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Multifunctional twisted kagome lattices: Tuning by pruning mechanical metamaterials
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This article investigates phonons and elastic response in randomly diluted lattices constructed by combining
(via the addition of next-nearest bonds) a twisted kagome lattice, with bulk modulus B = 0 and shear modulus
G > 0, with either a generalized untwisted kagome lattice with B > 0 and G > 0 or with a honeycomb lattice
with B > 0 and G = 0. These lattices exhibit jamming-like critical endpoints at which B, G, or both B and G
jump discontinuously from zero while the remaining moduli (if any) begin to grow continuously from zero. Pairs
of these jamming points are joined by lines of continuous rigidity percolation transitions at which both B and G
begin to grow continuously from zero. The Poisson ratio and G/B can be continuously tuned throughout their
physical range via random dilution in a manner analogous to “tuning by pruning” in random jammed lattices.
These lattices can be produced with modern techniques, such as three-dimensional printing, for constructing

metamaterials.
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I. INTRODUCTION

Ball-and-spring networks provide useful and generally ac-
curate models for the elastic properties of solids [1] from peri-
odic crystals to disordered glasses [2—7]. These networks un-
dergo a transition from an elastically rigid state to a floppy one
when their coordination number z falls below a critical value
Zc, usually close to the Maxwell value z); = 2d in dimension
d [8]. Two distinct models often used to describe this behavior
are (1) randomly diluted periodic lattices [3,9,10] with springs
removed with probability p and (2) jamming models [11,12]
in which particles (usually spheres) are compressed beyond
the point at which interparticle contacts cannot be avoided.
In the former, the transition from the floppy to the rigid
state, usually called rigidity percolation (RP), both the shear
modulus G and the bulk modulus B grow continuously from
zero as z increases from z.. In the latter, the transition to
rigidity is characterized by a discontinuous jump in B at z.
and continuous growth of G from zero for z > z. [11,13].
Both models can exhibit far-richer behavior depending on
lattice structure and rules for removing (or adding) springs.
Recent work [14—17] investigates a number of paths to the
floppy state in a jamming model in which a network prepared
by usual jamming procedures sets particle positions that are
then connected pairwise by unstretched springs. The set of
springs on B bonds, which most resist compression, and that
on G bonds, which most resist shear, are nearly independent.
If the springs are removed randomly from the entire ensemble,
there is an RP transition at which both B and G vanish with
a ratio G/B that is nearly constant. If, however, springs (on
G bonds) that make the largest contribution to G are removed
first, G/B vanishes as Az — 0 in a jamming-like transition in
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which B undergoes a discontinuous jump; but if springs that
make the largest contribution to B (on B bonds) are removed
first, G/B — oo as Az — 0 and G undergoes a discontinuous
jump. Thus by selectively removing bonds, the full range of
G/B from 0 to oo and Poisson ratio from —1 to 1 (in two
dimensions) can be accessed. Reference [14] calls this process
“tuning by pruning” (TbP).

Recently, we coauthored a paper [18] describing a model
periodic lattice that exhibits both the RP and the jamming
transitions and provides a range of G/B analogous to the
that of the TbP procedure. It consists of a honeycomb lattice
(HL), which by itself has a positive B even though it is un-
dercoordinated, decorated with next-nearest-neighbor (NNN)
bonds that form two independent triangular lattices (TLs)
whose sites are shared by the HL (Fig. 1). The bonds of HL
are occupied with probability p,, and those on the TLs are
occupied with probability p,. The connection with the TbP
model is clear: The bonds of HL are the analog of the B
bonds, and the TLs are mixtures of the B and G bonds. The
phase diagram for this model is reproduced in Fig. 1. There
is a jamming critical point at Jz = (p, p;) = (1, 1/6) and
an RP line stretching from Jz to ¥ = (0, 2/3). Viewed from
the floppy phase, the line (1, p;) is a first-order line, and the
point Jg is roughly analogous to a critical endpoint in which a
second-order RP line (JgY) meets a first-order line [19]. Both
B and G grow with distance from the RP line, but along paths
like CJgD that pass through Jg, B jumps discontinuously and
G grows continuously from zero at Jp as in jamming. Paths
starting at Jp and ending at Y cover the range of G/B from 0
to 1/2 (or Poisson ratio from 1 to 1/3) without reaching any
negative values.

This paper introduces and, using both effective medium
theory (EMT) and numerical simulations, explores the elastic
response of two periodic lattice models (Fig. 2), both of which
have average C; symmetry and macroscopic elastic energies
in the isotropic class characterized by nonvanishing B and G
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FIG. 1. (a) The honeycomb lattice with NNN springs (dashed
and dotted lines) forming two independent triangular lattices.
(b) Phase diagram from Ref. [18] in the p,-p, plane showing the
floppy (white region) and rigid (blue) phases, the jamming point Jg,
the RP point Y of the diluted TLs, and the RP line JzY. Here p,
and p, correspond to the occupancy probability for each bond in the
honeycomb (a) and triangular (b) sublattices.

with no moduli arising from anisotropy. Both models access
negative values of the Poisson ratio o, one of which accesses
the full range from o0 = —1 to o = +1. The starting point
of both is the twisted kagome lattice (TwKL) [Fig. 2(b)], ob-
tained by twisting adjacent triangles in the untwisted kagome
lattice (KL) [Fig. 2(a)] through an angle «. This lattice has
a nonzero shear modulus but a vanishing bulk modulus [20]
and, thus, a Poisson ratio of —1 [21]. In the first model, the
TwK-GK model [Fig. 2(c)], springs are placed on NNN bonds
of the TwK with probability p,. When p, = 1, these bonds
form three independent untwisted generalized kagome lattices
(GKLs), composed of two different-sized rather than single-
sized triangles, for which B/G = 2 and 0 = 1/3 [see Egs. (6)
and (7) in Sec. III]. Thus points in the rigid regime cover the
range of o from —1 to 1/3. In the second, the TwK-H model,
bonds connecting a collection of NNN and third-neighbor
points of the TwK lattice form three independent honeycomb
lattices [Fig. 2(d)]. Thus, in this lattice, bonds in the TwK
lattice are the analog of G bonds in the TbP model and those
in HL the analog of B bonds; those in the GK lattice form both
B and G bonds. Figure 3 displays the phase diagrams of these
models, to be explained more fully in the next section.

In principle, these models provide a simple algorithm for
creating, via three-dimensional (3D) printing or related meth-
ods, physical two-dimensional (2D) materials with arbitrary
Poisson ratios. They do, however, suffer from a technical
drawback in that the added bonds cross each other and nec-
essarily introduce additional nodes in a purely 2D geometry.
This drawback can be addressed in two ways. In the first, all
but one of the extra, GK bond lattices introduced in the TwK-
GK lattice by the further neighbor bonds can be eliminated.
Lattices constructed in this way have no bond crossings, and
they have C; symmetry and thus isotropic elasticity [22]. An
alternative approach is to stack different lattices formed by
further-neighbor bonds in different layers connected by rigid
vertical bonds between identical realizations off the original
TwK lattice as shown in Fig. 4.

In what follows, Sec. II reviews our principal results,
Sec. III defines our model energies and their elastic limits

FIG. 2. (a) Untwisted kagome lattice. (b) Twisted kagome lattice
with angle o > 0 between triangles equal to 7 /12 (see Fig. 7 for an
illustration of the twist angle «). (¢) TwK-GK lattice showing the
GK lattices formed by NNN bonds (dashed lines, one of the GK
lattices is displayed with purple triangles). Note that these lattices
have triangles of two different sizes rather than the single size of the
traditional kagome lattice. (d) TwK-H lattice showing honeycomb
lattices (dashed lines, one of the honeycomb lattices is displayed
with thick red lines). The faint blue arrows indicate the threefold
symmetry and hence isotropic elasticity of this model.

and auxetic response, Sec. [V discusses our numerical simula-
tions, Sec. V presents our effective medium theory (EMT) and
its scaling predictions at critical points, and Sec. VI presents
a summary discussion. The Appendices provide details of
the lattice structures, dynamical matrices, dispersion relations,
asymptotic behavior of the EMT integrals, and additional 3D
plots of the moduli.

II. RESULTS

Both of our models are built on the TwK lattice, whose
bulk modulus is zero, but because of the different geometries
imposed by the further-neighbor bonds, they have different-
size unit cells (see Fig. 7 in Appendix A 1 for an illustration
of the unit cells of both models). The unit cell of the TwK-
GK model has the same number of sites (j = 3) and NN «a
bonds (Z, = 6) as the TwK lattice, and it has the same number
of b bonds (Z, = 6) as a bonds. The unit cell of the TwK-H
lattice is three times as large as that of the TwK lattice with
Jj =9and Z, = 18 but with Z, = 9. [Note: Z, is the number of
r bonds in a unit cell, which is half the coordination number
z, associated with these bonds]. These lattice characteristics
are summarized in Table I. The Maxwell count, setting the
number of degrees of freedom per unit cell (jd = 2j in two
dimensions) equal to the average number of constraints per
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(a) (b) TABLE I. Table of basic parameters of the TwK-GK and TwK-H
J lattices.
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FIG. 3. Phase diagrams of the TwK-GK (a) and TwK-H models
(b) showing auxetic rigid regions on the top left (red), floppy regions
at the bottom (white), and regular rigid regions with & > 0 on the top
right (blue). Jp, Jg (with G = G1 or G2), and Jg; denote jamming,
shear-jamming, and double-jamming points. The red, green, and
black lines are, respectively, paths toward J, Jp, or Jpg, and RP lines
along paths perpendicular to them. The ratio G/B and the Poisson
ratio o along these lines are plotted in Fig. 6. The black-dashed
arrows [CJgD in (a)] depict a path along which the shear modulus
varies discontinuously at the rigidity transition. The RP thresholds
at which B and G vanish are within error bars at all points except at
the value of p, two points to the left of Jg in (b). The open circles
indicate this common threshold except at the latter point at which the
filled circle marks the B threshold and the open circle marks the G
threshold. Finally, (1, p,) and (p,, 1) are the boundary A and B lines,
respectively.

cell (p.zZ, + pvZp), predicts the EMT RP phase boundary in
the p,—p, EMT phase diagram shown in Fig. 3 to occur at
Apgp = 0, where

Aprp = paZa + ppZp — jd (D

measures the distance from the RP line along a path per-
pendicular to that line. The lines of RP transitions [lines
Je—Jpg and Js—Jp] terminate at critical points at their in-
tersections with the boundary lines A = (p, =1, pp) and

FIG. 4. One can design a 3D-printable version of the TwK-H
lattice by adding pins to the sites of the twisted kagome lattice (a),
and sequentially stacking the remaining three honeycomb lattices
(b)—(d) on top of it.

B = (p4, pp = 1). In both cases, Eq. (1) sets the intersection
with the A line at

PS5 = (jd —%4)/% = 0. 2

The points Jg = (1, pr) (with G = G1 or G2) are ‘“‘shear-
jamming” points [12,23,24], at which G jumps discontinu-
ously from zero in paths [such as CJ D in Fig. 3(a)] from the
floppy region [25]. The second intersection at pX” = 1 occurs
at pP¢ =0, i.e., at Jpg = (0, 1) in the TWK-GK model and
at p¥ = (jd — %))z = 2 x9—9)/18 = 1/2, i.e., at Jpg =
(1/2, 1) in the TwK-H model. The HL of the TwK-H model
at Jp is fully formed and resists compression, but the system
is still on the RP line along which G =0. Thus Jp is a
jamming point at which B jumps discontinuously. At the point
Jpc = (0, 1), only the three GKLs survive, each consisting of
three grids of sample-traversing lines of parallel bonds with
two rather than a single spacing between lines. These lines
provide states of self-stress that lead to both B and G being
positive [6]. As a consequence, Jpg is a double “jamming”
point at which both B and G jump from zero.

Figure 3 also shows data simulation points that indicate
an RP-transition line that lies mostly below, but close to, the
EMT RP line and terminates within numerical error at the
EMT points Jg and Jgg. The difference between the EMT
RP lines is greatest in the TwK-H model near Jz. We set the
twist angle o = w /12 for all numerical results presented in
this paper, since our conclusions do not vary with « (even for
the self-dual case of @ = 7 /4 [26]).

In general, effective-medium theory yields a more faith-
ful representation of the disordered network in the limit of
weak lattice dilution. As shown in previous studies (see,
e.g., Refs. [3,9,27]), EMT generally provides accurate but
not exact estimates of elastic moduli and phase boundaries,
largely because it fails to deal with redundant bonds [27]
that lead to over- and underconstrained regions in randomly
diluted samples. Our results here and in our previous work
[18] further support these studies. At the points Jg; and Jg,
the lattices are pure TwK, and both the EMT and simulations
correctly find that the rigidity transition occurs exactly at these
points.

We simulated 322 and 642 unit cells (3072 and 12 288 sites)
for the TWK-GK model, and 16> and 32% unit cells (2304
and 9216 sites) for the TwK-H model. For both lattices, the
difference in the data when we compared the two system sizes
was negligible, which reassured us that our system sizes were
large enough for finite size effects to be weak.

In the vicinity of the “jamming” critical points in the EMT,
all of the elastic moduli K that undergo a discontinuous jump
satisfy the simple scaling equation,

Apy -
= <1 +Cy ) , 3
Aprp

K Aprp
Ko Aprp +CulApu
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FIG. 5. Scaling behavior of the TwWK-GK [(a) and (b)] and TwK-
H [(c) and (d)] models. Filled and open circles represent the shear and
bulk moduli, respectively. Gray triangles and blue circles correspond,
respectively, to full EMT solutions and to numerical simulations for a
set of points in a rigid region in the neighborhood of J; [(a) and (¢)],
Jp (d), and Jpg (c). The dashed lines correspond to our analytical
predictions (Eq. (3) normalized near the critical points).

where Cy, is a numerical constant that depends on the jamming
point [28], Apys equals 1 — p, for the two Jg points, 1 — py
for the Jp, and Jps points and where Apgp is defined in
Eq. (1). This scaling form predicts K = Ky when Apy =0
for any Apgp 2> 0. Thus, for example, G undergoes a discon-
tinuous jump at the point Jg along a path such as CJg D in
Fig. 3(a). Away from the jamming points and near the RP
line, all moduli grow linearly with Apgp with a coefficient
that changes with distance along the RP line. This behavior is
clearly indicted in Eq. (3).

Figure 5 shows numerical evaluation of the full EMT
equations in the vicinity of jamming points collapse onto the
analytical form of Eq. (3), with the coefficient c; depending
on the jamming point. The simulation data collapse onto a
modification of the Eq. (3) that takes into account the fact that
the RP transition line lies below the RP line [29]. As required,
the numerical solution to the EMT equations also shows linear
growth of the bulk modulus B near the J; points of both the
TwK-GK and TwK-H models and of the shear modulus G at
the Jp point of the TwK-H model. The simulation data are
consistent with linear growth of B near the J; points but are
more consistent with quadratic behavior, which may be due to
finite-size effects, of G very near the Jg point of the TwK-H
model. Figure 6 shows the variation of G/B and the Poisson
ratio along the paths shown in Fig. 3. Note that dilution of our
lattices induces changes in the network geometry and hence
strongly affects the Poisson ratio, in agreement with the results
of Ref. [30]. Three-dimensional plots of B and G obtained

(b)

-1
1072 107! Az 1072 107! Az

FIG. 6. Simulation (symbols) and EMT (lines) results for G/B
[(a) and (c)] and Poisson ratio [(b) and (d)] as a function of Az =
2Apgrp/(jd) for the TWK-GK [(a) and (b)] and the TwWK-H [(c) and
(d)] models, along paths towards Jg (red circles), Jpg or Jp (green
diamonds), and the RP line (black squares), as depicted in Fig. 3. The
discrepancy between simulation and EMT at low Az for some paths
is largely due to the discrepancy for the value of the phase boundary
Z., which is largest near Jp of the TwK-H model.

from both our EMT and our numerical simulations are shown
in Appendix B.

III. MODEL ENERGIES AND ELASTIC ENERGIES

We consider the harmonic interaction energy arising from
central force springs:

Z P (CTR DRy @

aefa,b} {z JjteCy

where u; is a displacement vector, #;; = (r; —r;)/|ri —rjl,
with r; giving the position of site i in the reference lattice, and
C, is a set of neighbor pairs of sites for sublattice «. In EMT,
gi; = 1,Vi, j, and bonds in lattices a and b are populated with
springs with spring constants &, and k;, satisfying a set of self-
consistent equations depending on probabilities p, and p;. In
the simulations, k, = 1 and g%, is a bimodal random variable
equal to one with probability p, and zero with complementary
probability 1 — p,. In Appendix A we provide details about
the lattice structures, dynamical matrices of our models, and
details of phonon dispersion relations of the TwK-GK model.

In the long-wavelength limit, Eq. (4) reduces to the elastic
isotropic limit

B 2 2 1 2
v = E(um +uy)” + 2G| uy” + Z(uxx —up) |, )
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where u;; are components of the linearized strain tensor, B
and G are the bulk and shear moduli, respectively, and V is
the volume.
For the TwK-GK model, analytical expressions for B and
G in terms of k,, kp, and o can easily be derived:
3 2k, + 3kp, — k,cos2a

B=-k , 6
4" k, + 2k, — k, cos 2 ©)

3
G = — (kg + 3kp), 7
16( + 3kp) (N

where « is the twist angle of the TwK lattice. Note that B — 0
and G > 0 for k, — 0 and k, > 0, except at « = 0, where
B — (3/8)k, > 0. The Poisson ratio,

B-G

=, 8
T“B+G ®
is negative (auxetic structure) for
kp(k, + 3k
sin? q > kat 36) 9)

ka(ka - kb) ’

The phase diagram of Fig. 3 shows auxetic regions in red and
and nonauxetic regions in blue for « = 7 /12.

Calculation of the moduli for the TwK-H model poses a
greater challenge than it does for the TwK-GK model, and we
present only numerical solutions for o = 7 /12. Let Uy be
the N,-dimensional vector of affine bond deformations and
i, be the ath orthonormal basis vector of ker(Q) (state of
self-stress), where N, is the number of bonds in a unit cell
and Q is the equilibrium matrix [6]. To evaluate B and G for
arbitrary numerical values of k, and k;,, we first project affine
deformations into the states of self-stress of our lattice model:
U% = Uy - . We then use Eq. (3.10) of Ref. [6], which
analytically includes the effects of nonaffine distortions, to
express the elastic free energy as a quadratic form in terms of
strain components [31]. To extract B and G, we compare the
resulting free energy with the isotropic elastic energy given
by Eq. (5). As expected, our numerical evaluations show that
B — 0 and G > 0 when k, — 0 and &, > O [as in the region
near Ji in Fig. 3(b)], whereas G — 0 and B > O for k, — 0
and k, > 0 [as in the region near Jp in Fig. 3(b)]. To find
the threshold for auxetic behavior, we numerically solve the
equation B = G (corresponding to o = 0) for n = k/k,, and
find that the Poisson ratio is negative (auxetic structure) for
kp < 0.37k,.

IV. NUMERICAL SIMULATIONS

In this section, we briefly describe our numerical simu-
lations. As a first step, we generate supercells composed of
Neet = L x L unit cells of our two model lattices. For the
TwK-GK we use L = 64, and for TwK-H with its unit cell
three times larger, we use L = 32. The resulting number of
sites per supercell is 12 288 for the TwWK-GK and 9216 for the
TwK-H. Next, we randomly remove a and b bonds from the
supercells with probability 1 — p, and 1 — p,, respectively.
Care is taken that the removal of the exterior bonds is consis-
tent with periodic boundary conditions.

To calculate the elastic moduli of the resulting diluted
supercells, we apply affine deformations via multiplying the

site positions with the deformation tensor,

14+ £ 0 1 £
Au = 2 A@earz 2 ’ 10
bulk ( 0 1_’_%) or Ag <% 1) (10)

for bulk and pure shear deformation, respectively (i.e., the
displacement u; = A - x;, where x; is the equilibrium position
of site i in the absence of any applied deformation). We
set x, specifying the magnitude of the deformation, to 0.01.
In addition to the affine deformation, the displacement u; is
given a nonaffine component Su;, u; — u; + §u; to allow for
a relaxation of the supercell. Then we minimize the resulting
energy as given in Eq. (4) over the du; using a conjugate
gradient algorithm adapted from Numerical Recipes [32].
Denoting the minima of the elastic energy density f = E/V
[¢f Eq. (5)] with respect to the two applied deformations by
finin and fMn | the bulk and shear moduli of the TWK-GK are
then obtained as

min min
B=Lb‘2’“‘ and G = Zshear (11)

X 2x2
For the TwK-H, we divide the right-hand sides by an extra
factor of 3 to compensate for fact that the unit cell is three
time larger than that of the TwK-GK. Finally, the so-obtained
moduli are averaged over a number (usually 10) lattice real-

izations for any fixed given pair of p, and p;.

V. EMT AND CRITICAL SCALING

This section provides details of our EMT calculations and
their results. We assign occupancy probabilities p, and p;, for
bonds on sublattices a (the TwK sublattice) and b (the GK
sublattice in the TwK-GK model and the H sublattice in the
TwK-H model, respectively). The effective spring constants
k, and k;, satisfy a set of self-consistent equations given by the
EMT [3,18,33-35]:

Pa — hu

ke = kp,

Pl
1—hy' N

1—h

12)

where

ko 1

he = 17 Xq:Tr[Ka(q) D7) a=ab (13
where 7, is the number of «-bonds per unit cell (see Table 1),
and N, is the number of unit cells. K, is the normalized
stiffness matrix, D = k,K, + k,K}, is the dynamical matrix,
and the trace is taken over jd-dimensional matrices (see
Appendix A for details). The integrals h, satisfy the index
summation rule [3,18]:

Zaha + Zphy = ]d, (14)

which establishes that %, and &, are not independent.

The functions h, and h; depend upon which lattice they
are associated with. They can be evaluated numerically for
any k, and kp, and we provide graphs of them in Appendix B.
Here we derive analytical expressions for these functions in
the vicinity of each of the jamming points. Before proceeding,
however, it is useful to introduce the concept of majority
and minority lattices associated with these critical points. The
majority lattice is the one whose bond occupation probability
is exactly one at the jamming point in question, and the
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TABLEII. Values of B, G, ¢, and the parameter c,, in the vicinity
of jamming points. Jg; is the shear jamming point of the TwK-GK
lattice and J, that of the TwK-H lattice.

Jai Jo2 Jp Jsc
B 0 0 0.75 9/8
G 3/16 0.1875 0 9/16
o ~1 —1 +1 13
cu 0.035 0.030 0.037 0.035

minority lattice is the one whose bond occupation probability
is less that one at the same point.

Jamming points Jg| and Jg; (see Fig. 3): In both cases, the
majority lattice is the TWKL, whose stiffness matrix K, = Ky,
is fully gapped, and thus invertible, for all q except q = 0.
The subscript M refers to the majority lattice. The evaluation
of the expansion of Ky, in powers of k,,/ky; = kp/k,, where m
refers to the minority lattice proceeds as follows:

1 b\
hy = h, = = Tr| K, N\ Ky + —K,,
M ZMNC; |:M(Q) (M . ) :|
(15a)
1
— Te[ Ky - Kt — ko Jha)) K ' Ky -+ - 15b
ZMNCZ(Ij[MM (ke /Ky ] asb)
id 1k, 1 ky
S M ARy, (150)
Im cmim km cmim ky

where Ahy = 1 — hy; and

-1
ey = [Ni ZTr(KA;1 -Km)] (16)
C q

with the numerical constant ¢y (see Table II) depending on the
jamming point. Note that in both cases, iy, — 1 as k,;,/kyy —
0. The value of h,,, the minority field then follows directly
from Eq. (14):

o=y = = = i) = 0y, (1)
because jd — 7y = 0 for the J; points of both models.
Jamming point Jgg: In this case, the majority lattice is the
b lattice, which consists of three distinct GKLs that decouple
from each other and from the minority TwKL or a lattice.
The stiffness matrix Ky = K}, has two zero modes for each
wave number ¢ along the symmetry lines 'K and KM in the
Brillouin zone. The result is that the calculation of A, and A,
is considerably more complicated that it is at the J; points.
Fortunately, the “heavy lifting” for this calculation has already
been done in Ref. [34] with the result

1/ 1 k,\"?
hmBG =1- ~_(__H> s (18)
Za \cm kp
jd — Zih 1/ 1 k\'"?
hype=——F—=1————] . (19)
Zm 2 \ M kp

We reemphasize at this point that a nonzero k, at Jp¢ produces
both a nonzero B and a nonzero G, and both undergo a

discontinuous jump. Also note that the constants ¢y, appearing
in Eq. (19) and later in Eq. (20) are numerically estimated
using the definition of the 4 integrals; they cannot be evaluated
using Eq. (16).

Jamming point Jg: The majority lattice is again the b lattice
and the minority lattice the a lattice. Now K), has several zero
modes for each wave number in the Brillouin zone and is thus
noninvertible, which considerably complicates the calculation
of the A’s. The count of zero modes in Kj; is obtained as
follows: When k, = k, = 0, there are three sites per unit
cell (or equivalently per wave number) that are unattached
to the network and unconstrained in their motion. This gives
3 x 2 = 6 zero modes per wave vector q. In addition when
k, = 0, the three H lattices are not attached to each other nor
to the TwK lattice, and each of the three H lattices has one
zero mode per q for a total of dyo =9 zero modes per q.
In Eq. (152), [Ky + (kn/ky)Ky] is projected onto the range
of Kj; whose dimension is dg = jd —dpyo =2 x9—-9=09.
The limit of k,, — 0 gives hy, = h, = dr/Z, = 1. In addition
though it may not be immediately obvious, /i, has a well-
behaved power series in k,,/ky. As a result, iy, has the same
functional form as it has in the vicinity of the Js points. A,
however, is different in that its value k,, — O is not zero, as
follows from the application of Eq. (14):
_ jd ~Zhh;, _ Jd~ 2 -I-f—hAhM
Za Za Za

S W 0)
- 2 CMZM kb ’

hmB

We are now ready to calculate the effective spring constants
near all of the jamming points. Following Egs. (12), (1), and
(14), we can express ky, and k,, as

_ ZuAhy — ZuApu

ky = o Ao , 2D
K, = Aprp + ZM%pM — ZuAhy ’ 22)
s — Iy Ahy
where
s=Z,+% — jd. (23)

Taking the ratio of k,, to kj; and using Egs.(15¢) and (19), we
obtain

Aprp + ZuApy — ZuAhy
S — ZMAhM
1

X Z = ) 24)
ZmAhy — ZyApm

e Gy Ahy)" =

where n = 0 applies to the J; and Jp points and n = 1 applies
to the Jpg point. Solving this equation for Ahy, when n = 0,
we obtain

A
ZmDhy — Iy Apu ~ ﬂ, (25)
14+scy
and then from Egs. (21) and (22),
A
ks PRp (26)

~ Aprp + (1 +scu)inApm
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and

A
ky ~ Em ADrp Q7
14+scy

Finally when n=1 (Jgg), the equation for Ahy is
quadratic rather than linear with a solution to second order
in Apgp and Apys of

mAhy ~ (Aprp + ZuApm)(1 — scy Aprp), (28)

N Aprp
Aprp +ZulApy’
ki ~ ey Aprp(Aprp + ZuApu). (30)

ku (29)

VI. REVIEW AND FUTURE QUESTIONS

This paper has presented an analysis, via Effective-
Medium Theory (EMT) and numerical simulations, of the
varied elastic and phonon properties of model lattices of
central-force harmonic springs that tune continuously from
a twisted kagome lattice with B =0 and G > O to either a
honeycomb lattice with B > 0 and G = 0 or to a generalized
untwisted kagome lattice with both B and G greater than zero.
In each case the two extreme lattices share the same lattice
sites but have a different and mutually exclusive set of bonds,
which can be occupied with springs with probabilities p,
and p,. The phase diagrams in the 2D p,-p; space (Fig. 3)
exhibit jamming critical endpoints, at which one of or both
B and G jump discontinuously from zero, that terminate lines
of second-order rigidity-percolation transitions separating the
rigid from the floppy regime. EMT provides a semiquantita-
tive picture, verified by simulations, of the various transitions
and, in particular, an analytic representation of elastic moduli
in the vicinity of the jamming points.

The values of G/B and the Poisson ratio ¢ vary continu-
ously with p, and p;, which can be tuned to reach arbitrarily
close to physical limits such as ¢ = 1. Our algorithm for
reaching these limits is less complicated than “tuning by
pruning” (TbP) [14,15] in that it involves only the variation
of p, and pj, rather than the testing of the effects of removing
each individual spring in the lattice. On the other hand, our
algorithm calculates only the average effect of dilution. For
a given average coordination number z after dilution, there
are certainly specific spring configurations that get closer
to physical limits than does the average configuration. By
construction TbP takes the system as close as possible to a
given goal such as the maximum value of G/B or o. This
presumably explains why Refs. [14,15] access more extreme
values of G/B or o for a given z than does our approach. It
would be interesting to investigate in more detail the statistical
distributions of G/B and ¢ arising from random dilution or to
apply the TbP to our system.

It would also be interesting to create laboratory versions
of our lattices, which can certainly be done using modern
fabrication techniques like 3D printing, and to measure their
elastic and mechanical properties. These synthetic lattices will
necessarily have bending forces that favor particular angles
between bonds and thereby increase their rigidity relative
to that of simple central-force models. The effect of these
bending forces has yet to be studied in detail. Their effect on

surfaces states of topological mechanical lattices and on aux-
etic transitions have been studied in Refs. [36,37] respectively.
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APPENDIX A: LATTICE STRUCTURES, DYNAMICAL
MATRICES, AND DISPERSION RELATIONS

In this Appendix we provide additional information relat-
ing to the lattice structures and dynamical matrices of both the
TwK-GK and TwK-H models, as well as dispersion relations
for the TwK-GK model.

1. Lattice structures

Figure 7(a) shows the unit cell of the TwK-GK lattice,
its three-point basis, and a set of unit vectors used in our
calculations. We set the origin of each cell at the position of
the first atom of the unit cell, so that atoms of the three-point
basis are located at c¢j(a)= (1/cosa)R(x)-(0,0),
c(@)=(/cosa)R(e)-(1/2,0) and c3(a) = (1/cosw)
R(x) - (1/4,4/3/4), where

—sin«
cos o

cos o
Rl) = (sin o
is a rigid rotation matrix and the cosc« factor in the de-
nominator ensures that the cell size does not change with
twist angle. The lattice translation vectors are given by
a; = (=1/2,—+/3/2), ay = (1,0), and a3 = (=1/2,/3/2).
The vectors e;(a) = R(x) - a; determine the directions of
bonds for the a sublattice. The vectors by = (0, 1), by, =
(—+/3/2,—1/2), and b3 = (+/3/2, —1/2) are perpendicular
to ay, a3, and a,, respectively, and determine the directions of
bonds of the b sublattice. See Fig. 7(b) for an illustration of
the a, b, and e vectors. Figure 7(c) shows the unit cell of the
TwK-H lattice with its nine-point basis. Note that here b; are
lattice translation vectors for the TwK-H model.

(AL)

2. Dynamical matrices
Equation (4) can be written in Fourier space as

1
- 2N2

Y u(g)-D(—q.4) - u(g), (A2)
q.9

where N, is the number of cells, u(q) is the Fourier transform
of u(ry=(1/N.)>_ g u(g)e”, and the dynamical matrix is
given by

D(—q.q") = N84 D(q) (A3)
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(a)

FIG. 7. (a) Unit cell of the TwWK-GK lattice showing its three-
points basis (1, 2, and 3), six bonds connecting nearest neigh-
bors (solid lines), and six bonds connecting next-nearest neighbors
(dashed). (b) Sets of unit vectors used in our calculations. (c) Unit
cell of the TwK-H model showing its nine-point basis, 18 bonds
connecting nearest neighbors (solid lines), and nine bonds of the b
sublattice (dashed lines).

with
Dig)= ) keKa(g), (A4)
aefa,b}
where K|, is the stiffness matrix,
Za
K, =) B:(q) ®B;(—g), (AS)

n=1
where ® denotes an outer product between two vectors, and
Z 1s the number of bonds per unit cell of sublattice «. For the
TwK-GK model, the B vectors are given by

Bi(q) = (e1(x), 0, —e;()),
B3(q) = (—ex(a), ex(ax), 0),
B3(q) = (0, —e3(a), e3(a)),
Bi(q) = (—ei(—a),0,e 7" e)(—a)),
Bi(g) = (¢ " ex(—a), —es(—a), 0),

Bg(q) = (05 efiq‘aS e3(_a)7 _83(_(1))7
with 0 denoting a 2D null vector, and
Bl]’(q) = (_bl ) e_iq‘asbl ) 0)7 Bg(q) = (Os _bzv e—iq-ﬂ1b2)7

Bi(q) = (e7%b;, 0, —b3), Bi(q) = (=by, e 7%b,, 0),
B(q) = (0, —by, e ™"by), B2(q) = (e71"b;3, 0, —b3).

For the TwK-H model, the B vectors are given by
Bi(q) = (e1(a), 01, —e (), 05),
B3(q) = (—ex(a), e2(x), 07),
B3(q) = (01, —e3(@), e3(a), 05),
Bi(@) = (—e1(—a), 04, e "¢, (—a), 05),
B5(q) = (01, —e2(—0), 01, e2(—0), 0s),
Bi(@) = (05, —3(—a), 01, €77 e3(—ax), 0),
Bi(q) = (03, e1(@), 01, —e; (), 03),
Bg(q) = (03, —ex(a), e2(ax), 04),
B3(g) = (04, —e3(a), e3(a), 03),
Bio(q) = (03, —ei (=), 04, €1 (—)),
B{\(q) = (04, —ex(—a), 01, €97 e5(—ax), 0),
By (g) = (05, —e3(—a), 01, ¢ " es(—ax), 0),
Bi;(q) = (06, €1 (), 01, —e;(ax)),
Bi,(q) = (06, —€2(x), e2(a), 01),
Bis5(q) = (07, —e3(@), e3(@)),
Bis(q) = (05, ¢"" ey (—a), 03, —e1(~0), 0),
Bi;(g) = (¢ " es(—a1), 06, —es(—ax), 0),

Bis(q) = (0, e3(—a), 0, —e3(—a)), (A6)
with 0,, denoting a (2n)-dimensional null vector, and
Bb(q) = (—ay, 05, e "2ay, 05),
B3(q) = (a2, 02, a3, 05),
B5(q) = (—a3, 05, e " a;3, 05),
Bi(q) = (04, —ay, 05,a;,0),
B’;(q) = (04, —az, 0,, ¢"™a;, 0)),
Bg(q) = (04, —a3, 02, ¢ ""a3, 0),
Bi(@) = (05, ¢""a;, 05, —ay),
Bi(g) = (05, ¢ "™ ay, 05, —a),
B(q) = (02, a3, 05, —as). (A7)

All vectors (b;, e; and a;) are defined in Appendix A 1.

3. Dispersion curves

Figure 8 shows dispersion curves (w;(q) is the square
root of the ith eigenvalue of D(q)) of the TwK-GK and
K/GK (¢ = 0) lattices along symmetry lines [Figs. 8(a) and
8(c)] and dispersion densities over the first Brillouin zone
[Figs. 8(b) and 8(d)] for k,, kp, and o corresponding to regions
in the phase diagram near Jg [Figs. 8(a) and 8(b)] and Jpg
[Figs. 8(c) and 8(d)]. Notice that the kagome lattices have
modes that vanish along lines in the Brillouin zone (I"'M for
the TwKL; I'K and KM for the GKL; recall that the GKL
has an orientation that is rotated by 7 /6 with respect to the
untwisted KL). As discussed in Refs. [7,20], the untwisted K
and GK lattices have straight lines of bonds, whose number

063001-8



MULTIFUNCTIONAL TWISTED KAGOME LATTICES: ...

PHYSICAL REVIEW E 101, 063001 (2020)

(a) (b)
/
// \\
-
\ /
R\
// AN
-
\ /

w(q)

w(q)

FIG. 8. (a) Dispersion curves of the KL, k, = 1, = O and k, =
0 (black dashed), the K/GK lattice, k, = 1, « = 0, and k, = 0.02
(black solid), and the TwKL, k, = 1, « = /12, and k, = 0 (red).
(b) Density plot of the six eigenmodes for the KL. (c) Dispersion
curves for the GKL, k, =0, « =0, and k, = 1 (solid blue), and
K/GK lattice, k, = 0.02, « = 0, and k;, = 1 (solid blue). (d) Density
plot of the six eigenmodes for the GKL. In all cases, the addition of
NNN bonds to the K lattices raises all zero-frequency eigenmodes to
the NN lattices to nonzero frequency.

scales as the lattice perimeter (ochle/Hz), which support states
of self-stress that by the Calladine Index Theorem [38,39]
then require an equal number of zero modes, one for each
wave vector on the lines I'M in the Brillouin zone. Twisting
these lattices eliminates the straight lines of bonds, their
states of self-stress, and associated zero-frequency modes.
Adding NNN bonds also eliminates zero modes. On the
other hand, we cannot separate the effects of twist angle
and TwKL bonds on the dispersion curves of the TwK-GK
model near Jpg [Figs. 8(c) and 8(d)]. If we set k, = 0, then
o > 0 has no effect on the dispersion curves. For the pur-
poses of this paper, increasing « from zero when k, > 0 and
kp ~ 1 does not lead to qualitative changes in the dispersion
curves. The phonon dispersion curves of the TwK-H model
are more complicated (with 18 modes per wave vector g. They
do not offer additional insight, and we do not show them
here.

APPENDIX B: ASYMPTOTIC LIMIT OF THE EMT
INTEGRALS AND GLOBAL BEHAVIOR
OF THE ELASTIC MODULI

Here we discuss plots showing the asymptotic behavior of
the EMT integrals %, near the jamming points, for both the
TwK-GK and the TwK-H models. We also show 3D plots of
the moduli as a function of p, and p;, for both models.

10751072 10 104
km /kM

101072 10 10*
km /kM

FIG. 9. Showing the asymptotic behavior of the EMT integrals
Ahy as a function of k,/ky for the TwK-GK (a) and TwK-H
(b) models. In panel (a) the black and red curves emphasize the
asymptotic behavior near the J; (with M and m representing the
TwKL and GKL, respectively) and Jgs (with M and m representing
the GKL and TwKL, respectively). In panel (b) the black and red
curves emphasize the asymptotic behavior near the J; (with M and
m representing the TwWKL and HL, respectively) and Jp (with M and
m representing the HL and TwKL, respectively). The dashed lines
correspond to our asymptotic analytic predictions.

In Sec. V we have shown that Ahy =1 — hy < ki /kp
near the Jg1, Jg2, and Jp points, and that Ahy, o« /k,,/ky near
the Jpg point. Figure 9 shows full numerical calculations of
Ahy near the four jamming points and confirms our analytical
predictions. In Fig. 9(a) we show Ahy, as a function of k,,/ky
for the TwK-GK model near Js (black, with M and m rep-
resenting the twisted kagome and generalized kagome lattice,
respectively) and near Jp (red, with M and m representing the
generalized kagome and twisted kagome lattice, respectively).
Note that Ahy x «/k,/ky near Jgg. In Fig. 9(b) we show
Ahy as a function of k,,/ky for the TwK-H model near
Jo (black, with M and m representing the twisted kagome
and honeycomb lattices, respectively) and near Jp (red, with
M and m representing the honeycomb lattices and twisted
kagome lattice, respectively). We have used o = 7 /12 in
both plots, and the dashed lines correspond to our asymptotic
analytic predictions. We have used Eq. (16) to calculate ¢y,
near the Jg; and Jg, points, and a numerical fit to calculate ¢y
near the Jp; and Jp points (see Table II).

Finally, Fig. 10 shows 3D plots of B (blue) and G (red)
as a function of p, and p; for the TwK-GK (a) and TwK-

Pa
FIG. 10. Bulk (blue, upper surface on left side of each plot) and
shear (red) moduli as a function of p, and p, for the TwK-GK (a) and

TwK-H (b) models. The dots and surfaces correspond to numerical
simulations and full solutions of the EMT equations, respectively.
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H (b) models. The dots and surfaces represent results from
simulations and EMT, respectively. As should be anticipated

(see Fig. 3), the agreement between EMT and simulations is
best near the shear-jamming points Jg.
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