
The Journal of Systems and Software 162 (2020) 110497 

Contents lists available at ScienceDirect 

The Journal of Systems and Software 

journal homepage: www.elsevier.com/locate/jss 

Providentia: Using search-based heuristics to optimize satisficement 

and competing concerns between functional and non-functional 

objectives in self-adaptive systems 

Kate M. Bowers a , ∗, Erik M. Fredericks a , Reihaneh H. Hariri a , Betty H. C. Cheng 

b 

a Oakland University, Rochester, MI, USA 
b Michigan State University, East Lansing, MI, USA 

a r t i c l e i n f o 

Article history: 

Received 1 May 2019 

Revised 30 November 2019 

Accepted 13 December 2019 

Available online 18 December 2019 

Keywords: 

Search-based software engineering 

Non-functional requirements 

Self-adaptive systems 

Evolutionary computation 

Optimization 

a b s t r a c t 

In general, a system may be subject to a combination of functional requirements (FRs) that dictate be- 

havior and non-functional requirements (NFRs) that characterize how FRs are to be satisfied. NFRs also 

introduce cross-cutting concerns that may be difficult to predict, where the degree of satisfaction (i.e., 

satisficement) of one NFR may be impacted by the satisficement of one or more FRs/NFRs. In particular, 

self-adaptive systems (SASs) can modify system configurations or behaviors at run time to continuously 

satisfy FRs and NFRs. This paper presents Providentia , a search-based technique to optimize the sat- 

isficement of NFRs in an SAS experiencing various sources of uncertainty. Providentia explores differ- 

ent combinations of weighted FRs to maximize NFR/FR satisficement. Experimental results suggest that 

Providentia -optimized goal models significantly improve the satisficement of an SAS when compared 

with manually- and randomly-generated weights and subgoals. Additionally, we apply a hyper-heuristic 

( Providentia-SAW ) to balance the contribution of NFRs, FRs, and the number of adaptations and fur- 

ther improve the Providentia technique. We apply Providentia and Providentia-SAW to two 

case studies in different application domains involving a remote data mirroring network and a robotic 

vacuum controller, respectively. 

© 2019 Elsevier Inc. All rights reserved. 
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. Introduction 

A self-adaptive system (SAS) provides adaptation strategies for

erforming reconfigurations at run time to address unexpected is-

ues that arise as a result of uncertainty (e.g., adverse environmen-

al conditions or unanticipated issues in the system itself) ( Kephart

nd Chess, 2003; McKinley et al., 2004 ). For example, a smart

acuum can be modeled as an SAS, where a reconfiguration is

odeled as updating the cleaning path or navigation strategy as

he vacuum encounters an obstacle, such as a chair. Each recon-

guration performed by the system can incur a cost (e.g., com-

utation time, memory resources, etc.) associated with initializ-

ng and performing the adaptation. The SAS will use these adap-

ation strategies to select an optimal configuration that enables

equirements to be continuously satisficed (i.e., degree of satis-

action) ( Chung et al., 20 0 0 ). Generally, an SAS is governed by

unctional requirements (FRs) that focus on a specific function or

eature of the system and can be mathematically quantified to
∗ Corresponding author. 
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onitor satisficement ( van Lamsweerde, 2009 ). FRs in a smart vac-

um may include maintaining battery power above 5% or avoiding

bstacles detected by a sensor. Introducing non-functional require-

ents (NFRs) makes the adaptation selection process more difficult

s NFRs specify properties and/or characteristics about system op-

rations, tend to be qualitative, and may not be easily mathemat-

cally quantifiable (e.g., specifying resiliency and efficiency) ( van

amsweerde, 2009; Yrjönen and Merilinna, 2009 ). An example NFR

or a smart vacuum SAS may be to optimize performance by clean-

ng as much dirt as quickly as possible, in contrast to an FR that

andates the vacuum to clean at least 50% of the room. Quan-

ifying NFRs often relies on domain knowledge and may not be

ptimal given the changing environmental conditions that an SAS

ust address ( Yrjönen and Merilinna, 2009 ). Therefore, this paper

escribes Providentia and Providentia-SAW , search-based

echniques performed at design time that automatically determine

n optimal set of FRs to support each NFR in an SAS. 1 
1 A preliminary version of Providentia was presented at SSBSE 

018 ( Bowers et al., 2018 ). 

https://doi.org/10.1016/j.jss.2019.110497
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jss
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Current techniques to satisfy NFRs in SASs do not offer concrete

numerical values to be evaluated at run time. In the KAOS goal

modeling framework, NFRs are incorporated as behavioral or soft

goals ( van Lamsweerde, 2009 ). A KAOS soft goal describes prefer-

ences of system behaviors that tend to be qualitative in nature,

thereby making the determination of an optimal reconfiguration

strategy more challenging ( van Lamsweerde, 2009 ). In contrast,

KAOS FRs can be quantified via utility functions and provide a

concrete numerical basis for comparisons between reconfiguration

strategies ( Chung et al., 20 0 0 ). NFRs in the iStar framework are

also modeled as soft goals and use the ++ / + or − − / − operators

to respectively indicate that an NFR makes/helps or breaks/hurts

an FR ( Yu, 1997 ). The iStar operators are also qualitative and can

be challenging to use in an SAS, as qualitative descriptions are not

necessarily as easy to use when making an adaptation compared

to quantitative descriptions. Similar to Providentia , the Ana-

lytic Hierarchy Process (AHP) decomposes NFRs into one or more

weighted FRs using a prioritization schema ( Salehie and Tahvil-

dari, 2012 ). However, prioritizations in an SAS may change dras-

tically or even be inapplicable at a given instance in time (e.g.,

most or all requirements have equal priority) as the system expe-

riences various forms of uncertainty due to changing environmen-

tal and system conditions. In a smart vacuum SAS, environmental

uncertainty can be described as the positioning of obstacles in a

room, stairs or other changes in elevation, the amount of dirt to

be cleaned, and the number of water puddles to avoid. Uncertainty

with regard to system conditions relates to sensor failures, damage

that occurs in an obstacle collision, and motor degradation in the

wheels. Each of these conditions are subject to change and the vac-

uum must be able to satisfy its requirements for each combination

of uncertainties. 

This paper describes Providentia ( Bowers et al., 2018 ) and

Providentia-SAW (an extension), two techniques that address

the challenges of quantifying and analyzing NFRs at run time in

SASs. We introduce Providentia within the context of SASs to min-

imize the number of reconfigurations performed and achieve op-

timal weighted combinations that maximize requirement satis-

ficement. Non-SASs can also apply Providentia to obtain optimal

weighted combinations for each NFR given that the utility func-

tions are adjusted accordingly. However, the effectiveness of Prov-

identia is limited in non-SASs as the system configurations are

static and cannot be reconfigured at run time. Therefore, we limit

our scope to SASs. Providentia is a design-time technique that

takes into account uncertainty from the environment and the sys-

tem itself and optimizes FR/NFR relationships, where each rela-

tionship contributes to quantifying NFR objectives at run time.

Each FR is associated with a utility function that specifies a math-

ematical expression of requirement satisficement ( Chung et al.,

20 0 0 ). Each NFR comprises a combination of one or more FRs us-

ing a linear-weighted sum to indicate the relative impact that an

FR has in contributing to the satisficement of the NFR’s objec-

tives ( Salehie and Tahvildari, 2012 ). For example, the NFR to maxi-

mize performance uses four FRs (i.e., Achieve 50% clean, Achieve

cleaning efficiency, Achieve cleaning effectiveness, and Maintain

safety) to represent performance objectives that might otherwise

be more difficult to quantify. Providentia explores different

combinations of weights at design time to find an optimal linear-

weighted expression that makes the system more robust to vari-

ous forms of uncertainty at run time. Providentia-SAW , in con-

trast, is a hyper-heuristic ( Burke et al., 2003 ) approach to adjust

the weights of the linear-weighted sum to respond to changing en-

vironmental conditions. 

Providentia is a search-based evolutionary technique that

assesses the system’s run-time behavior via an executable sys-

tem specification that is subjected to randomly-generated sources

of uncertainty. The search process identifies optimal goal model
onfigurations, namely the set of FRs and their corresponding

eights for a given NFR, to maximize FR/NFR satisficement.

rovidentia uses a genetic algorithm ( Holland, 1992 ) as a

earch heuristic, where the search space is the weight of each FR

et for a given NFR, and the output is a set of optimal weight

ssignments that results in the highest satisficement of the NFR

hen faced with uncertainty. The optimal weight assignments de-

ermined by Providentia are then applied to the SAS at run

ime. By evaluating traditionally soft goals with FR metrics dur-

ng execution, the SAS is able to perform online reconfigurations

n response to both NFR and FR objectives, where traditionally only

R objectives are mainly considered. Furthermore, the SAS can per-

orm better at run time by optimizing the weighted contributions

f FRs to each NFR, as a requirements engineer may not be able to

oresee the impact of random sources of uncertainty when deter-

ining the weight assignments at design time. 

Since it may be difficult to achieve an optimal weighting

cheme between NFRs, FRs, and the number of adaptations, this

aper extends Providentia Bowers et al. (2018) by introducing

 stepwise adaptation of weights ( SAW ) hyper-heuristic ( Craenen

nd Eiben, 2001; Eiben and van der Hauw, 1997; 1998 ) to optimize

he overall fitness value of the SAS for a given set of environmental

onditions. Rather than manually selecting weights for the over-

ll fitness function of the system, either according to preference

r empirical evidence, Providentia-SAW more accurately deter-

ines an optimal set of weights that better guide Providentia ’s
earch procedure. As Providentia determines the optimal set of

Rs and the weighting scheme for each NFR, Providentia-SAW
uns in tandem to determine the weights assigned to balance NFR

tness values (i.e., satisficement), FR fitness values, and the num-

er of adaptations to yield an optimal overall fitness value. Note,

he term weights for Providentia apply to the NFR utility func-

ions, whereas Providentia-SAW weights apply to the fitness

ub-functions that comprise the Providentia genetic algorithm.

We illustrate the effectiveness and domain independence of

rovidentia and Providentia-SAW with two case stud-

es: a remote data mirroring (RDM) network and an intelligent

obotic vacuum. The RDM is an industry-provided application that

eplicates and disseminates messages to each RDM within the

etwork ( Ji et al., 2003; Keeton et al., 2004 ). The RDM per-

orms dynamic reconfigurations in response to uncertainty due

o dropped or delayed messages, sensor noise, and unexpected

erver and network link failures. Results from our preliminary

ork ( Bowers et al., 2018 ) have shown that Providentia -
ptimized goal models result in significantly higher fitness values

ompared to goal models with manually- and randomly-assigned

R weights. Furthermore, results also indicated that the number

f FR violations was significantly reduced when Providentia
as used. The second case study of a smart vacuum system (SVS)

emonstrates the application of Providentia in a different do-

ain. The SVS is an autonomous robotic vacuum modeled as an

AS and tasked with cleaning a given environment, where adapta-

ions are performed at run time to switch between different con-

guration modes ( Bencomo et al., 2010; Bencomo and Belaggoun,

013 ). Experimental results suggest that the SVS goal model opti-

ized with Providentia performs better than SVS goal models

ith manually- and randomly-selected FR weights. Finally, results

rom both the RDM and SVS case studies indicate that the overall

tness can be further improved with Providentia-SAW . 
Extensions. This paper extends an earlier description of the

rovidentia technique along several dimensions. First, we in-

roduce Providentia-SAW that makes use of a second level of

bstraction to explore the trade-offs between non-functional, func-

ional, and adaptive requirements. Then we apply Providentia
o a second case study, an autonomous robotic vacuum (SVS), to

urther demonstrate the technique’s effectiveness in a different
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2 See http://www.irobot.com . 
pplication domain. Providentia-SAW is also applied to this

econd case study. Finally, this paper includes additional details

bout the overall techniques and expands the related work discus-

ion. 

The remainder of this paper is organized as follows.

ection 2 provides relevant background information on SASs,

he RDM and SVS, goal modeling, NFRs, utility functions, and

enetic algorithms. Section 3 presents the Providentia ap-

roach and introduces the integration with Providentia-
AW . Section 4 provides the experimental results of applying

rovidentia and Providentia-SAW to the RDM and SVS ap-

lications, respectively. Following, Section 5 presents a discussion

f the results and threats to validity. Section 6 overviews the work

elated to Providentia and Providentia-SAW , and finally,

ection 7 summarizes the findings and overviews future work. 

. Background 

This section provides relevant background information on SASs,

he case studies, NFRs, utility functions, and genetic algorithms. 

.1. Self-adaptive systems 

The explosion of the number of possible combinations of sys-

em and environmental parameters often inhibits an engineer’s

bility to fully enumerate each combination ( Cheng et al., 2009a;

hittle et al., 2009 ). System requirements and objectives may also

hange following deployment, potentially requiring numerous soft-

are updates or patches. An SAS provides an approach for enabling

ontinuous requirements satisfaction by dynamically adapting the

ystem’s configuration and/or behavior at run time ( McKinley

t al., 2004; Oreizy et al., 1999; Neema et al., 1999 ). As such,

he RDM and SVS applications has been modeled as SASs to

ddress uncertainty in the environment and the system itself

 Neema et al., 1999 ). 

Uncertainty. Given the exponential number of system and en-

ironmental combinations ( Cheng et al., 2009a; Whittle et al.,

009 ), coupled with the possibility that software requirements

nd/or models will change following deployment (potentially re-

uiring new software or bug fixes), it is difficult to accurately pre-

ict or model all situations an SAS may face throughout its life-

ime. An SAS provides an approach for continuous requirements

atisfaction by enabling self-reconfiguration at run time to miti-

ate such issues ( McKinley et al., 2004; Oreizy et al., 1999 ). SASs

re generally guided by a run-time feedback loop such as MAPE-K,

omprising monitoring, analyzing, planning , and executing compo-

ents, linked together by common knowledge of the system and its

lements ( Kephart and Chess, 2003 ). This feedback loop enables an

AS to change its configuration and/or its behavior, at run time, to

etter mitigate current operating conditions or manifested uncer-

ainties. 

While many forms of uncertainty exist ( Li et al., 2013 ), we fo-

us on known unknowns and emergent behaviors/feature interactions .

nown unknowns tend to deal with knowledge of the system’s op-

rating conditions, where data may change unexpectedly, be in-

ccurate, or be in an unanticipated state ( Chua Chow and Sarin,

002; Esfahani et al., 2011 ). Emergent behaviors/feature interac-

ions occur when multiple subsystems interact, introducing unex-

ected or possibly dangerous new behaviors that were not explic-

tly considered at design time ( Keck and Kuehn, 1998 ). 

Requirements monitoring. While requirements monitoring is not

pecific to the SAS domain, monitoring does feature prominently

n the MAPE-K loop for providing feedback to the SAS adapta-

ion engine ( Kephart and Chess, 2003 ). Specifically, an SAS that

onitors requirements can self-reconfigure in the event that a re-

uirement is violated or unsatisfied. To quantify requirements at
un time, utility functions are often used to provide a mathemat-

cal quantification ( Ramirez and Cheng, 2011 ) that indicates the

egree to which requirements are satisfied. The Rainbow frame-

ork uses utility functions at an architectural level ( Garlan et al.,

004 ) and was our initial inspiration for leveraging utility func-

ions, however in this work, we apply them at the requirements

evel ( Ramirez and Cheng, 2011 ). 

.2. Case studies 

This section provides an overview of the two case studies used

o demonstrate the Providentia technique: the RDM and the

VS. 

.2.1. Remote data mirroring 

RDM is a technique to protect data by minimizing data

oss and maximizing the availability of data Ji et al. (2003) ;

eeton et al. (2004) . The RDM technique disseminates data repli-

ates to other servers (i.e., data mirrors) in physically remote loca-

ions. Each network link between data mirrors is associated with

n operational cost. Furthermore, each link has a throughput, la-

ency, and loss rate to collectively measure the performance and

eliability of the RDM as a whole. The RDM must optimize the

umber of links to send messages between data mirrors efficiently

ithout exceeding the budget. 

Requirements may become unsatisfied in the face of various

orms of uncertainty, such as unexpectedly dropped or delayed

essages, random network link or data mirror failures, and noise

n the network links or data mirror sensors. An RDM can be mod-

led as an SAS ( Ramirez et al., 2009 ), where reconfigurations can

hange the network topology (e.g., a minimum spanning tree or

 redundant topology) as well as the manner of data propagation

mong nodes to ensure that requirements are continuously satis-

ed. The reconfiguration strategies involve modifying the status of

ata mirrors impacted by uncertainty. The status of a data mirror

an be active (i.e., can send and receive messages), passive (i.e.,

annot send messages but can receive messages), or quiescent (i.e.,

annot send or receive messages). 

.2.2. Smart vacuum system 

Smart vacuums such as iRobot’s Roomba 2 are available in the

onsumer market to clean dirt by navigating across a room and

round obstacles autonomously without guidance from the user.

he SVS is an open-source simulation of a Roomba. The SVS oper-

tes by using input from sensors (e.g., bumper sensors and motor

ensors) to plan a path in a given area and follow the path to clean

ts local environment. For the purposes of our simulation, the SVS

ontains bumper sensors to detect when the robot collides with

n item (e.g., a wall or leg of a chair), cliff sensors to prevent the

obot from damaging itself by falling down a flight of stairs, and

otor sensors to provide feedback on the movement of the robot

e.g., velocities of the wheels and power modes for the suction). A

ontroller uses the sensor data to plan an optimal cleaning path

nd minimize battery consumption. 

The SVS can be modeled as an SAS to reconfigure multiple

odes during run time when faced with various forms of uncer-

ainty (e.g., noisy sensor data, amount and location of dirt within

 room, obstacle encounters, etc.) ( Bencomo et al., 2010; Bencomo

nd Belaggoun, 2013; Neema et al., 1999 ). For example, the SVS

an change the pathfinding algorithm, power modes with regard

o movement and suction, and obstacle avoidance measures at run

ime to maintain requirements satisfaction. 

http://www.irobot.com
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Fig. 1. RDM goal model. 
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2.3. Goal-oriented requirements modeling 

Goal-oriented requirements modeling (GORE) is an approach

that uses goals to model the behaviors of the system ( van Lam-

sweerde, 2009 ). A goal is a desired system behavior achieved

through interactions with agents, where an agent is a system com-

ponent that performs specific actions according to goals. A require-

ment is a goal that interfaces with a single agent. An expectation is

a requirement where the agent is in the environment, compared to

agents within the system itself. Requirements and goals can be fur-

ther classified as functional and non-functional. FRs specify what

services are to be provided while NFRs specify how the FRs are to

be satisfied. 

GORE uses a directed acyclic graph, where each node represents

a goal or requirement and each edge represents a goal/requirement

refinement ( van Lamsweerde, 2009 ). KAOS and iStar extend GORE

by adding additional goal refinements ( van Lamsweerde, 2009; Yu,

1997; Dardenne et al., 1993 ). Fig. 1 presents a KAOS goal model of

the RDM application, and Fig. 2 presents a KAOS goal model of the

SVS application. 3 KAOS uses AND- and OR-refinements, where an
3 This work does not use the KAOS formal refinement infrastructure. 

m  

t  

i  
ND-refined goal is satisfied only when all of its subgoals are satis-

ed (e.g., Goal (A) in Fig. 1 is satisfied only if both Goals (B) and (C)

re also satisfied) and an OR-refined goal is satisfied when at least

ne of its subgoals is satisfied (e.g., Goal (G) in Fig. 1 is satisfied if

ither Requirements (Q) or (R) are satisfied). Furthermore, KAOS

Rs can be classified as invariant or non-invariant. An invariant

oal, denoted by the keywords “Maintain” or “Avoid,” must always

e satisfied. If any invariant goal is unsatisfied then the system

ails. For example, the safety-related goals in Fig. 2 are denoted as

nvariant goals to emphasize the safety of the SVS. A non-invariant

oal, denoted by the keyword “Achieve,” may be temporarily un-

atisfied due to uncertainty. For example, the path planning goals

nd requirements of the SVS in Fig. 2 (e.g., Goals (C), (H), (I), (O),

P), and (Q)) are non-invariant goals to demonstrate that the SVS

ay temporarily have a less-than-optimal path to clean a room. 

.4. Non-functional requirements 

NFRs specify quality constraints on a system, such as perfor-

ance or reliability ( Chung et al., 2012 ), and are often difficult

o quantify given their subjective nature. Furthermore, NFRs may

ntroduce cross-cutting concerns given the broad impact on the
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Fig. 2. SVS goal model. 
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verall system ( Chung et al., 2012 ). For example, the RDM may

ave one NFR to maximize performance that keeps as many data

irrors in an active state as long as possible. However, there may

e a second NFR to minimize power consumption that puts data

irrors in a quiescent state, directly contradicting the performance

FR. Such cross-cutting concerns introduce further complexity in

easuring the satisfaction of NFRs. Although other approaches to

uantify requirement satisficement have been introduced ( Ramirez

nd Cheng, 2011; Garlan et al., 2004 ), such models often require
etailed knowledge of both the system and its environment that

ay not always be possible with the wide impact of NFRs. 

Therefore, Providentia uses FRs already defined as part of

he system to quantify NFR objectives. Fig. 3 shows a sample NFR

or the RDM application to Minimize [Power] , where many

actors may impact power consumption (e.g., Goals (A), (E), (I), (V),

nd (W) from Fig. 1 ). For the purposes of this paper, Fig. 3 is shown

eparately from Fig. 1 but is intended to be an extension of the FR

oal model rather than a separate NFR goal model. We use NFRs
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Fig. 3. RDM NFR7: Minimize [Power]. 
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to represent all non-functional goals and requirements and FRs to

represent all functional goals and requirements. The cloud node

in Fig. 3 represents a single NFR. Each parallelogram node repre-

sents a goal or requirement/expectation that a requirements en-

gineer designates to have an impact in the satisficement of NFR7.

Each edge depicts the relative contribution, or weighted sum value,

of each FR to NFR7. Note that the sum of the weights is 1.0. 

Similarly, Fig. 4 shows a sample NFR for the SVS application to

Minimize [Cost] , where cost refers to avoiding damage to ob-

stacles (e.g., damaging the legs of a dining room chair) and avoid-

ing damage to the smart vacuum itself (e.g., hitting an obstacle

that damages a sensor or falling off a ledge). 

2.5. Utility functions 

A utility function can be used to calculate the satisficement

of FRs in SASs ( Ramirez and Cheng, 2011; deGrandis and Valetto,

20 09; Walsh et al., 20 04 ). The utility function for a specific, single

requirement is evaluated and returns a utility value. A utility value

of 1.0 indicates the highest degree of satisfaction and a utility value

of 0.0 indicates the lowest degree of satisfaction. Utility values be-

tween 0.0 and 1.0 indicate the degree of satisficement for a given

requirement ( Chung et al., 20 0 0 ). Eq. (1) shows a utility function

associated with Goal (V) from the RDM application in Fig. 1 , where

n indicates the number of passive data mirrors. 

util(goal V ) = 

{ 

1 . 0 if n == 0 

f (x ) if 0 < n < 20% of total nodes 
0 . 0 if n ≥ 20% of total nodes 

(1)

Goal (V) is considered to be completely satisfied if no data mir-

rors are in a passive state (i.e., can receive but not send messages)

and evaluates to a utility value of 1.0. Goal (V) completely fails if
Fig. 4. SVS NFR1: M
ore than 20% of all data mirrors are in a passive state. Other-

ise, if the number of passive data mirrors is greater than 0% but

ess than 20%, then the f(x) value is linearly determined. For exam-

le, if 10% of the data mirrors are in a passive state, then Goal (V)

ill have a utility value of 0.5. 

.6. Genetic algorithms 

A genetic algorithm is a heuristic used to search a space of so-

utions to find an optimal result ( Holland, 1992 ). The evolutionary

rocess of a genetic algorithm generates a population of candidate

olutions, performs crossover and mutation operations, and evalu-

tes the fitness of each solution within the population. The evolu-

ionary process repeats until the specific number of generations, or

terations, is reached. We next describe each of these activities. 

.6.1. Population generation 

A genetic algorithm may start with a randomly-generated set,

r population, of candidate solutions in the first generation. The

opulation of individuals represents the number of candidate so-

utions to be evaluated through the evolutionary process. For each

eneration, evolutionary operators such as crossover, mutation, and

election are applied to each individual to generate new members

f the population and evaluate fitness. Ideally, the most fit individ-

als are preserved during the evolutionary process, with the best

erforming individual being considered an optimal result. 

.6.2. Crossover and mutation 

Crossover and mutation are evolutionary operators that gener-

te new individuals (i.e., children) during the evolutionary process.

hile there are many different types of crossover and mutation,

e use two-point crossover and single-point mutation. Two-point
inimize [Cost]. 
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4 For the purposes of this paper, the term “requirements engineer” refers to the 

authors who performed the manual choices for the NFRs. 
rossover selects two individuals, either randomly or as a result

f tournament selection ( Holland, 1992 ), and then selects two ran-

om indices to denote cut points. Two new children are then gen-

rated by combining the genetic material from both parents, where

enomes are swapped between the two cut points. Single-point

utation selects a single index from a candidate parent and then

andomly mutates the gene at that location, creating a new child.

deally, crossover preserves the best characteristics of its parents,

nd mutation introduces diversity to ensure that the search proce-

ure does not become “stuck” at a local optimum. 

.6.3. Fitness evaluation 

Populations are evaluated according to fitness functions, where

ach individual within a population is assigned a fitness value. Fit-

ess values determine those individuals that performed better than

thers. Often, genetic algorithms use a form of tournament selec-

ion where a specific number of the highest performing individuals

re used in the next generation. In this way, the genetic algorithm

s guided toward an optimal value by carrying over the best solu-

ions through each generation but explores different combinations

ia crossover and mutation to obtain a global optimal solution. 

.6.4. Hyper-heuristic algorithms 

Hyper-heuristic algorithms are used to search a space of meta-

euristics Burke et al. (2003) . Rather than exploring the problem

pace for a solution (i.e., a meta-heuristic), hyper-heuristics search

mong all the solutions to the problem space. Hyper-heuristics op-

rate at an abstraction level above meta-heuristics ( Kumari and

rinivas, 2013 ). For example, the SVS faces a variety of problems

e.g., cliff detection, object collision, water spots to avoid, etc.).

rovidentia is a meta-heuristic that searches for the most ef-

ective solution (i.e., combination of FR weights for each NFR) to

atisfy the system requirements to the highest degree. However,

atisfying the system requirements to the highest degree is a bal-

nce between satisfying FRs, NFRs, and minimizing the number of

daptations performed. Therefore, we apply a hyper-heuristic to

earch for a solution among the solutions that maximizes overall

ystem satisficement. For the purposes of this paper, we classify

rovidentia-SAW as a hyper-heuristic that further improves the

rovidentia meta-heuristic genetic algorithm. 

. Approach 

This section introduces Providentia , our technique that an-

lyzes the weighted contributions of FRs to each NFR in the SAS

equirements specification and/or goal model. Providentia de-

ermines an optimal combination of weights that yields the highest

verall satisfaction of the entire goal model (i.e., including NFR and

R satisficement). The Providentia technique is intended to be

n add-on feature to make a system more robust to uncertainty.

rovidentia assumes that the system is fully operational and

ontains models of FRs, NFRs, and mechanisms to measure how

ell those requirements are being satisfied. 

The following sections outline the base technique using the

DM case study ( Bowers et al., 2018 ) as a motivating example and

xtends previous work to include the SVS case study. First, we dis-

uss Providentia with respect to expected inputs and outputs.

ext, we describe the process of automatically optimizing the in-

ut goal model using a genetic algorithm. Finally, we introduce the

rovidentia-SAW technique to balance the satisficement of FRs,

FRs, and the number of adaptations. 

.1. Providentia: assumptions, inputs, and outputs 

Providentia requires four inputs: (1) a goal model of the

AS, consisting primarily of FRs but may include NFRs defined by
 requirements engineer, 4 (2) a list of NFRs with a set of FR sug-

estions for each, (3) a set of utility functions to measure the

atisficement of FRs, and (4) an executable specification with de-

ned sources of uncertainty (for the RDM and SVS case studies,

e use environmental and system uncertainty). Each of these in-

uts are expected to be previously defined by one or more engi-

eers. The sources of uncertainty are parameters (e.g., sensor val-

es, number of dropped messages in a network, etc.) whose val-

es change during runtime that may cause the input FRs and NFRs

o become unsatisfied, and therefore trigger a reconfiguration. The

rovidentia technique explores interactions between require-

ents as well as system behavior while subjected to uncertainty

hat an engineer may not be able to foresee when designing the

ystem. The output of Providentia is a goal model with op-

imized FR/NFR relationships. Note that the Providentia tech-

ique is only as good as the accuracy of the input data (i.e., we

ssume the set of FRs for a given NFR is accurate and that the ex-

cutable specification is not missing any sources of uncertainty). 

Goal model. A KAOS goal model provides Providentia with

 specification of the FRs and NFRs in the SAS. For example,

igs. 1 and 2 demonstrate the RDM and SVS goal models, respec-

ively. 

Utility functions. Each FR in the input KAOS goal model shall

ave a corresponding utility function to evaluate SAS requirements

t run time ( deGrandis and Valetto, 2009; Walsh et al., 2004 ). A

tility function maps the FR to a utility value within [0.0, 1.0] to

epresent the degree to which the FR is satisfied. A requirements

ngineer is expected to provide a set of utility functions that corre-

pond to the input goal model. A sample utility function is demon-

trated in Eq. (1) . 

Applicable set of FRs mapped to NFRs. A requirements engineer

ust provide, in addition to the goal model, a set of FRs that may

ave an impact in the satisficement of an NFR, with the set of NFRs

omprising the non-functional properties intended for the system.

or example, Fig. 3 for the RDM case study shows an example of an

pplicable set of FRs, namely Goals (A), (E), (I), (V), and (W), that

eem most relevant in minimizing power consumption. However,

he requirements engineer may consider expanding the set of five

Rs to include Goals (B), (K), (M), (O), (P), and (U) from Fig. 1 . 

Executable specification. An executable specification or simula-

ion is required in order for Providentia to evaluate the overall

tness value of the SAS and determine an optimal combination of

R/NFR weights. We use a simulation of both the RDM and SVS

ase studies. The RDM is an industry-provided simulation shared

ith the authors and the SVS is an ongoing part of the authors’ re-

earch lab. The specification provides the utility values to measure

ow well the requirements were met at a given instance in time

uring the simulation so that Providentia can determine where

o further improve requirement satisficement. The executable spec-

fication should also include known sources of uncertainty antici-

ated by the requirements engineer, both in the environment and

he system itself (e.g., liquid spills, sensor noise, etc.). This infor-

ation better guides the search process at design time and makes

he system more robust to known and unknown sources of un-

ertainty at run time. Moreover, the executable specification must

nclude adaptation mechanisms for the NFRs, should they be vio-

ated. The requirements engineer is expected to identify and im-

lement the adaptation mechanisms. Providentia does not change

ny reconfigurations but rather tries to minimize the number that

ccur, as each system reconfiguration incurs a cost (e.g., computa-

ion time, memory used, etc.). For example, if an NFR for maximiz-

ng performance is violated, then a reconfiguration strategy (e.g.,
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Fig. 5. Data flow diagram of Providentia technique ( Bowers et al., 2018 ). 
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reconfiguring the RDM network overlay) must be defined in addi-

tion to those adaptations already defined for FR violations. 

The executable specification acts as a simulation environment

where the system is subjected to various randomized forms of

uncertainty (e.g., where the RDM experiences a random number

of dropped messages, or random connections are lost). The exe-

cutable specification is not limited to any particular tool, program-

ming language, or environment. Providentia observes how the sys-

tem behaves and the degree to which FRs and NFRs are satisfied

while experiencing adverse conditions. Providentia takes note of

the weighted combinations that fulfill both FRs and NFRs to the

highest degree and returns the weight assignments. The executable

specification can be used as input to Providentia if the speci-

fication effectively simulates system behaviors with internal and

environmental uncertainty. 

Output. The output of Providentia is (1) an NFR goal model

integrated with the input FR goal model, (2) for each NFR, a set

of FRs that collectively contribute to the satisficement of the NFR,

and (3) an optimal weight value assigned to each FR. Note that a

weight value of 0.0 for an FR indicates that the FR did not at all

contribute to the satisficement of the NFR. For example, the ini-

tial set of applicable FRs given for NFR7 from the RDM applica-

tion in Fig. 1 were Goals (A), (B), (E), (I), (K), (M), (O), (P), (U), (V),

and (W). Providentia determined the most optimal weights for

each goal respectively to be as follows: B: 0.237144, E: 0.2410 0 0, K:

0.007185, M: 0.373794, O: 0.049442, U: 0.067218, V: 0.024216. The

weight assignments to Goals (B), (E), and (M) indicate that main-

taining costs below the budget, keeping the minimum number of

links active, and achieving an accurate measure of the workload

most significantly impact the overall power consumption of the

RDM. Goals (K), (O), (U), and (V) minimally impacted the satisfac-

tion of power requirements. Goals (A), (E), (I), (P), and (W) have

weights 0.0 as they did not contribute to minimizing power con-

sumption. The utility function for NFR7 is calculated by summing

the products of the weight and FR utility value for each nonzero

FR. 

3.2. Providentia technique 

This section describes the details of Providentia , compris-

ing a genetic algorithm Holland (1992) to search for optimal FR

weights that contribute to each NFR in an SAS. Fig. 5 illustrates a
ata flow diagram of the Providentia technique with each step

urther described in detail. 

(1) Define solution structure. Each of Providentia ’s candidate

olutions (i.e., the weights of the FRs associated with an NFR) is

ncoded in a genome shown in Fig. 6 . The genome as a whole con-

ists of all NFRs in the SAS. For example, the RDM case study has

 NFRs. A single NFR is referred to as a sub-genome, denoted by

he bold border in Fig. 6 . A sub-genome is broken down into genes

i.e., corresponding weights for one NFR), where a single gene is

 weight corresponding to a single FR. The sum of weights within

ne sub-genome (i.e., within one NFR) must be equal to 1.0. 

(2) Configure search process. The search process of a genetic al-

orithm is controlled by the population size, number of genera-

ions, crossover rate, mutation rate, and selection rate. Based on

mpirical evidence on convergence rates Bowers et al. (2018) , we

pecify the following configuration parameters: population size 20,

0 generations, 25% crossover rate, 50% mutation rate. With re-

ard to the selection rate, we use the tournament selection ap-

roach Holland (1992) where the three individuals with the high-

st utility values become parents of the next generation. Larger

alues for population and generation sizes were considered (e.g.,

5–50 population individuals and 50–100 generations) but optimal

onvergence was discovered on average at the specified values. 

(3) Evaluate NFR models. Once the search process has been ap-

ropriately configured, each individual candidate solution is input

o the executable specification and evaluated to compare against

ther individuals within the population. The overall fitness func-

ion for the SAS is shown in Eq. (2) and evaluates the satisfaction

f FRs, NFRs, and the number of adaptations (NA) into a single fit-

ess value. 

 F = 

{
αNF R ∗ F F NF R + αF R ∗ F F F R + αNA ∗ F F NA iff invariants true 

0 . 0 otherwise 

(2)

Eq. (2) is a linear-weighted sum, where αNFR , αFR , and αNA 

re further optimized by the Providentia-SAW technique

 Providentia-SAW is described in Section 3.3 ). The weights

ust cumulatively sum to a value of 1.0. The terms FF NFR and FF FR 

epresent fitness sub-functions. Note that if any invariant goals or

equirements are unsatisfied, then the system is considered to be

ailed and evaluates its fitness value to be 0.0. Although many
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Fig. 6. Providentia sample genome. 

o  

t  

r  

p

 

i

F

T  

N  

N  

u  

E  

m  

i

 

E  

N

u  

 

u  

i  

r  

i  

p  

n

 

i

F

E  

m  

p  

e

 

p  

r  

S  

t

F  

E  

a  

t

 

t  

k  

r  

f

 

p  

a  

a  

p  

c  

o  

P  

g  

±  

v  

w

 

o  

P  

N

3

 

n  

v  

t  

c  

n  

c  

s  

e  

v  

a  

T  

t  

a  

fi

 

d  

F  

g  

t  

g  

e  

i  

h  

f  

o  

w  

t  

a  

O  

o  

a  

a  

e  

f

4

 

b  

p  

r  

t  
ther approaches exist to combine fitness sub-functions, we find

hat a linear-weighted sum balances competing concerns between

equirement satisficement and adaptations adequately for this ex-

eriment. 

The fitness sub-function to evaluate the satisficement of NFRs

s shown in Eq. (3) . 

 F NF R = 

∑ | NF Rs | 
i =1 

ut ilit y _ v alue NF R i 

| NF Rs | ∗ timesteps 
(3) 

he numerator in Eq. (3) represents the sum of utility values for all

FRs in the SAS. For example, the RDM application contains seven

FRs, resulting in a numerator evaluation of: ut ilit y _ v alue NF R 1 
+

t ilit y _ v alue NF R 2 
+ · · · + ut ilit y _ v alue NF R 7 

. The denominator of

q. (3) is the number of NFRs in the SAS (e.g., seven for the RDM)

ultiplied by the number of timesteps run in the executable spec-

fication. 

The utility value calculation of each NFR from the numerator in

q. (3) is shown in Eq. (4) , where n refers to the number of the

FR (e.g., NFR 1 , NFR 2 , etc.). 

t ilit y _ v alue NF R n = 

| F R NFR n | ∑ 

i =1 

ut ilit y _ v alue F R i ∗ weight F R i (4)

Eq. (4) calculates a utility value for one NFR by evaluating the

tility function of each supporting FR (e.g., Eq. (1) supplied by the

nput utility functions), multiplying the utility value with its cor-

esponding weight, and then summing the results for all support-

ng FRs for a given NFR. The term weight F R i represents the weights

resent in Providentia ’s genes and is the focus of the tech-

ique’s optimization. 

The fitness sub-function for the FF FR term from Eq. (2) is shown

n Eq. (5) . 

 F F R = 

∑ | F Rs | 
i =1 

ut ilit y _ v alue F R i 
| F Rs | ∗ timesteps 

(5) 

q. (5) sums all of the utility values for the functional require-

ents and goals of the SAS in the numerator and divides by the

roduct of the number of FRs and the number of timesteps in the

xecutable specification. 

Finally, the equation to minimize the number of adaptations

erformed by the SAS is shown in Eq. (6) , where | adaptations |

efers to the total number of reconfigurations performed by the

AS and | faults | reports the total number of adverse conditions in-

roduced within the executable specification. 

 F NA = 1 . 0 − | adaptations | 
| faults | (6)

q. (6) defines the term FF NA from Eq. (2) . A minimized number of

daptations performed by an SAS reduces the overall disruption of

he system. 

(4) Select NFR models. Providentia uses tournament selec-

ion to select the genomes with the highest fitness value among

 genomes to be used as a parent for the next generation. The

emaining individuals not chosen in the population are removed

rom consideration. 

(5) Generate NFR models. When the most fit individuals from the

opulation are selected, Providentia then performs crossover

nd mutation to obtain new individuals for the following gener-

tion. Providentia uses two-point crossover that selects two
oints on a genome within an NFR (i.e., crossover does not oc-

ur between different NFRs) and swaps the genes with a sec-

nd genome, creating two new candidate solutions. Furthermore,

rovidentia performs single-point mutation that selects a sin-

le gene (i.e., FR weight) and randomly generates a value within

20% of its original value. Note that although values are modified

ia crossover and mutation, the weights must still be normalized

ithin a particular NFR/sub-genome. 

Steps (3) - (5) are applied iteratively until the number

f generations is reached. When the genetic loop concludes,

rovidentia returns a set of optimized weights of FRs for each

FR. 

.3. SAW integration 

This paper extends the original Providentia tech-

ique ( Bowers et al., 2018 ) with SAW optimization ( Eiben and

an der Hauw, 1998; van der, 1996 ) to explore a search space con-

aining an optimal weighting scheme that balances the competing

oncerns between FR satisficement, NFR satisficement, and the

umber of SAS adaptations. Our preliminary work used an empiri-

ally chosen weighting scheme where the terms from Eq. (2) were

et as follows: αNF R = 0 . 375 , αF R = 0 . 375 , and αNA = 0 . 25 . How-

ver, the chosen weights may not have considered all possible

alues in the search space, given the uncertainty surrounding

n SAS in terms of its environment and configured parameters.

herefore, we apply the hyper-heuristic SAW to gradually update

he weighting scheme in tandem with Providentia , denoted

s Providentia-SAW , to explore how and whether overall SAS

tness may be improved over the course of system execution. 

Providentia uses the online SAW method of optimization

escribed in the original SAW paper ( van der, 1996 ). Step (3) in

ig. 5 is augmented with the SAW technique. Rather than randomly

enerating the weights, a requirements engineer can provide ini-

ial values (i.e., seed) for Providentia-SAW to use in the first

eneration. The fitness sub-functions are evaluated every fifth gen-

ration and the sub-function with the lowest fitness value (i.e.,

n comparison to the other fitness sub-functions in the equation)

as its corresponding weight increased to guide the search process

or an optimal combination of weights. By increasing the weight

f the least fit sub-function, the search process ensures that the

eighting scheme balances all concerns appropriately to achieve

he highest overall fitness value. The generation number to evalu-

te the fitness sub-functions (i.e., five) was determined empirically.

ther numbers, both higher and lower, were simulated, however

ptimal results were obtained when evaluating every fifth gener-

tion. This generation value balances the competing concerns of

dapting too frequently, where the search space does not have

nough time to consider optimal solutions, and adapting too in-

requently, where more optimal solutions are never explored. 

. Experimental results 

This section describes the experimental setup and results for

oth the RDM and the SVS case studies. The RDM is an industry-

rovided case example and the SVS was created by the authors’

esearch lab. First, we introduce the experiment setup parame-

ers that we used and the types of adaptations performed for
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Table 1 

RDM NFRs with sets of FRs and manually-derived weights. 

NFR Set of FRs 

NFR1: Maximize (A), (B), (C), (E), (F), (G), (H), (I), (L), 
[Reliability] 0.4, 0.2, 0.2, 0.0, 0.0, 0.1, 0.0, 0.1, 0.0, 

(M), (N), (R), (T), (U), (V), (W) 
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 

NFR2: Maximize (A), (C), (D), (E), (F), (G), (H), (L), (M), 
[Throughput] 0.0, 0.6, 0.0, 0.0, 0.0, 0.1, 0.1, 0.0, 0.0, 

(N), (O), (P), (Q), (R), (S), (T), (U), (V), 
0.0, 0.0, 0.0, 0.0, 0.1, 0.0, 0.1, 0.0, 0.0, 
(W) 
0.0 

NFR3: Maximize (C), (D), (H), (I), (K), (M), (Q), (S), (U), 
[Speed] 0.2, 0.1, 0.3, 0.2, 0.0, 0.0, 0.0, 0.2, 0.0, 

(V), (W) 
0.0, 0.0 

NFR4: Maximize (A), (B), (D), (G), (H), (L) 
[System Security] 0.4, 0.2, 0.2, 0.1, 0.1, 0.0 
NFR5: Maximize (C), (G), (H), (Q), (R), (S), (T), (W) 
[Secure Communication] 0.5, 0.3, 0.1, 0.0, 0.0, 0.0, 0.0, 0.1 
NFR6: Maximize (C), (D), (H), (R), (T) 
[Message Security] 0.2, 0.2, 0.0, 0.3, 0.3 
NFR7: Minimize (A), (B), (E), (I), (K), (M), (O), (P), (U), 
[Power] 0.3, 0.0, 0.1, 0.1, 0.0, 0.0, 0.0, 0.0, 0.0, 

(V), (W) 
0.3, 0.2 
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Table 2 

Configuration of Providentia genetic algorithm. 

Parameter Value 

Population size: 20 

Number of generations: 50 

Crossover rate: 25% 

Crossover type: Two-point 

Mutation rate: 50% 

Mutation type: Single-point 

Selection: Tournament selection , k = 3 

Stepwise adaptation of weights: Online, every 5 th generation 
each application. Next, we present our results for each application

to compare the performance of randomly-generated, manually-

selected, and Providentia -derived FR/NFR weights. We then de-

scribe how Providentia-SAW enabled further optimization to-

wards the satisficement of SAS requirements. 

4.1. RDM study 

This section describes the experimental setup and results of the

RDM application. 

4.1.1. RDM experimental setup 

The RDM application is modeled as a completely-connected

graph. Each node of the graph represents an RDM. Each edge of

the graph represents a network link. For each trial, system and en-

vironmental parameters were randomized based on a model previ-

ously presented by Ji et al. (2003) and Keeton et al. (2004) . For ex-

ample, the randomized system parameters include a random num-

ber of RDMs (i.e., within [15,30]) and a random number of valid

messages (i.e., [10 0,20 0]) inserted into RDMs at random timesteps.

Each message is required to be replicated to all other RDMs. The

RDM simulation was performed over 300 timesteps. In addition to

the 23 FRs presented in Fig. 1 , we also examine seven NFRs specific

to the RDM that are next presented in Table 1 . 

We compared and evaluated different combinations of FRs and

their supporting weights for every NFR. The seven NFRs were

derived using three different techniques: (1) FR weights gener-

ated by random search ( Arcuri and Briand, 2011 ), (2) manually-

selected weights assigned by a requirements engineer, and (3)

Providentia -optimized weights. Note that although a require-

ments engineer initially selects a subset of FRs for each NFR,

all three techniques may disable (but not add) one or more FRs

by setting the corresponding weight to 0.0, effectively allowing

limited flexibility in the selection of FRs as well as the weight.

Table 1 shows the initial sets of FRs for each NFR chosen by a re-

quirements engineer with the manually-derived weights listed be-

low. 

For instance, NFR6 uses the utility functions from Goals (C), (D),

(H), (R), and (T) to calculate its own utility function in aggregate.
pecifically, Eq. (7) demonstrates the utility function for NFR6 : 
til(NF R 6 ) = αC ∗ util(goal C ) + αD ∗ util(goal D ) 

+ αH ∗ util(goal H ) + αR ∗ util(goal R ) 

+ αT ∗ util(goal T ) (7)

Each specified NFR has a similar utility function to determine

ts utility value at run time. Note that Providentia optimizes

he α values on a per-NFR basis (i.e., each set of FR weights

s optimized by Providentia and normalized to ensure they

um to 1.0 to ensure that the associated utility function is also

ormalized). To support NFR feedback within the SAS decision

oop Kephart and Chess (2003) , additional reconfiguration strate-

ies were implemented for the RDM, where the new reconfigu-

ation strategies were defined based on the requirements engi-

eer’s knowledge of the system. For instance, reconfiguration as

 result of an NFR3 violation resulted in an internal search for a

ew network overlay. Finally, we configured the genetic algorithm

s shown in Table 2 . 

Each of the parameters in the genetic algorithm were deter-

ined empirically. For example, population sizes of 10, 25, 50,

tc. were run in the simulation as well as other values for the

emaining parameters. Table 2 shows the values where the ge-

etic algorithm converged. Note that the population size (i.e.,

he number of individuals) combined with the number of gen-

rations results in the number of evaluations per experimental

eplicate . Using the values presented in Table 2 , each experi-

ental replicate evaluates 10 0 0 individuals. To ensure statistical
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Fig. 7. NFR fitness experimental results Bowers et al. (2018) . 
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Table 3 

NFR average utility values and standard deviations Bowers et al. (2018) . 

NFR Random Manual Providentia 

NFR1: Maximize μ: 0.654 μ: 0.615 μ: 0.905 

[Reliability] σ : 0.325 σ : 0.191 σ : 0.149 

NFR2: Maximize μ: 0.655 μ: 0.666 μ: 0.882 

[Throughput] σ : 0.325 σ : 0.262 σ : 0.153 

NFR3: Maximize μ: 0.875 μ: 0.743 μ: 0.975 

[Speed] σ : 0.207 σ : 0.148 σ : 0.085 

NFR4: Maximize μ: 0.802 μ: 0.736 μ: 0.979 

[System Security] σ : 0.273 σ : 0.177 σ : 0.085 

NFR5: Maximize μ: 0.621 μ: 0.742 μ: 0.925 

[Secure Communication] σ : 0.273 σ : 0.191 σ : 0.146 

NFR6: Maximize μ: 0.921 μ: 0.919 μ: 0.980 

[Message Security] σ : 0.181 σ : 0.072 σ : 0.069 

NFR7: Minimize μ: 0.821 μ: 0.758 μ: 0.926 

[Power] σ : 0.270 σ : 0.172 σ : 0.188 
ignificance of our results, we performed 50 experimental repli-

ates, each of which was seeded differently. The p-value was calcu-

ated using the Wilcoxon-Mann-Whitney u-test by comparing the

esults of (1) manually-selected weights vs. randomly-generated

eights, (2) Providentia-optimized weights vs. randomly-generated

eights, and (3) Providentia-optimized weights vs. manually-

elected weights. Manually selected weights indicate a single set

f weights chosen by engineers to best represent the contribution

f each FR to each NFR. The configurations for the genetic algo-

ithm shown in Table 2 produced the experimental results used in

valuating Providentia and Providentia-SAW . 

.1.2. RDM experimental results 

This section presents our results from investigating how NFRs

mpact an SAS. Specifically, we examine how a set of FRs can con-

ribute to the satisfaction of NFRs that are then in turn incorpo-

ated into the SAS decision loop ( Kephart and Chess, 2003 ) to sup-

ort run-time reconfigurations. We compare and evaluate the im-

act of applying automatically-selected Providentia FR weights

ith manual and random selection, respectively. For this experi-

ent, all FR weights associated with each NFR are normalized to

.0. For manual weight selection, we apply the weights as shown

n Table 1 , where weights of 0.0 indicate that the related FR’s util-

ty function is not applied to the calculation of its associated NFR. 

With respect to the fitness function in Eq. (2) , we set αNF R =
 . 375 , αF R = 0 . 375 , and αNA = 0 . 25 , where these values were se-

ected based on empirical evidence. 

For this experiment, we define two null hypotheses. First, H 1 0 
tates that “there is no difference in fitnesses achieved by a

rovidentia -optimized goal model and those that are unop-

imized.” Second, H 2 0 states that “there is no difference in fit-

esses achieved by a Providentia -optimized goal model and

hose manually optimized by a requirements engineer.”

Fig. 7 shows three boxplots for each NFR in the RDM with aver-

ge fitness values calculated from randomly-selected FR weights,

anually-selected FR weights, and Providentia -optimized FR

eight selection. Fig. 7 demonstrates that Providentia can
ignificantly improve overall NFR fitness than those manually

elected by a requirements engineer or selected at random ( p <

 05 , Wilcoxon-Mann-Whitney u-test). Table 3 presents the average

tility values ( μ) and standard deviation ( σ ) for each NFR, with

he optimal value highlighted in gray. These results suggest that

rovidentia can improve overall NFR fitness when an SAS is

ubject to uncertainty. 

Providentia also enabled a significant decrease in the num-

er of encountered FR violations in comparison to randomly- and

anually-defined FR weights ( p < . 05 , Wilcoxon-Mann-Whitney u-

est), as shown in Fig. 8 . As requirements violations tend to signify

 significant problem with a system, a reduction in run-time vio-

ations is an ideal result for an optimization procedure. 

Given the results presented in Fig. 7, Table 3 , and Fig. 8 , we

an reject both H 1 0 and H 2 0 and accept our alternate hypotheses

hat Providentia provides a significant improvement over man-

al and random search. 

We next describe the integration of SAW within Providentia
o provide further points of optimization. 
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Fig. 8. FR violation experimental results Bowers et al. (2018) . 
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5 See http://www.ode.org/ . 
4.1.3. RDM results with SAW integration 

We now examine how the fitness function weights ( αNFR , αFR ,

and αNA ; c.f., Eq. (2) ) impact overall fitness, as the weights were

initially selected based on empirical evidence and domain knowl-

edge Bowers et al. (2018) . We apply SAW to dynamically adjust the

weights during execution (c.f., Section 3.3 ). For this experiment,

we executed Providentia with and without SAW applied. We

reuse the configuration of the genetic algorithm as presented in

Table 2 . Moreover, SAW dynamically updates the weights of the fit-

ness function every fifth generation, where the poorest-performing

fitness subfunction’s weight is increased and the remaining sub-

function weights are normalized to sum to 1.0. 

We define an additional null hypotheses for this experiment.

H 3 0 states that “there is no difference between a Providentia -
optimized goal model with static fitness subfunction weights

and a goal model with dynamically-optimized fitness subfunc-

tion weights.” For this experiment, we reuse the static weights

defined in the previous section (i.e., αNF R = 0 . 375 , αF R = 0 . 375 ,

and αNA = 0 . 25 ) as both our static weights and seed weights for

Providentia-SAW . 
Fig. 9 presents two boxplots that show the fitness values

obtained from goal models optimized with Providentia and

Providentia-SAW , respectively. As this figure demonstrates,

applying SAW to Providentia results in higher fitness val-

ues ( p < 0.05, Wilcoxon-Mann-Whitney u-test), suggesting that

weights that are dynamically adjusted better reflect the environ-

ment and/or configuration of the system. Moreover, these results

enable us to reject H 3 0 and conclude that the fitness function

weighting scheme directly impacts overall fitness resulting from

monitoring the system. 

Next, Fig. 10 presents a set of grouped boxplots that demon-

strate the average utility value (calculated by the aggregate util-

ity values of each associated FR) for each NFR. As can be seen

by this figure, there is no statistical difference that exists be-

tween the average utility values of each NFR that were optimized

by Providentia and Providentia-SAW , respectively ( p > . 05 ,

Wilcoxon-Mann-Whitney u-test). This result is interesting in that

overall FR fitness was significantly improved (c.f., Fig. 9 ), however
here is no improvement for the NFR values. This result suggests

hat the NFR utility values may be independent of the overall RDM

tness calculation, however reconfigurations that are performed at

 coarser-grain (NFRs) can significantly impact and improve the

erformance of FR utility functions. 

Fig. 11 shows the average number of non-invariant and in-

ariant requirement violations that occurred during execution,

espectively. Again, there is no significant difference ( p > . 05 ,

ilcoxon-Mann-Whitney u-test) in the number of violations be-

ween Providentia and Providentia-SAW , suggesting that

djusting the fitness function weights does not significantly impact

he SAS reconfiguration engine for the RDM application. 

Lastly, Fig. 12 provides a comparison of the starting and ending

tness sub-function weights attained with Providentia-SAW .
s can be seen from this figure, αFR is maximized and αNFR and

NA tend to be minimized, thereby suggesting that the satisfice-

ent of FRs is considerably more important to the performance

f the RDM application. This result correlates with those found in

igs. 10 and 11 in that SAW seems to have a minimal impact on

FR satisficement and violation reduction. However, an improve-

ent in overall performance of the RDM application still presents

 significant finding. 

We next repeat our experiments on the SVS application to

emonstrate the domain independence of Providentia and

rovidentia-SAW . 

.1.4. SVS experimental setup 

The SVS (c.f., Section 2.2.2 ) comprises an autonomous vac-

um system tasked with cleaning a desired space safely . As such,

he SVS must balance competing concerns to satisfy its require-

ents, including maximizing cleaning efficiency, minimizing need-

ess power consumption, and ensuring the safe operation of the

acuum. 

For this experiment, the SVS was simulated in the Open Dy-

amics Engine, 5 where its physical appearance (c.f., Fig. 13 ) and

http://www.ode.org/
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Fig. 9. Comparison of fitness values between Providentia and Providentia-SAW experiments for the RDM application. 
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ehaviors were modeled on observations from the iRobot Roomba

acuum system. The SVS comprises two wheels, a circular body,

even touch sensors for collision detection, two wheel velocity sen-

ors to monitor the status of each individual wheel speed, and a

acuum sensor that monitors the suction capabilities of the robot. 
Fig. 10. Comparison of NFR fitness values between Providentia a
To motivate the need for run-time adaptation, uncertainty was

onfigured in terms of system and environment-based uncertainty.

ystem uncertainty comprised random sensor noise, sensor fail-

res induced at random during execution, and fluctuations in the

ain controller timing logic (e.g., variations in the amount of time
nd Providentia-SAW experiments for the RDM application. 
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Fig. 11. Comparison of requirement violations between Providentia and Providentia-SAW experiments for the RDM application. 
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to spend in a particular path plan) to represent concerns that are

found in real-time operating systems. Environment uncertainty in-

cludes the amount and distribution of dirt spread throughout the

room, a downward step to avoid, and randomly-placed objects that

may either hurt the SVS (e.g., a pole or liquid spill) or the object

itself (e.g., a pet or child) that introduce safety concerns. 
Fig. 12. Comparison of starting/ending fitness subfunction weights 
The SVS will reconfigure to minimize the impacts of uncer-

ainty, thereby maximizing overall requirements satisficement. As

ith the RDM, the SVS performs run-time requirements moni-

oring via utility functions to quantify the performance of each

eparate requirement, where violations and/or unsatisfactory per-

ormance result in a reconfiguration. Possible reconfigurations
for the RDM application with and without SAW optimization. 
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Fig. 13. Screenshot of SVS simulation environment in the Open Dynamics Engine. 
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nclude changing the current path plan (e.g., from a spiral to ran-

om search), updating the power moding strategy (e.g., from full

ower to reduced power), and instantiating emergency avoidance

rocedures to bypass a critical object. 

For the SVS, we specify three NFRs to guide the system. Table 4

pecifies the defined NFRs for the SVS, along with the sets of FRs

nd respective weights that comprise its aggregate utility function.

ote that unlike the RDM application, Providentia is not pro-

ided FRs with weights of 0.0 to demonstrate its effectiveness in a

maller search space (i.e., fewer FRs) for each NFR. 

.1.5. SVS experimental results 

For this experiment, we reuse the experimental setup for

he RDM (c.f., Section 4.1.1 ). Specifically, we examine how

rovidentia -optimized FR weighting schemes compare with

eighting schemes that were manually- and randomly-specified

note that, for presentation purposes, we condense our re-

ults section to include SAW as well as the replication of the

rovidentia experiment in the SVS application domain). As the

tness function introduced in Eq. (2) was specific to the RDM ap-

lication, we now extend the fitness function to be specific to the

VS. The fitness function for the SVS is shown in Eq. (8) : 

 F = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

αNF R ∗ F F NF R + αF R ∗ F F F R + 

αadaptations ∗ F F adaptations iff invariants true 

0 . 0 otherwise 

(8) 

First, we combine these fitness subfunctions with those fitness

ubfunctions specific to Providentia , as previously defined in

qs. (3) and (5) . As with the RDM, we set αNF R = 0 . 375 , αF R =
 . 375 , and αadaptations = 0 . 25 . We substitute Eq. (6) that is specific
Table 4 

SVS NFRs with sets of FRs and manually-derived weights. 

NFR Set of FRs 

NFR1: Minimize [Cost] (D), (F), (J), (R), (S) 
0.15, 0.3, 0.15, 0.2, 0.2 

NFR2: Minimize [Time] (A), (B), (C), (E), (G) 
0.3, 0.2, 0.2, 0.15, 0.15 

NFR3: Maximize [Performance] (A), (B), (C), (D) 
0.3, 0.25, 0.25, 0.2 
o the RDM with Eq. (9) , specific to the SVS, to minimize the num-

er of adaptations that the SVS experiences at run time: 

 F adaptations = 

1 . 0 

| adaptations | (9) 

Fig. 14 presents boxplots that show the fitness values be-

ween goal models that were optimized with Providentia-SAW
nd Providentia , those whose FR weights were manually-

elected (Manual), and those whose weights were randomly se-

ected (Random). As can be seen from the plots, optimizing

ith Providentia significantly improves overall fitness of the

VS ( p < . 05 , Wilcoxon-Mann-Whitney u-test). Moreover, intro-

ucing SAW to optimize the fitness sub-functions that guide

rovidentia (c.f., Eq. (8) , αNFR , αFR , αadaptations ) further signifi-

antly improves fitness ( p < . 05 , Wilcoxon-Mann-Whitney u-test). 

Similar to the results presented for the RDM application, Fig. 15

emonstrates how the SVS attains significant NFR fitness improve-

ents as Providentia and then Providentia-SAW are ap-

lied ( p < 0.05, Wilcoxon-Mann-Whitney u-test). 

Table 5 and Fig. 16 demonstrate that although

rovidentia-SAW provides higher fitness than Providentia ,
he number of invariant and noninvariant violations are not sig-

ificantly increased, therefore suggesting a positive impact to the

rovidentia technique with minimal negative repercussions. 

Table 6 presents the average utility values ( μ) and stan-

ard deviation ( σ ) for each of the SVS NFRs. As with the RDM,

e see a significant improvement in average utility for most

FRs ( p < . 05 , Wilcoxon-Mann-Whitney u-test), further suggest-

ng that Providentia and Providentia-SAW significantly im-

rove system performance while experiencing uncertainty. 
Table 5 

Invariant and noninvariant average violations 

and standard deviations for SVS application. 

Providentia SAW 

Invariant μ: 3.592 μ: 3.418 

violations σ : 25.042 σ : 25.292 

Noninvariant μ: 732.765 μ: 748.941 

violations σ : 36.174 σ : 45.178 
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Fig. 14. Comparison of fitness values between all run types for the SVS application. 

Fig. 15. Comparison of NFR fitness values between Providentia and Providentia-SAW experiments for the SVS application. 
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5. Discussion 

This paper has described search-based techniques and their

corresponding empirical studies that use quantitative NFR perfor-

mance information in the SAS feedback loop to support online de-

cision making. To enable this calculation, a set of FRs (either new

or existing) are identified from a requirements specification to sup-

port quantification of an NFR, where each selected FR is assigned

a weight to indicate its relative importance in the satisfaction of

the NFR’s objectives. Providentia was introduced to perform

automated optimization of the FR selection and weight definition
rocess, given the large search space that results from this prob-

em. Furthermore, SAW was added to Providentia to further

ptimize the weights of the fitness subfunctions that guided the

earch procedure. 

Providentia and Providentia-SAW determine optimal

ets of weights to make the system more robust to uncertainty.

or example, the uncertainty introduced in the RDM simulation

nclude the percentage of dropped/delayed messages, the percent

hance that a server goes down, of a network link severing, sen-

or fuzz, and more. Uncertainty introduced in the SVS include

 randomized chance of each sensor failing and/or fuzzing, the
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Fig. 16. Comparison of violations between Providentia and Providentia-SAW experiments for the SVS application. 
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5

istribution of dirt particles in the room, a downward step in

he room, the random instantiation of hazardous objects to the

VS (e.g., liquid, large objects, etc.), and more. The different

ypes of uncertainty faced by the two case studies show the

ffectiveness and domain independence of Providentia and

rovidentia-SAW , as the RDM is from an industrial collaborator

nd the SVS is based on a real-world system. 

Experimental results suggest that the introduction of NFRs into

he SAS feedback ecosystem, along with Providentia ’s auto-

ated optimization procedure to determine the configuration of

ach NFR, can produce an SAS that performs better in terms of

verall fitness while significantly reducing the number of require-

ents violations incurred during execution. These results demon-

trate that non-functional objectives, while historically difficult to

uantify, can be automatically reconfigured and tuned to enable an

AS to deliver optimal performance in the face of uncertainty. 

Fig. 14 shows the comparison of fitness values (i.e., the val-

es calculated in Eq. (8) ) for each of the four runs. With the

anually-specified weights for the fitness function, Providentia
erforms the best because the GA is able to explore the weights

or NFRs that are separate from the weights of the fitness func-

ion. For manual, random, and Providentia , the alpha values

n Eq. (8) are all equal. Providentia-SAW combines the re-

ults from Providentia (leading to a higher median fitness),

ut the search space for an optimal fitness value is explored

s the overall fitness function is adjusted every fifth generation.
Table 6 

NFR average utility values and standard deviations for SVS application. 

NFR Random Manual Providentia SAW 

NFR1: Minimize μ: 0.972 μ: 0.948 μ: 0.957 μ: 0.951 

[Cost] σ : 0.114 σ : 0.099 σ : 0.200 σ : 0.210 

NFR2: Minimize μ: 0.564 μ: 0.510 μ: 0.833 μ: 0.773 

[Time] σ : 0.363 σ : 0.014 σ : 0.302 σ : 0.342 

NFR3: Maximize μ: 0.489 μ: 0.426 μ: 0.875 μ: 0.886 

[Performance] σ : 0.399 σ : 0.072 σ : 0.281 σ : 0.279 
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rovidentia-SAW has led to a greater degree of variance yet

urther improved the results from standalone Providentia (i.e.,

ithout SAW integration). 

Additional results demonstrated the significance of adjusting

he weights of the fitness subfunctions that guide Providentia ’s
earch procedure. While there was no significant impact to the sat-

sficement of NFR utility values, FR utility values were significantly

mproved when using Providentia-SAW , thereby leading to a

ignificant improvement in overall fitness of both SAS applications

hat were studied. This result suggests that, as was previously dis-

overed ( Fredericks et al., 2014 ), a linear-weighted fitness function

s subject to the uncertainties imposed by each individual environ-

ent and that the statistically-specified weights may not generate

ptimal solutions for all environments considered. As a result, run-

ing a hyper-heuristic optimizer can significantly improve fitness

n uncertain environments. 

In cyber-physical systems, modeling real-world uncertainty is

n ongoing problem as simulations often cannot include unex-

ected issues that in reality a system may face. Such a sys-

em would benefit from Providentia -optimized NFRs as well

s Providentia-SAW to balance NFR/FR/adaptation utility func-

ions in unforeseen circumstances. 

.1. Threats to validity. 

This paper has presented an extended proof of concept to

emonstrate that quantifying NFRs at run time can support the

econfiguration engine in an SAS to improve overall requirements

atisficement and minimize violations. As such, we have identified

he following internal and external threats to validity for this re-

earch. 

Internal. First, the derivation of the requirements for both the

DM and SVS applications was manually performed and may not

e wholly inclusive of all possible requirements. Moreover, each

pplication was simulated based on the executable specifications

nd may not exhaustively capture all of the detailed requirements.

he manual selection of each FR set to support an NFR is another
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threat, as the selection may either be too limited or broad as it re-

lies on domain knowledge, which is a common problem in general

when identifying NFRs ( Yu, 1997; Mylopoulos et al., 1992 ). 

External. External threats include impacts to the system

as a result of unanticipated environmental conditions, unex-

pected human interaction with systems under execution, and un-

planned for changes to the system requirements, thereby in-

validating prior optimizations discovered by Providentia and

Providentia-SAW . 
Construct. Construct threats include scalability and generaliz-

ability concerns. In terms of scalability, optimization heuristics tra-

ditionally suffer from a larger search space. For this paper, the

size of the requirements specifications for both the RDM and SVS

case studies may be considered small (i.e., 23 FRs and 7 NFRs for

the RDM, and 19 FRs and 3 NFRs for the SVS), and as such, the

results may not necessarily generalize to larger search spaces. In

terms of generalizability, we have demonstrated Providentia
and Providentia-SAW in two application domains: a network-

ing application and a cyber-physical system, both of which are

modeled as SASs. As such, it is possible that our techniques do

not generalize to non-SAS domains and can be considered as fu-

ture work for the authors. 

We also only explored the genetic algorithm as a search heuris-

tic. As such, other applicable search techniques, such as multi-

objective optimization ( Deb et al., 2002 ), could be used to discover

ideal or more globally-optimal solutions. Therefore, an additional

threat to validity lies in the search technique, and we plan to ex-

plore other such search heuristics in future work. 

We next describe related work that span a number of comple-

mentary areas to further highlight our contributions. 

6. Related work 

This section presents related work with regard to self-adaptive

systems, obstacle mitigation and requirement satisficement, goal

modeling, and NFRs. 

Self-adaptive systems. Self-adaptive capabilities are generally ex-

pensive to build, difficult to modify, and are usually specific to a

given application ( Garlan et al., 2004 ). The Rainbow framework

generalizes an SAS such that it can be reused in different sys-

tems, separating the self-adaptive control infrastructure from the

system itself ( Garlan et al., 2004 ). This separation enables use

in legacy systems, localization of problems in separate modules,

and software reuse. Rainbow is an architecture-based modeling

technique while Providentia extends GORE at a higher level.

Cheng et al. (2009b) also presented the use of utility functions in

SASs with quality NFRs such as performance, cost, and content fi-

delity. Rather than introducing new metrics to measure quality at-

tributes in a separate architecture, Providentia extends the pre-

existing goal model of FRs and uses metrics already defined by the

system to measure NFRs. The use of predefined metrics saves both

time and space when performing reconfigurations at run time. 

Aceituna and Do (2015) presented a model to determine if,

based on a given requirements model, an SAS can be put into un-

desired states. Although this model can be useful in evaluating FRs,

Providentia operates under the assumption that the FRs keep

the system in an acceptable state. Moreover, Providentia fo-

cuses on guiding the SAS behavior based on FRs. Should the NFRs

introduced with Providentia fail, the system will remain in a

functionally-valid, yet less optimal, state. 

Bencomo and Belaggoun (2014) use a Bayesian definition of

surprise to measure the degrees of uncertainty that cause a self-

adaptive system to deviate from expected behavior. Their approach

uses dynamic decision networks that use probability to determine

the satisficement of an NFR based on a system’s decision. Ini-

tial probabilities are either estimated or derived based on past
tatistical performance. Providentia uses utility functions to

etermine requirement/goal satisficement and violations, rather

han probability, to measure uncertainty. 

A recent direction for SASs involves Complex Event Pro-

essing (CEP) systems ( Weisenburger et al., 2017 ). A CEP sys-

em analyzes event streams and detects specific events or pat-

erns. Weisenburger et al. (2017) address the difficulties in mak-

ng CEP systems self-adaptive and the need to identify conditions

hat trigger adaptations. CEP systems can directly benefit from

rovidentia as CEP systems typically do not allow developers

o specify metrics on quality attributes. Providentia provides

uantifications on ambiguous goals and requirements that can be

ptimized in SASs and therefore can be used to evaluate CEP sys-

ems to determine the specific conditions that require an adapta-

ion. 

In addition to the numerous approaches for representing NFRs

n goal models and SASs, Aspect-Oriented Requirements Engineer-

ng presents an approach to identify and specify cross-cutting

oncerns in separate modules, or aspects ( Rashid et al., 2002 ).

u et al. (2004) demonstrate that aspects can be identified in

oal-oriented requirement analysis using both FRs and NFRs. Sim-

lar to Providentia , Gray et al. elevate cross-cutting concerns

o be represented with FRs in a goal model, in contrast to

rovidentia that includes NFRs ( Gray et al., 2003 ). As shown

n the performance NFR of the RDM case study, cross-cutting con-

erns are prevalent in generic NFRs. DeVries and Cheng use evolu-

ionary computation to automatically detect unwanted feature in-

eractions ( DeVries and Cheng, 2018 ), in contrast to Providentia
nd Providentia-SAW that introduce additional feature interac-

ions by adding new non-functional requirements to a goal model.

isbal and Cheng also explore unwanted feature interactions due

o non-functional conflicts due to shared resources ( Bisbal and

heng, 2004 ). Note that Providentia and Providentia-SAW
o not add unwanted feature interactions but rather evaluate the

eature interactions between FRs with NFRs. 

Obstacles and requirements. Obstacle mitigation is a strategy for

dentifying and resolving obstacles to goal satisfaction. van Lam-

weerde (2009) and van Lamsweerde and Letier (20 0 0) have de-

cribed a set of strategies for obstacle mitigation, however this ap-

roach does not specify to what degree of non-satisfaction that

FRs can become without impacting or degrading the overall sys-

em. Providentia can be used to supplement these strategies

y extending the non-functional goal model in KAOS, and more-

ver, automatically optimize the FR/NFR weighting scheme. 

Requirements monitoring is an approach for quantifying re-

uirements at run time for use in detecting and mitigating obsta-

les as the system executes, including a monitoring framework de-

eloped by Feather et al. (1998) . Sawyer et al. (2010) have posited

hat requirements can be promoted to live run-time entities for

se in self-adaptation feedback loops, with a notable example be-

ng the SAS MAPE-K feedback loop ( Kephart and Chess, 2003 ).

owever, these approaches mainly focus on FRs. Providentia -
ptimized NFRs are also intended to be used in adaptation deci-

ions at run time, supported by a set of well-defined FRs and their

ccompanying utility functions. 

Goal modeling. Many approaches similar to Providentia use

oal modeling to address dependencies between FRs ( Nagel et al.,

013 ) or represent NFRs as soft goals ( Yu, 1997; Giorgini et al.,

005 ). Other approaches use probabilistic methods to improve

FR/FR satisficement ( Cailliau and van Lamsweerde, 2017; Paucar

nd Bencomo, 2016 ) or optimize SAS satisficement ( Letier and van

amsweerde, 2004; Yang et al., 2017 ). However, Providentia
ocuses solely on NFR/FR dependencies to optimize FR and NFR

atisficement in an SAS without prior knowledge of system per-

ormance that most probabilistic methods require. Furthermore,

rovidentia does not use early-phase requirements engineering
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r high-level abstraction ( Dalpiaz et al., 2013; Mylopoulos et al.,

992 ), but rather focuses on a run-time model used by an SAS. 

Non-functional requirements. Other techniques have been in-

roduced to quantify NFRs, generally representing NFRs as soft

oals ( Yrjönen and Merilinna, 2009; Kobayashi et al., 2016; Ya-

amoto, 2015 ). Although both the RDM and SVS case studies use

he KAOS goal modeling framework, Providentia is indepen-

ent of any framework (e.g., NFR Framework, iStar, and KAOS). In

ontrast to modeling NFRs as soft goals, the weighted approach

nables greater flexibility for an SAS to use in finding an op-

imal reconfiguration strategy at run time. Salehie et al. use a

oal-Action-Attribute Model (GAAM) and an automated weight-

ng scheme called Analytic Hierarchy Process to prioritize NFRs

 Salehie and Tahvildari, 2012 ). However, priorities may shift due

o uncertainty and requirement interactions at run time. There-

ore, Providentia uses a genetic algorithm to optimize goal and

eight selection instead of prioritization to make the goal model

ore robust to uncertainty at run time. Contributing work has de-

omposed NFR behaviors into monitored patterns rather than ex-

licit requirements in a goal model ( Supakkul et al., 2010 ) and

sed quantifiable metrics to represent NFRs separately from the FR

oal model Sykes et al. (2010) . Providentia monitors require-

ents at run time and does not separate NFRs from the goal model

f FRs, as separating NFRs and FRs may prevent the requirements

ngineer to identify cross-cutting concerns in NFRs. 

. Conclusion 

This paper described Providentia , a design-time approach

o automatically quantify NFRs at run time. Providentia uses

 genetic algorithm to determine an optimal weighting scheme of

Rs to describe each NFR, where optimal results yield the highest

verall fitness. To illustrate the effectiveness of Providentia , we

sed an industry-provided RDM application that distributes mes-

ages across a network while experiencing random sources of un-

ertainty. We extended previous work ( Bowers et al., 2018 ) to use

 second case study to evaluate the effectiveness of the technique

n a different domain. 

To further improve Providentia , we incorporated SAW to op-

imize the weighting scheme of the fitness subfunctions for both

ase studies. Experimental results suggest that the Providentia -
ptimized systems are more robust against system and environ-

ental uncertainty and fulfills its requirements to a higher degree

hen compared to the systems without Providentia . 
Future directions for this research include extending the

rovidentia search procedure to execute at run time, apply-

ng both techniques to a real-world cyber-physical system, and

valuating other search techniques that may better handle com-

eting concerns in fitness calculation than a linear-weighted sum

e.g., multi-objective optimization). We also intend to work to-

ards open-sourcing the RDM and SVS applications, respectively. 
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