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Abstract

Inflorescence architecture provides the scaffold on which flowers and fruits develop, and consequently is a primary 
trait under investigation in many crop systems. Yet the challenge remains to analyse these complex 3D branching 
structures with appropriate tools. High information content datasets are required to represent the actual structure and 
facilitate full analysis of both the geometric and the topological features relevant to phenotypic variation in order to 
clarify evolutionary and developmental inflorescence patterns. We combined advanced imaging (X-ray tomography) 
and computational approaches (topological and geometric data analysis and structural simulations) to comprehen-
sively characterize grapevine inflorescence architecture (the rachis and all branches without berries) among 10 wild 
Vitis species. Clustering and correlation analyses revealed unexpected relationships, for example pedicel branch an-
gles were largely independent of other traits. We identified multivariate traits that typified species, which allowed us 
to classify species with 78.3% accuracy, versus 10% by chance. Twelve traits had strong signals across phylogenetic 
clades, providing insight into the evolution of inflorescence architecture. We provide an advanced framework to quan-
tify 3D inflorescence and other branched plant structures that can be used to tease apart subtle, heritable features for 
a better understanding of genetic and environmental effects on plant phenotypes.

Keywords:   3D architecture, inflorescence, morphology, persistent homology, phylogenetic analysis, topological data analysis, 
Vitis spp., X-ray tomography.

Introduction

Inflorescences are a major feature of the angiosperm lin-
eage whose architectural variation affects fertilization, fruit 
development, dispersal, and crop yield (Wyatt, 1982; Hake, 

2008; de Ribou et  al., 2013; Kirchoff & Claßen-Bockhoff, 
2013; Périlleux et  al., 2014; Chanderbali et  al., 2016). These 
branched reproductive structures with multiple flowers reflect 
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the extraordinary diversity across angiosperm species, from 
an ear of corn to palms with inflorescences measuring 5 m 
long (Hodel et al., 2015). Yet seemingly simple processes give 
rise to these vastly different shapes—during development re-
productive meristems may either switch to floral identity or 
proliferate additional inflorescence meristems and branches 
(Prusinkiewicz et al., 2007). However, such complex topolo-
gies have proven difficult to quantify with conventional tools.

Detailed descriptions of inflorescences by trained experts are 
often unique to specific research communities or groups of 
taxa, and are not always readily transferable, hindering mean-
ingful comparative analysis (Endress, 2010). Inflorescences are 
sometimes described typologically: indeterminate or deter-
minate, simple or compound, as a raceme, cyme, panicle or 
spike, etc. (Wyatt, 1982; Weberling, 1992). Other approaches 
describe qualitative attributes of inflorescences such as the 
presence or absence of certain structures, such as secondary 
branches or bracts (Weberling, 1992; Doebley et  al., 1997; 
Feng et  al., 2011; Hertweck & Pires, 2014). A  third method 
for characterizing inflorescences is through quantification of 
component structures (e.g. branch length, inflorescence length 
and width, angular traits; Kuijt, 1981; Marguerit et  al., 2009; 
Landrein et  al., 2012; Le et  al., 2018). Although these clas-
sical quantitative approaches facilitate comparative statistical 
analyses, the three-dimensional (3D) complexity of inflores-
cences is largely undescribed. Furthermore, descriptions may 
be confounded by developmental stage at the time of measure-
ment, and distinguishing between vegetative and reproductive 
branching structures can be difficult (Wyatt, 1982; Weberling, 
1992; Guédon et al., 2001). Thus, new technological and ana-
lytical approaches that can represent comprehensive, multi-
dimensional information about inflorescence diversity are 
needed to normalize and enrich analysis of these structures.

One promising approach for capturing 3D shapes of inflores-
cences and other plant structures is X-ray tomography (XRT). 
XRT generates high quality reconstructions of the internal and 
external shapes of plants, preserving nearly complete geometric 
and topological information in 3D. These 3D digital models 
then can be used to extract quantitative data (features) from plant 
structures. X-rays have been used to quantify wheat and rice seed 
and inflorescence traits from intact samples for non-destructive 
yield calculations (Jhala & Thaker, 2015; Hughes et  al., 2017), 
internal anatomy of willow trees (Brereton et  al., 2015), stem 
morphology and anatomy in sorghum (Gomez et al., 2018), root 
structure of barley seedlings (Pfeifer et al., 2015), leaf anatomy in 
monocots and dicots (Mathers et al., 2018), and dynamic starch 
accumulation in living grapevine stems (Earles et  al., 2018), 
among others. Most critically, whereas manual measurements 
can be laborious and destructive, non-destructive sampling for 
XRT analysis facilitates comprehensive quantification of com-
plex morphological traits.

Quantifying complex shapes with XRT requires ap-
propriate analytical approaches. Topological modeling, a 
mathematical field concerned with the connectedness of 
branching structures, can quantify inflorescence architecture 
by parsing geometric 3D structures into distinct, yet con-
nected, components (Godin & Caraglio, 1998). Topological 
modeling has yielded important insights into inflorescence 

development, functional analysis, and crop improvement in 
a variety of plant species (e.g. Arabidopsis thaliana, Capsicum 
annuum, Malus pumila, and Triticum; Godin et al., 1999; Letort 
et al., 2006; Kang et al., 2009). While powerful, these reduc-
tionist approaches rely on an a priori understanding of the 
mechanisms that contribute to complexity (e.g. branching 
patterns), and lose power when shapes vary drastically from 
one another (e.g. comparing a corn tassel to a grape cluster). 
Approaches that capture emergent properties of complex 
structures without presupposing the importance of indi-
vidual structural components are complementary to trad-
itional topological models (Bucksch et al., 2017).

An emerging mathematical approach to interpret topological 
models is persistent homology (PH). PH extracts morpho-
logical features from two- or three-dimensional representations 
and can be used to compare very different shapes. PH has been 
applied to explain a wide range of features including atomic 
structures, urban and forested areas, cancers, cell shapes, and 
jaw shape, among others (Edelsbrunner & Morozov, 2013). In 
plants, PH has been used to estimate shapes that are otherwise 
difficult to measure including leaves, leaflet serration, spikelet 
shape, stomatal patterning, and root architecture (Haus et al., 
2018; Li et al., 2018a,b; Migicovsky et al. 2017; McAllister et al., 
2019). Previous work showed that PH could capture more 
quantitative variation than traditional plant morphological 
measures (described above) resulting in the identification of 
otherwise latent quantitative trait loci (Li et al., 2018b). PH is 
especially well-suited for quantifying branching topology as it 
can quantitatively summarize complex variation with a single 
measure (Li et al., 2017; Delory et al., 2018). Rachis, pedicel, 
and branches include inherently topological features that can 
be especially well-analysed with PH-based methods.

Grape clusters (or bunches) are branched structures sup-
porting berries produced by grapevines (Vitis spp.) and are an 
ideal system in which to apply XRT and PH. Grape infructes-
cences are historically, culturally, and economically important 
and vary extensively in nature and in cultivation (Iland et al., 
2011). Cluster architecture determines bunch density, which 
is described as ‘arrangement of berries in a cluster and the 
distribution of free space’ (Richter et  al., 2019). The density 
of berries in a cluster is an important breeding feature be-
cause it determines yield, wine character, and disease resistance 
(amount of air flow between berries is a primary determinant 
of pests and pathogens on the fruit). Cluster density is a char-
acteristic identified by the Organization Internationale de la 
Vigne et du Vin, and varies from ‘berries clearly separated’ 
(loose clusters) to ‘berries deformed by compression’ (very 
dense clusters; OIV, 2001). As primary determinants of yield, 
end-product characteristics and disease resistance cluster archi-
tecture have been studied extensively in grapevine (reviewed 
in Tello & Ibáñez, 2018). These studies have shown that wine 
grape cultivars (Vitis vinifera) display distinct bunch densities 
(Shavrukov et al., 2004). However, less is known about cluster 
architecture in wild Vitis species, an important source of nat-
ural variation used by breeders in the development of hybrid 
grapevine varieties.

Historically, researchers have focused on a suite of 
cluster traits such as cluster size, shape, weight, and density/
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compactness to characterize bunch density quantified in 
grapevines (Rovasenda, 1881; Pulliat, 1888; Bioletti, 1938; 
Galet, 1979; Bettiga, 2003). Measurements are made pri-
marily using traditional tools including rulers, digital cali-
pers, volume displacement, and/or through human judging 
panels. More recently, automated image-based approaches 
have been implemented to capture aspects of cluster archi-
tecture in the lab and field (Ivorra et al., 2015; Aquino et al., 
2017, 2018; Rist et  al., 2018). However, these image-based 
methods cannot penetrate the internal inflorescence struc-
ture. Therefore resulting models are based only on the visible 
surface and the underlying topology cannot be fully cap-
tured, limiting an understanding of how inflorescence archi-
tecture and berry features co-vary. XRT and PH applications 
offer an important opportunity to understand grapevine 
bunch density through detailed analyses of inflorescence 
architecture. This work will deepen our understanding of 
natural variation of inflorescence structure, identify pri-
ority targets for breeding, and permit connecting 3D struc-
ture to underlying processes and genetics of inflorescence 
development.

We used X-ray tomography, geometric measurements, per-
sistent homology, and structural simulation to characterize 
wild grapevine inflorescence architecture. We targeted the 
branching architecture of the mature inflorescence: the rachis 
and all branches that remain following the removal of ripe ber-
ries (Fig. 1). Specifically, we aimed to: (i) characterize variation 
in component traits of inflorescence architecture within and 
among Vitis species; (ii) assess phylogenetic signals underlying 
inflorescence architecture traits; and (iii) interpret inflores-
cence trait variation in the context of breeding objectives. This 
work represents an important advance for the characterization 
of 3D plant architecture using a powerful combined imaging 
and computational approach.

Materials and methods

Plant material
In this study, we sampled grapevine bunches from 136 unique genotypes 
representing 10 wild Vitis species living in the USDA germplasm reposi-
tory system (Geneva, NY, USA; Table 1; Supplementary Fig. S1 at JXB 
online). Grapevines have a paniculate inflorescence that consists of a ra-
chis with several primary and secondary branches, tapering towards the 
terminus of the organ (Iland et al., 2011). Wild grapevines are dioecious; 
consequently, unbalanced sample sizes for different species reflect numbers 
of female genotypes available in the germplasm collection. Each unique 
genotype is represented in the germplasm collection by two clonally rep-
licated vines. For most of the 136 genotypes, we collected a total of three 
clusters from the two clonal replicates combined, representing average 
cluster morphology. We avoided clusters that were visibly damaged or in-
directly altered (e.g. tendril or trellis interference). For each vine, clusters 
were removed from separate canes at the point of peduncle attachment 
(Fig. 1A). In total, 392 clusters were collected in September 2016 when 
berries were soft, equivalent to EL38 developmental stage (Coombe, 1995; 
Fig. 1A). Berries were manually removed from clusters in the field, and the 
remaining inflorescence stalks (including rachis, branches, and pedicels; 
hereafter referred to as inflorescence or inflorescence architecture) were 
used to assess inflorescence architecture (Fig. 1B).

X-ray tomography and data preprocessing
Grapevine inflorescences were scanned at the Donald Danforth Plant 
Science Center (St Louis, MO, USA) using a North Star Imaging X5000 
X-ray tomography instrument (NSI; Rogers, MN, USA) equipped with 
a 16-bit Varian flat panel detector (1536×1920 pixels with 127 µm pixel 
pitch) and 225 kV microfocus reflection target X-ray source. Each inflor-
escence was held between two pieces of construction-grade expanded 
polystyrene, clamped in a portable clamping device, and positioned on 
the X-ray turntable in one of two configurations (Fig. 1C): 725 mm from 
the source, generating ×1.26 magnification and 101 µm voxel resolution, 
or 766 mm from the source, generating ×1.19 magnification and 107 µm 
voxel resolution. Each scan used X-ray power set to 60 kV and 1200 µA 
at 10 frames per second, collecting 1200 16-bit TIFF projections over 
360° of rotation during a 2 min continuous standard scan. Projections 
for each scan (Fig. 1D) were combined into a single 3D volume using 
NSI efX-CT software, converted to a density-based surface rendering 

Fig. 1.  Sample preparation and imaging. (A) The 10 Vitis species sampled for this study displayed diverse grape bunch morphology. (B) Inflorescence 
architectures after berry removal. (C) Inside the X-ray tomography instrument; the inflorescence is clamped in a portable clamping device between 
two pieces of polystyrene on the X-ray turntable. (D) Two dimensional radiograph of grape inflorescence; X-rays, absorbed or passing through the 
inflorescence, are detected to create a silhouette. (E) Three dimensional reconstruction and the structure of the same inflorescence shown in (D) by taking 
radiographs at successive different angles and then computationally combining the images.
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Polygon file (PLY), and exported for analysis (Fig. 1E). The full PLY 
dataset for this work is 7.85 GB, and can be downloaded from: https://
www.danforthcenter.org/scientists-research/principal-investigators/
chris-topp/resources.

We exported the surface mesh data (.ply files) into Meshlab (v1.3.3; 
Cignoni et  al., 2008) and performed the following processing steps to 
remove topological noise: (i) deleted the vertices where branches touch 
using ‘Select Vertexes’ and ‘Delete Selected Vertices’ filters; (ii) removed 
duplicates and isolated vertices and faces using the filters ‘Remove 
Duplicated Vertex’, ‘Remove Duplicate Faces’, ‘Remove Isolated pieces 
(wrt Diameter)’, and ‘Remove Unreferenced Vertex’.

Geometric inflorescence architecture traits
We extracted 15 geometric traits from scanned inflorescences (Fig. 2; 
Supplementary Fig. S2). Detailed trait descriptions and calculations are 
explained in Supplementary Table S1. Trait illustrations, including ex-
amples of low and high values for each trait, are available in Fig. 2 and 
Supplementary Fig. S2. Traits were organized in one of three trait groups: 
global-size features, local-branching features, and size-invariant features 
(Table 2). PedicelDiameter and PedicelBranchAngle were measured using 
the software DynamicRoots (Symonova et al. 2015) on a subset of de-
tected pedicels from the raw 3D volume data. All other traits were derived 
from Matlab algorithms. Branch length traits (i.e. TotalBranchLength, 
RachisLength, PedicelLength, and AvgBranchLength) were derived from 
the persistence barcode (see next subsection).

Quantifying branching topology using persistent homology, a 
topological data analysis method
Persistent homology measures shapes based on a tailored mathematical 
function, such as geodesic distance, which we used here to capture both 
curved length and topology of the branches (Fig. 3; Supplementary Video 
S1). The geodesic distance of a point is the length of the shortest curve 
connecting the point and the base (e.g. purple curves, Fig. 3A), where the 
tailored base can be set as the first node or ground level (the brown line in 
Fig. 3A). For each branch, the tip always has the largest geodesic distance 
from the base (Fig. 3B). A level represents the collection of points whose 
geodesic distances are the same (e.g. geodesic distance=90, pink curve in 
Fig. 3A). A superlevel set, for example, at 90, is all the points whose geo-
desic distances are greater than 90 (black branch tips, Fig. 3A). Changing 
the level value from largest to smallest (x-axis, Fig. 3C), the sequence of 
nesting superlevel sets can be formed, which is named superlevel set fil-
tration (top panel, Fig. 3C). During the change of the level value, bars 
record the connected components for each of the superlevel sets. When a 
new component arises, a new bar starts (e.g. at level 112, purple branch, 

Fig. 3C). When two components merge (e.g. at level 65, orange branch 
merges into purple branch, Fig. 3C), the shorter bar stops (e.g. the or-
ange bar stops at level 65, Fig. 3C). This bar graph, called the persistence 
barcode, summarizes topological information such as branching hierarchy, 
branch arrangement, and branch lengths. In our study, we set the base as 
the junction between peduncle and rachis (the lowermost node, indicated 
by a brown line in Fig. 1E and Fig. 3D, F) and use this base to compute the 
persistence barcode for the inflorescence architecture (Fig. 3E, G).

The persistence barcode can be used to compare topological similarity 
between any two inflorescences. To compute pairwise distance among 
persistence barcodes for the entire inflorescence population, we used the 
bottleneck distance (Cohen-Steiner et al., 2007). Bottleneck distance is 
a robust metric that calculates the minimal cost to move bars from one 
persistence barcode to resemble another (Li et al., 2017). We performed 
multidimensional scaling (MDS) on the pairwise bottleneck distance ma-
trix and projected the data into lower dimensional Euclidean space by 
preserving the pairwise distance as well as possible. The Matlab (R2017a) 
MDS function cmdscale() projects the data so that MD1 acts as principal 
component (PC) 1 representing the most variation. The first three PCs 
(MDs) explained about 80% of the total variation and were included as 
traits: PersistentHomology_PC1 (PH_PC1, explained about 54% of the 
variation), PersistentHomology_PC2 (PH_PC2, explained about 20% of 
the variation), and PersistentHomology_PC3 (PH_PC3, explained about 
6% of the variation). Those traits not only measure the topological struc-
ture, but also relate to geometric variation (e.g. global size) as the data 
were not normalized (Fig. 2; Supplementary Table S1).

Next, we normalized the persistence barcode by the TotalBranchLength 
(summation of the bar lengths) so that the TotalBranchLength was 1. By a 
similar procedure, we derived the first three PCs named PersistentHomol
ogyNormalizedByTotalBranchLength_PC1 (PHn_PC1, explained about 
45% of the variation), PersistentHomologyNormalizedByTotalBranchLe
ngth_PC2 (PHn_PC2, explained about 21% of the variation), and Persi
stentHomologyNormalizedByTotalBranchLength_PC3 (PHn_PC3, ex-
plained about 7% of the variation) for the normalized inflorescence topo-
logical structure (Fig. 2; Supplementary Table S1).

Berry potential, an approach to indirectly explore the space 
limited by inflorescence architecture
An ongoing question in grapevine cluster architecture is the relation-
ship between inflorescence architecture and berry number and size. 
Inflorescence architecture is one of several factors determining the 
number of berries that can form, due to the number of pedicels and the 
available space for berry development. In this study, berries were removed 
because of concerns about berry integrity during transport from New 
York to Missouri, and the time between harvest and scanning. Instead 

Table 1.  Number of samples/individuals of each species and berry information used in the study

Species Number Berry informationa

Samples Individuals Individuals used in  
phylogenetic analysis

Low diameter (mm) High diameter (mm) Berries 
per bunch

V. acerifolia 32 11 9 8 12 >25
V. aestivalis 5 2 1 8 20 >25
V. amurensis 13 5 2 8 15 NA
V. cinerea 45 15 13 4 8 >25
V. coignetiae 6 2 1 NA 8 NA
V. labrusca 62 22 12 12 23 <25
V. palmata 3 1 1 8 10 >25
V. riparia 158 53 48 8 12 >25
V. rupestris 41 16 10 8 12 <25
V. vulpina 27 9 2 8 12 >25
Total 392 136 99    

NA, not available.
a Berry information is from Galet (1988) and Moore and Wen (2016).
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of looking directly at berries on the cluster, we used inflorescence archi-
tecture as a starting point to simulate potential space available for berry 
growth by evaluating expanding spheres attached to pedicels. The extent 
of sphere expansion allowed by each pedicel is referred to as ‘berry po-
tential’ (Fig. 4; Supplementary Video S2).

We first determined the growth direction for each berry potential 
based on the pedicel orientation. When spheres expand, the center moves 
along the pedicel direction (Fig. 4A). This step can be achieved by per-
forming principal component analysis (PCA) on the near-berry segment 
of the pedicel. The first principal axis is the pedicel direction. We adjusted 

the arrow of the direction to make sure berry potential increases outward 
along the pedicel orientation. Then the berry potential increases until 
one of three situations is encountered (Fig. 4B): (i) if two berry potentials 
touch each other, both berry potentials will stop increasing; (ii) if a berry 
potential touches any part of the inflorescence, it will stop increasing; (iii) 
if the diameter of the berry potential reaches the maximum size known 
for that species (Table 1), it will stop increasing. For each species, the 
maximum size is defined as the maximum berry diameter, a number esti-
mated from known ranges of berry sizes for each species, based on values 
obtained from Galet (1988) and Moore and Wen (2016).

Fig. 2.  Examples of inflorescence geometric and topological traits and their distribution for 10 Vitis species. Each panel shows one of the three traits 
categories (geometric traits, topological traits, and berry potential traits). Geometric traits are organized as global size features, local branching features, 
and size-invariant features. Each trait is listed at the top of the column and two inflorescence examples demonstrating low and high trait values listed to 
the left. At the bottom of each column is a boxplot indicating the distribution and variance within the 10 Vitis species, represented in different colors. On 
each box, each circle indicates an outlier if it is more than 1.5 interquartile ranges; the central vertical line indicates the median; the left and right edges 
of the box represent the 25th and 75th percentiles; and the whiskers extend to the most extreme non-outlier data. The label for each species is listed in 
the boxplot y-axis of the leftmost plot, with the number of individuals sampled for each species shown in parentheses. For a more complete example and 
detailed description of each trait, see Fig. S2 and Table S1.
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Berry potential does not reflect true berry growth; rather, berry po-
tential is a derived attribute of inflorescence architecture, an indirect esti-
mate of the space potentially available for berry growth. It also does not 
account for the possibility of branches bending or otherwise becoming 
reoriented due to pressure from growing berries. Berry potential is 
based on the number of neighbor pedicels, neighbor pedicel lengths, and 
neighbor pedicel mutual angles. Larger values for berry potential are asso-
ciated with fewer neighbor pedicels and/or longer pedicel lengths and/or 
larger mutual angles. From the berry potential simulation, we calculated 
three features, TotalBerryPotentialVolume, AvgBerryPotentialDiameter, 
and BerryPotentialTouchingDensity, which is the berry potential 
touching number (i.e. touching either another berry potential or any 
part of the inflorescence) divided by the number of berry potential (Fig. 
2; Supplementary Table S1).

To compare the berry potential with the true berry features, we XRT 
scanned 10 clusters with berries attached representing five commercially 
available table grape (Vitis vinifera) varieties. We computationally iden-
tified the berries and measured the total berry volume, average berry 
diameter, and touching density. We then computationally removed the 
berries and calculated the berry potential features based on the stalk. The 
linear regression (R2=0.93, 0.99, and 0.76, respectively) and normalized 
root mean square error (RMSEn=11, 3, and 14, respectively) indicate that 
berry potential provides a realistic model of actual grapevine cluster traits 
(see Supplementary Fig. S3). We note that the current simulation will 
better estimate relatively loose clusters with round berries than highly 
compact clusters in which berries touch, are deformed by pressing, and 
are not spherical. Our intent is to further parameterize the simulation by 
scanning even more diverse germplasm to incorporate a wider range of 
cluster architectures and berry traits in future work.

Phylogenetic analysis
Phylogenetic analyses were conducted to understand evolutionary trends 
in inflorescence architecture in Vitis. Single nucleotide polymorphism 
(SNP) markers were generated as part of a separate study of the USDA 
Grapevine Germplasm Reserve in Geneva, NY, USA (Klein et al., 2018). 
The original dataset consisted of 304 individuals representing 19 spe-
cies that were sequenced using genotyping-by-sequencing (GBS; Elshire 
et al., 2011). Briefly, Klein et al. (2018) filtered data to retain biallelic sites 
with a minimum allele frequency of 0.01, a minimum mean depth of 
coverage of 10×, and only sites with <20% missing data and individuals 
with <20% missing data. We extracted SNP data for 99 of the individ-
uals from this study that were also genotyped in Klein et al. (2018; Table 
1) and performed phylogenetic analysis using SVDquartets (Chifman & 
Kubatko, 2014), a maximum likelihood approach designed to address as-
certainment bias associated with reduced representation sequencing tech-
niques like GBS. We analysed all possible quartets and carried out 100 
bootstrap support runs (see Supplementary Fig. S1) using PAUP* version 
4.0a (Swofford, 2003). The three main clades recovered in the tree were 
consistent with previous phylogenetic work in Vitis: (i) an Asian clade 
(V.  amurensis and V.  coignetiae), (ii) North American clade I  (V.  riparia, 

V. acerifolia, and V. rupestris), and (iii) North American clade II (V. vulpina, 
V.  cinerea, V.  aestivalis, V.  labrusca, and V.  palmata) (Tröndle et  al., 2010; 
Zecca et al., 2012; Miller et al., 2013; Zhang et al., 2015; Klein et al., 2018).

To visualize trait distributions on a phylogenetic tree using branch 
lengths, we used Mega X (Kumar et  al., 2018) to generate a neighbor 
joining tree with 2000 bootstrap replicates. All measurements were aver-
aged across the three replicates per genotype to produce an average value 
for each trait for each genotype. We computed Pagel’s lambda to esti-
mate phylogenetic signal for each morphological trait and mapped each 
trait onto the phylogeny (see Supplementary Fig. S4A–X) using the R 
package phytools (v. 0.6–44; Revell, 2012). We calculated variation of 
each morphological trait for each clade based on the mean value for each 
species (Supplementary Fig. S5).

Statistical analysis
PCA, MDS, and hierarchical cluster analysis generating a hierarchical 
tree were performed in Matlab using functions pca(), cmdscale(), and 
clustergram(). The R function cor.mtest() and package corrplot (Wei & 
Simko, 2017) were used for significance tests and correlation matrix visu-
alization. The function lda() in R package MASS (Venables & Ripley, 
2002) was used for the linear discriminant analysis (LDA) with a jack-
knifed ‘leave one out’ cross validation method.

Code availability
All Matlab functions used to calculate persistence barcodes, bottleneck 
distances, simulation for berry potential, other geometric features used 
in this study, and the script for extracting phylogenetic information 
can be found at the following GitHub repository: https://github.com/
Topp-Roots-Lab/Grapevine-inflorescence-architecture.

Results

Inflorescence morphological variation and trait 
correlation within Vitis species

We investigated 24 morphological traits (15 geometric traits, six 
PH traits, and three berry potential traits) of inflorescence archi-
tecture in 10 wild Vitis species (136 genotypes, 392 samples) and 
detected wide variation in morphological features within and 
between species (Fig. 2; Supplementary Fig. S2; Supplementary 
Table S2). In particular, of all the species examined, V. aestivalis 
had the largest variance for TotalBerryPotentialVolume. Vitis la-
brusca had the largest variance for 10 traits (i.e. pedicel features, 
Sphericity, AvgBranchDiameter, AvgBerryPotentialDiameter, 
and normalized topological traits). Vitis cinerea had the lar-
gest variance for six traits (i.e. most global-size features, 
PH_PC2, and PH_PC3). In comparison, V.  palmata had the 
smallest variance for eight traits (i.e. pedicel features, Sphericity, 
AvgBranchDiameter, TotalBerryPotentialVolume, PH_PC3, 
and PHn_PC3), as did V.  amurensis (global-size features, 
RachisLength, PH_PC1, and PH_PC2).

All traits were hierarchically clustered based on the mean 
trait values for each species, classifying traits into two main 
categories: mostly size-invariant+local-branching features 
(PHn_PC3 to PedicelLength) versus global-size features 
(AvgBranchLength to BerryPotentialTouchingDensity) (Fig. 
5A). Hierarchical clustering (Fig. 5A) and pairwise correl-
ation for morphological traits (Fig. 5B) showed that global-
size features (ConvexHullVolume, SurfaceArea, Volume, 
NumberOfPedicel, and TotalBranchLength), PH_PC1, and 
RachisLength were all highly positively correlated. We refer 

Table 2.  Fifteen geometric traits were organized into three 
categories based on the type of shape information captured by 
the trait

Global-size  
features

Local-branching  
features

Size-invariant  
features

Volumea RachisLengtha Solidity
ConvexHullVolumea PedicelLength Sphericity
SurfaceAreaa AvgBranchLength 2nd/LongestBranchLength
TotalBranchLengtha BranchDiameter PedicelLength/RachisLength
NumberOfPedicela PedicelDiameter  
 PedicelBranchAngle  

See Supplementary Table S1 for a more detailed description of each trait.
a these features plus PH_PC1 comprise ‘Size-associated features’.
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to these seven traits as size-associated features. Size-associated 
features were negatively correlated with PedicelLength/
RachisLength, Solidity, Sphericity, and PHn_PC1. Some traits 
were relatively independent such as 2nd/LongestBranchLength, 
PedicelLength, PedicelBranchAngle, PH_PC2, PHn_PC2, and 
PHn_PC3 (Fig. 5B). PH_PC3 had some negative relation with 
size-invariant features. PHn_PC1 positively correlated with 
Sphericity, Solidity, and AvgeBerryPotentialDiameter (Fig. 5B). 
Pairwise correlations of morphological features (allometric re-
lationships) for each of the species varied widely (Fig. 5C; for 
all traits see Supplementary Fig. S6A–X). For example, more 

pedicels typically result in smaller berry potential diameters, 
except for V. aestivalis. Longer branches tended to be thinner, 
except for V. coignetiae, and correlate with larger inflorescences, 
except in V. acerifolia.

Hierarchical clustering of 10 Vitis species based on the 24 
morphological traits resolved four groups: (i) V.  cinerea, (ii) 
V. aestivalis, (iii) V. coignetiae–V. vulpina–V. palmata–V. acerifolia–
V. riparia–V. rupestris, and (iv) V. amurensis–V. labrusca (Fig. 5A). 
Among the 10 Vitis species examined in this study, the lar-
gest variance in mean trait values were seen in V. cinerea (Fig. 
5A). Vitis cinerea samples were generally larger than those from 

Fig. 3.  Persistent homology with geodesic distance comprehensively quantifies branching structures. (A) A level (pink solid line) defined by the same 
geodesic distance (length of any of the purple curves, in this case, set to 90) to the base of the inflorescence. The super level set is the pixels (in black) 
having greater geodesic distance than the pink level. (B) Pixels on a branching structure are colored by their geodesic distance to the base. They are 
colored with red representing the most distant through to blue for the closest ones. (C) A persistence barcode for each branching structure records the 
connected components for each level set at each geodesic distance value. The ‘birth’ and ‘death’ values for each bar represent the level where each 
branch starts and gets merged. Colored bars correspond to colored branches. (D) Above: example inflorescence. The stem is digitally cut at the base 
(brown line) where it meets the first branch. Below: 3D surface on the example inflorescence as in (B). (E) Persistence barcode for the inflorescence in (D). 
(F, G) Similar to (D, E) showing a different inflorescence architecture.
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the other species, as reflected in size-associated traits. Topology 
traits such as PHn_PC3 and size-invariant traits like Sphericity 
and Solidity were lower in the mean trait value for V. cinerea 
than for other species. Similarly, mean trait values were larger 
for size-associated traits in V.  aestivalis (Fig. 5A). Compared 
with other species, topology and berry potential traits were 
larger in V. aestivalis. Mean trait values of the third group (V
.  coignetiae–V.  vulpina–V.  palmata–V.  acerifolia–V.  riparia–V.  rup
estris, Fig. 5A) tended to be nearer to middle values com-
pared with the other species. Within this group, V. acerifolia–
V.  riparia–V.  rupestris typically were larger in the mean trait 
value for berry potential touching (i.e. denser berry potentials). 
These three species and V. palmata tend to have large, first pri-
mary branches (i.e. wings; Fig. 1E). Vitis coignetiae has thicker 
branches and V.  vulpina has longer pedicels compared with 
other species in this group. The final group, V. amurensis and 
V.  labrusca, have relatively smaller inflorescences with thicker 
branches compared with the other species sampled here. These 
general features are reflected in larger mean values for several 
size-invariant and local-branching features and smaller mean 
values for many branch length-dependent and size-associated 
features, respectively (Fig. 5A).

Multivariate, discriminant analysis of Vitis species 
based on inflorescence architecture

In order to understand how overall inflorescence architecture 
varies among Vitis species, we performed PCA using all 24 
morphological features and all samples. PC1 explained 37.12% 
of the total variation in the measured architecture (Fig. 6A). 
The traits with the largest values for PC1 loadings, indicating 
that they contributed most to variation, were size-associated 
features, Solidity and Sphericity. PC2 explained 15.4% of the 
total variation in the measured inflorescence architecture, 
with variation primarily explained by local-branching fea-
tures such as PedicalDiameter, PedicelLength, PedicelLength/
RachisLength, AvgBranchLength, BranchDiameter, three 
berry potential traits, and PHn_PC1 (Fig. 6A). Although in-
florescences from each species occupy different regions of 
morphospace, these regions overlap considerably.

LDA performed on the first 18 PCs explaining 99.5% of 
the variation, distinguished between species with a classifica-
tion accuracy rate of 78.32%. A  confusion matrix (Fig. 6B) 

shows the proportion of samples correctly predicted for each 
species. LD1 primarily separates V.  cinerea, V.  labrusca, and 
V. amurensis from the other species while LD2 primarily sep-
arates V. vulpina and V. coignetiae. The traits that are most im-
portant for distinguishing these species, as indicated by LD 
loadings, are TotalBerryPotentialVolume and PHn_PC1 for 
LD1, and AvgBranchLength and AvgBerryPotentialDiameter 
for LD2 (Fig. 6B). The most important predictors for cor-
rectly separating any two species are shown as the grey scaled 
boxes in Supplementary Fig. S7 and Table S3. For example, 
BranchDiameter and PedicelDiameter are key when con-
trasting V.  coignetiae and V.  vulpina, suggesting that different 
branch thickness easily distinguishes these two species. This 
method correctly determined species classifications with 100% 
accuracy when contrasting V. aestivalis and V.cinerea, V. aestivalis 
and V.palmata, V.  aestivalis and V.  vulpina, V.  amurensis and 
V. cinerea, V. amurensis and V. palmata, V. cinerea and V. coignetiae. 
Other combinations of species are harder to distinguish on 
the basis of inflorescence characters. For example, the classi-
fication accuracy rate was only 80% when distinguishing be-
tween V. amurensis and V. labrusca and 82% for V. aestivalis and 
V. coignetiae.

Phylogenetic signal of inflorescence architecture 
within clades

The phylogeny dataset (n=99) is generally well-supported at 
the species level and correlates well with current taxonomy. 
Using average trait values per individual, Pagel’s lambda 
showed 12 morphological traits (seven size-associated features 
along with PedicelDiameter, TotalBerryPotentialVolume, 
Sphericity, PH_PC2, PHn_PC1) have a strong phylo-
genetic signal (lambda>0.8; Fig. 7; Supplementary Table 
S4). While most species sampled tended to have small 
values for the seven size-associated features, V.  aestivalis, 
V. cinerea, and V. vulpina tended to have values that were ei-
ther close to median or larger. On average, V.  labrusca had 
larger values for Sphericity and PHn_PC1 compared with 
other species sampled, while V.  cinerea generally had some 
of the smallest values for these traits. Only two morpho-
logical traits (2nd/LongBranchLength, lambda=0.06 and 
BerryPotentialTouchingDensity, lambda=0.25) lacked phylo-
genetic signal (Fig.7; Supplementary Table S4).

Fig. 4.  Berry potential simulation to explore the space determined by inflorescence architecture. (A) Determine the growth direction for each berry 
potential. (B) Expand berry potential by increasing the size and moving the center along the growth direction until it meets any of these three cases: (i) two 
berry potentials touch each other; (ii) a berry potential touches any part of the inflorescence; (iii) the diameter of the berry potential reaches the maximum 
for the species.
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We observed differences in Vitis inflorescence architec-
ture among clades and between species. For North American 
(NA) clade I (V. acerifolia, V. riparia, V. rupestris), variation in the 
24 morphological traits measured had similarly small values 
among species, particularly for several size-associated traits, al-
though there was relatively large variation for PH_PC3 and 
BerryPotentialTouchingDensity (Fig. 7). Within NA clade 
I, we observed differences among clade members for traits 
such as Sphericity and PHn_PC1 (larger in V. rupestris com-
pared with other clade members) and PedicelDiameter and 
BranchDiameter (slightly larger in V. acerifolia compared with 

other clade members; Fig. 7). NA clade II appeared to be more 
variable among clade members. Vitis cinerea had larger values for 
size-associated traits compared with clade members V. labrusca, 
V. palmata, and V. vulpina. Meanwhile, V. labrusca typically had 
larger values for local features (e.g. Sphericity, PedicelDiameter, 
AvgBerryPotentialDiameter, PedicelBranchAngle) compared 
with the other clade members (Fig. 7).

We calculated the mean value for each species of each mor-
phological trait to study variation within the three clades and 
detect subtle signatures (Fig. 7). We computed the variance for 
the multivariate trait (combining all the 24 traits), and each 

Fig. 5.  Hierarchical cluster analysis and correlation analysis. (A) Cluster analysis based the mean value for each trait of 10 Vitis species. The heatmap 
shows values above (red) or below (blue) the mean for each trait. The morphological traits (rows) are clustered hierarchically with the name shown on 
the right and hierarchical tree listed on the left. The species (columns) are also clustered hierarchically with the name and hierarchical tree shown at the 
top. (B) Correlation matrix plot shows pairwise positively stronger correlation (green and larger circle) or negatively stronger correlation (purple and larger 
circle). Non-significant correlations (P>0.05) are crossed out. The traits are ordered in the same way as in (A). (C) Selected pairs of traits showing linear 
regression lines for each species.
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of these 24 traits for each clade (see Supplementary Fig. S5; 
Supplementary Table S5). Overall, based on the samples used 
in this analysis, variance of the multivariate trait for NA clade 
I (variation=0.14) was much smaller than that for NA clade II 
(variation=0.64), while the variation for the Asian clade was 
0.39. Some traits had almost no variance in the Asian clade 
such as PedicelDiameter, PHn_PC2, PH_PC3, and 2nd/
LongestBranchLength. However, North American species 
(8/~19 taxa) in this study were better represented than Asian 
species (2/~37 taxa), so we are cautious not to over-interpret 
this finding. Traits with the greatest variance in the Asian 

clade included PedicelLength/RachisLength, RachisLength, 
and PH_PC1, while NA clade I had the greatest variance in 
PHn_PC2. All the other traits had greatest variance in NA 
clade II (Supplementary Fig. S5, Supplementary Table S5). 
Traits with the smallest variance in the Asian clade included 
PHn_PC3, PHn_PC1, PedicelDiameter, BranchDiameter, 
NumberOfPedicel, 2nd/LongestBranchLength, PH_PC3, and 
BerryPotentialTouchingDensity. The other traits had small 
variance in NA clade I (Supplementary Fig. S5, Supplementary 
Table S5). Our results highlight clade-specific variation in in-
florescence architecture for previously undescribed traits.

Fig. 6.  Classification for 10 Vitis species based on inflorescence architecture. (A) Left: principal component analysis (PCA) plot on 24 morphological 
traits. The percent variance for each PC explained is shown in parentheses. Species are shown in different colors. Right: the loadings for the traits that 
contribute to the variance are shown. (B) Left: linear discriminant analysis (LDA) plot on the first 18 PCs (99.5% variance). Species are shown in different 
colors. The confusion matrix for predicted species is shown in the upper right corner. Right: the loadings for the traits that best distinguish species from 
each other. Using a jacknifed ‘leave one out’ cross validation, we obtain a 78.32% classification accuracy rate.
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Fig. 7.  Phylogenetic analysis. A neighbor joining phylogenetic tree for a subset of the Vitis dataset (n=99). Node values denote bootstrap support for 
values ≥50. Ten Vitis species are highlighted in different colored backgrounds. Three clades (Asian clade, NA clade I, and NA clade II) are labeled and 
marked by vertical bars. The barplot showing values of Pagel’s lambda, an estimate of phylogenetic signal, overlaps with the trait name on the right top 
panel. Below each trait, a rainbow colormap shows the values for individuals (small values in red to large values in blue). Rectangles surround the trait 
value map for species with more than five individuals. One trait (PHn_PC1) was randomly selected to be projected onto the phylogenetic tree branches, 
and indicates trait variation (red, lower values; blue, higher values) within individuals and among clades.
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Discussion

X-ray imaging and advanced morphometrics is a 
powerful combination for characterizing complex 
phenotypes

Inflorescence architecture has a strong influence on flower 
and fruit production and is therefore a trait of great scientific 
interest. Studies extend into interspecific variation, pollen dis-
persal, genetic architecture, evolution, regulation, and devel-
opment of inflorescence structures (e.g. Bradley et  al., 1996; 
Friedman & Harder, 2004; Kellogg, 2007; Morris et al., 2013; 
Han et al., 2014; Hodge & Kellogg, 2015; Whipple, 2017; Stitzer 
& Ross-Ibarra, 2018; Ta et al., 2018; Richter et al., 2019). Yet 
the challenge remains to analyse these complex 3D branching 
structures with appropriate tools. High resolution datasets are 
required to represent the actual structure and comprehensive 
analysis of both the geometric and topological features relevant 
to phenotypic variation and to clarify evolutionary and devel-
opmental inflorescence patterns.

Our results demonstrate the power and potential of X-ray 
imaging and advanced morphometric analysis for investigating 
complex 3D phenotypic features. We analysed the phenotypic 
variation in inflorescence architecture of 10 wild Vitis spe-
cies using computer vision and an emerging biological shape 
analysis method, persistent homology, which allowed com-
prehensive comparisons of shape. Although samples analysed 
here represent only a subset of the known variation in Vitis, 
which includes an estimated 60 species, our analyses demon-
strate significant variation within and among Vitis species and 
among clades. Correlation analysis (Fig. 5B) revealed some 
unexpected relationships, for example pedicel branch angles 
were largely independent of other traits. It also shows that PH 
features are complementary, as they are relatively independent 
from most geometric features. We were able to assign widely 
differing architectures to biological species with high accuracy 
(Fig. 6) from the 24 different morphometric traits surveyed 
in this study. PH provides an important contribution to this 
discriminatory power, as does berry potential (Fig. 6B). We 
observed that traits such as the rachis length, the sum of all 
branches, the space encompassing the inflorescence architec-
ture (ConvexHullVolume), and PH features can be indicative 
of species and clade (Fig. 7). Our results suggest meaningful, 
comprehensive information about the inflorescence struc-
ture was captured with a single measure (i.e. the persistence 
barcode) and that PH is a valuable method for quantifying and 
summarizing topological information.

Persistent homology analysis has led to a deeper under-
standing of trait genetic variation and architecture in plants (Li 
et al. 2018a,b). In grapevine, quantitative trait locus (QTL) ana-
lysis indicates a genetic basis to inflorescence architecture and 
berry compactness (Correa et al., 2014; Richter et al., 2019). 
Deploying PH-based topological modeling to grapevine map-
ping populations could lead to the rapid identification of add-
itional inflorescence trait QTLs for breeding. For example, we 
observed total branch length (a proxy for bigger or smaller 
clusters) correlates with number of pedicels (a proxy for berry 
number; Fig. 5), an informative relationship to assess potential 

yield. However, selecting for total branch length might lead to 
a negative correlation with the average berry potential diam-
eter (i.e. smaller berries). Although this correlation may be de-
sirable for wine grapes, it is not for table grapes.

Linking complex phenotypes with evolutionary patterns 
to facilitate precision breeding

Grapevine cluster architecture is a composite feature that re-
flects multiple subtraits including stalk traits (inflorescence 
architecture) and berry features (Richter et al., 2019). OIV 204 
uses ‘bunch: density’ to describe variation in clusters, ranging 
from 1, berries clearly separated with many visible pedicels, to 
9, berries deformed by compression (OIV, 2001; Rombough, 
2002). Other authors have deconstructed traits contributing to 
cluster architecture primarily through individual measurements 
collected manually (e.g. Shavrukov et al., 2004; Tello et al., 2015; 
Zdunić et al., 2015; Tello & Ibáñez, 2018) and more recently, 
with image-based technologies (Cubero et al., 2014; Roscher 
et al., 2014; Ivorra et al., 2015; Aquino et al., 2017, 2018; Rist 
et al., 2018). Here, we were able to describe traits of interest 
that contribute greatly to the morphological features cap-
tured by the OIV scale (e.g. NumberOfPedicel, PedicelLength, 
PedicelBranchAngle, RachisLength, overall shape using PH; 
Fig. 2; Supplementary Fig. S2). This method could facilitate 
precision breeding for both whole inflorescence structure top-
ology and specific desirable geometric traits.

While several studies have quantified cluster structure in 
cultivated grapevines, similar studies of wild Vitis inflorescence 
architecture are lacking. Munson (1909) and Galet (1979) de-
scribe North American Vitis cluster structure qualitatively, 
commenting on compactness, size, shape, and the presence of 
large first primary branches (wings/shoulders). Taxonomic de-
scriptions typically do not examine inflorescence architecture 
beyond categorical type, position on the vine, and the average 
number of berries per cluster (Comeaux et al., 1987; Moore, 
1991; Moore & Wen, 2016). Descriptions of the position of the 
inflorescence are useful for identification and are included in 
dichotomous keys; however, to our knowledge, other inflores-
cence architecture traits have not been rigorously quantified 
among wild Vitis species. Although qualitative descriptions are 
valuable and accessible, powerful phenotyping tools are re-
quired to associate complex phenotypes with evolutionary and 
developmental patterns.

Using 3D imaging and PH with a topological modeling ap-
proach, we identified attributes of inflorescence architecture 
that vary within and among Vitis species that, to our know-
ledge, have not been previously described. Differences in 
inflorescence architecture among clades mirror other pheno-
typic differences among members of North American Vitis. 
For example, members of NA clade I  (V.  acerifolia, V.  riparia, 
and V.  rupestris) have small values for size-associated features 
(e.g. RachisLength, ConvexHullVolume, NumberOfPedicel, 
TotalBranchLength, SurfaceArea, Volume) and relatively large 
values for PH_PC3 and BerryPotentialTouchingDensity (Fig. 
7). These species share suites of other morphological charac-
ters (nodal diaphragm, branch and leaf surface traits, and large 
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stipules; Moore 1991, Moore and Wen 2016, Klein et al., 2018). 
It is possible that among closely related species conserved path-
ways generate vegetative and reproductive similarities.

Sample size is low for the Asian clade and most of NA clade 
II, limiting our ability to assess variation in these species; how-
ever, members of NA clade II do not have suites of shared 
inflorescence traits (V. aestivalis, V. cinerea, V. labrusca, V. vulpina; 
Klein et al., 2018). Rather, V. labrusca has very small values for 
size-associated traits and larger values for local features com-
pared with the other clade members, whereas V.  cinerea has 
larger values for size-associated features and smaller values for 
local features (Fig. 7). This is consistent with the observation 
that aside from core phenotypic synapomorphies in the genus 
(tendril, bark, lenticel, and nodal diaphragm characters), mem-
bers of NA clade IIb (V.  aestivalis, V.  cinerea, V.  labrusca, and 
V.  vulpina) do not share morphological traits unique to the 
clade (Klein et al., 2018). These species mostly co-occur across 
their distributions (Callen et al., 2016) and additional sampling 
of Vitis taxa is necessary to further explore these complex evo-
lutionary patterns. We observed V.  amurensis grouping with 
V.  labrusca and V.  coignetiae grouping with North American 
species in hierarchical cluster analysis (Fig. 5A). The former 
two species have relatively smaller inflorescence architectures 
with thicker branches compared with the other species sam-
pled here. Taxonomic relationships among North American 
and Asian Vitis species have been historically challenging, with 
clades comprising species with disjunct distributions (Mullins 
et  al., 1992). Since current taxonomy resolves separate Asian 
and North American clades (Klein et al., 2018), morphological 
similarity between these species likely reflects convergent 
evolution.

Future directions

Three-dimensional imaging through XRT and advanced 
mathematical approaches like persistent homology provide 
new ways to visualize and interpret complex biological struc-
tures including inflorescences, and to understand the genetic 
and environmental factors underlying variation in their archi-
tecture. In grapevines, cluster density is an important trait that 
is used to assess grapevine crop quality and to forecast yield, 
in part because of the association between bunch density and 
fungal infestations such as Botrytis (Hed et al., 2009; Iland et al., 
2011; Molitor & Beyer, 2014; Molitor et al., 2018). This study 
expands on previous work identifying variation in inflores-
cence architecture among cultivars (Shavrukov et  al., 2004), 
finding notable differences in cluster architecture among spe-
cies. A  logical next step may be to use 3D images and PH 
with topological modeling to trace the development of inflor-
escences across multiple growing seasons in a mapping popu-
lation. Methods presented here are also amenable to scanning 
with berries, provided some noteworthy technical challenges 
are first addressed (e.g. minimizing berry damage and rot-
ting during transportation, cluster stabilization during scan-
ning, and segmentation of 3D volumes with features that vary 
widely in their X-ray absorbance). This work would provide 
a more complete representation of cluster structure, as well as 
inform our berry potential simulation with genotype-specific 

empirical data. We plan to develop predictive structural models 
of grapevine cluster development using these techniques.

Imaging and shape analysis approaches presented here can 
also be used to tease apart subtle environmental influences on 
inflorescence architecture, and the major agronomic trait of 
bunch density. Identifying environmental effects on pheno-
typic variation has important implications both for vineyard 
management and the assessment of intra-clone variation across 
geographic space. Cluster compactness can be manipulated 
through a variety of agronomic practices (Molitor et al. 2012; 
Gil et  al. 2013; Frioni et  al. 2017; Gourieroux et  al. 2017; 
Poni et  al. 2018; Reeve et  al. 2018). Techniques described 
here can be used to quantify influences of specific treatments 
on cluster architecture. In addition, because grapevines are 
clonally propagated, clusters from the same widespread clones 
can be collected from different geographic locations, scanned, 
and analysed for variation. High resolution assessment of in-
florescence architecture offers important insights into natural 
variation in bunch density and the genetic and environmental 
factors that influence it. The capacity to capture 3D variation 
in this complex trait over space and time represents a prom-
ising advance for a valuable potential target of selection in one 
of the most economically important berry crops in the world.
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