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Cycle Flow Formulation of Optimal Network Flow
Problems and Respective Distributed Solutions

Reza Asadi and Solmaz S. Kia, Member, IEEE

Abstract—In this paper, we use the cycle basis from graph the-
ory to reduce the size of the decision variable space of optimal
network flow problems by eliminating the aggregated flow con-
servation constraint. We use a minimum cost flow problem and
an optimal power flow problem with generation and storage at
the nodes to demonstrate our decision variable reduction method.
The main advantage of the proposed technique is that it retains
the natural sparse/decomposable structure of network flow prob-
lems. As such, the reformulated problems are still amenable to
distributed solutions. We demonstrate this by proposing a dis-
tributed alternating direction method of multipliers (ADMM)
solution for a minimum cost flow problem. We also show that the
communication cost of the distributed ADMM algorithm for our
proposed cycle-based formulation of the minimum cost flow
problem is lower than that of a distributed ADMM algorithm for
the original arc-based formulation.

Index Terms—ADMM, cycle basis, distributed optimization, optimal
network Flow.

1. INTRODUCTION

N a network flow problem, a physical system consisting of
I several routes between source and sink points transfers in-
put flows from the source points to the sink points. The
primary objective of optimal network flow problems is to
minimize the overall cost of transporting flow [1]. Network
flow problems appear in many important applications, such as
software-defined networking [2], wireless sensor networks
[3], transportation systems [4], [5], and power networks
[6]-8]. In power network problems, variants of optimal net-
work flow problems also aim to include optimal generation
and storage costs [9]-[12].

With the advent of new technologies, the amount of
available data and network size has been increasing, which
necessitate various performance improvement techniques in
cyber-physical systems [13], [14], and increase the size of
optimization problems. However, the number of decision
variables is directly related with the time and space
(resources!) computation complexity of optimization solvers.
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Decision variable reduction techniques, as well as
parallel/distributed optimization solutions, are therefore
investigated to manage the complexity of large-scale
optimization problems. Distributed solutions are of particular
interest in decentralized cyber-physical operations, which aim
to solve network flow problems in a scalable, fast, and
decentralized manner. Although the computational cost of
distributed algorithms in an optimal network flow problem is
distributed among the cyber-layer nodes, the high number of
decision variables normally translates to a large number of
cyber nodes or large in-network communication overhead.
Additionally limitations of these solutions include network
congestion and the direct effect of communication cost on
life-expectancy of battery-operated cyber nodes. To address
these limitations, our objective is to construct a variable
reduction technique that reduces the size of the decision
variables in optimal network flow problems, while
maintaining a sparse structure amenable to distributed
solutions at a lower communication cost.

Variable fixing techniques [15], dominance techniques [16],
and constraint pairing techniques [17] are general variable
reduction techniques in integer quadratic problems. Also, in
multi-objective optimization problems data mining techniques
are used to reduce less effective variables [18]. For
evolutionary optimization problems, [19] presents how
variable reduction techniques can be applied to obtain the
variable relations from the partial derivatives of an
optimization function. For optimization problems of the form
(1), eliminating affine equality constraint, as discussed below,
is also a method for reducing the number of the search
variables of the problem (see [20])

x* = argmin ¢(x), s.t. (1)
xeR™
where ¢ : R™ - R and g:R"™ — R” are the cost function and
the inequality constraint function, respectively, and A ¢ R
satisfies rank(A) = p <n <m.
The affine feasible set for this optimization problem can be
characterized as

Ax=Db; g(x)<0,

{(xeR"|Ax=b}={Fz+xP |zeR" "}, 2)
where F € R"™<("=) is a matrix whose columns span the null-

space of A and xP ¢ R” is a particular solution of Ax =bh.
Then, x* in (1) satisfies x* = Fz* + xP where

IResources are generically categorized as CPUs (number of independent com-
putational units), primary storage (amount of memory/RAM), secondary stor-
age (disk, cloud, etc.).
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z* =argmin$(z) = p(Fz +xP), s.t.
zZeR"P
g(z) =g(Fz+xP) <0. 3)
Compared to (1), in (3), the equality constraint is eliminated
and the number of the decision variables are reduced from m
to m—p.

Optimal network flow problems are normally in the form of
the optimization problem (1), where the cost is the sum of the
convex cost of the flow through the arcs subject to capacity
bounds for each arc and flow conservation equations at each
node. In variations of the optimal network flow problem, the
cost can be augmented to include the cost of, e.g., generation
and storage at nodes, and the constraints can be expanded to
include other components. Nevertheless, an affine equality
constraint that always is present in network flow problems is
the flow conservation equation. The coefficient matrix of the
linear equation describing the flow conservation constraints
has a nullity of m —n + 1. Therefore, one can employ the affine
equality elimination method (2) to reduce the decision
variables of the optimal flow problems by p=m—-n+1
counts. This variable reduction can be substantial, since in
network flow problems, the number of arcs m is usually much
larger than the number of the nodes n. In time-varying
problems where a network flow problem is solved over a time
horizon of length N, the variable reduction is of N(m—n+ 1)
counts. However, the lack of efficient methods to construct
matrix F and particular solution xP in (2) can be an
impediment when using the affine equality constraint
elimination method.

Various matrix factorization techniques, including LU, QR,
LQ, SVD, and Gauss-Jordan elimination are proposed to
compute the span of the null-space of a matrix A € R™>"
[21]-[23]. However, such techniques result in either a full
matrix F, which destroys the sparsity of the constraints and
separability of the cost function of the optimal network flow
problems, or a sparse F, whose sparsity is not aligned with the
physical layer of the network, and as a result produces an
equivalent optimization problem that is hard to decentralize.
Distributed solutions for network flow problems, e.g., in [1],
[13], [24], [25] all take advantage of the sparsity of the flow
conservation equation and separability of the cost function
equations of the optimal network flow formulations in their
developments. Moreover, arc-based DC and AC power flow
with ADMM is studied in [26], [27].

Statement of Contribution: In this paper, we use a graph
theoretic approach to reduce the decision variables of optimal
network flow problems by eliminating the flow conservation
constraint. In particular, we show that all solutions of the flow
conservation equation are characterized explicitly in terms of
the span of the columns of the transpose of a cycle basis
matrix of the oriented network plus a particular solution.
Cycle basis of a graph can be computed in polynomial time
using efficient algorithms such as those in [28], [29]. To
compute a particular solution, we then propose a graph
theoretic approach. We show that for any given input/output
flow vector, a particular solution can be efficiently
constructed from a set of elementary solutions, each obtained
from tracing a flow of value 1 over the network from each
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node to a single common sink node. An advantage of our
proposed variable reduction method is that, for fixed physical
layer networks, we only need to compute the cycle basis
matrix and the fundamental particular solutions once. That is,
the constituting components of our method are independent of
the numerical values of the cost, the arc capacities or the
input/output flow values. We demonstrate the application of
our flow conservation equation elimination over a minimum
cost flow problem (i.e., a static optimization problem), as well
as an optimal power flow problem with storage and generation
at the nodes (i.e., a time-varying optimization problem). Our
next contribution is to show that our proposed cycle basis
reduced-decision-variable formulation is amenable to
distributed solutions—this is due to the sparse and particular
composition of the cycle basis matrices that result in a
tangible and topologically traceable cycle flow definition for
the wvariables in the reduced space. In this regard, we
demonstrate an implantation of a distributed ADMM solution
method (see [30] and [31]) for our reduced-variable
reformulation of the minimum cost network flow problem. To
implement this distributed solution, we propose a cyber-layer
whose nodes are defined based on the cycles of the cycle basis
of the physical-layer graph, used in the variable reduction
stage. This architecture is of particular interest for physical
networks with articulation points?. For such networks, we
show that the minimum cost optimal network flow problem
decomposes into two or more decoupled smaller optimization
problems, and each can be solved in a distributed manner
independent from the others. Our final contribution is to show
that distributed solutions for reduced-decision-variable
reformulations can also be developed for conventional node-
based cyber-layers. We use an example to show that the
communication cost of the distributed ADMM algorithm for
our proposed cycle-based formulation of the minimum cost
flow problem is lower than that of a distributed ADMM
algorithm for the original arc-based formulation. A
preliminary version of parts of our results in this paper has
appeared in [33].

Notations: R, Rso, Rso, and R<y denote the set of real,
positive real, non-negative real, and non-positive real
numbers, respectively. 1, is the vector of n ones. AT is the
transpose of a matrix A and [A]; indicate its ith column.
[ze}i_,] is the column vector obtained from stacking the
elements of an ordered set {zk}ZZI. For network variables
{pi}ﬁilcR, defined over N nodes, N arcs, or N cycles, the
aggregate vector of these variables is p=[{p;} ]€RN. The
relative complement of a set B in a set A is
A\B={xeA|x ¢ B}.

Organization of the Paper: Section Il defines graph-related
terminologies and some of the basic properties of the cycle
basis method. Section III formally presents our decision
variable reduction method and its application in a minimum
cost flow and an optimal power flow problems. Section IV
presents a distributed ADMM solution for the cycle-flow-

2An articulation point of an undirected connected graph is a node whose re-
moval along with its incident edges disconnects the graph [32].
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formulated minimum cost network flow problem and
discusses the communication reduction on some example
networks. Section V demonstrates the performance of the
distributed cycle basis ADMM on a numerical example in
terms of convergence to optimum solution and the number of
communications. Section VI provides the conclusions.

II. A REVIEW OF CYCLE BASIS IN GRAPHS

In this section, following [34], we review our graph-related
terminology and conventions, and introduce our graph-related
notations. We represent a graph of n nodes and m arcs with
G =(V,8), where V ={v,va,...,v,} is the node set and
E={eq,....en} € VXV is the arc set. The graph is assumed
to be undirected and with no self-loop. A walk is an
alternating sequence of nodes and connecting arcs. A path is a
walk that does not include any node twice, except for its first
and last nodes which can be the same. A graph is connected if
there is a path from its every node to every other node. The
degree of a node in a graph is the total number of arcs
connected to that node.

When there is an orientation assigned to the arcs of a graph
G = (V,E), we represent the oriented graph by G° = (V,&E°).
We write e; = (v;,v;) €&° if arc e, points from node v;
towards node v;. If (v;,v;) € E° then (v},v;) ¢ E°, i.e., there is
no symmetric arc in the oriented graph. For G°, the oriented
incidence matrix is the matrix 7° € RIV¥€l where I ?j =1if
arc e; leaves node v;, I?j =-1 if arc e; enters node v;,
otherwise I ?] =0. For a connected graph of n nodes with a
given orientation, the rank of 7°isn— 1.

A cycle of G is any sub-graph in which each node has even
degree. A simple cycle is a path that begins and ends on the
same node with no other repetitions of nodes. A cycle in the
oriented graph G° is a cycle in the underlying undirected
graph G. We assign the counter clockwise direction as
positive cycles orientation. Associated with each cycle is a
oriented cycle vector ¢® € R™ with ¢ =1 if ¢; is in the cycle
and aligned with its direction, ¢ = —1if ¢; is in the cycle but
opposing the direction of the cycle and finally ¢ =0 if ¢; is
not in the cycle. The following relationship exists between
every oriented cycle vector and the oriented incidence matrix.

Lemma 1 (Relationship between the oriented incidence
matrix and an oriented cycle vector (see [34] for proof)): In an
oriented graph G°, every oriented cycle vector ¢’ is orthogonal
to every row of oriented incident matrix 79 i.e.,
I°¢’ =0,. ]

Next, note that the vector space over Q, the Galois field of
2, generated by the oriented cycle vectors is the cycle space of
G°. A set of cycles is called a cycle basis if it forms a basis for
this vector space. When G is connected, the cycle space has
dimension u=m—n+1. Given a cycle basis, we define an
oriented cycle basis matrix B® € R as a matrix whose rows
are each the transpose of the oriented cycle vector of the
cycles of this cycle basis. This matrix satisfies
rank(B®) = m—n+ 1. We associate a weight 1 to each arc of
G°. The weight of a cycle basis is the sum of the weights of its
cycles. A minimum cycle basis of G° is a cycle basis of
minimum weight.
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Fig. 1.
laid atop. The physical layer network has two source nodes v; and v4 and one

A physical network with two cycle-based cyber-layer network over-

sink node vy3. The physical layer has 19 arcs and 7 cycles. The lower cyber-
layer belongs to a case that cyber-layer nodes are solving minimum network
flow problem (8) using our proposed cycle-flow based distributed ADMM al-
gorithm. The top cyber-layer belongs to a case that cyber-layer nodes are
solving problem (7) using an arc-flow based distributed ADMM algorithm
proposed in [24]. The connection lines in each cyber-layer are based on the
variable dependency between the cyber nodes.

III. DECISION VARIABLE REDUCTION IN OPTIMAL NETWORK
FLOW PROBLEMS

In this section, we show how two well-known network flow
problems can benefit from affine equality elimination method
to reduce their search variables. We study our optimal
network flow problems of interest over a network of n nodes,
where each node is connected to a subset of other nodes with
an arc. For example, in a power network the arc is a
transmission line, while in a transportation network the arc is
the road connecting two conjunction nodes on the road map.
The physical layer topology is described by a connected graph
G physic = ((vphysic,aphysic)a where |(Vphysic| =n and
|Ephysic| = m. The flow can travel in both directions in every
arc, however, we assume a pre-specified positive orientation
for each arc and based on it we describe the flow network in
the physical layer by the oriented version of Gphysic, i.€.,
Qghysic = (fvphysic,aghysic). This physical network transfer
flow(s) from a set of source nodes to a set of sink nodes (see
physical layer in Fig. 1), while respecting the conservation of
the flow constraints, i.e., the total inflow into each node must
be equal to the total outflow from that node. Given x; be the
flow across the arc e¢; € SEhySiC ={ey,ea,...,en}, every arc
e ESShySiC has a pre-specified capacity, i.e., b; < x; <c;, for
some known b;,c; € R. For any external flow f;, we use the
sign convention of f; > 0 for input flow and f; <0 for output
flow, and f; =0 otherwise. Using the oriented incidence
matrix, the conservation of the flow constraint at each node
can be represented as
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j:]I?jxj:fi’ ie{l,...,n}, (@)

which in an aggregated form is represented with
I°x=f, %)
where f=(f],---,f,)T. Note that since rank(7°)=n-1 and
177°=0, every set of valid exogenous input/output flow

should satisfy ». | f; = 0. The following result uses Lemma 1,
to characterize the solutions of (5).

Theorem 1 (Solution set of (5)): Let X! f;=0. Then, the
solution set of the aggregated conservation of flow (5) is giv-
en by

xeR"|x=B°Tz+xP,
where xP is a particular solution of (5).

Proof: The proof relies on showing that the null-space of 7°
is spanned by columns of B°T. By virtue of Lemma 1, we
have 7°B°T = 0. Recall that for a connected oriented graph
rank(Z°) = n— 1. Because rank(B° ) = m —n + 1, null-space of
I° e R™™ is spanned by columns of B° 7. ]

In what follows, we use the result of Theorem 1 to develop
an affine equality elimination method to reduce the decision
variables of two optimal network flow problems. However,
the effectiveness of this approach depends on how efficiently
one can construct matrix B° and particular solution xP,
especially in large scale networks. In regards to B°, there are
several efficient polynomial time algorithms in the literature
(see e.g., [28], [29]); see Section V for the cycle matrix
corresponding to the minimum weight cycle basis of the
network of Fig. 1.

Next, we propose a simple method to construct a particular
solution xP using graph topology. Our method relies on the
superposition property of linear algebra equations, and the fact
that a particular solution for a unit flow f; =1 entering the
network at node v; and leaving it at node v; can simply be
constructed by assuming that f; = 1 flows along a path from
node v; to node v;.

Lemma 2: (Particular solution of (5)). Given an input/output
flow vector f over gphm which satisfies }! f;=0, a
partlcular solution for (5) is x” = 37", 1f xPVi, Here, xPVi e R™,

iefl,. — 1}, is constructed from a path that connects node
vi to node vy such that xf =1 (resp. xf f=-1) if ey,
je{l,...,m}, is on this path and is along (resp. opposing) the

dlrectlon of the path, otherwise Xf =0.

z em—n+1 }, (6)

Proof: For every i € {1,...,n— 1}, consider a virtual scenario
where a unit flow f; = 1 enters the network at node v; and
leaves it at node v, Using a simple flow tracing over the
network we can see that xPVi ¢ R™ as described in the
statement satisfies 7°xP" =", i€ {1,...,n—1} where ] =1,
£ =-1and f;i =0, je{l,...,n}\{i,n}. For a given network
flow vector f because f,= —Zf‘;ll f;,, we can write

= Y P, Therefore, 7° ¥ ;%) = Yl fifi=f. m

A few remarks are in order regarding the particular solution.
First, note that construction of the ‘fundamental' particular
solution set {xP-Vi }7:’11 is independent of the value of the
network flow vector f. Second, for problems with single
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ors and energy storage and loads in a network.

A schematic representation of a network flow problem with generat-

source and single sink nodes, we can label the source node v;
and the sink node v, and compute the elementary solution set
only for node v;. More particularly, if in a given network flow
problem the sink and the source nodes are fixed we only need
to compute the elementary particulars solution set for the
collection of sink and source nodes. Finally, to obtain sparse
elementary solutions, we can use a shortest path between
nodes v; and v,,. A numerical example discussing the particular
solution of the flow conservation equation for the network of
Fig. 1 is given in Section V.

A. Minimum Cost Flow Problem

We consider a minimum cost flow problem over gphysw
with a given set of input and output flows at specific source
and sink points. In this problem, there is a convex cost

¢i: R — R associated with flow across each arc e; eé’phyglc,

and our objective is to find the network minimizer x* € R” in
the following optimization problem

= argmin ¢(x) = » " di(xi), s (7a)
XERM
" o . .
jzljijxj:fi, iefl,....n}; (7b)
bjS)CjSCj; je{l""’m}’ (70)
where f=(f1,---,f,)" is the given input/output flow vector

which satisfies 3, f; = 0. Here, (7b) captures the flow con-
servation at nodes across the network and (7c) describes the
arc capacity constraints. The number of search variables in the
optimization problem (7) is equal to the number of the arcs of
the network, i.e., |8;hysicl = m. Our result below uses Theorem
1 to eliminate the affine equality constrains (7b) and reduce
the search variables to m —n + 1.

Theorem 2: (Eliminating the flow conservation constraint
from (7)). Consider the optimal network flow problem (7)
over a connected physical network G° Then, x* in (1)
satisfies x* = B° Tz* + xP where

physic’

z* =argmin¢(z) = Zgﬁ(z BO],+xp) s.t.

zeRm-n+1
bj<z' [BO]_,-+x.£cj, jefl,...,m}, ®)
and B° is an oriented cycle basis matrix of G° Dhysic and xP is a

particular solution of 7°x =f.
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Proof: The proof follows from invoking the same argument
that is used to relate solutions of the optimization problem (1)
to those of (3), and the result of Theorem 1. [ |

B. Optimal Power Flow With Storage and Generation at Nodes

Next, we consider an optimal power flow problem over a
network described by gghysic with storage, generation and load
at its nodes (see Fig. 2). The objective in this problem is to
minimize the cost of power generation along with energy loss
at the transmission lines over some finite time interval
7 ={1,...,T}. Mathematical modeling of this problem over
various scenarios, including deterministic and stochastic
generators, is considered in the literature [9]-[12].

All of these models, at each time r€ 7, include a flow
conservation equation at each node. As a result for a network
with m arcs, the flow conservation equation introduces m|7 |
decision variables into the optimization problem.

In our study below, without loss of generality, we use the
deterministic form (no renewable generation source) of the
optimal network flow problem studied in [9], which states the
problem as a direct current (DC) power flow problem (see
(9)). Without loss of generality, let at each time ¢t € 7, each
node v; € Vpnysic have a generator that supplies a bounded
0;(t) power, a battery with a bounded storage level s5;(r) and a
charge/discharge variable u;(f), and a known demand
di(#) € R<p. If a node does not have any of the generation,
storage, or load components, the respective variables should
simply be removed from the formulation below. Then, given a
known load profile {d(t)}thl, where d(r) = [{d;(D)}_,], the
optimization problem of interest in [9] is

(X* (), 6™ (1), 0% (1),8* (1), 6* (D)}, =

argming. 3 (S 00+ 3 i),

m
st.forteT, i€ {1,...,71}2]1_:1 I?jxj(t) = 0;(t) — u;i(H) + di(0);

(92)

(9b)

(%)

si(t+1) = A;5i(0) + ui(2); (9d)

Bi(0:(1) — 0k (1)) = x;(1); ke N°(i),ej = (vi,vx) (%)
0, <6< 6i; v, Swi(D<Tj; 5; Ssi(D< ;3 (91)
bj<xjt)y<cj;  jel{l,....m), %92

where the cost function includes generator costs gj,
je{l,...,n}, and transmission cost ¢;, i € {1,...,m}, following
DC power grid model in [35]. Here, N°(i) is the set of the
nodes that are connected to node v; through an arc, and
A; €(0,1] is the storage energy dissipation factor. Moreover,
(8;-8) €ERXR, (u;,0;) ERXR, (éi,&) € RxXR, are known as
lower bound and upper bound values on storage level, battery
charge/discharge, and power generation by the generator, re-
spectively. Finally B;(6;(r) — 6 (¢)) is the DC approximation
for alternating current power flow. Here, 6;(f) is the voltage
phase angle of node (bus) v; € Vpnysic at time ¢ and B € R"™" is
the imaginary part of the admittance matrix under DC as-
sumption (for more details see [9]).
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The following result shows that the number of search
variables related to the flow in the optimization problem (9)
can be reduced from m|7 | to (m—n+ 1)|7| via eliminating the
flow conservation constraint at each t€ 7. An interesting
observation in the result below is that in order to eliminate the
flow conservation equations (9¢), we need to introduce a new
set of affine equality constraint (10b) which ensure balance
between the external input and output flows.

Proposition 1: (Eliminating the flow conservation constraint
from (9)). Consider the optimal power flow problem (9) over
a physical network described by gghysic with a given set of
loads {di-,. Then,
{B° Tz*(¢) +)(1[’(<5*(t),u*(t),d(t)),u*(t),s”‘(t),ﬁV‘(t)}tT=1 is a
minimizer of the optimization problem (9) where

{2*(1),6* (D), u*(1),s* (1), 0* (1)}, =

1 n
argmin TZtT:I(Zj:lgj(éj(t))+ (10a)
ZL@(ZO)T[BOL + Xf’(5(t),u(t),d(t))), s.t.
forte T, iell,...,n}

D @D+ uj()+di(0) =0, (10b)
Si(l‘+ 1) = /lisi(t) + u,'(l‘), (10C)

Bii(6:(1) — (1)) = 2(1)" [B°]; +x7(8(1), u(0), d(0)),
ke N¢(),ej = (vi,v), (10d)
8, <6i(0<6; u, <u(D<T;, s, <si(D<F, (10e)
bj <2() [B];+x"(8(1),u(r),d(1)) < c;, (106)

je{l,---,m}.

Here, B° 1is a cycle basis matrix of Q;hysic and xP(6(2),u(),
n

d(r) = Z((S,-(t) +u;(1) +d; (1)) X"V, where {)‘("*W}l'.'z‘l1 isas de-

scribed il Lemma 1.
Proof: The equality constraint (9¢) in aggregated form is

I°x(f) = 6() +u(r) +d(), teT. (11)
Note that rank of 7° € R™ is n—1and 1] 7° = 0, where 1, is
the vector of n ones. Left multiplying (11) by 1] results in
(10b). Then, for a given 6(¢),u(z),d(r) € R” that satisfy (10b),
following the method discussed in Lemma 1, we can show
that xP(6(7),u(r),d(r)) = Z;’z‘ll (6:;(t) + u;(t) + d;(¢))XP"i is a par-
ticular solution of (11), i.e., 7°xP(8(¢),u(?),d(z)) = 6(¢r) + u(r)+
d(¢). Therefore, for any given load vector d (to simplify the
notation we drop argument ¢), we have

X € x=6+u+d,6 eR",ue =
{xeR"|I°x=6 d,6 eR",uecR"}

-1
(B T2+ X0 (6,u,0) X6, 0, d)= ) (Gt R,
D Gi+ui+d) =0,zeR" SR ueR").

As a result, at each €7, we can ecliminate the affine
equation (9c) and obtain the equivalent optimization problem
(10). As it is described in the statement, the minimizers of
problem (10) and (9) are equal. [ ]
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IV. A CYCLE-BASIS DISTRIBUTED ADMM ALGORITHM FOR
MINIMUM COST NETWORK FLOW PROBLEM

In this section, our objective is to demonstrate the
effectiveness of the cycle basis decision variable reduction
technique in decreasing the communication cost of distributed
solutions of optimal network flow problems. We use the
minimum network flow problem (7) as our demonstration
case. For this problem, we first develop a distributed ADMM
algorithm to solve (8). Then, we compare the communication
cost of this algorithm to that of a distributed ADMM solution
for (7).

To develop our results, we introduce first some notations
related to the oriented cycles of gphym Suppose g =m—n+1.
Let C = {C;}: .—1» be the set of cycles of corresponding to B°
that is used to eliminate the flow conservation equation as
explained in Section III. We represent the set of arcs of any
CieC, ie{l,....u), by E ={e;e&°, je(l,.. m)|BY; # 0}.
For a given cycle basis C, we refer to the cycles that share an
arc as neighbors and represent the set of neighboring cycles of
any cycle C; € C, i € {1,...,u}, by NC = {j e {l,....,u}\(i}| Tk €
{1,...,m}s.t. BY #0and B;?k +0}.

We let 7¢(e;) be the set of indexes of the cycles that arc
ei € Epnysic belongs to them, i.e., 7(e;) = {j € {1,...,u}le; eSC}
We let J(v;) be the set of all the arcs that go through node
Vi € (Vphyslm Lc., j ) = {V] € (Vphysm\{vz} | (vi, Vj) € 8phy51c}

Recall that to eliminate the flow conservation equation we
usedx =B° Tz+ xP, orequivalently x; =27 [B°];+x},i € {1,...,m).

Since, for a given arc ¢; € 8% . , every element of B;?l. is zero

hys

except if cycle C‘;f contains [a)lryc ej, every x;, i€ {l,...
affine function of x? and {zx}kere(e,)- If we think of every z;,
ie{l,...,u}as acycle flow variable (with positive direction in
counterclockwise direction) of the cycle C;, then every arc
flow x;, je{l,...,m} is a function of its corresponding
component of the particular solution and the cycle flows of the
cycles that contain the arc. Given such relationship, the cost
function of every arc is

Bi(xi) = ¢i(2" [B°]i + X7 = iz kere(en)-
Next, we derive equivalent representations of optimization
problem (8) that can be solved in a distributed manner using
the ADMM algorithm of [13] via two different cyber-layer ar-
chitectures.

Cycle-Based Cyber-Layer: to develop our first distributed
solution to solve (8), we assign a cyber-layer node to each
cycle of the cycle basis that we used in our decision variable
reduction stage (see Fig. 1 as an example). We refer to this
architecture as cycle-based cyber-layer. We assume that the
cyber-layer nodes of the neighboring cycles can communicate
with each other in a bi-directional way. This procedure results
in a cyber-layer with u nodes. To obtain cycle basis with
fewest number of arcs in each cycle we can use a minimum
weight cycle basis algorithms (see e.g. [29]).

Now, for every cyber-layer node i€ {l,...,u}, we define
yi =0,V € RWi '“, where y; € R is the local copy of z; and

,m}, 1s an

yi is the local copy of {z}, pc at cyber node i. With this
definition, we assume that ever'y cyber node besides its own

IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL. 6, NO. 5, SEPTEMBER 2019

Fig. 3.

responding cycle-based cyber-layer atop (blue thicker network).

Examples of physical layer networks (black network) with the cor-

corresponding cycle flow has also a copy of cycle flow
variable of each of its neighbors. Next, we cast the cost
function of each cyber node in terms of its decision variable
yi. Let yi(ex) be the component(s) of y; corresponding to
{zj}jere(e,)- For every cyber-layer node, we define its cost
function as

Oi(yi) =

> G l)lwuy,(ek)) (12)

VekE

Then, we can cast the minimum cost network flow problem
(8) in the following equivalent form

x . M
y _argmmzizle,(y,), S.t.

V1Y
Set of constraints at each cyber agent i € {1,...,u}:
vile) = [V} jereen]s
Ve, €&, 13
{bk < Vil B erepl +xp < o 456 (1)

In this formulation, every cycle-based cyber node has a copy
of the cycle flows that go through its arcs, i.e, y;. The equality
constraint at each node ensures that local copies of the cycle
flows of the neighboring agents are the same, while the in-
equality constraint ensures that the flow through the arcs of
each cycle respect the capacity bounds. The new formulation
(13) fits the standard framework developed for distributed
ADMM solutions and can be solved for example using the al-
gorithm of [13]. The details are omitted for brevity. Once

every cyber node i€ ({l,...,u} computes y, then it can use

= yl?* (er)” [{B;?k}jEIc(é’k)] + XE

flows through its arcs ¢ € Sic. In this distributed implementa-
tion, we assume that elementary particular solution set
{xPVi }?:‘ll are computed off-line and are available at cyber
nodes. At operation times, we only need to broadcast the in-
put/output flow vector f to the cyber-layer agents. For large
cycles, one can split the cycle among several cyber nodes. A
numerical example demonstrating our proposed distributed
ADMM algorithm over a cycle-based cyber-layer can be
found in authors' preliminary work [33].

One can solve also the original minimum cost network flow
problem (7) in a distributed manner by a cycle-based cyber-

to obtain the optimal cycle
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layer using, for example, the distributed ADMM algorithm of
[24]. To do so, every cyber-layer node needs a local copy of
the arc flows across all the nodes in its corresponding cycle.
The local copies are required to create a local copy of the flow
conservation equation of the nodes. Then, to coordinate these
local copies, the cyber-layer agents that share a node are
required to communicate with each other. Since there are
more cycles that are connected to each other through the
nodes than those connected by arcs, as shown in Fig. 1, this
distributed solution requires more connections in the cyber-
layer than the distributed solution for (8). Moreover, because
there are more arc flows than cycle flows, the message sizes
exchanged among neighboring cyber agents solving (7) is
larger. Therefore, the distributed solution for (7) will be less
favorable from network congestion and communication
energy consumption perspective.

Remark I: (Example networks). In a square mesh physical
layer network with n = N? nodes, the total number of arcs is
m=2(N*~N), and the total number of cycles is
c=N?>-2N+1, see the top plots in Fig.3. In the mesh
networks of Fig. 3, cyber-layer constructed based on the
cycle-basis partitioning of the physical layer is shown via the
thick blue network. For a cyber-layer which solves the
alternative optimal network flow problem (8) via an ADMM
distributed solution, a cyber agent only needs to communicate
with neighboring agents which have a common arc. The
number of communication links in cyber-layer is m; =
2(N-1>=(N—-1)=2(N>-3N+2). For a cyber-layer
which solves the original optimal network flow problem (7)
via an ADMM distributed solution, any cyber agent needs to
communicate with neighboring agents which has a common
node in the graph. Therefore, the number of communication
links in cyber-layer is my=((N—1)>=2(N — 1)+ 1)2+2(N*—
3N +2) =4N? - 14N +12. Consequently, we can obtain that

. ny . . . .
lim,_,.o — =2. An interesting case involving our proposed

cycle-bagield distributed ADMM solution of (13) is when the
physical layer network has articulation points (e.g., node 27 in
IEEE bus system 30 in Fig. 4 and node 9 of the physical layer
in Fig. 1 are articulated points). The physical layer graph with
an articulation point is consisted of subgraphs that are
connected to each other through simple nodes with no
common arcs between them. Therefore, when our proposed
aforementioned ADMM algorithm is implemented, there is no
variable dependency between the cyber nodes of these
subgraphs. This means that the original fully coupled
optimization problem is now divided into smaller optimization
problems that each can be solved independently. For example
in the network of Fig. 1, cyber-layer node 1 can obtain the
optimal solution across its arcs in one ADMM iteration
without a need to coordinate with other cyber agents. An
extreme example case is also shown in the bottom plots of
Fig. 3. In this example there is no common arc among cycles,
but they all have one common node. The number of
communication links for cycle-based cyber-layer graph is
zero. In this case, a cycle-based ADMM algorithm finds the
optimum solution in one step, without any communication.
However, in arc-based network flow, the cyber-layer is a

1257

Fig. 4.
12 cycles.

The graph related to IEEE bus system 30 with 41 arcs, 30 nodes and

complete graph as all of the agents are connected to each
other.

Node-Based Cyber-Layer: We can solve problem (8) in a
distributed manner with the conventional node-based cyber-
layer, as well. In a node-based cyber-layer architecture, a
cyber agent is assigned to each node of the physical layer to
compute the flow across all the incident arcs of the
corresponding physical layer node. For example, in traffic
networks, a cyber agent is assigned to each intersection, which
is a node in the physical layer. In this case, the topology of the
cyber-layer is exactly the same as the physical layer. To solve
problem (8) using a distributed ADMM algorithm over such
cyber-layer, we assume that each cyber agent has a local
variable y; consisted of local copies of the cycle flows that
goes across its arcs. We also split the flow cost across each arc
between each end nodes. Then, the total local cost at each
cyber node is

GO =3 Y WD, i Vose.  (14)
VereJ(vi)

Then, we can cast the minimum cost network flow problem

(8) in the following equivalent form

* _ 1 n . .
y —E;rlg_r}’lyl:lzizla(yl), s.t.

Set of constraints at each cyber agenti € {1,...,n}:

Vere T8y,  (15)

b < yi(er) T [{Bf Yere(ep] + X} <ck

Given this equivalent representation, similar to the method
described for the cycle-based cyber-layer, we can now solve
the optimization problem (8) using a distributed ADMM
algorithm. In a cycle flow representation, it is more likely to
have fewer cycles that go through a node than the arcs that are
incident at that node. Therefore, in a distributed ADMM
solution, the size of the broadcast messages of a cyber agent
solving (8) is more likely to be less than the size of the
broadcast messages when we solve (7).

{Yi(Ek) =yj(er), ex=(vi,v;) € Epnysics
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V. DEMONSTRATIVE EXAMPLES

We demonstrate the use of distributed cycle-flow-based
ADMM algorithm for a minimum cost optimal flow over the
network shown in Fig. 1, and compare it with the arc-flow-
based ADMM distributed algorithm [24]. The arrows in the
physical layer show the positive flow orientation assigned to
the arcs. The cyber-layer is generated based in the minimum
weight cycle basis partitioning of the physical layer as shown
in the bolder network with blue nodes in Fig. 1. In this
problem, we set capacity bounds b;=-c;, and
c; €[1,20], ie{l,...,19}. We assume that the cost of the
network flow at each arc is given as ¢;(x;) = %aixiz+bix,-,
where x; =27 [B°]; +x! is the arc flow and z = (z1,--+,27)" are
the cycle flows. The parameters of the cost functions are
chosen randomly from a; €[1,20],i€{l,...,19} and
b; €[1,20], i € {1,...,19}. In the physical layer network in Fig.

(-1 1. 0 -1 0 0 0 0 O

0O -1 1.0 0 O -1 1 1

0o o0 o0 1 -1 0 1 0 O

B°=| 0 0 0 O O O O 0 -1
o 0 o0 o 1 -1 0 0 O

o 0 0 0 O O0O 0 o0 O

0O 0 0 o O o0 o0 o0 O

The central optimum solution of our example is x* = {9.64,
2.35, -2, 0.03, 3.70, 5.90, 2.39, 13, 3, 10, 3.14, 5.94, 9.05,
5.94, 10, 14, 11, 14, 11} with objective function value of
f*=93168 (also, z*={0.35,-2,0.39,-5,4.1,0.95,11}).
Fig. 5 shows the absolute percentage error, defined as
€r = (f*~ f*)/f* at iteration k of the cycle-flow-based and
arc-flow-based distributed ADMM algorithms. The result
shows that the convergence of the cycle-flow-based ADMM is
faster than arc-flow-based ADMM when the problem is
solved via the cycle-based cyber-layers shown in Fig. 1 for
each of these approaches. To compare the number of
communications between cycle-flow-based and arc-flow-
based ADMM algorithms, we set a threshold of €; = 0.01 for
the absolute percentage error. Distributed cycle-flow-based
ADMM converges after 5 itereation to e =0.01 absolute
percentage error while the distributed arc-flow-based ADMM
converges after 13 iterations. Each iteration of the ADMM
algorithm needs to send primal variables twice for every
communication link (i, j) in cyber network from node i to
node j and vice versa. The number of communication links in
cycle-flow-based and arc-flow-based cyber-layer are 7 and 14
respectively. As a result, the number of communications for
cycle-flow-based ADMM is 35 and for arc-flow-based
ADMM is 112. In Fig. 6, we compare the number of
communications between cycle-flow-based and arc-flow-
based distributed ADMM for the cyber nodes shown in Fig. 1.
The number of communications is obtained by adding up the
communication incidences at each iteration, until we have
IIXf.c —-x*|| < €=0.1, where x* is the optimum solution of the
central problem. Fig. 6 shows that the cycle-flow based
algorithm requires fewer communications.
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1, there are two source nodes vy and v4 and one sink node vy3.
For our selected capacity bounds, using Edmonds-Krap
algorithm [36] we obtain the maximum input flow f; + f4 to be
30. In our simulation, then we set f; = 10 and f; = 15. The
output follows are fj3 = —25. For the network of Fig. 1, there
are 7 cycles and 19 edges in the network and the orientated
cycle basis matrix is, (recall that we have assumed the positive
cycle flow direction to be counterclockwise). We follow
Lemma III.1 to generate a particular solution for given input
output flow vector f=(f,0,0,f4,0,0,0,0,0,0,0,0,f13)7,
where f}; = —(f] + f,) (recall that input flows have positive and
output flows have negative values). We compute the
elementary particular solutions for nodes v; and v4 using

shortest path from them to node V13:
xP-V1 =(1,01X4,1,01X(,,I,O,O,I,O,I,O)T 5
P4 = (01%7,1,0,1,01%4,1,1,0,1,0)7. Then
XP = f] xPV1 4 f4 xP-v4,

0O 0 0 0 0O 0 O O 0 0]

o 0 0 o 0 0O 0o O O O

o 0 0 o 0 0 0o O O0 O

1 0 -1 0 -1 1 0 0 0 O

o 1 0 O O 0O O O 0 O

o -1 1 -1 1.0 0 0 0 O

o 0o 0 0o o0 0 -1 1 -1 1]

VI. CONCLUSION

We have considered optimal network flow problems and
investigated how the decision variables size of these problems
can be reduced by eliminating the affine flow conservation
equations. Our study was based on exploiting cycle basis
concept from graph theory to eliminate the flow conservation
equation in an efficient manner. In particular, we have shown
that the components of our variable reduction method can be
obtained in a systematic manner using graph theoretic
approaches. Moreover, we have shown that the new
formulation of the optimal network flow problems with
reduced variables has a sparse structure and can be solved via
distributed optimization solvers. In this regard, we have
demonstrated the use of a distributed ADMM solver for the

cycle-flow-based minimum cost flow formulation, and
m 10°4 == Arc flow based
s mm Cycle flow based
= 107
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o
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Fig. 5. ¢ = (f¥ = f*)/f* versus iteration number k for the arc-flow-based
and cycle-flow-based distributed ADMM algorithms over the cyber-layer ar-

chitectures shown in Fig. 1.
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Fig. 6.
layer nodes when they solve the optimal network flow problem using a dis-

Comparison of the number of communications between the cyber-

tributed cycle-flow-based and arc-flow-based ADMM algorithms until we
have IIX;‘—xi*Il <e=0.1,i€{l,...,19}. As seen, in the arc-flow-based al-

gorithms the cyber nodes communicate more.

showed that this distributed operation leads to a reduced
communication cost among the cyber-layer nodes.
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