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In general, a system may be subject to a combination of functional requirements (FRs) that dictate be-
havior and non-functional requirements (NFRs) that characterize how FRs are to be satisfied. NFRs also
introduce cross-cutting concerns that may be difficult to predict, where the degree of satisfaction (i.e.,
satisficement) of one NFR may be impacted by the satisficement of one or more FRs/NFRs. In particular,
self-adaptive systems (SASs) can modify system configurations or behaviors at run time to continuously
satisfy FRs and NFRs. This paper presents Providentia, a search-based technique to optimize the sat-
isficement of NFRs in an SAS experiencing various sources of uncertainty. Providentia explores differ-
ent combinations of weighted FRs to maximize NFR/FR satisficement. Experimental results suggest that
Providentia-optimized goal models significantly improve the satisficement of an SAS when compared
with manually- and randomly-generated weights and subgoals. Additionally, we apply a hyper-heuristic
(Providentia-SAW) to balance the contribution of NFRs, FRs, and the number of adaptations and fur-
ther improve the Providentia technique. We apply Providentia and Providentia-SAW to two
case studies in different application domains involving a remote data mirroring network and a robotic
vacuum controller, respectively.

© 2019 Elsevier Inc. All rights reserved.

1. Introduction

A self-adaptive system (SAS) provides adaptation strategies for
performing reconfigurations at run time to address unexpected is-
sues that arise as a result of uncertainty (e.g., adverse environmen-
tal conditions or unanticipated issues in the system itself) (Kephart
and Chess, 2003; McKinley et al., 2004). For example, a smart
vacuum can be modeled as an SAS, where a reconfiguration is
modeled as updating the cleaning path or navigation strategy as
the vacuum encounters an obstacle, such as a chair. Each recon-
figuration performed by the system can incur a cost (e.g., com-
putation time, memory resources, etc.) associated with initializ-
ing and performing the adaptation. The SAS will use these adap-
tation strategies to select an optimal configuration that enables
requirements to be continuously satisficed (i.e., degree of satis-
faction) (Chung et al., 2000). Generally, an SAS is governed by
functional requirements (FRs) that focus on a specific function or
feature of the system and can be mathematically quantified to
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monitor satisficement (van Lamsweerde, 2009). FRs in a smart vac-
uum may include maintaining battery power above 5% or avoiding
obstacles detected by a sensor. Introducing non-functional require-
ments (NFRs) makes the adaptation selection process more difficult
as NFRs specify properties and/or characteristics about system op-
erations, tend to be qualitative, and may not be easily mathemat-
ically quantifiable (e.g., specifying resiliency and efficiency) (van
Lamsweerde, 2009; Yrjonen and Merilinna, 2009). An example NFR
for a smart vacuum SAS may be to optimize performance by clean-
ing as much dirt as quickly as possible, in contrast to an FR that
mandates the vacuum to clean at least 50% of the room. Quan-
tifying NFRs often relies on domain knowledge and may not be
optimal given the changing environmental conditions that an SAS
must address (Yrjonen and Merilinna, 2009). Therefore, this paper
describes Providentia and Providentia-SAW, search-based
techniques performed at design time that automatically determine
an optimal set of FRs to support each NFR in an SAS.!

' A preliminary version of Providentia was presented at SSBSE
2018 (Bowers et al., 2018).


https://doi.org/10.1016/j.jss.2019.110497
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2019.110497&domain=pdf
mailto:kmlabell@oakland.edu
https://doi.org/10.1016/j.jss.2019.110497

2 K.M. Bowers, E.M. Fredericks and R.H. Hariri et al./The Journal of Systems and Software 162 (2020) 110497

Current techniques to satisfy NFRs in SASs do not offer concrete
numerical values to be evaluated at run time. In the KAOS goal
modeling framework, NFRs are incorporated as behavioral or soft
goals (van Lamsweerde, 2009). A KAOS soft goal describes prefer-
ences of system behaviors that tend to be qualitative in nature,
thereby making the determination of an optimal reconfiguration
strategy more challenging (van Lamsweerde, 2009). In contrast,
KAOS FRs can be quantified via utility functions and provide a
concrete numerical basis for comparisons between reconfiguration
strategies (Chung et al., 2000). NFRs in the iStar framework are
also modeled as soft goals and use the ++/+ or — — /— operators
to respectively indicate that an NFR makes/helps or breaks/hurts
an FR (Yu, 1997). The iStar operators are also qualitative and can
be challenging to use in an SAS, as qualitative descriptions are not
necessarily as easy to use when making an adaptation compared
to quantitative descriptions. Similar to Providentia, the Ana-
lytic Hierarchy Process (AHP) decomposes NFRs into one or more
weighted FRs using a prioritization schema (Salehie and Tahvil-
dari, 2012). However, prioritizations in an SAS may change dras-
tically or even be inapplicable at a given instance in time (e.g.,
most or all requirements have equal priority) as the system expe-
riences various forms of uncertainty due to changing environmen-
tal and system conditions. In a smart vacuum SAS, environmental
uncertainty can be described as the positioning of obstacles in a
room, stairs or other changes in elevation, the amount of dirt to
be cleaned, and the number of water puddles to avoid. Uncertainty
with regard to system conditions relates to sensor failures, damage
that occurs in an obstacle collision, and motor degradation in the
wheels. Each of these conditions are subject to change and the vac-
uum must be able to satisfy its requirements for each combination
of uncertainties.

This paper describes Providentia (Bowers et al.,, 2018) and
Providentia—-SAW (an extension), two techniques that address
the challenges of quantifying and analyzing NFRs at run time in
SASs. We introduce Providentia within the context of SASs to min-
imize the number of reconfigurations performed and achieve op-
timal weighted combinations that maximize requirement satis-
ficement. Non-SASs can also apply Providentia to obtain optimal
weighted combinations for each NFR given that the utility func-
tions are adjusted accordingly. However, the effectiveness of Prov-
identia is limited in non-SASs as the system configurations are
static and cannot be reconfigured at run time. Therefore, we limit
our scope to SASs. Providentia is a design-time technique that
takes into account uncertainty from the environment and the sys-
tem itself and optimizes FR/NFR relationships, where each rela-
tionship contributes to quantifying NFR objectives at run time.
Each FR is associated with a utility function that specifies a math-
ematical expression of requirement satisficement (Chung et al.,
2000). Each NFR comprises a combination of one or more FRs us-
ing a linear-weighted sum to indicate the relative impact that an
FR has in contributing to the satisficement of the NFR’s objec-
tives (Salehie and Tahvildari, 2012). For example, the NFR to maxi-
mize performance uses four FRs (i.e., Achieve 50% clean, Achieve
cleaning efficiency, Achieve cleaning effectiveness, and Maintain
safety) to represent performance objectives that might otherwise
be more difficult to quantify. Providentia explores different
combinations of weights at design time to find an optimal linear-
weighted expression that makes the system more robust to vari-
ous forms of uncertainty at run time. Providentia—-SAW, in con-
trast, is a hyper-heuristic (Burke et al., 2003) approach to adjust
the weights of the linear-weighted sum to respond to changing en-
vironmental conditions.

Providentia is a search-based evolutionary technique that
assesses the system’s run-time behavior via an executable sys-
tem specification that is subjected to randomly-generated sources
of uncertainty. The search process identifies optimal goal model

configurations, namely the set of FRs and their corresponding
weights for a given NFR, to maximize FR/NFR satisficement.
Providentia uses a genetic algorithm (Holland, 1992) as a
search heuristic, where the search space is the weight of each FR
set for a given NFR, and the output is a set of optimal weight
assignments that results in the highest satisficement of the NFR
when faced with uncertainty. The optimal weight assignments de-
termined by Providentia are then applied to the SAS at run
time. By evaluating traditionally soft goals with FR metrics dur-
ing execution, the SAS is able to perform online reconfigurations
in response to both NFR and FR objectives, where traditionally only
FR objectives are mainly considered. Furthermore, the SAS can per-
form better at run time by optimizing the weighted contributions
of FRs to each NFR, as a requirements engineer may not be able to
foresee the impact of random sources of uncertainty when deter-
mining the weight assignments at design time.

Since it may be difficult to achieve an optimal weighting
scheme between NFRs, FRs, and the number of adaptations, this
paper extends Providentia Bowers et al. (2018) by introducing
a stepwise adaptation of weights (SAW) hyper-heuristic (Craenen
and Eiben, 2001; Eiben and van der Hauw, 1997; 1998) to optimize
the overall fitness value of the SAS for a given set of environmental
conditions. Rather than manually selecting weights for the over-
all fitness function of the system, either according to preference
or empirical evidence, Providentia—SAW more accurately deter-
mines an optimal set of weights that better guide Providentia’s
search procedure. As Providentia determines the optimal set of
FRs and the weighting scheme for each NFR, Providentia-SAW
runs in tandem to determine the weights assigned to balance NFR
fitness values (i.e., satisficement), FR fitness values, and the num-
ber of adaptations to yield an optimal overall fitness value. Note,
the term weights for Providentia apply to the NFR utility func-
tions, whereas Providentia-SAW weights apply to the fitness
sub-functions that comprise the Providentia genetic algorithm.

We illustrate the effectiveness and domain independence of
Providentia and Providentia-SAW with two case stud-
ies: a remote data mirroring (RDM) network and an intelligent
robotic vacuum. The RDM is an industry-provided application that
replicates and disseminates messages to each RDM within the
network (Ji et al, 2003; Keeton et al., 2004). The RDM per-
forms dynamic reconfigurations in response to uncertainty due
to dropped or delayed messages, sensor noise, and unexpected
server and network link failures. Results from our preliminary
work (Bowers et al, 2018) have shown that Providentia-
optimized goal models result in significantly higher fitness values
compared to goal models with manually- and randomly-assigned
FR weights. Furthermore, results also indicated that the number
of FR violations was significantly reduced when Providentia
was used. The second case study of a smart vacuum system (SVS)
demonstrates the application of Providentia in a different do-
main. The SVS is an autonomous robotic vacuum modeled as an
SAS and tasked with cleaning a given environment, where adapta-
tions are performed at run time to switch between different con-
figuration modes (Bencomo et al., 2010; Bencomo and Belaggoun,
2013). Experimental results suggest that the SVS goal model opti-
mized with Providentia performs better than SVS goal models
with manually- and randomly-selected FR weights. Finally, results
from both the RDM and SVS case studies indicate that the overall
fitness can be further improved with Providentia-SAW.

Extensions. This paper extends an earlier description of the
Providentia technique along several dimensions. First, we in-
troduce Providentia—-SAW that makes use of a second level of
abstraction to explore the trade-offs between non-functional, func-
tional, and adaptive requirements. Then we apply Providentia
to a second case study, an autonomous robotic vacuum (SVS), to
further demonstrate the technique’s effectiveness in a different
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application domain. Providentia—-SAW is also applied to this
second case study. Finally, this paper includes additional details
about the overall techniques and expands the related work discus-
sion.

The remainder of this paper is organized as follows.
Section 2 provides relevant background information on SASs,
the RDM and SVS, goal modeling, NFRs, utility functions, and
genetic algorithms. Section 3 presents the Providentia ap-
proach and introduces the integration with Providentia-
SAW. Section 4 provides the experimental results of applying
Providentia and Providentia-SAW to the RDM and SVS ap-
plications, respectively. Following, Section 5 presents a discussion
of the results and threats to validity. Section 6 overviews the work
related to Providentia and Providentia-SAW, and finally,
Section 7 summarizes the findings and overviews future work.

2. Background

This section provides relevant background information on SASs,
the case studies, NFRs, utility functions, and genetic algorithms.

2.1. Self-adaptive systems

The explosion of the number of possible combinations of sys-
tem and environmental parameters often inhibits an engineer’s
ability to fully enumerate each combination (Cheng et al., 2009a;
Whittle et al., 2009). System requirements and objectives may also
change following deployment, potentially requiring numerous soft-
ware updates or patches. An SAS provides an approach for enabling
continuous requirements satisfaction by dynamically adapting the
system’s configuration and/or behavior at run time (McKinley
et al, 2004; Oreizy et al., 1999; Neema et al., 1999). As such,
the RDM and SVS applications has been modeled as SASs to
address uncertainty in the environment and the system itself
(Neema et al., 1999).

Uncertainty. Given the exponential number of system and en-
vironmental combinations (Cheng et al, 2009a; Whittle et al.,
2009), coupled with the possibility that software requirements
and/or models will change following deployment (potentially re-
quiring new software or bug fixes), it is difficult to accurately pre-
dict or model all situations an SAS may face throughout its life-
time. An SAS provides an approach for continuous requirements
satisfaction by enabling self-reconfiguration at run time to miti-
gate such issues (McKinley et al., 2004; Oreizy et al., 1999). SASs
are generally guided by a run-time feedback loop such as MAPE-K,
comprising monitoring, analyzing, planning, and executing compo-
nents, linked together by common knowledge of the system and its
elements (Kephart and Chess, 2003). This feedback loop enables an
SAS to change its configuration and/or its behavior, at run time, to
better mitigate current operating conditions or manifested uncer-
tainties.

While many forms of uncertainty exist (Li et al., 2013), we fo-
cus on known unknowns and emergent behaviors/feature interactions.
Known unknowns tend to deal with knowledge of the system'’s op-
erating conditions, where data may change unexpectedly, be in-
accurate, or be in an unanticipated state (Chua Chow and Sarin,
2002; Esfahani et al, 2011). Emergent behaviors/feature interac-
tions occur when multiple subsystems interact, introducing unex-
pected or possibly dangerous new behaviors that were not explic-
itly considered at design time (Keck and Kuehn, 1998).

Requirements monitoring. While requirements monitoring is not
specific to the SAS domain, monitoring does feature prominently
in the MAPE-K loop for providing feedback to the SAS adapta-
tion engine (Kephart and Chess, 2003). Specifically, an SAS that
monitors requirements can self-reconfigure in the event that a re-
quirement is violated or unsatisfied. To quantify requirements at

run time, utility functions are often used to provide a mathemat-
ical quantification (Ramirez and Cheng, 2011) that indicates the
degree to which requirements are satisfied. The Rainbow frame-
work uses utility functions at an architectural level (Garlan et al.,
2004) and was our initial inspiration for leveraging utility func-
tions, however in this work, we apply them at the requirements
level (Ramirez and Cheng, 2011).

2.2. Case studies

This section provides an overview of the two case studies used
to demonstrate the Providentia technique: the RDM and the
SVS.

2.2.1. Remote data mirroring

RDM is a technique to protect data by minimizing data
loss and maximizing the availability of data Ji et al. (2003);
Keeton et al. (2004). The RDM technique disseminates data repli-
cates to other servers (i.e., data mirrors) in physically remote loca-
tions. Each network link between data mirrors is associated with
an operational cost. Furthermore, each link has a throughput, la-
tency, and loss rate to collectively measure the performance and
reliability of the RDM as a whole. The RDM must optimize the
number of links to send messages between data mirrors efficiently
without exceeding the budget.

Requirements may become unsatisfied in the face of various
forms of uncertainty, such as unexpectedly dropped or delayed
messages, random network link or data mirror failures, and noise
in the network links or data mirror sensors. An RDM can be mod-
eled as an SAS (Ramirez et al., 2009), where reconfigurations can
change the network topology (e.g., a minimum spanning tree or
a redundant topology) as well as the manner of data propagation
among nodes to ensure that requirements are continuously satis-
fied. The reconfiguration strategies involve modifying the status of
data mirrors impacted by uncertainty. The status of a data mirror
can be active (i.e., can send and receive messages), passive (i.e.,
cannot send messages but can receive messages), or quiescent (i.e.,
cannot send or receive messages).

2.2.2. Smart vacuum system

Smart vacuums such as iRobot’s Roomba? are available in the
consumer market to clean dirt by navigating across a room and
around obstacles autonomously without guidance from the user.
The SVS is an open-source simulation of a Roomba. The SVS oper-
ates by using input from sensors (e.g., bumper sensors and motor
sensors) to plan a path in a given area and follow the path to clean
its local environment. For the purposes of our simulation, the SVS
contains bumper sensors to detect when the robot collides with
an item (e.g., a wall or leg of a chair), cliff sensors to prevent the
robot from damaging itself by falling down a flight of stairs, and
motor sensors to provide feedback on the movement of the robot
(e.g., velocities of the wheels and power modes for the suction). A
controller uses the sensor data to plan an optimal cleaning path
and minimize battery consumption.

The SVS can be modeled as an SAS to reconfigure multiple
modes during run time when faced with various forms of uncer-
tainty (e.g., noisy sensor data, amount and location of dirt within
a room, obstacle encounters, etc.) (Bencomo et al., 2010; Bencomo
and Belaggoun, 2013; Neema et al, 1999). For example, the SVS
can change the pathfinding algorithm, power modes with regard
to movement and suction, and obstacle avoidance measures at run
time to maintain requirements satisfaction.

2 See http://www.irobot.com.
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Fig. 1. RDM goal model.

2.3. Goal-oriented requirements modeling

Goal-oriented requirements modeling (GORE) is an approach
that uses goals to model the behaviors of the system (van Lam-
sweerde, 2009). A goal is a desired system behavior achieved
through interactions with agents, where an agent is a system com-
ponent that performs specific actions according to goals. A require-
ment is a goal that interfaces with a single agent. An expectation is
a requirement where the agent is in the environment, compared to
agents within the system itself. Requirements and goals can be fur-
ther classified as functional and non-functional. FRs specify what
services are to be provided while NFRs specify how the FRs are to
be satisfied.

GORE uses a directed acyclic graph, where each node represents
a goal or requirement and each edge represents a goal/requirement
refinement (van Lamsweerde, 2009). KAOS and iStar extend GORE
by adding additional goal refinements (van Lamsweerde, 2009; Yu,
1997; Dardenne et al., 1993). Fig. 1 presents a KAOS goal model of
the RDM application, and Fig. 2 presents a KAOS goal model of the
SVS application.> KAOS uses AND- and OR-refinements, where an

3 This work does not use the KAOS formal refinement infrastructure.

AND-refined goal is satisfied only when all of its subgoals are satis-
fied (e.g., Goal (A) in Fig. 1 is satisfied only if both Goals (B) and (C)
are also satisfied) and an OR-refined goal is satisfied when at least
one of its subgoals is satisfied (e.g., Goal (G) in Fig. 1 is satisfied if
either Requirements (Q) or (R) are satisfied). Furthermore, KAOS
FRs can be classified as invariant or non-invariant. An invariant
goal, denoted by the keywords “Maintain” or “Avoid,” must always
be satisfied. If any invariant goal is unsatisfied then the system
fails. For example, the safety-related goals in Fig. 2 are denoted as
invariant goals to emphasize the safety of the SVS. A non-invariant
goal, denoted by the keyword “Achieve,” may be temporarily un-
satisfied due to uncertainty. For example, the path planning goals
and requirements of the SVS in Fig. 2 (e.g., Goals (C), (H), (I), (0),
(P), and (Q)) are non-invariant goals to demonstrate that the SVS
may temporarily have a less-than-optimal path to clean a room.

2.4. Non-functional requirements

NFRs specify quality constraints on a system, such as perfor-
mance or reliability (Chung et al, 2012), and are often difficult
to quantify given their subjective nature. Furthermore, NFRs may
introduce cross-cutting concerns given the broad impact on the
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overall system (Chung et al., 2012). For example, the RDM may
have one NFR to maximize performance that keeps as many data
mirrors in an active state as long as possible. However, there may
be a second NFR to minimize power consumption that puts data
mirrors in a quiescent state, directly contradicting the performance
NFR. Such cross-cutting concerns introduce further complexity in
measuring the satisfaction of NFRs. Although other approaches to
quantify requirement satisficement have been introduced (Ramirez
and Cheng, 2011; Garlan et al.,, 2004), such models often require

detailed knowledge of both the system and its environment that
may not always be possible with the wide impact of NFRs.
Therefore, Providentia uses FRs already defined as part of
the system to quantify NFR objectives. Fig. 3 shows a sample NFR
for the RDM application to Minimize [Power], where many
factors may impact power consumption (e.g., Goals (A), (E), (I), (V),
and (W) from Fig. 1). For the purposes of this paper, Fig. 3 is shown
separately from Fig. 1 but is intended to be an extension of the FR
goal model rather than a separate NFR goal model. We use NFRs
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to represent all non-functional goals and requirements and FRs to
represent all functional goals and requirements. The cloud node
in Fig. 3 represents a single NFR. Each parallelogram node repre-
sents a goal or requirement/expectation that a requirements en-
gineer designates to have an impact in the satisficement of NFR7.
Each edge depicts the relative contribution, or weighted sum value,
of each FR to NFR7. Note that the sum of the weights is 1.0.

Similarly, Fig. 4 shows a sample NFR for the SVS application to
Minimize [Cost], where cost refers to avoiding damage to ob-
stacles (e.g., damaging the legs of a dining room chair) and avoid-
ing damage to the smart vacuum itself (e.g., hitting an obstacle
that damages a sensor or falling off a ledge).

2.5. Utility functions

A utility function can be used to calculate the satisficement
of FRs in SASs (Ramirez and Cheng, 2011; deGrandis and Valetto,
2009; Walsh et al., 2004). The utility function for a specific, single
requirement is evaluated and returns a utility value. A utility value
of 1.0 indicates the highest degree of satisfaction and a utility value
of 0.0 indicates the lowest degree of satisfaction. Utility values be-
tween 0.0 and 1.0 indicate the degree of satisficement for a given
requirement (Chung et al., 2000). Eq. (1) shows a utility function
associated with Goal (V) from the RDM application in Fig. 1, where
n indicates the number of passive data mirrors.

1.0 ifn==0
util(goaly) = { f(x) if 0 <n < 20% of total nodes (1)
0.0 if n > 20% of total nodes

Goal (V) is considered to be completely satisfied if no data mir-
rors are in a passive state (i.e., can receive but not send messages)
and evaluates to a utility value of 1.0. Goal (V) completely fails if

Weighted
decomposition

ONFR —

Requirement /
Expectation

0.15

(D) (F)

more than 20% of all data mirrors are in a passive state. Other-
wise, if the number of passive data mirrors is greater than 0% but
less than 20%, then the f{x) value is linearly determined. For exam-
ple, if 10% of the data mirrors are in a passive state, then Goal (V)
will have a utility value of 0.5.

2.6. Genetic algorithms

A genetic algorithm is a heuristic used to search a space of so-
lutions to find an optimal result (Holland, 1992). The evolutionary
process of a genetic algorithm generates a population of candidate
solutions, performs crossover and mutation operations, and evalu-
ates the fitness of each solution within the population. The evolu-
tionary process repeats until the specific number of generations, or
iterations, is reached. We next describe each of these activities.

2.6.1. Population generation

A genetic algorithm may start with a randomly-generated set,
or population, of candidate solutions in the first generation. The
population of individuals represents the number of candidate so-
lutions to be evaluated through the evolutionary process. For each
generation, evolutionary operators such as crossover, mutation, and
selection are applied to each individual to generate new members
of the population and evaluate fitness. Ideally, the most fit individ-
uals are preserved during the evolutionary process, with the best
performing individual being considered an optimal result.

2.6.2. Crossover and mutation

Crossover and mutation are evolutionary operators that gener-
ate new individuals (i.e., children) during the evolutionary process.
While there are many different types of crossover and mutation,
we use two-point crossover and single-point mutation. Two-point
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Fig. 4. SVS NFR1: Minimize [Cost].
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crossover selects two individuals, either randomly or as a result
of tournament selection (Holland, 1992), and then selects two ran-
dom indices to denote cut points. Two new children are then gen-
erated by combining the genetic material from both parents, where
genomes are swapped between the two cut points. Single-point
mutation selects a single index from a candidate parent and then
randomly mutates the gene at that location, creating a new child.
Ideally, crossover preserves the best characteristics of its parents,
and mutation introduces diversity to ensure that the search proce-
dure does not become “stuck” at a local optimum.

2.6.3. Fitness evaluation

Populations are evaluated according to fitness functions, where
each individual within a population is assigned a fitness value. Fit-
ness values determine those individuals that performed better than
others. Often, genetic algorithms use a form of tournament selec-
tion where a specific number of the highest performing individuals
are used in the next generation. In this way, the genetic algorithm
is guided toward an optimal value by carrying over the best solu-
tions through each generation but explores different combinations
via crossover and mutation to obtain a global optimal solution.

2.6.4. Hyper-heuristic algorithms

Hyper-heuristic algorithms are used to search a space of meta-
heuristics Burke et al. (2003). Rather than exploring the problem
space for a solution (i.e., a meta-heuristic), hyper-heuristics search
among all the solutions to the problem space. Hyper-heuristics op-
erate at an abstraction level above meta-heuristics (Kumari and
Srinivas, 2013). For example, the SVS faces a variety of problems
(e.g., cliff detection, object collision, water spots to avoid, etc.).
Providentia is a meta-heuristic that searches for the most ef-
fective solution (i.e., combination of FR weights for each NFR) to
satisfy the system requirements to the highest degree. However,
satisfying the system requirements to the highest degree is a bal-
ance between satisfying FRs, NFRs, and minimizing the number of
adaptations performed. Therefore, we apply a hyper-heuristic to
search for a solution among the solutions that maximizes overall
system satisficement. For the purposes of this paper, we classify
Providentia-SAW as a hyper-heuristic that further improves the
Providentia meta-heuristic genetic algorithm.

3. Approach

This section introduces Providentia, our technique that an-
alyzes the weighted contributions of FRs to each NFR in the SAS
requirements specification and/or goal model. Providentia de-
termines an optimal combination of weights that yields the highest
overall satisfaction of the entire goal model (i.e., including NFR and
FR satisficement). The Providentia technique is intended to be
an add-on feature to make a system more robust to uncertainty.
Providentia assumes that the system is fully operational and
contains models of FRs, NFRs, and mechanisms to measure how
well those requirements are being satisfied.

The following sections outline the base technique using the
RDM case study (Bowers et al., 2018) as a motivating example and
extends previous work to include the SVS case study. First, we dis-
cuss Providentia with respect to expected inputs and outputs.
Next, we describe the process of automatically optimizing the in-
put goal model using a genetic algorithm. Finally, we introduce the
Providentia—-SAW technique to balance the satisficement of FRs,
NFRs, and the number of adaptations.

3.1. Providentia: assumptions, inputs, and outputs

Providentia requires four inputs: (1) a goal model of the
SAS, consisting primarily of FRs but may include NFRs defined by

a requirements engineer,* (2) a list of NFRs with a set of FR sug-
gestions for each, (3) a set of utility functions to measure the
satisficement of FRs, and (4) an executable specification with de-
fined sources of uncertainty (for the RDM and SVS case studies,
we use environmental and system uncertainty). Each of these in-
puts are expected to be previously defined by one or more engi-
neers. The sources of uncertainty are parameters (e.g., sensor val-
ues, number of dropped messages in a network, etc.) whose val-
ues change during runtime that may cause the input FRs and NFRs
to become unsatisfied, and therefore trigger a reconfiguration. The
Providentia technique explores interactions between require-
ments as well as system behavior while subjected to uncertainty
that an engineer may not be able to foresee when designing the
system. The output of Providentia is a goal model with op-
timized FR/NFR relationships. Note that the Providentia tech-
nique is only as good as the accuracy of the input data (i.e., we
assume the set of FRs for a given NFR is accurate and that the ex-
ecutable specification is not missing any sources of uncertainty).

Goal model. A KAOS goal model provides Providentia with
a specification of the FRs and NFRs in the SAS. For example,
Figs. 1 and 2 demonstrate the RDM and SVS goal models, respec-
tively.

Utility functions. Each FR in the input KAOS goal model shall
have a corresponding utility function to evaluate SAS requirements
at run time (deGrandis and Valetto, 2009; Walsh et al., 2004). A
utility function maps the FR to a utility value within [0.0, 1.0] to
represent the degree to which the FR is satisfied. A requirements
engineer is expected to provide a set of utility functions that corre-
spond to the input goal model. A sample utility function is demon-
strated in Eq. (1).

Applicable set of FRs mapped to NFRs. A requirements engineer
must provide, in addition to the goal model, a set of FRs that may
have an impact in the satisficement of an NFR, with the set of NFRs
comprising the non-functional properties intended for the system.
For example, Fig. 3 for the RDM case study shows an example of an
applicable set of FRs, namely Goals (A), (E), (I), (V), and (W), that
seem most relevant in minimizing power consumption. However,
the requirements engineer may consider expanding the set of five
FRs to include Goals (B), (K), (M), (0), (P), and (U) from Fig. 1.

Executable specification. An executable specification or simula-
tion is required in order for Providentia to evaluate the overall
fitness value of the SAS and determine an optimal combination of
FR/NFR weights. We use a simulation of both the RDM and SVS
case studies. The RDM is an industry-provided simulation shared
with the authors and the SVS is an ongoing part of the authors’ re-
search lab. The specification provides the utility values to measure
how well the requirements were met at a given instance in time
during the simulation so that Providentia can determine where
to further improve requirement satisficement. The executable spec-
ification should also include known sources of uncertainty antici-
pated by the requirements engineer, both in the environment and
the system itself (e.g., liquid spills, sensor noise, etc.). This infor-
mation better guides the search process at design time and makes
the system more robust to known and unknown sources of un-
certainty at run time. Moreover, the executable specification must
include adaptation mechanisms for the NFRs, should they be vio-
lated. The requirements engineer is expected to identify and im-
plement the adaptation mechanisms. Providentia does not change
any reconfigurations but rather tries to minimize the number that
occur, as each system reconfiguration incurs a cost (e.g., computa-
tion time, memory used, etc.). For example, if an NFR for maximiz-
ing performance is violated, then a reconfiguration strategy (e.g.,

4 For the purposes of this paper, the term “requirements engineer” refers to the
authors who performed the manual choices for the NFRs.
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Fig. 5. Data flow diagram of Providentia technique (Bowers et al., 2018).

reconfiguring the RDM network overlay) must be defined in addi-
tion to those adaptations already defined for FR violations.

The executable specification acts as a simulation environment
where the system is subjected to various randomized forms of
uncertainty (e.g., where the RDM experiences a random number
of dropped messages, or random connections are lost). The exe-
cutable specification is not limited to any particular tool, program-
ming language, or environment. Providentia observes how the sys-
tem behaves and the degree to which FRs and NFRs are satisfied
while experiencing adverse conditions. Providentia takes note of
the weighted combinations that fulfill both FRs and NFRs to the
highest degree and returns the weight assignments. The executable
specification can be used as input to Providentia if the speci-
fication effectively simulates system behaviors with internal and
environmental uncertainty.

Output. The output of Providentia is (1) an NFR goal model
integrated with the input FR goal model, (2) for each NFR, a set
of FRs that collectively contribute to the satisficement of the NFR,
and (3) an optimal weight value assigned to each FR. Note that a
weight value of 0.0 for an FR indicates that the FR did not at all
contribute to the satisficement of the NFR. For example, the ini-
tial set of applicable FRs given for NFR7 from the RDM applica-
tion in Fig. 1 were Goals (A), (B), (E), (I), (K), (M), (0), (P), (U), (V),
and (W). Providentia determined the most optimal weights for
each goal respectively to be as follows: B: 0.237144, E: 0.241000, K:
0.007185, M: 0.373794, 0: 0.049442, U: 0.067218, V: 0.024216. The
weight assignments to Goals (B), (E), and (M) indicate that main-
taining costs below the budget, keeping the minimum number of
links active, and achieving an accurate measure of the workload
most significantly impact the overall power consumption of the
RDM. Goals (K), (0), (U), and (V) minimally impacted the satisfac-
tion of power requirements. Goals (A), (E), (I), (P), and (W) have
weights 0.0 as they did not contribute to minimizing power con-
sumption. The utility function for NFR7 is calculated by summing
the products of the weight and FR utility value for each nonzero
FR.

3.2. Providentia technique

This section describes the details of Providentia, compris-
ing a genetic algorithm Holland (1992) to search for optimal FR
weights that contribute to each NFR in an SAS. Fig. 5 illustrates a

data flow diagram of the Providentia technique with each step
further described in detail.

(1) Define solution structure. Each of Providentia’s candidate
solutions (i.e., the weights of the FRs associated with an NFR) is
encoded in a genome shown in Fig. 6. The genome as a whole con-
sists of all NFRs in the SAS. For example, the RDM case study has
7 NFRs. A single NFR is referred to as a sub-genome, denoted by
the bold border in Fig. 6. A sub-genome is broken down into genes
(i.e., corresponding weights for one NFR), where a single gene is
a weight corresponding to a single FR. The sum of weights within
one sub-genome (i.e., within one NFR) must be equal to 1.0.

(2) Configure search process. The search process of a genetic al-
gorithm is controlled by the population size, number of genera-
tions, crossover rate, mutation rate, and selection rate. Based on
empirical evidence on convergence rates Bowers et al. (2018), we
specify the following configuration parameters: population size 20,
50 generations, 25% crossover rate, 50% mutation rate. With re-
gard to the selection rate, we use the tournament selection ap-
proach Holland (1992) where the three individuals with the high-
est utility values become parents of the next generation. Larger
values for population and generation sizes were considered (e.g.,
25-50 population individuals and 50-100 generations) but optimal
convergence was discovered on average at the specified values.

(3) Evaluate NFR models. Once the search process has been ap-
propriately configured, each individual candidate solution is input
to the executable specification and evaluated to compare against
other individuals within the population. The overall fitness func-
tion for the SAS is shown in Eq. (2) and evaluates the satisfaction
of FRs, NFRs, and the number of adaptations (NA) into a single fit-
ness value.

FF {O{NI:R * FENpr + otpg % FFeg + ONA * FFNA iff invariants true

0.0 otherwise

(2)

Eq. (2) is a linear-weighted sum, where oy, opr, and ans
are further optimized by the Providentia-SAW technique
(Providentia-SAW is described in Section 3.3). The weights
must cumulatively sum to a value of 1.0. The terms FFygg and FFgg
represent fitness sub-functions. Note that if any invariant goals or
requirements are unsatisfied, then the system is considered to be
failed and evaluates its fitness value to be 0.0. Although many
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Fig. 6. Providentia sample genome.

other approaches exist to combine fitness sub-functions, we find
that a linear-weighted sum balances competing concerns between
requirement satisficement and adaptations adequately for this ex-
periment.

The fitness sub-function to evaluate the satisficement of NFRs
is shown in Eq. (3).

S INFRS utility_valuengg, 3

|NFRs| « timesteps (3)
The numerator in Eq. (3) represents the sum of utility values for all
NFRs in the SAS. For example, the RDM application contains seven
NERs, resulting in a numerator evaluation of: utility_valueypg, +
utility_valueygg, + --- + utility_valueyrg,. The denominator of
Eq. (3) is the number of NFRs in the SAS (e.g., seven for the RDM)
multiplied by the number of timesteps run in the executable spec-
ification.

The utility value calculation of each NFR from the numerator in
Eq. (3) is shown in Eq. (4), where n refers to the number of the
NFR (e.g., NFRq, NFR,, etc.).

|FRNFR, |
utility_valueypg, = Z utility_valuerg, * weightgp,
i=1

FEyrr =

(4)

Eq. (4) calculates a utility value for one NFR by evaluating the
utility function of each supporting FR (e.g., Eq. (1) supplied by the
input utility functions), multiplying the utility value with its cor-
responding weight, and then summing the results for all support-
ing FRs for a given NFR. The term weightrg, represents the weights
present in Providentia’s genes and is the focus of the tech-
nique’s optimization.

The fitness sub-function for the FFgz term from Eq. (2) is shown
in Eq. (5).

YIS utility_valuerg,

FFp = -
FR |FRs| * timesteps

(5)
Eq. (5) sums all of the utility values for the functional require-
ments and goals of the SAS in the numerator and divides by the
product of the number of FRs and the number of timesteps in the
executable specification.

Finally, the equation to minimize the number of adaptations
performed by the SAS is shown in Eq. (6), where |adaptations|
refers to the total number of reconfigurations performed by the
SAS and |faults| reports the total number of adverse conditions in-
troduced within the executable specification.

|adaptations|
| faults| ®)

Eq. (6) defines the term FFy4 from Eq. (2). A minimized number of
adaptations performed by an SAS reduces the overall disruption of
the system.

(4) Select NFR models. Providentia uses tournament selec-
tion to select the genomes with the highest fitness value among
k genomes to be used as a parent for the next generation. The
remaining individuals not chosen in the population are removed
from consideration.

(5) Generate NFR models. When the most fit individuals from the
population are selected, Providentia then performs crossover
and mutation to obtain new individuals for the following gener-
ation. Providentia uses two-point crossover that selects two

FRya=1.0—

points on a genome within an NFR (i.e., crossover does not oc-
cur between different NFRs) and swaps the genes with a sec-
ond genome, creating two new candidate solutions. Furthermore,
Providentia performs single-point mutation that selects a sin-
gle gene (i.e., FR weight) and randomly generates a value within
+ 20% of its original value. Note that although values are modified
via crossover and mutation, the weights must still be normalized
within a particular NFR/sub-genome.

Steps (3) - (5) are applied iteratively until the number
of generations is reached. When the genetic loop concludes,
Providentia returns a set of optimized weights of FRs for each
NFR.

3.3. SAW integration

This paper extends the original Providentia tech-
nique (Bowers et al, 2018) with SAW optimization (Eiben and
van der Hauw, 1998; van der, 1996) to explore a search space con-
taining an optimal weighting scheme that balances the competing
concerns between FR satisficement, NFR satisficement, and the
number of SAS adaptations. Our preliminary work used an empiri-
cally chosen weighting scheme where the terms from Eq. (2) were
set as follows: anpg = 0.375, apg = 0.375, and ans = 0.25. How-
ever, the chosen weights may not have considered all possible
values in the search space, given the uncertainty surrounding
an SAS in terms of its environment and configured parameters.
Therefore, we apply the hyper-heuristic SAW to gradually update
the weighting scheme in tandem with Providentia, denoted
as Providentia—-SAW, to explore how and whether overall SAS
fitness may be improved over the course of system execution.

Providentia uses the online SAW method of optimization
described in the original SAW paper (van der, 1996). Step (3) in
Fig. 5 is augmented with the SAW technique. Rather than randomly
generating the weights, a requirements engineer can provide ini-
tial values (i.e., seed) for Providentia—-SAW to use in the first
generation. The fitness sub-functions are evaluated every fifth gen-
eration and the sub-function with the lowest fitness value (i.e.,
in comparison to the other fitness sub-functions in the equation)
has its corresponding weight increased to guide the search process
for an optimal combination of weights. By increasing the weight
of the least fit sub-function, the search process ensures that the
weighting scheme balances all concerns appropriately to achieve
the highest overall fitness value. The generation number to evalu-
ate the fitness sub-functions (i.e., five) was determined empirically.
Other numbers, both higher and lower, were simulated, however
optimal results were obtained when evaluating every fifth gener-
ation. This generation value balances the competing concerns of
adapting too frequently, where the search space does not have
enough time to consider optimal solutions, and adapting too in-
frequently, where more optimal solutions are never explored.

4. Experimental results

This section describes the experimental setup and results for
both the RDM and the SVS case studies. The RDM is an industry-
provided case example and the SVS was created by the authors’
research lab. First, we introduce the experiment setup parame-
ters that we used and the types of adaptations performed for
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Table 1
RDM NFRs with sets of FRs and manually-derived weights.

NFR Set of FRs

NFR1: Maximize w, ®, ©, ®, ), @, W, (O, @),

[Reliability] 0.4, 0.2, 0.2, 0.0, 0.0, 0.1, 0.0, 0.1, 0.0,
m, O, R, (T, @O, V), W
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0

NFR2: Maximize w, ©, o, B, &, G, H, L, M,

[Throughput] 0.0, 0.6, 0.0, 0.0, 0.0, 0.1, 0.1, 0.0, 0.0,
m, @, ®, @, ®R), ), (O, O, (1,
0.0, 0.0, 0.0, 0.0, 0.1, 0.0, 0.1, 0.0, 0.0,
W)
0.0

NFR3: Maximize ©, O, W, (O, K, MW, @, G, @O,

[Speed] 0.2, 0.1, 0.3, 0.2, 0.0, 0.0, 0.0, 0.2, 0.0,
W, W
0.0, 0.0

NFR4: Maximize @, B, @, @, H, @

[System Security] 0.4, 0.2, 0.2, 0.1, 0.1, 0.0

NFR5: Maximize ©, @, M, @, R), ), (O, W

[Secure Communication] 0.5, 0.3, 0.1, 0.0, 0.0, 0.0, 0.0, 0.1

NFR6: Maximize ©, @, W, R), (T

[Message Security] 0.2, 0.2, 0.0, 0.3, 0.3

NFR7: Minimize w, ®, E), (O, &K, M, O, &, @©,

[Power] 0.3, 0.0, 0.1, 0.1, 0.0, 0.0, 0.0, 0.0, 0.0,
W, W
0.3, 0.2

each application. Next, we present our results for each application
to compare the performance of randomly-generated, manually-
selected, and Providentia-derived FR/NFR weights. We then de-
scribe how Providentia-SAW enabled further optimization to-
wards the satisficement of SAS requirements.

4.1. RDM study

This section describes the experimental setup and results of the
RDM application.

4.1.1. RDM experimental setup

The RDM application is modeled as a completely-connected
graph. Each node of the graph represents an RDM. Each edge of
the graph represents a network link. For each trial, system and en-
vironmental parameters were randomized based on a model previ-
ously presented by Ji et al. (2003) and Keeton et al. (2004). For ex-
ample, the randomized system parameters include a random num-
ber of RDMs (i.e., within [15,30]) and a random number of valid
messages (i.e., [100,200]) inserted into RDMs at random timesteps.
Each message is required to be replicated to all other RDMs. The
RDM simulation was performed over 300 timesteps. In addition to
the 23 FRs presented in Fig. 1, we also examine seven NFRs specific
to the RDM that are next presented in Table 1.

We compared and evaluated different combinations of FRs and
their supporting weights for every NFR. The seven NFRs were
derived using three different techniques: (1) FR weights gener-
ated by random search (Arcuri and Briand, 2011), (2) manually-
selected weights assigned by a requirements engineer, and (3)
Providentia-optimized weights. Note that although a require-
ments engineer initially selects a subset of FRs for each NFR,
all three techniques may disable (but not add) one or more FRs
by setting the corresponding weight to 0.0, effectively allowing
limited flexibility in the selection of FRs as well as the weight.
Table 1 shows the initial sets of FRs for each NFR chosen by a re-
quirements engineer with the manually-derived weights listed be-
low.

For instance, NFR6 uses the utility functions from Goals (C), (D),
(H), (R), and (T) to calculate its own utility function in aggregate.

Specifically, Eq. (7) demonstrates the utility function for NFR6:
util(NFRg) = ac = util(goalc) + oep * util(goalp)
+ oy = util(goaly) + ag = util(goalg)

+ oep * util (goaly) (7)

Each specified NFR has a similar utility function to determine
its utility value at run time. Note that Providentia optimizes
the o values on a per-NFR basis (i.e., each set of FR weights
is optimized by Providentia and normalized to ensure they
sum to 1.0 to ensure that the associated utility function is also
normalized). To support NFR feedback within the SAS decision
loop Kephart and Chess (2003), additional reconfiguration strate-
gies were implemented for the RDM, where the new reconfigu-
ration strategies were defined based on the requirements engi-
neer’'s knowledge of the system. For instance, reconfiguration as
a result of an NFR3 violation resulted in an internal search for a
new network overlay. Finally, we configured the genetic algorithm
as shown in Table 2.

Each of the parameters in the genetic algorithm were deter-
mined empirically. For example, population sizes of 10, 25, 50,
etc. were run in the simulation as well as other values for the
remaining parameters. Table 2 shows the values where the ge-
netic algorithm converged. Note that the population size (i.e.,
the number of individuals) combined with the number of gen-
erations results in the number of evaluations per experimental
replicate. Using the values presented in Table 2, each experi-
mental replicate evaluates 1000 individuals. To ensure statistical

Table 2

Configuration of Providentia genetic algorithm.
Parameter Value
Population size: 20
Number of generations: 50
Crossover rate: 25%
Crossover type: Two-point
Mutation rate: 50%
Mutation type: Single-point

Selection:
Stepwise adaptation of weights:

Tournament selection, k =3
Online, every 5th generation
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significance of our results, we performed 50 experimental repli-
cates, each of which was seeded differently. The p-value was calcu-
lated using the Wilcoxon-Mann-Whitney u-test by comparing the
results of (1) manually-selected weights vs. randomly-generated
weights, (2) Providentia-optimized weights vs. randomly-generated
weights, and (3) Providentia-optimized weights vs. manually-
selected weights. Manually selected weights indicate a single set
of weights chosen by engineers to best represent the contribution
of each FR to each NFR. The configurations for the genetic algo-
rithm shown in Table 2 produced the experimental results used in
evaluating Providentia and Providentia-SAW.

4.1.2. RDM experimental results

This section presents our results from investigating how NFRs
impact an SAS. Specifically, we examine how a set of FRs can con-
tribute to the satisfaction of NFRs that are then in turn incorpo-
rated into the SAS decision loop (Kephart and Chess, 2003) to sup-
port run-time reconfigurations. We compare and evaluate the im-
pact of applying automatically-selected Providentia FR weights
with manual and random selection, respectively. For this experi-
ment, all FR weights associated with each NFR are normalized to
1.0. For manual weight selection, we apply the weights as shown
in Table 1, where weights of 0.0 indicate that the related FR’s util-
ity function is not applied to the calculation of its associated NFR.

With respect to the fitness function in Eq. (2), we set anrgr =
0.375, apg = 0.375, and oy = 0.25, where these values were se-
lected based on empirical evidence.

For this experiment, we define two null hypotheses. First, H1,
states that “there is no difference in fitnesses achieved by a
Providentia-optimized goal model and those that are unop-
timized.” Second, H2, states that “there is no difference in fit-
nesses achieved by a Providentia-optimized goal model and
those manually optimized by a requirements engineer.”

Fig. 7 shows three boxplots for each NFR in the RDM with aver-
age fitness values calculated from randomly-selected FR weights,
manually-selected FR weights, and Providentia-optimized FR
weight selection. Fig. 7 demonstrates that Providentia can

NFR5 NFR6 NFR7

results Bowers et al. (2018).

significantly improve overall NFR fitness than those manually
selected by a requirements engineer or selected at random (p <
.05, Wilcoxon-Mann-Whitney u-test). Table 3 presents the average
utility values () and standard deviation (o) for each NFR, with
the optimal value highlighted in gray. These results suggest that
Providentia can improve overall NFR fitness when an SAS is
subject to uncertainty.

Providentia also enabled a significant decrease in the num-
ber of encountered FR violations in comparison to randomly- and
manually-defined FR weights (p < .05, Wilcoxon-Mann-Whitney u-
test), as shown in Fig. 8. As requirements violations tend to signify
a significant problem with a system, a reduction in run-time vio-
lations is an ideal result for an optimization procedure.

Given the results presented in Fig. 7, Table 3, and Fig. 8, we
can reject both H1y and H2y and accept our alternate hypotheses
that Providentia provides a significant improvement over man-
ual and random search.

We next describe the integration of SAW within Providentia
to provide further points of optimization.

Table 3

NFR average utility values and standard deviations Bowers et al. (2018).
NFR Random Manual Providentia
NFR1: Maximize w: 0654  p:0615 s 0.905
[Reliability] 0:0325 0:0.191 0:0.149
NFR2: Maximize w: 0.655 w: 0.666 w: 0.882
[Throughput] 0:0325 0:0262 0:0.153
NFR3: Maximize n: 0875  w:0.743  p: 0975
[Speed] 0:0207 0:0.148 0:0.085
NFR4: Maximize w: 0.802 wn:0.736  u: 0979
[System Security] 0:0273 0:0177 0:0.085
NFR5: Maximize u: 0.621 wn: 0742 u: 0925
[Secure Communication] ¢:0273 o0:0.191 o:0.146
NFR6: Maximize w0921 p: 0919  u: 0.980
[Message Security] 0:0.181 0:0.072 o:0.069
NFR7: Minimize w: 0.821 w: 0.758 wn: 0.926
[Power] 0:0270 0:0.172 0:0.188
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Fig. 8. FR violation experimental results Bowers et al. (2018).

4.1.3. RDM results with SAW integration

We now examine how the fitness function weights (a¢npr, Ofg,
and apy; c.f, Eq. (2)) impact overall fitness, as the weights were
initially selected based on empirical evidence and domain knowl-
edge Bowers et al. (2018). We apply SAW to dynamically adjust the
weights during execution (c.f, Section 3.3). For this experiment,
we executed Providentia with and without SAW applied. We
reuse the configuration of the genetic algorithm as presented in
Table 2. Moreover, SAW dynamically updates the weights of the fit-
ness function every fifth generation, where the poorest-performing
fitness subfunction’s weight is increased and the remaining sub-
function weights are normalized to sum to 1.0.

We define an additional null hypotheses for this experiment.
H3 states that “there is no difference between a Providentia-
optimized goal model with static fitness subfunction weights
and a goal model with dynamically-optimized fitness subfunc-
tion weights.” For this experiment, we reuse the static weights
defined in the previous section (i.e., anpg = 0.375, afpg = 0.375,
and apy = 0.25) as both our static weights and seed weights for
Providentia-SAW.

Fig. 9 presents two boxplots that show the fitness values
obtained from goal models optimized with Providentia and
Providentia-SAW, respectively. As this figure demonstrates,
applying SAW to Providentia results in higher fitness val-
ues (p < 0.05, Wilcoxon-Mann-Whitney u-test), suggesting that
weights that are dynamically adjusted better reflect the environ-
ment and/or configuration of the system. Moreover, these results
enable us to reject H3y and conclude that the fitness function
weighting scheme directly impacts overall fitness resulting from
monitoring the system.

Next, Fig. 10 presents a set of grouped boxplots that demon-
strate the average utility value (calculated by the aggregate util-
ity values of each associated FR) for each NFR. As can be seen
by this figure, there is no statistical difference that exists be-
tween the average utility values of each NFR that were optimized
by Providentia and Providentia-SAW, respectively (p > .05,
Wilcoxon-Mann-Whitney u-test). This result is interesting in that
overall FR fitness was significantly improved (c.f, Fig. 9), however

there is no improvement for the NFR values. This result suggests
that the NFR utility values may be independent of the overall RDM
fitness calculation, however reconfigurations that are performed at
a coarser-grain (NFRs) can significantly impact and improve the
performance of FR utility functions.

Fig. 11 shows the average number of non-invariant and in-
variant requirement violations that occurred during execution,
respectively. Again, there is no significant difference (p > .05,
Wilcoxon-Mann-Whitney u-test) in the number of violations be-
tween Providentia and Providentia-SAW, suggesting that
adjusting the fitness function weights does not significantly impact
the SAS reconfiguration engine for the RDM application.

Lastly, Fig. 12 provides a comparison of the starting and ending
fitness sub-function weights attained with Providentia-SAW.
As can be seen from this figure, o is maximized and onp and
apna tend to be minimized, thereby suggesting that the satisfice-
ment of FRs is considerably more important to the performance
of the RDM application. This result correlates with those found in
Figs. 10 and 11 in that SAW seems to have a minimal impact on
NFR satisficement and violation reduction. However, an improve-
ment in overall performance of the RDM application still presents
a significant finding.

We next repeat our experiments on the SVS application to
demonstrate the domain independence of Providentia and
Providentia-SAW.

4.1.4. SVS experimental setup

The SVS (c.f, Section 2.2.2) comprises an autonomous vac-
uum system tasked with cleaning a desired space safely. As such,
the SVS must balance competing concerns to satisfy its require-
ments, including maximizing cleaning efficiency, minimizing need-
less power consumption, and ensuring the safe operation of the
vacuum.

For this experiment, the SVS was simulated in the Open Dy-
namics Engine,> where its physical appearance (c.f., Fig. 13) and

5 See http://www.ode.org/.
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Fig. 9. Comparison of fitness values between Providentia and Providentia—-SAW experiments for the RDM application.

behaviors were modeled on observations from the iRobot Roomba To motivate the need for run-time adaptation, uncertainty was
vacuum system. The SVS comprises two wheels, a circular body, configured in terms of system and environment-based uncertainty.
seven touch sensors for collision detection, two wheel velocity sen- System uncertainty comprised random sensor noise, sensor fail-
sors to monitor the status of each individual wheel speed, and a ures induced at random during execution, and fluctuations in the
vacuum sensor that monitors the suction capabilities of the robot. main controller timing logic (e.g., variations in the amount of time
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Fig. 10. Comparison of NFR fitness values between Providentia and Providentia-SAW experiments for the RDM application.
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Fig. 11. Comparison of requirement violations between Providentia and Providentia-SAW experiments for the RDM application.

to spend in a particular path plan) to represent concerns that are The SVS will reconfigure to minimize the impacts of uncer-
found in real-time operating systems. Environment uncertainty in- tainty, thereby maximizing overall requirements satisficement. As
cludes the amount and distribution of dirt spread throughout the with the RDM, the SVS performs run-time requirements moni-
room, a downward step to avoid, and randomly-placed objects that toring via utility functions to quantify the performance of each
may either hurt the SVS (e.g., a pole or liquid spill) or the object separate requirement, where violations and/or unsatisfactory per-

itself (e.g., a pet or child) that introduce safety concerns. formance result in a reconfiguration. Possible reconfigurations
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Fig. 12. Comparison of starting/ending fitness subfunction weights for the RDM application with and without SAW optimization.
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Fig. 13. Screenshot of SVS simulation environment in the Open Dynamics Engine.

include changing the current path plan (e.g., from a spiral to ran-
dom search), updating the power moding strategy (e.g., from full
power to reduced power), and instantiating emergency avoidance
procedures to bypass a critical object.

For the SVS, we specify three NFRs to guide the system. Table 4
specifies the defined NFRs for the SVS, along with the sets of FRs
and respective weights that comprise its aggregate utility function.
Note that unlike the RDM application, Providentia is not pro-
vided FRs with weights of 0.0 to demonstrate its effectiveness in a
smaller search space (i.e., fewer FRs) for each NFR.

4.1.5. SVS experimental results

For this experiment, we reuse the experimental setup for
the RDM (c.f, Section 4.1.1). Specifically, we examine how
Providentia-optimized FR weighting schemes compare with
weighting schemes that were manually- and randomly-specified
(note that, for presentation purposes, we condense our re-
sults section to include SAW as well as the replication of the
Providentia experiment in the SVS application domain). As the
fitness function introduced in Eq. (2) was specific to the RDM ap-
plication, we now extend the fitness function to be specific to the
SVS. The fitness function for the SVS is shown in Eq. (8):

ONFR * FFypr + otpg * FFrp+
FF — ] ®adaptations * FFadaptations iff invariants true 8)

0.0 otherwise

First, we combine these fitness subfunctions with those fitness
subfunctions specific to Providentia, as previously defined in
Egs. (3) and (5). As with the RDM, we set anpgr = 0.375, afpg =
0.375, and @gqqprations = 0-25. We substitute Eq. (6) that is specific

Table 4
SVS NFRs with sets of FRs and manually-derived weights.
NFR Set of FRs
NFR1: Minimize [Cost] m, &, 3, ®, )
0.15, 0.3, 0.15, 0.2, 0.2
NFR2: Minimize [Time] w, B, ©, B, &

0.3, 0.2, 0.2, 0.15, 0.15
NFR3: Maximize [Performance] ), B, ©, O
0.3, 0.25, 0.25, 0.2

to the RDM with Eq. (9), specific to the SVS, to minimize the num-
ber of adaptations that the SVS experiences at run time:

1.0
|adaptations|

(9)

FF, adaptations =

Fig. 14 presents boxplots that show the fitness values be-
tween goal models that were optimized with Providentia-SAW
and Providentia, those whose FR weights were manually-
selected (Manual), and those whose weights were randomly se-
lected (Random). As can be seen from the plots, optimizing
with Providentia significantly improves overall fitness of the
SVS (p < .05, Wilcoxon-Mann-Whitney u-test). Moreover, intro-
ducing SAW to optimize the fitness sub-functions that guide
Providentia (cf, Eq. (8), anpr, @Fr, @adaprations) further signifi-
cantly improves fitness (p < .05, Wilcoxon-Mann-Whitney u-test).

Similar to the results presented for the RDM application, Fig. 15
demonstrates how the SVS attains significant NFR fitness improve-
ments as Providentia and then Providentia-SAW are ap-
plied (p < 0.05, Wilcoxon-Mann-Whitney u-test).

Table 5 and Fig. 16 demonstrate that although
Providentia-SAW provides higher fitness than Providentia,
the number of invariant and noninvariant violations are not sig-
nificantly increased, therefore suggesting a positive impact to the
Providentia technique with minimal negative repercussions.

Table 6 presents the average utility values (w) and stan-
dard deviation (o) for each of the SVS NFRs. As with the RDM,
we see a significant improvement in average utility for most
NFRs (p < .05, Wilcoxon-Mann-Whitney u-test), further suggest-
ing that Providentia and Providentia-SAW significantly im-
prove system performance while experiencing uncertainty.

Table 5
Invariant and noninvariant average violations
and standard deviations for SVS application.

Providentia SAW

Invariant e 3.592 n: 3.418

violations o:25.042 o: 25292
Noninvariant ~ w: 732.765 : 748.941
violations o:36.174 o:45.178
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5. Discussion

This paper has described search-based techniques and their
corresponding empirical studies that use quantitative NFR perfor-
mance information in the SAS feedback loop to support online de-
cision making. To enable this calculation, a set of FRs (either new
or existing) are identified from a requirements specification to sup-
port quantification of an NFR, where each selected FR is assigned
a weight to indicate its relative importance in the satisfaction of
the NFR’s objectives. Providentia was introduced to perform
automated optimization of the FR selection and weight definition

process, given the large search space that results from this prob-
lem. Furthermore, SAW was added to Providentia to further
optimize the weights of the fitness subfunctions that guided the
search procedure.

Providentia and Providentia-SAW determine optimal
sets of weights to make the system more robust to uncertainty.
For example, the uncertainty introduced in the RDM simulation
include the percentage of dropped/delayed messages, the percent
chance that a server goes down, of a network link severing, sen-
sor fuzz, and more. Uncertainty introduced in the SVS include
a randomized chance of each sensor failing and/or fuzzing, the
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distribution of dirt particles in the room, a downward step in
the room, the random instantiation of hazardous objects to the
SVS (e.g., liquid, large objects, etc.), and more. The different
types of uncertainty faced by the two case studies show the
effectiveness and domain independence of Providentia and
Providentia—-SAW, as the RDM is from an industrial collaborator
and the SVS is based on a real-world system.

Experimental results suggest that the introduction of NFRs into
the SAS feedback ecosystem, along with Providentia’s auto-
mated optimization procedure to determine the configuration of
each NFR, can produce an SAS that performs better in terms of
overall fitness while significantly reducing the number of require-
ments violations incurred during execution. These results demon-
strate that non-functional objectives, while historically difficult to
quantify, can be automatically reconfigured and tuned to enable an
SAS to deliver optimal performance in the face of uncertainty.

Fig. 14 shows the comparison of fitness values (i.e., the val-
ues calculated in Eq. (8)) for each of the four runs. With the
manually-specified weights for the fitness function, Providentia
performs the best because the GA is able to explore the weights
for NFRs that are separate from the weights of the fitness func-
tion. For manual, random, and Providentia, the alpha values
in Eq. (8) are all equal. Providentia-SAW combines the re-
sults from Providentia (leading to a higher median fitness),
but the search space for an optimal fitness value is explored
as the overall fitness function is adjusted every fifth generation.

Table 6
NFR average utility values and standard deviations for SVS application.

NFR Random Manual Providentia ~ SAW

NFR1: Minimize  p:0.972  p©: 0948  w: 0.957 w: 0.951
[Cost] 0:0.114 o:0.099 o: 0.200 o:0.210
NFR2: Minimize  pu: 0564  p:0510  w: 0.833 u: 0.773
[Time] 0:0363 0:0.014 o:0.302 o:0.342
NFR3: Maximize  pu: 0489  p:0426  u: 0.875 u: 0.886
[Performance] 0:0399 0:0.072 0:0.281 0:0.279

Providentia-SAW has led to a greater degree of variance yet
further improved the results from standalone Providentia (i.e.,
without SAW integration).

Additional results demonstrated the significance of adjusting
the weights of the fitness subfunctions that guide Providentia’s
search procedure. While there was no significant impact to the sat-
isficement of NFR utility values, FR utility values were significantly
improved when using Providentia—SAW, thereby leading to a
significant improvement in overall fitness of both SAS applications
that were studied. This result suggests that, as was previously dis-
covered (Fredericks et al., 2014), a linear-weighted fitness function
is subject to the uncertainties imposed by each individual environ-
ment and that the statistically-specified weights may not generate
optimal solutions for all environments considered. As a result, run-
ning a hyper-heuristic optimizer can significantly improve fitness
in uncertain environments.

In cyber-physical systems, modeling real-world uncertainty is
an ongoing problem as simulations often cannot include unex-
pected issues that in reality a system may face. Such a sys-
tem would benefit from Providentia-optimized NFRs as well
as Providentia-SAW to balance NFR/FR/adaptation utility func-
tions in unforeseen circumstances.

5.1. Threats to validity.

This paper has presented an extended proof of concept to
demonstrate that quantifying NFRs at run time can support the
reconfiguration engine in an SAS to improve overall requirements
satisficement and minimize violations. As such, we have identified
the following internal and external threats to validity for this re-
search.

Internal. First, the derivation of the requirements for both the
RDM and SVS applications was manually performed and may not
be wholly inclusive of all possible requirements. Moreover, each
application was simulated based on the executable specifications
and may not exhaustively capture all of the detailed requirements.
The manual selection of each FR set to support an NFR is another
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threat, as the selection may either be too limited or broad as it re-
lies on domain knowledge, which is a common problem in general
when identifying NFRs (Yu, 1997; Mylopoulos et al., 1992).

External. External threats include impacts to the system
as a result of unanticipated environmental conditions, unex-
pected human interaction with systems under execution, and un-
planned for changes to the system requirements, thereby in-
validating prior optimizations discovered by Providentia and
Providentia-SAW.

Construct. Construct threats include scalability and generaliz-
ability concerns. In terms of scalability, optimization heuristics tra-
ditionally suffer from a larger search space. For this paper, the
size of the requirements specifications for both the RDM and SVS
case studies may be considered small (i.e., 23 FRs and 7 NFRs for
the RDM, and 19 FRs and 3 NFRs for the SVS), and as such, the
results may not necessarily generalize to larger search spaces. In
terms of generalizability, we have demonstrated Providentia
and Providentia-SAW in two application domains: a network-
ing application and a cyber-physical system, both of which are
modeled as SASs. As such, it is possible that our techniques do
not generalize to non-SAS domains and can be considered as fu-
ture work for the authors.

We also only explored the genetic algorithm as a search heuris-
tic. As such, other applicable search techniques, such as multi-
objective optimization (Deb et al., 2002), could be used to discover
ideal or more globally-optimal solutions. Therefore, an additional
threat to validity lies in the search technique, and we plan to ex-
plore other such search heuristics in future work.

We next describe related work that span a number of comple-
mentary areas to further highlight our contributions.

6. Related work

This section presents related work with regard to self-adaptive
systems, obstacle mitigation and requirement satisficement, goal
modeling, and NFRs.

Self-adaptive systems. Self-adaptive capabilities are generally ex-
pensive to build, difficult to modify, and are usually specific to a
given application (Garlan et al., 2004). The Rainbow framework
generalizes an SAS such that it can be reused in different sys-
tems, separating the self-adaptive control infrastructure from the
system itself (Garlan et al., 2004). This separation enables use
in legacy systems, localization of problems in separate modules,
and software reuse. Rainbow is an architecture-based modeling
technique while Providentia extends GORE at a higher level.
Cheng et al. (2009b) also presented the use of utility functions in
SASs with quality NFRs such as performance, cost, and content fi-
delity. Rather than introducing new metrics to measure quality at-
tributes in a separate architecture, Providentia extends the pre-
existing goal model of FRs and uses metrics already defined by the
system to measure NFRs. The use of predefined metrics saves both
time and space when performing reconfigurations at run time.

Aceituna and Do (2015) presented a model to determine if,
based on a given requirements model, an SAS can be put into un-
desired states. Although this model can be useful in evaluating FRs,
Providentia operates under the assumption that the FRs keep
the system in an acceptable state. Moreover, Providentia fo-
cuses on guiding the SAS behavior based on FRs. Should the NFRs
introduced with Providentia fail, the system will remain in a
functionally-valid, yet less optimal, state.

Bencomo and Belaggoun (2014) use a Bayesian definition of
surprise to measure the degrees of uncertainty that cause a self-
adaptive system to deviate from expected behavior. Their approach
uses dynamic decision networks that use probability to determine
the satisficement of an NFR based on a system’s decision. Ini-
tial probabilities are either estimated or derived based on past

statistical performance. Providentia uses utility functions to
determine requirement/goal satisficement and violations, rather
than probability, to measure uncertainty.

A recent direction for SASs involves Complex Event Pro-
cessing (CEP) systems (Weisenburger et al., 2017). A CEP sys-
tem analyzes event streams and detects specific events or pat-
terns.Weisenburger et al. (2017) address the difficulties in mak-
ing CEP systems self-adaptive and the need to identify conditions
that trigger adaptations. CEP systems can directly benefit from
Providentia as CEP systems typically do not allow developers
to specify metrics on quality attributes. Providentia provides
quantifications on ambiguous goals and requirements that can be
optimized in SASs and therefore can be used to evaluate CEP sys-
tems to determine the specific conditions that require an adapta-
tion.

In addition to the numerous approaches for representing NFRs
in goal models and SASs, Aspect-Oriented Requirements Engineer-
ing presents an approach to identify and specify cross-cutting
concerns in separate modules, or aspects (Rashid et al., 2002).
Yu et al. (2004) demonstrate that aspects can be identified in
goal-oriented requirement analysis using both FRs and NFRs. Sim-
ilar to Providentia, Gray et al. elevate cross-cutting concerns
to be represented with FRs in a goal model, in contrast to
Providentia that includes NFRs (Gray et al., 2003). As shown
in the performance NFR of the RDM case study, cross-cutting con-
cerns are prevalent in generic NFRs. DeVries and Cheng use evolu-
tionary computation to automatically detect unwanted feature in-
teractions (DeVries and Cheng, 2018), in contrast to Providentia
and Providentia-SAW that introduce additional feature interac-
tions by adding new non-functional requirements to a goal model.
Bisbal and Cheng also explore unwanted feature interactions due
to non-functional conflicts due to shared resources (Bisbal and
Cheng, 2004). Note that Providentia and Providentia-SAW
do not add unwanted feature interactions but rather evaluate the
feature interactions between FRs with NFRs.

Obstacles and requirements. Obstacle mitigation is a strategy for
identifying and resolving obstacles to goal satisfaction. van Lam-
sweerde (2009) and van Lamsweerde and Letier (2000) have de-
scribed a set of strategies for obstacle mitigation, however this ap-
proach does not specify to what degree of non-satisfaction that
NFRs can become without impacting or degrading the overall sys-
tem. Providentia can be used to supplement these strategies
by extending the non-functional goal model in KAOS, and more-
over, automatically optimize the FR/NFR weighting scheme.

Requirements monitoring is an approach for quantifying re-
quirements at run time for use in detecting and mitigating obsta-
cles as the system executes, including a monitoring framework de-
veloped by Feather et al. (1998). Sawyer et al. (2010) have posited
that requirements can be promoted to live run-time entities for
use in self-adaptation feedback loops, with a notable example be-
ing the SAS MAPE-K feedback loop (Kephart and Chess, 2003).
However, these approaches mainly focus on FRs. Providentia-
optimized NFRs are also intended to be used in adaptation deci-
sions at run time, supported by a set of well-defined FRs and their
accompanying utility functions.

Goal modeling. Many approaches similar to Providentia use
goal modeling to address dependencies between FRs (Nagel et al.,
2013) or represent NFRs as soft goals (Yu, 1997; Giorgini et al.,
2005). Other approaches use probabilistic methods to improve
NFR/FR satisficement (Cailliau and van Lamsweerde, 2017; Paucar
and Bencomo, 2016) or optimize SAS satisficement (Letier and van
Lamsweerde, 2004; Yang et al, 2017). However, Providentia
focuses solely on NFR/FR dependencies to optimize FR and NFR
satisficement in an SAS without prior knowledge of system per-
formance that most probabilistic methods require. Furthermore,
Providentia does not use early-phase requirements engineering
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or high-level abstraction (Dalpiaz et al., 2013; Mylopoulos et al.,
1992), but rather focuses on a run-time model used by an SAS.

Non-functional requirements. Other techniques have been in-
troduced to quantify NFRs, generally representing NFRs as soft
goals (Yrjonen and Merilinna, 2009; Kobayashi et al., 2016; Ya-
mamoto, 2015). Although both the RDM and SVS case studies use
the KAOS goal modeling framework, Providentia is indepen-
dent of any framework (e.g., NFR Framework, iStar, and KAOS). In
contrast to modeling NFRs as soft goals, the weighted approach
enables greater flexibility for an SAS to use in finding an op-
timal reconfiguration strategy at run time. Salehie et al. use a
Goal-Action-Attribute Model (GAAM) and an automated weight-
ing scheme called Analytic Hierarchy Process to prioritize NFRs
(Salehie and Tahvildari, 2012). However, priorities may shift due
to uncertainty and requirement interactions at run time. There-
fore, Providentia uses a genetic algorithm to optimize goal and
weight selection instead of prioritization to make the goal model
more robust to uncertainty at run time. Contributing work has de-
composed NFR behaviors into monitored patterns rather than ex-
plicit requirements in a goal model (Supakkul et al., 2010) and
used quantifiable metrics to represent NFRs separately from the FR
goal model Sykes et al. (2010). Providentia monitors require-
ments at run time and does not separate NFRs from the goal model
of FRs, as separating NFRs and FRs may prevent the requirements
engineer to identify cross-cutting concerns in NFRs.

7. Conclusion

This paper described Providentia, a design-time approach
to automatically quantify NFRs at run time. Providentia uses
a genetic algorithm to determine an optimal weighting scheme of
FRs to describe each NFR, where optimal results yield the highest
overall fitness. To illustrate the effectiveness of Providentia, we
used an industry-provided RDM application that distributes mes-
sages across a network while experiencing random sources of un-
certainty. We extended previous work (Bowers et al., 2018) to use
a second case study to evaluate the effectiveness of the technique
in a different domain.

To further improve Providentia, we incorporated SAW to op-
timize the weighting scheme of the fitness subfunctions for both
case studies. Experimental results suggest that the Providentia-
optimized systems are more robust against system and environ-
mental uncertainty and fulfills its requirements to a higher degree
when compared to the systems without Providentia.

Future directions for this research include extending the
Providentia search procedure to execute at run time, apply-
ing both techniques to a real-world cyber-physical system, and
evaluating other search techniques that may better handle com-
peting concerns in fitness calculation than a linear-weighted sum
(e.g., multi-objective optimization). We also intend to work to-
wards open-sourcing the RDM and SVS applications, respectively.
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