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Multifunctional twisted kagome lattices: Tuning by pruning mechanical metamaterials
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This article investigates phonons and elastic response in randomly diluted lattices constructed by combining
(via the addition of next-nearest bonds) a twisted kagome lattice, with bulk modulus B = 0 and shear modulus
G > 0, with either a generalized untwisted kagome lattice with B > 0 and G > 0 or with a honeycomb lattice
with B > 0 and G = 0. These lattices exhibit jamming-like critical endpoints at which B, G, or both B and G
jump discontinuously from zero while the remaining moduli (if any) begin to grow continuously from zero. Pairs
of these jamming points are joined by lines of continuous rigidity percolation transitions at which both B and G
begin to grow continuously from zero. The Poisson ratio and G/B can be continuously tuned throughout their
physical range via random dilution in a manner analogous to “tuning by pruning” in random jammed lattices.
These lattices can be produced with modern techniques, such as three-dimensional printing, for constructing
metamaterials.
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I. INTRODUCTION

Ball-and-spring networks provide useful and generally ac-
curate models for the elastic properties of solids [1] from peri-
odic crystals to disordered glasses [2–7]. These networks un-
dergo a transition from an elastically rigid state to a floppy one
when their coordination number z falls below a critical value
zc, usually close to the Maxwell value zM = 2d in dimension
d [8]. Two distinct models often used to describe this behavior
are (1) randomly diluted periodic lattices [3,9,10] with springs
removed with probability p and (2) jamming models [11,12]
in which particles (usually spheres) are compressed beyond
the point at which interparticle contacts cannot be avoided.
In the former, the transition from the floppy to the rigid
state, usually called rigidity percolation (RP), both the shear
modulus G and the bulk modulus B grow continuously from
zero as z increases from zc. In the latter, the transition to
rigidity is characterized by a discontinuous jump in B at zc
and continuous growth of G from zero for z > zc [11,13].
Both models can exhibit far-richer behavior depending on
lattice structure and rules for removing (or adding) springs.
Recent work [14–17] investigates a number of paths to the
floppy state in a jamming model in which a network prepared
by usual jamming procedures sets particle positions that are
then connected pairwise by unstretched springs. The set of
springs on B bonds, which most resist compression, and that
on G bonds, which most resist shear, are nearly independent.
If the springs are removed randomly from the entire ensemble,
there is an RP transition at which both B and G vanish with
a ratio G/B that is nearly constant. If, however, springs (on
G bonds) that make the largest contribution to G are removed
first, G/B vanishes as �z → 0 in a jamming-like transition in
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which B undergoes a discontinuous jump; but if springs that
make the largest contribution to B (on B bonds) are removed
first, G/B → ∞ as �z → 0 and G undergoes a discontinuous
jump. Thus by selectively removing bonds, the full range of
G/B from 0 to ∞ and Poisson ratio from −1 to 1 (in two
dimensions) can be accessed. Reference [14] calls this process
“tuning by pruning” (TbP).

Recently, we coauthored a paper [18] describing a model
periodic lattice that exhibits both the RP and the jamming
transitions and provides a range of G/B analogous to the
that of the TbP procedure. It consists of a honeycomb lattice
(HL), which by itself has a positive B even though it is un-
dercoordinated, decorated with next-nearest-neighbor (NNN)
bonds that form two independent triangular lattices (TLs)
whose sites are shared by the HL (Fig. 1). The bonds of HL
are occupied with probability pa, and those on the TLs are
occupied with probability pb. The connection with the TbP
model is clear: The bonds of HL are the analog of the B
bonds, and the TLs are mixtures of the B and G bonds. The
phase diagram for this model is reproduced in Fig. 1. There
is a jamming critical point at JB = (pJa, p

J
b) = (1, 1/6) and

an RP line stretching from JB to Y = (0, 2/3). Viewed from
the floppy phase, the line (1, pb) is a first-order line, and the
point JB is roughly analogous to a critical endpoint in which a
second-order RP line (JBY ) meets a first-order line [19]. Both
B and G grow with distance from the RP line, but along paths
like CJBD that pass through JB, B jumps discontinuously and
G grows continuously from zero at JB as in jamming. Paths
starting at JB and ending at Y cover the range of G/B from 0
to 1/2 (or Poisson ratio from 1 to 1/3) without reaching any
negative values.

This paper introduces and, using both effective medium
theory (EMT) and numerical simulations, explores the elastic
response of two periodic lattice models (Fig. 2), both of which
have average C3 symmetry and macroscopic elastic energies
in the isotropic class characterized by nonvanishing B and G
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FIG. 1. (a) The honeycomb lattice with NNN springs (dashed
and dotted lines) forming two independent triangular lattices.
(b) Phase diagram from Ref. [18] in the pa-pb plane showing the
floppy (white region) and rigid (blue) phases, the jamming point JB,
the RP point Y of the diluted TLs, and the RP line JBY . Here pa
and pb correspond to the occupancy probability for each bond in the
honeycomb (a) and triangular (b) sublattices.

with no moduli arising from anisotropy. Both models access
negative values of the Poisson ratio σ , one of which accesses
the full range from σ = −1 to σ = +1. The starting point
of both is the twisted kagome lattice (TwKL) [Fig. 2(b)], ob-
tained by twisting adjacent triangles in the untwisted kagome
lattice (KL) [Fig. 2(a)] through an angle α. This lattice has
a nonzero shear modulus but a vanishing bulk modulus [20]
and, thus, a Poisson ratio of −1 [21]. In the first model, the
TwK-GK model [Fig. 2(c)], springs are placed on NNN bonds
of the TwK with probability pb. When pb = 1, these bonds
form three independent untwisted generalized kagome lattices
(GKLs), composed of two different-sized rather than single-
sized triangles, for which B/G = 2 and σ = 1/3 [see Eqs. (6)
and (7) in Sec. III]. Thus points in the rigid regime cover the
range of σ from −1 to 1/3. In the second, the TwK-H model,
bonds connecting a collection of NNN and third-neighbor
points of the TwK lattice form three independent honeycomb
lattices [Fig. 2(d)]. Thus, in this lattice, bonds in the TwK
lattice are the analog of G bonds in the TbP model and those
in HL the analog of B bonds; those in the GK lattice form both
B and G bonds. Figure 3 displays the phase diagrams of these
models, to be explained more fully in the next section.

In principle, these models provide a simple algorithm for
creating, via three-dimensional (3D) printing or related meth-
ods, physical two-dimensional (2D) materials with arbitrary
Poisson ratios. They do, however, suffer from a technical
drawback in that the added bonds cross each other and nec-
essarily introduce additional nodes in a purely 2D geometry.
This drawback can be addressed in two ways. In the first, all
but one of the extra, GK bond lattices introduced in the TwK-
GK lattice by the further neighbor bonds can be eliminated.
Lattices constructed in this way have no bond crossings, and
they have C3 symmetry and thus isotropic elasticity [22]. An
alternative approach is to stack different lattices formed by
further-neighbor bonds in different layers connected by rigid
vertical bonds between identical realizations off the original
TwK lattice as shown in Fig. 4.

In what follows, Sec. II reviews our principal results,
Sec. III defines our model energies and their elastic limits

(a) (b)

(c) (d)

FIG. 2. (a) Untwisted kagome lattice. (b) Twisted kagome lattice
with angle α > 0 between triangles equal to π/12 (see Fig. 7 for an
illustration of the twist angle α). (c) TwK-GK lattice showing the
GK lattices formed by NNN bonds (dashed lines, one of the GK
lattices is displayed with purple triangles). Note that these lattices
have triangles of two different sizes rather than the single size of the
traditional kagome lattice. (d) TwK-H lattice showing honeycomb
lattices (dashed lines, one of the honeycomb lattices is displayed
with thick red lines). The faint blue arrows indicate the threefold
symmetry and hence isotropic elasticity of this model.

and auxetic response, Sec. IV discusses our numerical simula-
tions, Sec. V presents our effective medium theory (EMT) and
its scaling predictions at critical points, and Sec. VI presents
a summary discussion. The Appendices provide details of
the lattice structures, dynamical matrices, dispersion relations,
asymptotic behavior of the EMT integrals, and additional 3D
plots of the moduli.

II. RESULTS

Both of our models are built on the TwK lattice, whose
bulk modulus is zero, but because of the different geometries
imposed by the further-neighbor bonds, they have different-
size unit cells (see Fig. 7 in Appendix A 1 for an illustration
of the unit cells of both models). The unit cell of the TwK-
GK model has the same number of sites ( j = 3) and NN a
bonds (z̃a = 6) as the TwK lattice, and it has the same number
of b bonds (z̃b = 6) as a bonds. The unit cell of the TwK-H
lattice is three times as large as that of the TwK lattice with
j = 9 and z̃a = 18 but with z̃b = 9. [Note: z̃r is the number of
r bonds in a unit cell, which is half the coordination number
zr associated with these bonds]. These lattice characteristics
are summarized in Table I. The Maxwell count, setting the
number of degrees of freedom per unit cell ( jd = 2 j in two
dimensions) equal to the average number of constraints per
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FIG. 3. Phase diagrams of the TwK-GK (a) and TwK-H models
(b) showing auxetic rigid regions on the top left (red), floppy regions
at the bottom (white), and regular rigid regions with σ > 0 on the top
right (blue). JB, JG (with G = G1 or G2), and JBG denote jamming,
shear-jamming, and double-jamming points. The red, green, and
black lines are, respectively, paths toward JG, JB, or JBG, and RP lines
along paths perpendicular to them. The ratio G/B and the Poisson
ratio σ along these lines are plotted in Fig. 6. The black-dashed
arrows [CJGD in (a)] depict a path along which the shear modulus
varies discontinuously at the rigidity transition. The RP thresholds
at which B and G vanish are within error bars at all points except at
the value of pb two points to the left of JB in (b). The open circles
indicate this common threshold except at the latter point at which the
filled circle marks the B threshold and the open circle marks the G
threshold. Finally, (1, pb) and (pa, 1) are the boundary A and B lines,
respectively.

cell (paz̃a + pbz̃b), predicts the EMT RP phase boundary in
the pa–pb EMT phase diagram shown in Fig. 3 to occur at
�pRP = 0, where

�pRP = paz̃a + pbz̃b − jd (1)

measures the distance from the RP line along a path per-
pendicular to that line. The lines of RP transitions [lines
JG–JBG and JG–JB] terminate at critical points at their in-
tersections with the boundary lines A = (pa = 1, pb) and

(a) (b)

(c) (d)

FIG. 4. One can design a 3D-printable version of the TwK-H
lattice by adding pins to the sites of the twisted kagome lattice (a),
and sequentially stacking the remaining three honeycomb lattices
(b)–(d) on top of it.

TABLE I. Table of basic parameters of the TwK-GK and TwK-H
lattices.

z̃a z̃b j s

TwK-GK 6 6 3 6
TwK-H 18 9 9 9

B = (pa, pb = 1). In both cases, Eq. (1) sets the intersection
with the A line at

pGb = ( jd − z̃a)/z̃b = 0. (2)

The points JG = (1, pGb ) (with G = G1 or G2) are “shear-
jamming” points [12,23,24], at which G jumps discontinu-
ously from zero in paths [such asCJG1D in Fig. 3(a)] from the
floppy region [25]. The second intersection at pRPb = 1 occurs
at pBGa = 0, i.e., at JBG = (0, 1) in the TwK-GK model and
at pBa = ( jd − z̃b)/za = (2 × 9 − 9)/18 = 1/2, i.e., at JBG =
(1/2, 1) in the TwK-H model. The HL of the TwK-H model
at JB is fully formed and resists compression, but the system
is still on the RP line along which G = 0. Thus JB is a
jamming point at which B jumps discontinuously. At the point
JBG = (0, 1), only the three GKLs survive, each consisting of
three grids of sample-traversing lines of parallel bonds with
two rather than a single spacing between lines. These lines
provide states of self-stress that lead to both B and G being
positive [6]. As a consequence, JBG is a double “jamming”
point at which both B and G jump from zero.

Figure 3 also shows data simulation points that indicate
an RP-transition line that lies mostly below, but close to, the
EMT RP line and terminates within numerical error at the
EMT points JG and JBG. The difference between the EMT
RP lines is greatest in the TwK-H model near JB. We set the
twist angle α = π/12 for all numerical results presented in
this paper, since our conclusions do not vary with α (even for
the self-dual case of α = π/4 [26]).

In general, effective-medium theory yields a more faith-
ful representation of the disordered network in the limit of
weak lattice dilution. As shown in previous studies (see,
e.g., Refs. [3,9,27]), EMT generally provides accurate but
not exact estimates of elastic moduli and phase boundaries,
largely because it fails to deal with redundant bonds [27]
that lead to over- and underconstrained regions in randomly
diluted samples. Our results here and in our previous work
[18] further support these studies. At the points JG1 and JG2,
the lattices are pure TwK, and both the EMT and simulations
correctly find that the rigidity transition occurs exactly at these
points.

We simulated 322 and 642 unit cells (3072 and 12 288 sites)
for the TwK-GK model, and 162 and 322 unit cells (2304
and 9216 sites) for the TwK-H model. For both lattices, the
difference in the data when we compared the two system sizes
was negligible, which reassured us that our system sizes were
large enough for finite size effects to be weak.

In the vicinity of the “jamming” critical points in the EMT,
all of the elastic moduli K that undergo a discontinuous jump
satisfy the simple scaling equation,

K

K0
= �pRP

�pRP + CM�pM
=

(
1 + CM

�pM
�pRP

)−1

, (3)
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FIG. 5. Scaling behavior of the TwK-GK [(a) and (b)] and TwK-
H [(c) and (d)] models. Filled and open circles represent the shear and
bulk moduli, respectively. Gray triangles and blue circles correspond,
respectively, to full EMT solutions and to numerical simulations for a
set of points in a rigid region in the neighborhood of JG [(a) and (c)],
JB (d), and JBG (c). The dashed lines correspond to our analytical
predictions (Eq. (3) normalized near the critical points).

where CM is a numerical constant that depends on the jamming
point [28], �pM equals 1 − pa for the two JG points, 1 − pb
for the JB, and JBG points and where �pRP is defined in
Eq. (1). This scaling form predicts K = K0 when �pM = 0
for any �pRP � 0. Thus, for example, G undergoes a discon-
tinuous jump at the point JG along a path such as CJG1D in
Fig. 3(a). Away from the jamming points and near the RP
line, all moduli grow linearly with �pRP with a coefficient
that changes with distance along the RP line. This behavior is
clearly indicted in Eq. (3).

Figure 5 shows numerical evaluation of the full EMT
equations in the vicinity of jamming points collapse onto the
analytical form of Eq. (3), with the coefficient cJ depending
on the jamming point. The simulation data collapse onto a
modification of the Eq. (3) that takes into account the fact that
the RP transition line lies below the RP line [29]. As required,
the numerical solution to the EMT equations also shows linear
growth of the bulk modulus B near the JG points of both the
TwK-GK and TwK-H models and of the shear modulus G at
the JB point of the TwK-H model. The simulation data are
consistent with linear growth of B near the JG points but are
more consistent with quadratic behavior, which may be due to
finite-size effects, of G very near the JB point of the TwK-H
model. Figure 6 shows the variation of G/B and the Poisson
ratio along the paths shown in Fig. 3. Note that dilution of our
lattices induces changes in the network geometry and hence
strongly affects the Poisson ratio, in agreement with the results
of Ref. [30]. Three-dimensional plots of B and G obtained
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FIG. 6. Simulation (symbols) and EMT (lines) results for G/B
[(a) and (c)] and Poisson ratio [(b) and (d)] as a function of �z ≡
2�pRP/( j d ) for the TwK-GK [(a) and (b)] and the TwK-H [(c) and
(d)] models, along paths towards JG (red circles), JBG or JB (green
diamonds), and the RP line (black squares), as depicted in Fig. 3. The
discrepancy between simulation and EMT at low �z for some paths
is largely due to the discrepancy for the value of the phase boundary
zc, which is largest near JB of the TwK-H model.

from both our EMT and our numerical simulations are shown
in Appendix B.

III. MODEL ENERGIES AND ELASTIC ENERGIES

We consider the harmonic interaction energy arising from
central force springs:

E =
∑

α∈{a,b}

kα

2

∑
{i, j}∈Cα

gα
i j[(u j − ui ) · r̂i j]2, (4)

where ui is a displacement vector, r̂i j = (ri − r j )/|ri − r j |,
with ri giving the position of site i in the reference lattice, and
Cα is a set of neighbor pairs of sites for sublattice α. In EMT,
gα
i j = 1,∀ i, j, and bonds in lattices a and b are populated with

springs with spring constants ka and kb satisfying a set of self-
consistent equations depending on probabilities pa and pb. In
the simulations, kα = 1 and gα

i j is a bimodal random variable
equal to one with probability pα and zero with complementary
probability 1 − pα . In Appendix A we provide details about
the lattice structures, dynamical matrices of our models, and
details of phonon dispersion relations of the TwK-GK model.

In the long-wavelength limit, Eq. (4) reduces to the elastic
isotropic limit

E

V
= B

2
(uxx + uyy)2 + 2G

[
uxy

2 + 1

4
(uxx − uyy)2

]
, (5)

063001-4



MULTIFUNCTIONAL TWISTED KAGOME LATTICES: … PHYSICAL REVIEW E 101, 063001 (2020)

where ui j are components of the linearized strain tensor, B
and G are the bulk and shear moduli, respectively, and V is
the volume.

For the TwK-GK model, analytical expressions for B and
G in terms of ka, kb, and α can easily be derived:

B = 3

4
kb

2ka + 3kb − ka cos 2α

ka + 2kb − ka cos 2α
, (6)

G = 3

16
(ka + 3kb), (7)

where α is the twist angle of the TwK lattice. Note that B → 0
and G > 0 for kb → 0 and ka > 0, except at α = 0, where
B → (3/8)ka > 0. The Poisson ratio,

σ = B − G

B + G
, (8)

is negative (auxetic structure) for

sin2 α >
kb(ka + 3kb)

ka(ka − kb)
. (9)

The phase diagram of Fig. 3 shows auxetic regions in red and
and nonauxetic regions in blue for α = π/12.

Calculation of the moduli for the TwK-H model poses a
greater challenge than it does for the TwK-GK model, and we
present only numerical solutions for α = π/12. Let Uaff be
the Nb-dimensional vector of affine bond deformations and
t̂α be the αth orthonormal basis vector of ker(Q) (state of
self-stress), where Nb is the number of bonds in a unit cell
and Q is the equilibrium matrix [6]. To evaluate B and G for
arbitrary numerical values of ka and kb, we first project affine
deformations into the states of self-stress of our lattice model:
U α

aff = Uaff · t̂α . We then use Eq. (3.10) of Ref. [6], which
analytically includes the effects of nonaffine distortions, to
express the elastic free energy as a quadratic form in terms of
strain components [31]. To extract B and G, we compare the
resulting free energy with the isotropic elastic energy given
by Eq. (5). As expected, our numerical evaluations show that
B → 0 and G > 0 when kb → 0 and ka > 0 [as in the region
near JG in Fig. 3(b)], whereas G → 0 and B > 0 for ka → 0
and kb > 0 [as in the region near JB in Fig. 3(b)]. To find
the threshold for auxetic behavior, we numerically solve the
equation B = G (corresponding to σ = 0) for η ≡ kb/ka, and
find that the Poisson ratio is negative (auxetic structure) for
kb � 0.37ka.

IV. NUMERICAL SIMULATIONS

In this section, we briefly describe our numerical simu-
lations. As a first step, we generate supercells composed of
Ncell = L × L unit cells of our two model lattices. For the
TwK-GK we use L = 64, and for TwK-H with its unit cell
three times larger, we use L = 32. The resulting number of
sites per supercell is 12 288 for the TwK-GK and 9216 for the
TwK-H. Next, we randomly remove a and b bonds from the
supercells with probability 1 − pa and 1 − pb, respectively.
Care is taken that the removal of the exterior bonds is consis-
tent with periodic boundary conditions.

To calculate the elastic moduli of the resulting diluted
supercells, we apply affine deformations via multiplying the

site positions with the deformation tensor,

�bulk =
(

1 + χ

2 0

0 1 + χ

2

)
or �shear =

(
1 χ

2
χ

2 1

)
, (10)

for bulk and pure shear deformation, respectively (i.e., the
displacement ui = � · xi, where xi is the equilibrium position
of site i in the absence of any applied deformation). We
set χ , specifying the magnitude of the deformation, to 0.01.
In addition to the affine deformation, the displacement ui is
given a nonaffine component δui, ui → ui + δui to allow for
a relaxation of the supercell. Then we minimize the resulting
energy as given in Eq. (4) over the δui using a conjugate
gradient algorithm adapted from Numerical Recipes [32].
Denoting the minima of the elastic energy density f = E/V
[cf. Eq. (5)] with respect to the two applied deformations by
f min
bulk and f min

shear, the bulk and shear moduli of the TwK-GK are
then obtained as

B = 2 f min
bulk

χ2
and G = f min

shear

2χ2
. (11)

For the TwK-H, we divide the right-hand sides by an extra
factor of 3 to compensate for fact that the unit cell is three
time larger than that of the TwK-GK. Finally, the so-obtained
moduli are averaged over a number (usually 10) lattice real-
izations for any fixed given pair of pa and pb.

V. EMT AND CRITICAL SCALING

This section provides details of our EMT calculations and
their results. We assign occupancy probabilities pa and pb for
bonds on sublattices a (the TwK sublattice) and b (the GK
sublattice in the TwK-GK model and the H sublattice in the
TwK-H model, respectively). The effective spring constants
ka and kb satisfy a set of self-consistent equations given by the
EMT [3,18,33–35]:

ka = pa − ha
1 − ha

, kb = pb − hb
1 − hb

, (12)

where

hα = kα

z̃αNc

∑
q

Tr[Kα (q) · D−1(q)], α = a, b, (13)

where z̃α is the number of α-bonds per unit cell (see Table I),
and Nc is the number of unit cells. Kα is the normalized
stiffness matrix, D = kaKa + kbKb is the dynamical matrix,
and the trace is taken over jd-dimensional matrices (see
Appendix A for details). The integrals hα satisfy the index
summation rule [3,18]:

z̃aha + z̃bhb = jd, (14)

which establishes that ha and hb are not independent.
The functions ha and hb depend upon which lattice they

are associated with. They can be evaluated numerically for
any ka and kb, and we provide graphs of them in Appendix B.
Here we derive analytical expressions for these functions in
the vicinity of each of the jamming points. Before proceeding,
however, it is useful to introduce the concept of majority
and minority lattices associated with these critical points. The
majority lattice is the one whose bond occupation probability
is exactly one at the jamming point in question, and the
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TABLE II. Values of B, G, σ , and the parameter cM in the vicinity
of jamming points. JG1 is the shear jamming point of the TwK-GK
lattice and JG2 that of the TwK-H lattice.

JG1 JG2 JB JBG

B 0 0 0.75 9/8
G 3/16 0.1875 0 9/16
σ −1 −1 +1 1/3
cM 0.035 0.030 0.037 0.035

minority lattice is the one whose bond occupation probability
is less that one at the same point.

Jamming points JG1 and JG2 (see Fig. 3): In both cases, the
majority lattice is the TwKL, whose stiffness matrix Ka ≡ KM

is fully gapped, and thus invertible, for all q except q = 0.
The subscript M refers to the majority lattice. The evaluation
of the expansion of KM in powers of km/kM = kb/ka, where m
refers to the minority lattice proceeds as follows:

hM = ha = 1

z̃MNc

∑
q

Tr

[
KM (q) ·

(
KM + km

kM
Km

)−1
]

(15a)

= 1

z̃MNc

∑
q

Tr
[
KM · K−1

M − (km/kM )K−1
M Km · · · ] (15b)

= jd

z̃M
− 1

cMz̃M

km
kM

= 1 − 1

cMz̃M

km
kM

≡ 1 − �hM, (15c)

where �hM = 1 − hM and

cM =
[

1

Nc

∑
q

Tr
(
K−1
M · Km

)]−1

(16)

with the numerical constant cM (see Table II) depending on the
jamming point. Note that in both cases, hM → 1 as km/kM →
0. The value of hm, the minority field then follows directly
from Eq. (14):

hm = hb = 1

z̃m
( jd − z̃MhM ) = z̃M

z̃m
�hM , (17)

because jd − z̃M = 0 for the JG points of both models.
Jamming point JBG: In this case, the majority lattice is the

b lattice, which consists of three distinct GKLs that decouple
from each other and from the minority TwKL or a lattice.
The stiffness matrix KM = Kb has two zero modes for each
wave number q along the symmetry lines 
K and KM in the
Brillouin zone. The result is that the calculation of ha and hb
is considerably more complicated that it is at the JG points.
Fortunately, the “heavy lifting” for this calculation has already
been done in Ref. [34] with the result

hmBG = 1 − 1

z̃a

(
1

cM

ka
kb

)1/2

, (18)

hMBG = jd − z̃ahm
z̃M

= 1 − 1

zb

(
1

cM

ka
kb

)1/2

. (19)

We reemphasize at this point that a nonzero ka at JBG produces
both a nonzero B and a nonzero G, and both undergo a

discontinuous jump. Also note that the constants cM appearing
in Eq. (19) and later in Eq. (20) are numerically estimated
using the definition of the h integrals; they cannot be evaluated
using Eq. (16).

Jamming point JB: The majority lattice is again the b lattice
and the minority lattice the a lattice. Now KM has several zero
modes for each wave number in the Brillouin zone and is thus
noninvertible, which considerably complicates the calculation
of the h’s. The count of zero modes in KM is obtained as
follows: When km = ka = 0, there are three sites per unit
cell (or equivalently per wave number) that are unattached
to the network and unconstrained in their motion. This gives
3 × 2 = 6 zero modes per wave vector q. In addition when
ka = 0, the three H lattices are not attached to each other nor
to the TwK lattice, and each of the three H lattices has one
zero mode per q for a total of dM0 = 9 zero modes per q.
In Eq. (15a), [KM + (km/kM )Km] is projected onto the range
of KM whose dimension is dR = jd − dM0 = 2 × 9 − 9 = 9.
The limit of km → 0 gives hM = hb = dR/z̃b = 1. In addition
though it may not be immediately obvious, hM has a well-
behaved power series in km/kM . As a result, hM has the same
functional form as it has in the vicinity of the JG points. hm,
however, is different in that its value km → 0 is not zero, as
follows from the application of Eq. (14):

hmB = jd − z̃bhb
z̃a

= jd − z̃b
z̃a

+ z̃b
z̃a

�hM

= 1

2
+ 1

cMz̃M

ka
kb

. (20)

We are now ready to calculate the effective spring constants
near all of the jamming points. Following Eqs. (12), (1), and
(14), we can express kM and km as

kM = z̃M�hM − z̃M�pM
zM�hM

, (21)

km = �pRP + z̃M�pM − z̃M�hM
s − z̃M�hM

, (22)

where

s = z̃a + z̃b − jd. (23)

Taking the ratio of km to kM and using Eqs.(15c) and (19), we
obtain

cM (z̃M�hM )n ≈ �pRP + z̃M�pM − z̃M�hM
s − z̃M�hM

× 1

z̃M�hM − z̃M�pM
, (24)

where n = 0 applies to the JG and JB points and n = 1 applies
to the JBG point. Solving this equation for �hM when n = 0,
we obtain

z̃M�hM − z̃M�pM ≈ �pRP
1 + s cM

, (25)

and then from Eqs. (21) and (22),

kM ≈ �pRP
�pRP + (1 + s cM )z̃M�pM

(26)
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and

km ≈ cM �pRP
1 + s cM

. (27)

Finally when n = 1 (JBG), the equation for �hM is
quadratic rather than linear with a solution to second order
in �pRP and �pM of

zM�hM ≈ (�pRP + z̃M�pM )(1 − s cM�pRP ), (28)

kM ≈ �pRP
�pRP + z̃M�pM

, (29)

km ≈ cM�pRP(�pRP + z̃M�pM ). (30)

VI. REVIEW AND FUTURE QUESTIONS

This paper has presented an analysis, via Effective-
Medium Theory (EMT) and numerical simulations, of the
varied elastic and phonon properties of model lattices of
central-force harmonic springs that tune continuously from
a twisted kagome lattice with B = 0 and G > 0 to either a
honeycomb lattice with B > 0 and G = 0 or to a generalized
untwisted kagome lattice with both B and G greater than zero.
In each case the two extreme lattices share the same lattice
sites but have a different and mutually exclusive set of bonds,
which can be occupied with springs with probabilities pa
and pb. The phase diagrams in the 2D pa-pb space (Fig. 3)
exhibit jamming critical endpoints, at which one of or both
B and G jump discontinuously from zero, that terminate lines
of second-order rigidity-percolation transitions separating the
rigid from the floppy regime. EMT provides a semiquantita-
tive picture, verified by simulations, of the various transitions
and, in particular, an analytic representation of elastic moduli
in the vicinity of the jamming points.

The values of G/B and the Poisson ratio σ vary continu-
ously with pa and pb, which can be tuned to reach arbitrarily
close to physical limits such as σ = ±1. Our algorithm for
reaching these limits is less complicated than “tuning by
pruning” (TbP) [14,15] in that it involves only the variation
of pa and pb rather than the testing of the effects of removing
each individual spring in the lattice. On the other hand, our
algorithm calculates only the average effect of dilution. For
a given average coordination number z after dilution, there
are certainly specific spring configurations that get closer
to physical limits than does the average configuration. By
construction TbP takes the system as close as possible to a
given goal such as the maximum value of G/B or σ . This
presumably explains why Refs. [14,15] access more extreme
values of G/B or σ for a given z than does our approach. It
would be interesting to investigate in more detail the statistical
distributions of G/B and σ arising from random dilution or to
apply the TbP to our system.

It would also be interesting to create laboratory versions
of our lattices, which can certainly be done using modern
fabrication techniques like 3D printing, and to measure their
elastic and mechanical properties. These synthetic lattices will
necessarily have bending forces that favor particular angles
between bonds and thereby increase their rigidity relative
to that of simple central-force models. The effect of these
bending forces has yet to be studied in detail. Their effect on

surfaces states of topological mechanical lattices and on aux-
etic transitions have been studied in Refs. [36,37] respectively.
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APPENDIX A: LATTICE STRUCTURES, DYNAMICAL
MATRICES, AND DISPERSION RELATIONS

In this Appendix we provide additional information relat-
ing to the lattice structures and dynamical matrices of both the
TwK-GK and TwK-H models, as well as dispersion relations
for the TwK-GK model.

1. Lattice structures

Figure 7(a) shows the unit cell of the TwK-GK lattice,
its three-point basis, and a set of unit vectors used in our
calculations. We set the origin of each cell at the position of
the first atom of the unit cell, so that atoms of the three-point
basis are located at c1(α) = (1/ cos α)R(α) · (0, 0),
c2(α) = (1/ cos α)R(α) · (1/2, 0) and c3(α) = (1/ cos α)
R(α) · (1/4,

√
3/4), where

R(α) =
(

cos α − sin α

sin α cos α

)
(A1)

is a rigid rotation matrix and the cos α factor in the de-
nominator ensures that the cell size does not change with
twist angle. The lattice translation vectors are given by
a1 = (−1/2,−√

3/2), a2 = (1, 0), and a3 = (−1/2,
√

3/2).
The vectors ei(α) = R(α) · ai determine the directions of
bonds for the a sublattice. The vectors b1 = (0, 1), b2 =
(−√

3/2,−1/2), and b3 = (
√

3/2,−1/2) are perpendicular
to a2, a3, and a1, respectively, and determine the directions of
bonds of the b sublattice. See Fig. 7(b) for an illustration of
the a, b, and e vectors. Figure 7(c) shows the unit cell of the
TwK-H lattice with its nine-point basis. Note that here bi are
lattice translation vectors for the TwK-H model.

2. Dynamical matrices

Equation (4) can be written in Fourier space as

E = 1

2Nc
2

∑
q,q′

u(q) · D(−q, q′) · u(q′), (A2)

where Nc is the number of cells, u(q) is the Fourier transform
of u(r) = (1/Nc)

∑
q u(q)eiq·r, and the dynamical matrix is

given by

D(−q, q′) = Ncδq,q′D(q) (A3)
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FIG. 7. (a) Unit cell of the TwK-GK lattice showing its three-
points basis (1, 2, and 3), six bonds connecting nearest neigh-
bors (solid lines), and six bonds connecting next-nearest neighbors
(dashed). (b) Sets of unit vectors used in our calculations. (c) Unit
cell of the TwK-H model showing its nine-point basis, 18 bonds
connecting nearest neighbors (solid lines), and nine bonds of the b
sublattice (dashed lines).

with

D(q) =
∑

α∈{a,b}
kαKα (q), (A4)

where Kα is the stiffness matrix,

Kα =
z̃α∑
n=1

Bα
n (q) ⊗ Bα

n (−q), (A5)

where ⊗ denotes an outer product between two vectors, and
z̃α is the number of bonds per unit cell of sublattice α. For the
TwK-GK model, the B vectors are given by

Ba
1(q) = (e1(α), 0,−e1(α)),

Ba
2(q) = (−e2(α), e2(α), 0),

Ba
3(q) = (0,−e3(α), e3(α)),

Ba
4(q) = (−e1(−α), 0, e−iq·a1 e1(−α)),

Ba
5(q) = (e−iq·a2 e2(−α),−e2(−α), 0),

Ba
6(q) = (0, e−iq·a3 e3(−α),−e3(−α)),

with 0 denoting a 2D null vector, and

Bb
1(q) = (−b1, e

−iq·a3b1, 0), Bb
2(q) = (0,−b2, e

−iq·a1b2),

Bb
3(q) = (e−iq·a2b3, 0,−b3), Bb

4(q) = (−b1, e
−iq·a3b1, 0),

Bb
5(q) = (0,−b2, e

−iq·a1b2), Bb
6(q) = (e−iq·a2b3, 0,−b3).

For the TwK-H model, the B vectors are given by

Ba
1(q) = (e1(α), 01,−e1(α), 06),

Ba
2(q) = (−e2(α), e2(α), 07),

Ba
3(q) = (01,−e3(α), e3(α), 06),

Ba
4(q) = (−e1(−α), 04, e

−iq·b2e1(−α), 03),

Ba
5(q) = (01,−e2(−α), 01, e2(−α), 05),

Ba
6(q) = (02,−e3(−α), 01, e

iq·b3e3(−α), 04),

Ba
7(q) = (03, e1(α), 01,−e1(α), 03),

Ba
8(q) = (03,−e2(α), e2(α), 04),

Ba
9(q) = (04,−e3(α), e3(α), 03),

Ba
10(q) = (03,−e1(−α), 04, e1(−α)),

Ba
11(q) = (04,−e2(−α), 01, e

iq·b2e2(−α), 02),

Ba
12(q) = (05,−e3(−α), 01, e

−iq·b1e3(−α), 01),

Ba
13(q) = (06, e1(α), 01,−e1(α)),

Ba
14(q) = (06,−e2(α), e2(α), 01),

Ba
15(q) = (07,−e3(α), e3(α)),

Ba
16(q) = (02, e

iq·b1e1(−α), 03,−e1(−α), 02),

Ba
17(q) = (e−iq·b3e2(−α), 06,−e2(−α), 01),

Ba
18(q) = (01, e3(−α), 06,−e3(−α)), (A6)

with 0n denoting a (2n)-dimensional null vector, and

Bb
1(q) = (−a1, 02, e

−iq·b2a1, 05),

Bb
2(q) = (−a2, 02, a2, 05),

Bb
3(q) = (−a3, 02, e

−iq·b3a3, 05),

Bb
4(q) = (04,−a1, 02, a1, 01),

Bb
5(q) = (04,−a2, 02, e

iq·b2a2, 01),

Bb
6(q) = (04,−a3, 02, e

−iq·b1a3, 01),

Bb
7(q) = (02, e

iq·b1a1, 05,−a1),

Bb
8(q) = (02, e

−iq·b3a2, 05,−a2),

Bb
9(q) = (02, a3, 05,−a3). (A7)

All vectors (bi, ei and ai) are defined in Appendix A 1.

3. Dispersion curves

Figure 8 shows dispersion curves (ωi(q) is the square
root of the ith eigenvalue of D(q)) of the TwK-GK and
K/GK (α = 0) lattices along symmetry lines [Figs. 8(a) and
8(c)] and dispersion densities over the first Brillouin zone
[Figs. 8(b) and 8(d)] for ka, kb, and α corresponding to regions
in the phase diagram near JG [Figs. 8(a) and 8(b)] and JBG
[Figs. 8(c) and 8(d)]. Notice that the kagome lattices have
modes that vanish along lines in the Brillouin zone (
M for
the TwKL; 
K and KM for the GKL; recall that the GKL
has an orientation that is rotated by π/6 with respect to the
untwisted KL). As discussed in Refs. [7,20], the untwisted K
and GK lattices have straight lines of bonds, whose number
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(a)

K � M K
q

Ω
�q
�

M
� K

(b)

(c)

K � M K
q

Ω
�q
�

M
� K

(d)

FIG. 8. (a) Dispersion curves of the KL, ka = 1, α = 0 and kb =
0 (black dashed), the K/GK lattice, ka = 1, α = 0, and kb = 0.02
(black solid), and the TwKL, ka = 1, α = π/12, and kb = 0 (red).
(b) Density plot of the six eigenmodes for the KL. (c) Dispersion
curves for the GKL, ka = 0, α = 0, and kb = 1 (solid blue), and
K/GK lattice, ka = 0.02, α = 0, and kb = 1 (solid blue). (d) Density
plot of the six eigenmodes for the GKL. In all cases, the addition of
NNN bonds to the K lattices raises all zero-frequency eigenmodes to
the NN lattices to nonzero frequency.

scales as the lattice perimeter (∝N1/2
cell ), which support states

of self-stress that by the Calladine Index Theorem [38,39]
then require an equal number of zero modes, one for each
wave vector on the lines 
M in the Brillouin zone. Twisting
these lattices eliminates the straight lines of bonds, their
states of self-stress, and associated zero-frequency modes.
Adding NNN bonds also eliminates zero modes. On the
other hand, we cannot separate the effects of twist angle
and TwKL bonds on the dispersion curves of the TwK-GK
model near JBG [Figs. 8(c) and 8(d)]. If we set ka = 0, then
α > 0 has no effect on the dispersion curves. For the pur-
poses of this paper, increasing α from zero when ka > 0 and
kb ≈ 1 does not lead to qualitative changes in the dispersion
curves. The phonon dispersion curves of the TwK-H model
are more complicated (with 18 modes per wave vector q. They
do not offer additional insight, and we do not show them
here.

APPENDIX B: ASYMPTOTIC LIMIT OF THE EMT
INTEGRALS AND GLOBAL BEHAVIOR

OF THE ELASTIC MODULI

Here we discuss plots showing the asymptotic behavior of
the EMT integrals hα near the jamming points, for both the
TwK-GK and the TwK-H models. We also show 3D plots of
the moduli as a function of pa and pb for both models.

(a)

10�5 10�2 10 104
10�5

10�3

10�1

km � kM

�
h M

(b)

10�5 10�2 10 104
10�5

10�3

10�1

km � kM

�
h M

FIG. 9. Showing the asymptotic behavior of the EMT integrals
�hM as a function of km/kM for the TwK-GK (a) and TwK-H
(b) models. In panel (a) the black and red curves emphasize the
asymptotic behavior near the JG (with M and m representing the
TwKL and GKL, respectively) and JBG (with M and m representing
the GKL and TwKL, respectively). In panel (b) the black and red
curves emphasize the asymptotic behavior near the JG (with M and
m representing the TwKL and HL, respectively) and JB (with M and
m representing the HL and TwKL, respectively). The dashed lines
correspond to our asymptotic analytic predictions.

In Sec. V we have shown that �hM ≡ 1 − hM ∝ km/kM
near the JG1, JG2, and JB points, and that �hM ∝ √

km/kM near
the JBG point. Figure 9 shows full numerical calculations of
�hM near the four jamming points and confirms our analytical
predictions. In Fig. 9(a) we show �hM as a function of km/kM
for the TwK-GK model near JG (black, with M and m rep-
resenting the twisted kagome and generalized kagome lattice,
respectively) and near JBG (red, with M and m representing the
generalized kagome and twisted kagome lattice, respectively).
Note that �hM ∝ √

km/kM near JBG. In Fig. 9(b) we show
�hM as a function of km/kM for the TwK-H model near
JG (black, with M and m representing the twisted kagome
and honeycomb lattices, respectively) and near JB (red, with
M and m representing the honeycomb lattices and twisted
kagome lattice, respectively). We have used α = π/12 in
both plots, and the dashed lines correspond to our asymptotic
analytic predictions. We have used Eq. (16) to calculate cM
near the JG1 and JG2 points, and a numerical fit to calculate cM
near the JBG and JB points (see Table II).

Finally, Fig. 10 shows 3D plots of B (blue) and G (red)
as a function of pa and pb for the TwK-GK (a) and TwK-

FIG. 10. Bulk (blue, upper surface on left side of each plot) and
shear (red) moduli as a function of pa and pb for the TwK-GK (a) and
TwK-H (b) models. The dots and surfaces correspond to numerical
simulations and full solutions of the EMT equations, respectively.
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H (b) models. The dots and surfaces represent results from
simulations and EMT, respectively. As should be anticipated

(see Fig. 3), the agreement between EMT and simulations is
best near the shear-jamming points JG.
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