  directions  in  every

arc,  however,  we  assume  a  pre-specified  positive  orientation
for each arc and based on it  we describe the flow network in
the  physical  layer  by  the  oriented  version  of ,  i.e.,

.  This  physical  network  transfer
flow(s) from a set of source nodes to a set of sink nodes (see
physical layer in Fig. 1), while respecting the conservation of
the flow constraints, i.e., the total inflow into each node must
be equal  to  the total  outflow from that  node.  Given  be the
flow  across  the  arc ,  every  arc

 has  a  pre-specified  capacity,  i.e., ,  for
some  known .  For  any  external  flow ,  we  use  the
sign convention of  for  input  flow and  for  output
flow,  and  otherwise.  Using  the  oriented  incidence
matrix,  the  conservation  of  the  flow  constraint  at  each  node
can be represented as
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Fig. 1.     A physical network with two cycle-based cyber-layer network over-
laid atop. The physical layer network has two source nodes  and  and one
sink node . The physical layer has  arcs and  cycles. The lower cyber-
layer belongs to a case that cyber-layer nodes are solving minimum network
flow problem (8) using our proposed cycle-flow based distributed ADMM al-
gorithm. The top cyber-layer belongs to a case that cyber-layer nodes are
solving problem (7) using an arc-flow based distributed ADMM algorithm
proposed in [24]. The connection lines in each cyber-layer are based on the
variable dependency between the cyber nodes.
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∑m

j=1
Ioi j x j = fi, i ∈ {1, . . . ,n}, (4)

which in an aggregated form is represented with

Io x = f, (5)
f = (f1, · · · , fn)⊤ rank(Io) = n−1

1⊤n Io = 0 ∑n
i=1 fi = 0

where .  Note  that  since  and
,  every  set  of  valid  exogenous  input/output  flow

should satisfy . The following result uses Lemma 1,
to characterize the solutions of (5). ∑n

i=1 fi = 0Theorem  1 (Solution  set  of  (5)): Let .  Then,  the
solution set of the aggregated conservation of flow (5) is giv-
en by

{x ∈ Rn |x = Bo ⊤z+xp, z ∈m−n+1}, (6)
xpwhere  is a particular solution of (5).

Io
Bo ⊤

IoBo ⊤ = 0
rank(Io) = n−1 rank(Bo ⊤) = m−n+1
Io ∈ Rn×m Bo ⊤

Proof: The proof relies on showing that the null-space of 
is  spanned  by  columns  of .  By  virtue  of  Lemma  1,  we
have .  Recall  that  for  a  connected  oriented  graph

. Because , null-space of
 is spanned by columns of . ■

Bo xp
Bo

In what follows, we use the result of Theorem 1 to develop
an  affine  equality  elimination  method  to  reduce  the  decision
variables  of  two  optimal  network  flow  problems.  However,
the effectiveness of this approach depends on how efficiently
one  can  construct  matrix  and  particular  solution ,
especially in large scale networks. In regards to ,  there are
several  efficient  polynomial  time  algorithms  in  the  literature
(see  e.g.,  [28],  [29]);  see  Section  V  for  the  cycle  matrix
corresponding  to  the  minimum  weight  cycle  basis  of  the
network of Fig. 1.

xp

fi = 1
vi v j

fi = 1
vi v j

Next, we propose a simple method to construct a particular
solution  using  graph  topology.  Our  method  relies  on  the
superposition property of linear algebra equations, and the fact
that  a  particular  solution  for  a  unit  flow  entering  the
network  at  node  and  leaving  it  at  node  can  simply  be
constructed  by  assuming  that  flows  along  a  path  from
node  to node .

f Gophysic
∑n

i=1 fi = 0
xp =

∑n−1
i=1 fi x̄

p,vi x̄p,vi ∈ Rm
i ∈ {1, . . . ,n−1}
vi vn xp,vij = 1 xp,vij = −1 e j
j ∈ {1, . . . ,m}

xp,vij = 0

Lemma 2: (Particular solution of (5)). Given an input/output
flow  vector  over  which  satisfies ,  a
particular solution for (5) is . Here, ,

, is constructed from a path that connects node
 to  node  such  that  (resp. )  if ,

, is on this path and is along (resp. opposing) the
direction of the path, otherwise .

i ∈ {1, . . . ,n−1}
f̄i = 1 vi
vn

x̄p,vi ∈ Rm
Io x̄p,vi = f̄vi i ∈ {1, . . . ,n−1} f̄vii = 1

f̄vin = −1 f̄vij = 0 j ∈ {1, . . . ,n}\{i,n}
f fn = −

∑n−1
i=1 fi

f =
∑n−1

i=1 fi f̄
vi Io∑n−1

i=1 fi x̄
p
vi =
∑n−1

i=1 fi f̄
vi = f.

Proof: For every , consider a virtual scenario
where  a  unit  flow  enters  the  network  at  node  and
leaves  it  at  node .  Using  a  simple  flow  tracing  over  the
network  we  can  see  that  as  described  in  the
statement satisfies ,  where ,

 and , .  For  a  given  network
flow  vector  because ,  we  can  write

. Therefore,  ■

{x̄p,vi }n−1i=1
f

A few remarks are in order regarding the particular solution.
First,  note  that  construction  of  the  `fundamental'  particular
solution  set  is  independent  of  the  value  of  the
network  flow  vector .  Second,  for  problems  with  single

v1
vn

v1

vi vn

source and single sink nodes, we can label the source node 
and the sink node  and compute the elementary solution set
only for node . More particularly, if in a given network flow
problem the sink and the source nodes are fixed we only need
to  compute  the  elementary  particulars  solution  set  for  the
collection of  sink and source  nodes.  Finally,  to  obtain  sparse
elementary  solutions,  we  can  use  a  shortest  path  between
nodes  and . A numerical example discussing the particular
solution of the flow conservation equation for the network of
Fig. 1 is given in Section V.

A.  Minimum Cost Flow Problem

Gophysic

ϕi : R→ R ei ∈ Eophysic
x⋆ ∈ Rm

We  consider  a  minimum  cost  flow  problem  over 
with  a  given  set  of  input  and  output  flows  at  specific  source
and  sink  points.  In  this  problem,  there  is  a  convex  cost

 associated  with  flow  across  each  arc ,
and our objective is to find the network minimizer  in
the following optimization problem

x⋆ = argmin
x∈Rm

ϕ(x) =
∑m

i=1
ϕi(xi), s.t. (7a)

∑m

j=1
Ioi j x j = fi; i ∈ {1, . . . ,n}; (7b)

b j ≤ x j ≤ c j; j ∈ {1, · · · ,m}, (7c)
f = (f1, · · · , fn)⊤∑n

i=1 fi = 0

|Eophysic| = m

m−n+1

where  is  the  given  input/output  flow  vector
which  satisfies . Here,  (7b)  captures  the  flow  con-
servation  at  nodes  across  the  network  and  (7c)  describes  the
arc capacity constraints. The number of search variables in the
optimization problem (7) is equal to the number of the arcs of
the network, i.e., . Our result below uses Theorem
1  to  eliminate  the  affine  equality  constrains  (7b)  and  reduce
the search variables to .

Gophysic x⋆

x⋆ = Bo ⊤z⋆+xp

Theorem  2:  (Eliminating  the  flow  conservation  constraint
from  (7)).  Consider  the  optimal  network  flow  problem  (7)
over  a  connected  physical  network .  Then,  in  (1)
satisfies  where

z⋆ =argmin
z∈Rm−n+1

ϕ(z) =
m∑
i=1

ϕi(z⊤[Bo]i+x
p
i ), s.t.

b j ≤ z⊤[Bo] j+x
p
j ≤ c j, j ∈ {1, . . . ,m}, (8)

Bo Gophysic xp
Io x = f

and  is an oriented cycle basis matrix of  and  is a
particular solution of .
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Fig. 2.     A schematic representation of a network flow problem with generat-
ors and energy storage and loads in a network.
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Proof: The proof follows from invoking the same argument
that is used to relate solutions of the optimization problem (1)
to  those  of  (3),  and  the  result  of  Theorem  1. ■
B.  Optimal Power Flow With Storage and Generation at Nodes

Gophysic

T = {1, . . . ,T }

Next,  we  consider  an  optimal  power  flow  problem  over  a
network described by  with storage, generation and load
at  its  nodes  (see Fig. 2).  The  objective  in  this  problem  is  to
minimize the cost of power generation along with energy loss
at  the  transmission  lines  over  some  finite  time  interval

.  Mathematical  modeling  of  this  problem  over
various  scenarios,  including  deterministic  and  stochastic
generators, is considered in the literature [9]–[12].

t ∈ T

m m |T |

All  of  these  models,  at  each  time ,  include  a  flow
conservation equation at each node. As a result for a network
with  arcs,  the  flow  conservation  equation  introduces 
decision variables into the optimization problem.

t ∈ T
vi ∈ Vphysic

δi(t) si(t)
ui(t)

di(t) ∈ R≤0

{d(t)}Tt=1 d(t) = [{di(t)}ni=1

In  our  study  below,  without  loss  of  generality,  we  use  the
deterministic  form  (no  renewable  generation  source)  of  the
optimal network flow problem studied in [9], which states the
problem  as  a  direct  current  (DC)  power  flow  problem  (see
(9)).  Without  loss  of  generality,  let  at  each  time ,  each
node  have  a  generator  that  supplies  a  bounded

 power, a battery with a bounded storage level  and a
charge/discharge  variable ,  and  a  known  demand

.  If  a  node  does  not  have  any  of  the  generation,
storage,  or  load  components,  the  respective  variables  should
simply be removed from the formulation below. Then, given a
known  load  profile ,  where ],  the
optimization problem of interest in [9] is

{x⋆(t),δ⋆(t),u⋆(t),s⋆(t),θ⋆(t)}Tt=1 = (9a)

argmin
1
T

∑T

t=1

(∑n

j=1
g j(δ j(t))+

∑m

i=1
ϕi(xi(t))

)
, (9b)

s.t. for t ∈ T , i ∈ {1, . . . ,n}
∑m

j=1
Ioi j x j(t) = δi(t)−ui(t)+di(t);

(9c)

si(t+1) = λisi(t)+ui(t); (9d)

Bik(θi(t)− θk(t)) = x j(t); k ∈ Ne(i),e j = (vi,vk) (9e)

δi ≤δi(t)≤ δ̄i; ui ≤ui(t)≤ ūi; si ≤ si(t)≤ s̄i; (9f)

b j ≤ x j(t) ≤ c j; j ∈ {1, . . . ,m}, (9g)
g j

j ∈ {1, . . . ,n} ϕi i ∈ {1, . . . ,m}
Ne(i)

vi
λi ∈ (0,1]
(si, s̄i) ∈ R×R (ui, ūi) ∈ R×R (δi, δ̄i) ∈ R×R

Bik(θi(t)− θk(t))
θi(t)

vi ∈ Vphysic t B ∈ Rn×n

where  the  cost  function  includes  generator  costs ,
, and transmission cost , , following

DC  power  grid  model  in  [35].  Here,  is  the  set  of  the
nodes  that  are  connected  to  node  through  an  arc,  and

 is  the  storage  energy  dissipation  factor.  Moreover,
, , ,  are  known  as

lower bound and upper bound values on storage level, battery
charge/discharge, and  power  generation  by  the  generator,  re-
spectively.  Finally  is  the  DC  approximation
for  alternating  current  power  flow.  Here,  is  the  voltage
phase angle of node (bus)  at time  and  is
the imaginary  part  of  the  admittance  matrix  under  DC  as-
sumption (for more details see [9]).

m|T | (m−n+1)|T |
t ∈ T

The  following  result  shows  that  the  number  of  search
variables  related  to  the  flow  in  the  optimization  problem  (9)
can be reduced from  to  via eliminating the
flow  conservation  constraint  at  each .  An  interesting
observation in the result below is that in order to eliminate the
flow conservation equations (9c), we need to introduce a new
set  of  affine  equality  constraint  (10b)  which  ensure  balance
between the external input and output flows.

Gophysic
{d(t)}Tt=1

{Bo ⊤z⋆(t)+xp(δ⋆(t),u⋆(t),d(t)),u⋆(t),s⋆(t),θ⋆(t)}Tt=1

Proposition 1: (Eliminating the flow conservation constraint
from (9)). Consider the optimal power flow problem (9) over
a  physical  network  described  by  with  a  given  set  of
loads .  Then,

 is  a
minimizer of the optimization problem (9) where

{z⋆(t),δ⋆(t),u⋆(t),s⋆(t),θ⋆(t)}Tt=1 =

argmin
1
T

∑T

t=1

(∑n

j=1
g j(δ j(t))+ (10a)∑m

i=1
ϕi(z(t)⊤[Bo]i+x

p
i (δ(t),u(t),d(t))

)
, s.t.

f or t ∈ T , i ∈ {1, . . . ,n}∑n

j=1
(δ j(t)+u j(t)+d j(t)) = 0, (10b)

si(t+1) = λisi(t)+ui(t), (10c)

Bik(θi(t)− θk(t)) = z(t)⊤[Bo] j+x
p
j (δ(t),u(t),d(t)),

k ∈ Ne(i),e j = (vi,vk), (10d)

δi ≤δi(t)≤ δ̄i, ui ≤ui(t)≤ ūi, si ≤ si(t)≤ s̄i, (10e)

b j ≤ z(t)⊤[Bo] j+x
p
j (δ(t),u(t),d(t)) ≤ c j,

j ∈ {1, · · · ,m}. (10f)

Bo Gophysic xp(δ(t),u(t),

d(t)) =
n−1∑
i=1

(δi(t)+ui(t)+di(t)) x̄p,vi {x̄p,vi }n−1i=1

Here,  is  a  cycle  basis  matrix  of  and 

,  where  is as  de-

scribed in Lemma 1.
Proof: The equality constraint (9c) in aggregated form is

Io x(t) = δ(t)+u(t)+d(t), t ∈ T . (11)
Io ∈ Rn×m n−1 1⊤n Io = 0 1n

n 1⊤n
δ(t),u(t),d(t) ∈ Rn

xp(δ(t),u(t),d(t)) =
∑n−1

i=1 (δi(t)+ui(t)+di(t)) x̄
p,vi

Io xp(δ(t),u(t),d(t)) = δ(t)+u(t)+
d(t). d

t

Note that rank of  is  and , where  is
the  vector  of  ones.  Left  multiplying  (11)  by  results  in
(10b).  Then,  for  a  given  that  satisfy  (10b),
following  the  method  discussed  in  Lemma  1,  we  can  show
that  is a  par-
ticular solution of (11), i.e., 

 Therefore,  for  any  given  load  vector  (to  simplify  the
notation we drop argument ), we have{

x ∈ Rm | Iox = δ+u+d,δ ∈ Rn,u ∈ Rn} ={
Bo ⊤z+xp(δ,u,d)

∣∣∣∣xp(δ,u,d)=∑n−1
i=1

(δi+ui+di) x̄p,vi ,∑n

i=1
(δi+ui+di) = 0, z∈Rn−m+1,δ∈Rn,u∈Rn

}
.

t ∈ TAs  a  result,  at  each ,  we  can  eliminate  the  affine
equation (9c) and obtain the equivalent optimization problem
(10).  As  it  is  described  in  the  statement,  the  minimizers  of
problem (10) and (9) are equal. ■
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IV.  A Cycle-Basis Distributed ADMM Algorithm for
Minimum Cost Network Flow Problem

In  this  section,  our  objective  is  to  demonstrate  the
effectiveness  of  the  cycle  basis  decision  variable  reduction
technique in decreasing the communication cost of distributed
solutions  of  optimal  network  flow  problems.  We  use  the
minimum  network  flow  problem  (7)  as  our  demonstration
case. For this problem, we first develop a distributed ADMM
algorithm to solve (8). Then, we compare the communication
cost of this algorithm to that of a distributed ADMM solution
for (7).

Gophysic µ = m−n+1
C = {Ci}µi=1 Bo

Ci ∈ C i ∈ {1, . . . ,µ} ECi = {e j ∈ Eo, j ∈ {1, . . . ,m} |Bo
i j , 0}

C

Ci ∈ C i ∈ {1, . . . ,µ} NCi = { j ∈ {1, . . . ,µ}\{i} |∃k ∈
{1, . . . ,m} s.t. Bo

ik , 0 and B
o
jk , 0}

To  develop  our  results,  we  introduce  first  some  notations
related to the oriented cycles of . Suppose .
Let ,  be  the  set  of  cycles  of  corresponding  to 
that  is  used  to  eliminate  the  flow  conservation  equation  as
explained  in  Section  III.  We  represent  the  set  of  arcs  of  any

, ,  by .
For a given cycle basis , we refer to the cycles that share an
arc as neighbors and represent the set of neighboring cycles of
any cycle , , by 

.
Ic(ei)

ei ∈ Ephysic Ic(ei) = { j ∈ {1, . . . ,µ} |ei ∈ ECj }
JE(vi)

vi ∈ Vphysic JE(vi) = {v j ∈ Vphysic\{vi} | (vi,v j) ∈ Ephysic}

We  let  be  the  set  of  indexes  of  the  cycles  that  arc
 belongs to them, i.e., .

We let  be the set  of  all  the arcs  that  go through node
, i.e., .

x=Bo ⊤z+xp xi=z⊤[Bo]i+x
p
i i ∈ {1, . . . ,m}

ei ∈ Eophysic Bo
ji

Cofj ei xi i ∈ {1, . . . ,m}
xpi {zk}k∈Ic(ei) zi

i ∈ {1, . . . ,µ}
Ci

x j j ∈ {1, . . . ,m}

Recall  that  to  eliminate  the  flow conservation  equation  we
used , or equivalently , .
Since, for a given arc , every element of  is zero
except if cycle  contains arc , every , , is an
affine  function  of  and .  If  we  think  of  every ,

 as a cycle flow variable (with positive direction in
counterclockwise  direction)  of  the  cycle ,  then  every  arc
flow ,  is  a  function  of  its  corresponding
component of the particular solution and the cycle flows of the
cycles  that  contain  the  arc.  Given  such  relationship,  the  cost
function of every arc is

ϕi(xi) = ϕi(z⊤[Bo]i+x
p
i ) = ψi({zk}k∈Ic(ei)).

Next,  we  derive  equivalent  representations  of  optimization
problem (8)  that  can be solved in  a  distributed manner  using
the ADMM algorithm of [13] via two different cyber-layer ar-
chitectures.

µ

Cycle-Based  Cyber-Layer:  to  develop  our  first  distributed
solution  to  solve  (8),  we  assign  a  cyber-layer  node  to  each
cycle of the cycle basis that we used in our decision variable
reduction  stage  (see Fig. 1 as  an  example).  We  refer  to  this
architecture  as cycle-based  cyber-layer.  We  assume  that  the
cyber-layer nodes of the neighboring cycles can communicate
with each other in a bi-directional way. This procedure results
in  a  cyber-layer  with  nodes.  To  obtain  cycle  basis  with
fewest  number  of  arcs  in  each  cycle  we  can  use  a  minimum
weight cycle basis algorithms (see e.g. [29]).

i ∈ {1, . . . ,µ}
yi = (ȳi, ỹi) ∈ R|N

C
i |+1 ȳi ∈ R zi

ỹi {zk}k∈NCi i

Now,  for  every  cyber-layer  node ,  we  define
,  where  is  the  local  copy of  and

 is  the  local  copy  of  at  cyber  node .  With  this
definition,  we  assume  that  every  cyber  node  besides  its  own

yi yi(ek) yi
{z j} j∈Ic(ek)

corresponding  cycle  flow  has  also  a  copy  of  cycle  flow
variable  of  each  of  its  neighbors.  Next,  we  cast  the  cost
function  of  each  cyber  node  in  terms  of  its  decision  variable

.  Let  be  the  component(s)  of  corresponding  to
.  For  every  cyber-layer  node,  we  define  its  cost

function as

θi(yi) =
∑
∀ek∈ECi

1
|Ic(ei)|

ψk(yi(ek)). (12)

Then, we can cast the minimum cost network flow problem
(8) in the following equivalent form

y⋆ = argmin
y1,··· ,yµ

∑µ

i=1
θi(yi), s.t.

i ∈ {1, . . . ,µ} :Set of constraints at each cyber agent yi(ek) = [{ȳ j} j∈Ic(ei)],bk ≤ yi(ek)⊤[{Bo
jk} j∈Ic(ek)]+x

p
k ≤ ck,

∀ek ∈ECi . (13)

yi

i∈ {1, . . . ,µ} y⋆i
x⋆k = y

⋆
i (ek)

⊤[{Bo
jk} j∈Ic(ek)]+x

p
k

ek ∈ ECi

{x̄p,vi }n−1i=1

f

In this formulation, every cycle-based cyber node has a copy
of the cycle flows that go through its arcs, i.e, . The equality
constraint  at  each node ensures  that  local  copies  of  the  cycle
flows of  the  neighboring  agents  are  the  same,  while  the  in-
equality  constraint  ensures  that  the  flow  through  the  arcs  of
each cycle respect the capacity bounds.  The new formulation
(13)  fits  the  standard  framework  developed  for  distributed
ADMM solutions and can be solved for example using the al-
gorithm  of  [13].  The  details  are  omitted  for  brevity.  Once
every  cyber  node  computes ,  then  it  can  use

 to  obtain  the  optimal  cycle
flows through its arcs . In this distributed implementa-
tion,  we  assume  that  elementary  particular  solution  set

 are  computed  off-line  and  are  available  at  cyber
nodes. At  operation  times,  we only  need to  broadcast  the  in-
put/output  flow  vector  to  the  cyber-layer  agents.  For  large
cycles,  one can split  the cycle among several  cyber nodes.  A
numerical  example  demonstrating  our  proposed  distributed
ADMM  algorithm  over  a  cycle-based  cyber-layer  can  be
found in authors' preliminary work [33].

One can solve also the original minimum cost network flow
problem  (7)  in  a  distributed  manner  by  a  cycle-based  cyber-

 

 
Fig. 3.     Examples of physical layer networks (black network) with the cor-
responding cycle-based cyber-layer atop (blue thicker network).
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layer using, for example, the distributed ADMM algorithm of
[24].  To do so,  every cyber-layer node needs a local  copy of
the  arc  flows  across  all  the  nodes  in  its  corresponding  cycle.
The local copies are required to create a local copy of the flow
conservation equation of the nodes. Then, to coordinate these
local  copies,  the  cyber-layer  agents  that  share  a  node  are
required  to  communicate  with  each  other.  Since  there  are
more  cycles  that  are  connected  to  each  other  through  the
nodes  than  those  connected  by  arcs,  as  shown  in Fig. 1,  this
distributed  solution  requires  more  connections  in  the  cyber-
layer than the distributed solution for (8).  Moreover,  because
there  are  more  arc  flows than cycle  flows,  the  message sizes
exchanged  among  neighboring  cyber  agents  solving  (7)  is
larger.  Therefore,  the  distributed  solution  for  (7)  will  be  less
favorable  from  network  congestion  and  communication
energy consumption perspective.

n = N2

m = 2(N2−N)
c = N2−2N +1

m1 =

2((N −1)2− (N −1)) = 2(N2−3N +2)

m2= ((N −1)2−2(N −1)+1)2+2(N2−
3N +2) = 4N2−14N +12
limn→∞

m2

m1
= 2

27
9

Remark  1:  (Example  networks).  In  a  square  mesh  physical
layer  network  with  nodes,  the  total  number  of  arcs  is

,  and  the  total  number  of  cycles  is
,  see  the  top  plots  in Fig. 3.  In  the  mesh

networks  of Fig. 3,  cyber-layer  constructed  based  on  the
cycle-basis partitioning of the physical layer is shown via the
thick  blue  network.  For  a  cyber-layer  which  solves  the
alternative  optimal  network flow problem (8)  via  an  ADMM
distributed solution, a cyber agent only needs to communicate
with  neighboring  agents  which  have  a  common  arc.  The
number  of  communication  links  in  cyber-layer  is 

.  For  a  cyber-layer
which  solves  the  original  optimal  network  flow  problem  (7)
via an ADMM distributed solution,  any cyber agent  needs to
communicate  with  neighboring  agents  which  has  a  common
node  in  the  graph.  Therefore,  the  number  of  communication
links  in  cyber-layer  is 

.  Consequently,  we  can  obtain  that
.  An  interesting  case  involving  our  proposed

cycle-based  distributed  ADMM  solution  of  (13)  is  when  the
physical layer network has articulation points (e.g., node  in
IEEE bus system 30 in Fig. 4 and node  of the physical layer
in Fig. 1 are articulated points). The physical layer graph with
an  articulation  point  is  consisted  of  subgraphs  that  are
connected  to  each  other  through  simple  nodes  with  no
common  arcs  between  them.  Therefore,  when  our  proposed
aforementioned ADMM algorithm is implemented, there is no
variable  dependency  between  the  cyber  nodes  of  these
subgraphs.  This  means  that  the  original  fully  coupled
optimization problem is now divided into smaller optimization
problems that each can be solved independently. For example
in  the  network  of Fig. 1,  cyber-layer  node  1  can  obtain  the
optimal  solution  across  its  arcs  in  one  ADMM  iteration
without  a  need  to  coordinate  with  other  cyber  agents.  An
extreme  example  case  is  also  shown  in  the  bottom  plots  of
Fig. 3. In this example there is no common arc among cycles,
but  they  all  have  one  common  node.  The  number  of
communication  links  for  cycle-based  cyber-layer  graph  is
zero.  In  this  case,  a  cycle-based  ADMM  algorithm  finds  the
optimum  solution  in  one  step,  without  any  communication.
However,  in  arc-based  network  flow,  the  cyber-layer  is  a

complete  graph  as  all  of  the  agents  are  connected  to  each
other.

yi

Node-Based  Cyber-Layer:  We  can  solve  problem  (8)  in  a
distributed  manner  with  the  conventional node-based  cyber-
layer,  as  well.  In  a  node-based  cyber-layer  architecture,  a
cyber  agent  is  assigned to  each node of  the  physical  layer  to
compute  the  flow  across  all  the  incident  arcs  of  the
corresponding  physical  layer  node.  For  example,  in  traffic
networks, a cyber agent is assigned to each intersection, which
is a node in the physical layer. In this case, the topology of the
cyber-layer is exactly the same as the physical layer. To solve
problem  (8)  using  a  distributed  ADMM  algorithm  over  such
cyber-layer,  we  assume  that  each  cyber  agent  has  a  local
variable  consisted  of  local  copies  of  the  cycle  flows  that
goes across its arcs. We also split the flow cost across each arc
between  each  end  nodes.  Then,  the  total  local  cost  at  each
cyber node is

θi(yi) =
1
2

∑
∀ek∈JE(vi)

ψk(yi(ek)), vi ∈ Vphysic. (14)

Then, we can cast the minimum cost network flow problem
(8) in the following equivalent form

y⋆ = argmin
y1,··· ,yn

∑n

i=1
θi(yi), s.t.

i ∈ {1, . . . ,n} :Set of constraints at each cyber agent {yi(ek)=y j(ek), ek= (vi,v j) ∈ Ephysic,
bk ≤ yi(ek)⊤[{Bo

lk}l∈Ic(ek)]+x
p
k ≤ck,

∀ek ∈JE(vi), (15)

Given  this  equivalent  representation,  similar  to  the  method
described  for  the  cycle-based  cyber-layer,  we  can  now solve
the  optimization  problem  (8)  using  a  distributed  ADMM
algorithm.  In  a  cycle  flow representation,  it  is  more likely  to
have fewer cycles that go through a node than the arcs that are
incident  at  that  node.  Therefore,  in  a  distributed  ADMM
solution,  the  size  of  the  broadcast  messages  of  a  cyber  agent
solving  (8)  is  more  likely  to  be  less  than  the  size  of  the
broadcast messages when we solve (7).

 

1 2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

2526

27 2829

30

 
Fig. 4.     The graph related to IEEE bus system 30 with 41 arcs, 30 nodes and
12 cycles.
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V.  Demonstrative Examples

bi = −ci
ci ∈ [1,20], i ∈ {1, . . . ,19}

ϕi(xi) = 1
2aix

2
i +bixi

xi = z⊤[Bo]i+x
p
i z = (z1, · · · ,z7)⊤

ai ∈ [1,20], i ∈ {1, . . . ,19}
bi ∈ [1,20], i ∈ {1, . . . ,19}

We  demonstrate  the  use  of  distributed  cycle-flow-based
ADMM algorithm for a minimum cost optimal flow over the
network  shown  in Fig. 1,  and  compare  it  with  the  arc-flow-
based  ADMM  distributed  algorithm  [24].  The  arrows  in  the
physical  layer  show the  positive  flow orientation  assigned  to
the  arcs.  The  cyber-layer  is  generated  based  in  the  minimum
weight cycle basis partitioning of the physical layer as shown
in  the  bolder  network  with  blue  nodes  in Fig. 1.  In  this
problem,  we  set  capacity  bounds ,  and

.  We  assume  that  the  cost  of  the
network  flow  at  each  arc  is  given  as ,
where  is the arc flow and  are
the  cycle  flows.  The  parameters  of  the  cost  functions  are
chosen  randomly  from  and

. In the physical layer network in Fig.

v1 v4 v13

f1+ f4
30 f1 = 10 f4 = 15

f13 = −25

f = (f1,0,0, f4,0,0,0,0,0,0,0,0, f13)⊤

v1 v4
v13

x̄p,v1 = (1,01×4,1,01×6,1,0,0,1,0,1,0)⊤
x̄p,v4 = (01×7,1,0,1,01×4,1,1,0,1,0)⊤
x̄p = f1 x̄p,v1 + f4 x̄p,v4

1, there are two source nodes  and  and one sink node .
For  our  selected  capacity  bounds,  using  Edmonds-Krap
algorithm [36] we obtain the maximum input flow  to be

.  In  our  simulation,  then  we  set  and .  The
output follows are .  For the network of Fig. 1, there
are  7  cycles  and  19  edges  in  the  network  and  the  orientated
cycle basis matrix is, (recall that we have assumed the positive
cycle  flow  direction  to  be  counterclockwise).  We  follow
Lemma III.1  to  generate  a  particular  solution  for  given input
output  flow  vector ,
where f13 = –(f1 + f4) (recall that input flows have positive and
output  flows  have  negative  values).  We  compute  the
elementary  particular  solutions  for  nodes  and  using
shortest  path  from  them  to  node :

,
.  Then

.

Bo =



−1 1 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 −1 1 0 0 0 −1 1 1 0 0 0 0 0 0 0 0 0 0
0 0 0 1 −1 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 −1 1 0 −1 0 −1 1 0 0 0 0
0 0 0 0 1 −1 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 −1 1 −1 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 1 −1 1


x⋆= {9.64,

f⋆ = 9316.8 z⋆= {0.35,−2,0.39,−5,4.1,0.95,11}

ϵ f = ( f k − f⋆)/ f⋆ k

ϵ f = 0.01

5 ϵ f = 0.01

13

(i, j) i
j

7 14

35
112

∥xki −x⋆i ∥ < ϵ = 0.1 x⋆i

The central optimum solution of our example is 
2.35, –2,  0.03,  3.70,  5.90,  2.39,  13,  3,  10,  3.14,  5.94,  9.05,
5.94,  10,  14,  11,  14,  11}  with  objective  function  value  of

 (also, ).
Fig. 5 shows  the  absolute  percentage  error,  defined  as

 at  iteration  of  the  cycle-flow-based  and
arc-flow-based  distributed  ADMM  algorithms.  The  result
shows that the convergence of the cycle-flow-based ADMM is
faster  than  arc-flow-based  ADMM  when  the  problem  is
solved  via  the  cycle-based  cyber-layers  shown  in Fig. 1 for
each  of  these  approaches.  To  compare  the  number  of
communications  between  cycle-flow-based  and  arc-flow-
based ADMM algorithms, we set a threshold of  for
the  absolute  percentage  error.  Distributed  cycle-flow-based
ADMM  converges  after  itereation  to  absolute
percentage error while the distributed arc-flow-based ADMM
converges  after  iterations.  Each  iteration  of  the  ADMM
algorithm  needs  to  send  primal  variables  twice  for  every
communication  link  in  cyber  network  from  node  to
node  and vice versa. The number of communication links in
cycle-flow-based and arc-flow-based cyber-layer are  and 
respectively.  As  a  result,  the  number  of  communications  for
cycle-flow-based  ADMM  is  and  for  arc-flow-based
ADMM  is .  In Fig. 6,  we  compare  the  number  of
communications  between  cycle-flow-based  and  arc-flow-
based distributed ADMM for the cyber nodes shown in Fig. 1.
The number of communications is obtained by adding up the
communication  incidences  at  each  iteration,  until  we  have

,  where  is  the  optimum  solution  of  the
central  problem. Fig. 6 shows  that  the  cycle-flow  based
algorithm requires fewer communications.

VI.  Conclusion

We  have  considered  optimal  network  flow  problems  and
investigated how the decision variables size of these problems
can  be  reduced  by  eliminating  the  affine  flow  conservation
equations.  Our  study  was  based  on  exploiting  cycle  basis
concept from graph theory to eliminate the flow conservation
equation in an efficient manner. In particular, we have shown
that the components of our variable reduction method can be
obtained  in  a  systematic  manner  using  graph  theoretic
approaches.  Moreover,  we  have  shown  that  the  new
formulation  of  the  optimal  network  flow  problems  with
reduced variables has a sparse structure and can be solved via
distributed  optimization  solvers.  In  this  regard,  we  have
demonstrated  the  use  of  a  distributed  ADMM  solver  for  the
cycle-flow-based  minimum  cost  flow  formulation,  and
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showed  that  this  distributed  operation  leads  to  a  reduced
communication cost among the cyber-layer nodes.
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Fig. 6.     Comparison of the number of communications between the cyber-
layer nodes when they solve the optimal network flow problem using a dis-
tributed cycle-flow-based and arc-flow-based ADMM algorithms until we
have  ,  .  As  seen,  in  the  arc-flow-based  al-
gorithms the cyber nodes communicate more.
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