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Implicit-solvent coarse-grained modeling for polymer
solutions via Mori-Zwanzig formalism

Based on the Mori-Zwanzig projection, atomistic representations
of polymers in solution are projected to a reduced-dimension
space of coarse-grained coordinates while the dynamic
properties of polymers are conserved. Provided significantly
reduced degrees of freedom and larger timesteps, the established
implicit-solvent coarse-grained model is much more efficient
than full atomistic simulations, and hence, grants larger accessible
length scales and renders tractable simulating long-time effects.
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1 Introduction

Implicit-solvent coarse-grained modeling for
polymer solutions via Mori-Zwanzig formalism

Shu Wang,® Zhen Li2° and Wenxiao Pan () *

We present a bottom-up coarse-graining (CG) method to establish implicit-solvent CG modeling for
polymers in solution, which conserves the dynamic properties of the reference microscopic system. In
particular, tens to hundreds of bonded polymer atoms (or Lennard-Jones beads) are coarse-grained as
one CG particle, and the solvent degrees of freedom are eliminated. The dynamics of the CG system is
governed by the generalized Langevin equation (GLE) derived via the Mori-Zwanzig formalism, by which
the CG variables can be directly and rigorously linked to the microscopic dynamics generated by
molecular dynamics (MD) simulations. The solvent-mediated dynamics of polymers is modeled by the
non-Markovian stochastic dynamics in GLE, where the memory kernel can be computed from the MD
trajectories. To circumvent the difficulty in direct evaluation of the memory term and generation of
colored noise, we exploit the equivalence between the non-Markovian dynamics and Markovian
dynamics in an extended space. To this end, the CG system is supplemented with auxiliary variables that
are coupled linearly to the momentum and among themselves, subject to uncorrelated Gaussian white
noise. A high-order time-integration scheme is used to solve the extended dynamics to further
accelerate the CG simulations. To assess, validate, and demonstrate the established implicit-solvent CG
modeling, we have applied it to study four different types of polymers in solution. The dynamic
properties of polymers characterized by the velocity autocorrelation function, diffusion coefficient, and
mean square displacement as functions of time are evaluated in both CG and MD simulations. Results
show that the extended dynamics with auxiliary variables can construct arbitrarily high-order CG models
to reproduce dynamic properties of the reference microscopic system and to characterize long-time
dynamics of polymers in solution.

Owing to the larger characteristic length scale of the CG system,
larger time steps are permitted in CG simulations. If the solvent

For polymers or macromolecules in solution, atomistic simulation DOFs are further eliminated, it leads to the so-called implicit-

techniques, such as all-atom molecular dynamics (MD), have been
well established to precisely represent molecular structures and to
accurately predict static and dynamic properties of the system by
tracking individual atoms of molecules and solvent. In practical
applications,"™ first-principles MD simulations can be computa-
tionally prohibitive to simulate large-scale polymer solution
systems and/or to capture long-time effects. If only the meso-
scopic properties and collective dynamics of polymers are of
particular interest, there is no need to simulate all the atomistic
details of the system, and some degrees of freedom (DOFs) may
be eliminated appropriately for saving computational cost. To
this end, coarse-grained (CG) modeling, which represents a
group of atoms as a single CG particle, becomes attractive.”™
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solvent CG modeling."*" Provided significantly reduced DOFs

and larger time steps, the implicit-solvent CG modeling can be
much more efficient than full atomistic simulations, and hence,
grants larger accessible length scales and renders tractable
simulating long-time effects.

Numerous methods have been developed for CG modeling to
correctly capture the static properties (e.g., pressure, compressibility,
radial distribution function) of polymers in solution, including
iterative Boltzmann inversion,'® inverse Monte Carlo,"® force
matching method,'® minimization of relative entropy,'”'® etc.
In the present work, our focus is on the dynamic properties, e.g.,
the velocity autocorrelation function (VACF) and diffusivity. In a
canonical ensemble, thermostats are required in CG modeling to
maintain a constant temperature (on average). In general, the
dynamic properties of a system relate closely to the applied
thermostat, which is associated with a dissipative term and a
random term correlated by the fluctuation-dissipation theorem
(FDT)." For polymers in solution, the dynamics of polymers not
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only depends on the interactions between polymer molecules
but also the interactions with the solvent.

Explicitly coarse-graining solvent by clustering multiple
molecules into a CG representation can be challenging because
the solvent molecules are not interconnected and can move
apart in time, and hence, no simple mapping relates their
atomistic and CG configurations.”*>* Thus, complicated dynamical
clustering methods, such as the K-means clustering algorithm,>*
SWINGER algorithm,* trajectory correspondence clustering
scheme,’® and position-dependent CG mapping,”” have to be
applied. A popular explicit-solvent CG modeling method is
dissipative particle dynamics (DPD), which has been applied for
modeling polymers or lipid/cell membranes in solution.”*>" In
DPD, the dissipative and random forces are not rigorously derived
from the microscopic data but rather calibrated through a post-
processing or optimization procedure to match a target dynamic
property.*> As a result, correctly capturing other dynamic
properties beyond the target one cannot be guaranteed.*>*
Another issue of explicit-solvent CG modeling is its computa-
tional cost. For modeling dilute solutions, the simulations with
many solvent DOFs can be still costly.

Therefore, implicit-solvent CG modeling can be an attractive
alternative, which eliminates solvent DOFs and implicitly incor-
porates the solvent-mediated effects on polymers. In fact, the
interactions with solvent can lead to strong memory effects in
the dynamics of polymers. Thus, elimination of solvent DOFs
results in a non-Markovian memory in the equation of motion
(EOM) of the CG variables. However, in some efforts of implicit-
solvent CG modeling for polymer solutions, the dissipative and
random terms were assumed Markovian; i.e., no memory effect
was considered in the CG dynamics. As a result, such CG
modeling can only reproduce certain averaged dynamic properties,
e.g., the average diffusion coefficient, by fine-tuning or optimizing
the parameters in the dissipative and random terms.'**>*® With
Markovian approximation in the implicit-solvent CG modeling, the
VACEF of CG patrticles follows strictly an exponential decay, which is
unlikely able to reproduce the entire complex transition dynamics
and to characterize long-time behaviors of polymers in solution.
The non-Markovian memory in implicit-solvent CG modeling can
play an important role in producing correct long-time dynamics.*”
To this end, the Mori-Zwanzig formalism®®*™*° provides a forward
path to construct implicit-solvent CG models directly from micro-
scopic dynamics in a bottom-up fashion. The dissipative and
random terms in the resulting generalized Langevin equation
(GLE) can be directly constructed and evaluated from the micro-
scopic dynamics by mapping the microscopic system to the CG
system using the Mori-Zwanzig projection. Therefore, we employ
the GLE derived via the Mori-Zwanzig formalism to govern the
dynamics of the CG system. We note that in literature, Lyubimov
et al. derived from the GLE the analytical factor for dynamical
rescaling of the friction coefficient in CG modeling to correctly
capture the long-time diffusion of polymers, which is applicable to
melt systems.”*> The derived rescaling factor is transferable for
different polymer systems and thermodynamic conditions, with the
temperature and radius-of-gyration as the input parameters.*"*?
Jung et al. employed the GLE with iteratively reconstructed
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non-Markovian memory kernels to reproduce the VACF of
nanocolloids in dilute solution,**** where the self-memory of
a single colloid immersed in solvent was augmented with
pairwise correlations.** Davtyan et al.*® developed a dynamic
force matching technique to study a system that consists of a
Lennard-Jones (L]) particle dissolved in a LJ solvent. To repro-
duce the non-Markovian dynamics of the LJ particle, the
implicit-solvent CG modeling was supplemented by a set of
fictitious particles with harmonic interactions among them-
selves and a special coupling to the LJ particle.

The non-Markovian memory term in GLE involves a con-
volution of the memory kernel with the velocities of CG
particles. Direct evaluation of this memory term can be expen-
sive because it requires to record the history of the CG variables
at every time step and to numerically solve the convolution.
In the meanwhile, colored noise must be generated for the random
term to satisfy the second FDT that ensures correct equilibrium
statistics in the system. Instead of direct evaluation of the memory
term and generating colored noise, an alternative approach is
considered in this work. The non-Markovian dynamics described
by the GLE is mapped to a Markovian process extended in a higher
dimensional space. To this end, the memory kernel is approximated
by the exponentially decaying oscillatory functions, and auxiliary
variables are introduced and coupled to the momenta of CG
particles. With the second FDT still satisfied, only inexpensive
white-noise terms are needed in the extended dynamics. In so doing,
no non-Markovian memory term needs to be evaluated, and no
colored noise needs to be sampled. By such, this approach renders
tractable the practical implementations of the proposed CG model-
ing for polymer solutions in real applications. We note that this
approach of mapping the non-Markovian dynamics to an extended
Markovian process using auxiliary variables has been applied in
others’ work to treat the memory term in GLE.**° The present
work represents a different attempt to apply it for implicit-solvent
CG modeling of polymers in solution. An additional benefit of
employing the extended dynamics with auxiliary variables is that
we can control the accuracy of CG modeling by the number of
auxiliary variables used and hence achieve the desired tradeoff
between accuracy and computational efficiency.

The extended dynamics was previously solved by the velocity-
Verlet temporal integrator.’>®" In this work, we introduce a
higher-order integrator scheme for solving it, which is based
on the G-JF integrator originally derived by Grenbech-Jensen and
Farago for solving Langevin dynamics in MD simulations.>>>* By
numerical experiments, we compared the performance of the
G-JF and velocity-Verlet schemes with respect to both accuracy
and efficiency. The proposed implicit-solvent CG modeling was
applied to study four types of polymer solution systems, including
homogeneous star polymers, inhomogeneous mixture of non-
monosized star polymers, and branched-chain polymers in
solution and also tri-n-butyl phos-phate polymers in chloroform.
In each system, we computed the dynamic properties of polymers,
including the VACF, diffusion coefficient, and mean-square dis-
placement (MSD) as functions of time in a wide spectrum of time
scales. The predictions by the CG simulations were compared with
the results of reference MD simulations.
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The rest of the paper is organized as follows. In Section 2, we
first describe the formulation of GLE derived from the Mori-
Zwanzig formalism in Section 2.1, next give the equation of
the extended dynamics in Section 2.2, and then provide in
Section 2.3 the schemes of two temporal integrators, the
velocity-Verlet and G-JF, for solving the extended dynamics.
Section 3 presents the results of simulating four different types of
polymer solution systems employing the proposed implicit-solvent
CG modeling. The dynamic properties of polymers predicted by the
CG modeling are compared with the reference MD simulations.
The accuracy and efficiency of the two temporal integrators are
compared in Section 3.1. Finally, we conclude and summarize our
main findings and contributions in Section 4.

2 Formulation
2.1 GLE via Mori-Zwanzig formalism

Mori-Zwanzig projection can extract reduced-dimension variables
from a full-dimension system.*®** Here, the full-dimension system
corresponds to the (all-atom) microscopic system, which is the MD
system in this work; the reduced-dimension system corresponds to
the CG system. Consider a MD system that contains n atoms with
coordinates r; and momenta p;, i = 1, 2,...,n. In its corresponding
CG system, these n atoms are coarse-grained as N clusters (referred
to as CG particles), in which each cluster contains 7. atoms. The
variables associated in the CG setting include the position R and
momentum P of the center-of-mass (COM) of each CG particle,
which can be defined as:

N

1
R, =— E i
1 M, - myixy

ne
P = ZP/[’
i=1

with M; = i my; the mass of the Ith CG particle and m;; the mass
i=1

of the i-th atom in the I-th CG particle. To be consistent in notation,

we use the lowercase m, r, and p to represent the mass, position,

and momentum of an atom, while the uppercase M, R, and P

denote the mass, position, and momentum of a CG particle.
Following the Mori-Zwanzig formalism,***° the EOM of CG

particles can be derived in the form of GLE as:

P = (F)) - ﬁXN; JLar([owgc -] [srsi0)])

P, (1) 0
x ——=+ OF} (¢
M/ + I ( )7
with the inverse temperature § = 1/(kgT), Boltzmann constant
kg, and thermodynamic temperature 7. On the right-hand side
of eqn (2), the first term represents the ensemble average force
. 10
on the Ith CG particle: (F;) = BﬁTln o(R), where R = {Ry,
I
R,,.. ., Ry} is a point in the CG phase space, and o(R) denotes a
normalized partition function of all the microscopic configura-
tions at phase point R. As the present work concerns the
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dynamic properties and diffusion process and does not con-
sider the structural properties or free energy, (F;) is regarded as
the average for CG particles over all phase points. Thus, without
external force fields, the mean force exerted on a CG particle is
approximated to be zero; i.e., (F;) = 0. The other two terms on
the right-hand side of eqn (2) correspond to the dissipative and
random forces, respectively, which compensate for the lost
DOFs as a consequence of coarse-graining.’>*® The random
force SFY(f) = e "9X'SF,, where 8F, = F, — (F,) with F,=P;; Q is the
orthogonal operator in Mori-Zwanzig projection, and L the
Liouville operator.”*

In eqn (2), the dissipative force is determined by time
convolution of the memory kernel and momenta of CG parti-
cles. The memory kernel is defined as the autocorrelation
function of random forces; i.e., Ky(t) = B([SFL(t)[SFF(0)]"). This
definition ensures the second FDT is satisfied.'® Direct evalua-
tion of the dissipative force is challenging since it depends on
the random forces and momenta of all CG particles. Assume
there is no correlation between the random forces on different
CG particles;* i.e., B{[SFL(£)][SFP(0)]") = 6,K(¢). Eqn (2) can then
be simplified to:

P, = —J[K(t ~ W)+ (), 3)
0

where V,(¢') =

P;(t
II\/([ ). To determine the memory kernel K(¢), we

1
rely on the property that the velocity V and random force SF°
come from two orthogonal subspaces and hence are not
correlated to each other; ie., (SF®V") = 0. Thus, multiplying
both sides of eqn (3) by V(0)" leads to:

-t
(FOVO) == Ko=) (Vv @

0
where (F(£)V(0)") defines the force-velocity correlation function
(FVCF); the VACF is defined as (V(t)V(0)T). These two correla-
tion functions can be directly evaluated in the reference MD
system. In turn, the memory kernel K(¢) can be computed via
deconvolution of eqn (4). In practice, the deconvolution was
done numerically. By discretizing the integral in eqn (4) using
the midpoint quadrature rule, the discrete form of eqn (4) in
matrix notation reads:

FVCF!
FVCF?
FVCF"
1 1
VACF2 0 ... 0 K2
1 1 1
VACF'*2  VACF2 ... 0 K'*2

= A1 :

1

1 1 1
VACF"2 VACF' ! VACF2 K"

(5)
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where superscripts denote the values at different discrete times,
e.g., FVCF" = FVCF(nAt). By solving this linear system, we
obtained K at discrete times. K(¢) at ¢ = 0 and other integer
time steps can be determined by linear or second-order extra-
polation or interpolation. If the data of VACF and FVCF are
noisy, regularization can be employed, e.g., via truncated
SVD or Tikhonov regularization.>® However, in this work, we
took sufficient ensemble averages for the VACF and FVCF until
they were smooth enough, and hence, no regularization was
employed.

Given the memory kernel K(¢) determined, the GLE defined
by eqn (3) is closed. Directly solving this equation requires to
evaluate the time convolution of the memory kernel and
velocity and to generate color noise for the random force,
which needs to store the historical information and can be
prohibitively expensive. One way to reduce the computational
cost is to truncate the memory kernel to a much shorter time
scale. However, this truncation strategy may not be effective for
the systems studied herein because the solvent-mediated
kinetics could result in long-tailed memory kernels.

2.2 Extended dynamics

To circumvent the difficulty of directly solving eqn (3), we
followed the literature*®>*® and introduced auxiliary variables
§ = {S1, S2y Si3, S1ay S5y Ste}i-1, ..+ to replace the GLE (with non-
Markovian terms) in the form of eqn (3) with equivalent
Markovian Langevin equations extended in higher dimensions
as given by:

P 0 A\ /P 0 0\/0
(- DC )G e
$ Asp Ass S 0 B 4
In eqn (6), Aps = —Al,; € is a vector of uncorrelated Gaussian
random variables with (&(¢)) = 0 and (&;,(¢6)&;,.(0)) = 070,.,0(8),
where ¢, and ¢, denote the different elements of £. The

parameter matrices A = [0, Ayg; Agp, Ags] and B = diag(0, By).
From eqn (6), we can get:

P = Apss

’ / )
o= J e A [CALP() + BE(1)]dr"

Comparing eqn (7) with eqn (3), the memory kernel K(¢) and
random force 8F°(¢) can be expressed as:

K(f) = —MA,e™>Asp, (8)
1
3F9(1) = —J Apse (TOASBE()dr (9)

To satisfy the second FDT, By is given by
B,BY = kgT(Ass + A M. (10)

In eqn (10), B, is a real matrix only if (As + AL) is positive-
semidefinite and can be determined via Cholesky factorization.
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A general, reasonable approximation for the memory kernel
may be an expansion of exponentially damped oscillators; i.e.,

v
K(t) = Z exp (—%t) [brcos(wt) + ¢;sin(wyt)]. (11)
=1

Thus, the drift matrix A in eqn (8) must be a real matrix that has
complex eigenvalues with positive real parts. In eqn (11), A" is
the total number of oscillators truncated to approximate K(t).
Correspondingly, the dimension of s is 6.4". Using more terms
of exponentially damped oscillators, K(¢) can be approximated
more accurately, leading to a higher dimensional extended
dynamics. In eqn (11), a;, b;, ¢;, and w; are the parameters in
each oscillator and comprise the elements of A. Assembling
these parameters determines the matrix A as:*°

; b _ o by o
O : 2 ay 2+a¢
________ I g S R -
A_ 1
L= 1
_. o 1 2., 2
7 T . : ap 2\ 40; +a;
_ o 1 2, 2
i 7+ l 31/ 407 +a; 0_

(12)

In eqn (12), the top right block corresponds to Apg; the bottom
left is Aqp; and, A, is on the bottom right. We note that eqn (12)
can be regarded as a specification of the drift matrix A used in
the work of Ceriotti et al.,*® which reduces the total number of
unknown parameters used to approximate the memory kernel
and accelerates the optimization process to determine the
unknown parameters.

2.3 Temporal integrators

Given eqn (6) determined, we numerically solved it to generate
trajectories of the CG system. To this end, two temporal
integrators were considered and compared.

The first one is the so-called velocity-Verlet scheme, which
has previously been used for solving the extended dynamics.’**
By denoting discrete times with the integer time step super-
script, such as R" = R(t,,), the velocity-Verlet scheme modified for
solving eqn (6) reads:

L A
U™ = U+ M (—AMU" + 135”)7Z

1
Rn+1 —R"+ V71+§A[ (13)

Un+1 — Un+% 4 M—l (_AMUIH% 4 B&’Hl)%.

Here, the vector R denotes the position of a CG particle; the
vector U combines the velocity and auxiliary variables: U =[V, s]";
the matrix M consists of the CG particle’s mass and can be
written as: M = diag{M, 1,...,1}; A and B are the parameter
matrices in eqn (6); &" is a vector of uncorrelated Gaussian
random numbers with (£") = 0 and (£"¢""") = §,,1At. The
velocity-Verlet scheme approximates the delta-function correlated
noise &(f) with a set of rectangular pulses of mean-squared size

This journal is © The Royal Society of Chemistry 2019
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\/1/At, each of which acting over the time interval (¢, — A#/2, ¢, +
At/2).>* Employing this discretized approximation for &(t) yields
O(At) error in the simulated statistical quantities, such as
temperature.®> Thus, to ensure accuracy and stability, the
velocity-Verlet scheme requires small timestep size At.

The second temporal integrator is the G-JF scheme, derived
by Grenbech-Jensen and Farago (G-JF) originally for Langevin
dynamics simulations.’*>* We adapted the G-JF scheme for
solving the extended dynamics in eqn (6) as below:

1 1
U2 =pU° +§bM"B§1

1 11
Un+2 — aUn—z +§bM—1B(§n + §n+1)

(14)
1
Rn+1 — R" +Vn+§At
1 1 1 1
U" = Eb—l (Un+2 4 aUnf2> +ZM—1B(§W _ §n+1),
where a and b are two constant matrices defined as:
1 —1
b = [1 + fM‘lAMAt}

2 (15)

a=1—M'AMbA:.

The G-JF scheme implies &' = fi:*l &(¢")dt’, which does not
introduce discretized approximation for the random variable
£(t).>* The only approximation made in eqn (14) is employing
the trapezoidal quadrature rule to approximate:

1y

Intl | +1
J Rd/ =R"™' —R" = J vdr/, (16)
In In
with
At
Rn+1 _ Rn ~ (Vn+l 4 Vn)77 (17)

which introduces an error of ¥(A¢*) and controls the accuracy of
the G-JF scheme. The G-JF scheme was previously shown more
stable and accurate than the velocity-Verlet scheme for solving
the GLE."*** In this work, we compared the performance of
these two schemes for solving the extended dynamics (see
Section 3.1.2).

3 Results

We examined four different types of polymer solution systems
to demonstrate the proposed implicit-solvent CG modeling and
to assess its ability to conserve the dynamic properties of the
reference atomistic systems. The systems studied include
homogeneous or inhomogeneous star polymers and branched
polymers in solution. And both model and real polymers
were considered. For each system, we first performed MD
simulations and then constructed the CG model following the
formulation described in Section 2.1 and 2.2. The extended
dynamics of GLE was solved using the velocity-Verlet or G-JF
temporal integrator described in Section 2.3. For each system,
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the dynamic properties (VACF and diffusion) of polymers
predicted by the CG modeling were compared with the results
of MD simulations. In-house computer codes were developed to
implement the extended dynamics and temporal integrators for
the CG modeling in the framework of LAMMPS.>® By such, both
MD and CG simulations were performed using LAMMPS.

3.1 Homogeneous solution of star polymers

First, we examined a system composed of homogeneous star
polymers in solution. In the CG modeling of this system, we
compared the accuracy and efficiency of the velocity-Verlet and
G-JF temporal integrators for solving the extended dynamics.

3.1.1 Microscopic model. Each star polymer consists of
10 identical arms each with 3 monomers, as illustrated in
Fig. 1. In the microscopic model, the monomers are represented
as Lennard-Jones (LJ) beads connected by FENE bonds; the
solvent is composed of L] beads identical to the monomers.
The details of the MD force fields are provided in Appendix A.
The microscopic representation of this polymer solution system
is depicted in Fig. 2(a). Since each star polymer has totally
31 monomers, it’s referred to as N31 star polymer. In total, there
are 1000 N31 star polymers and 5000 solvent beads filled into a
periodic cubic box of length 37.188¢ with the number density of
0.7, defined as the total number of L] beads divided by the volume
of the cubic box. The system size was chosen large enough such
that the finite size effect on the VACF can be neglected.>”

With this microscopic model, MD simulations were performed
under the canonical ensemble (NVT) using Nose-Hoover thermo-
stat with kg7 = 1.0 and the time step A¢ = 0.001z. All values herein

Fig. 1 Microscopic model of a star polymer with 10 identical arms and 3
monomers per arm.

{
° 0
0" o
0‘\ 0
e 0
@ o ©

(a) (b)

Fig. 2 (a) Microscopic model of N31 star polymers in solvent; (b) CG
model, where each N31 star polymer is coarse-grained as a single CG
particle, and the solvent DOFs are removed.

Soft Matter, 2019, 15, 75677582 | 7571
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Fig. 3 (a) Normalized VACF and FVCF computed from MD simulations;
(b) normalized memory kernel K(t) solved from eqn (4), where the inset
shows the global view of [K(t)| in log—log scale.

are referred to the reduced LJ units; ie., the mass, length, energy,
and time units were set as: m =1, ¢ = 1, ¢ = 1,r = a(m/e)*> = 1. To
obtain accurate ensemble prediction from the noisy data of MD
simulations, 30 independent simulations were conducted, and
each was run for 10° time steps after the thermal equilibrium state
was reached, from which we computed the ensemble-averaged
quantities of interest.

3.1.2 CG model. The CG model is illustrated in Fig. 2(b),
where the solvent DOFs were eliminated, and the solvent-
mediated kinetic effect was incorporated in the GLE via the
non-Markovian memory; each star polymer was coarse-grained
as a single CG particle whose dynamics is governed by eqn (6).
We note that as CG particles do not interact with each other
in the present framework, the CG system may consist of only
one CG particle. However, including many particles in the
CG simulations provide large samples for accurate ensemble
predictions; and, keeping the CG system the same size as the
microscopic system allows for consistent comparison of com-
putational cost with the MD simulations. Thus, in practice the
CG system consists of 1000 identical CG particles in the same
periodic cubic box of length 37.188¢.

Memory kernel. Using the data from the MD simulations, we
first determined the memory kernel K(¢). To this end, the
ensemble-averaged VACF and FVCF of the star polymers’ COMs
were computed from the MD simulations, as depicted in
Fig. 3(a). We then solved for K(¢) by numerical deconvolution
of eqn (4), whose solution is shown in Fig. 3(b). As noted,
the kinetics of polymers mediated by solvent can display a slow-
decay memory.

To determine the extended dynamics (eqn (6)), we next
approximated K(t) by a linear combination of exponentially
damped oscillators as in eqn (11). With the fitting parameters
a;, by, ¢;, and w; (I = 1,...,./7), the matrix A can be assembled
according to eqn (12), and B can then be determined from
eqn (10). To this end, the memory kernel K(¢) was fitted by a
linear combination of 2, 3, or 5 terms of exponentially damped
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oscillators, as shown in Fig. 4. Here, we only computed and
fitted K(¢) up to ¢t = 20 when the magnitude of K(¢)/K(0) is
smaller than 1072, It can be seen that the approximation with 2
or 3 terms displays noticeable discrepancy from the “exact” K(¢)
(obtained from the MD simulations) at around ¢ = 0.1 or ¢ = 0.6,
respectively; the approximation with 5 terms agrees with the
“exact” K(t) very well.

Dynamic properties. Given the extended dynamics determined,
we performed the CG simulations by numerically solving eqn (6)
using the G-JF or velocity-Verlet temporal integrator. The dynamic
properties characterized by the VACF, diffusion coefficient D(¢), and
mean square displacement (MSD) of CG particles were evaluated
from the CG simulations and compared with those computed from
the MD simulations. D(f) is a time integral of VACF(f); ie.,

1
D(1) :gﬂ)VACF (¢/)dt’. The results are presented in Fig. 5

and 6, where the G-JF integrator was employed with A¢ = 0.01.
The ensemble average was taken over 10 independent CG

0.095
LL
O 0.09
; —-—MD

—CG, 2 terms

0.085 -- CG, 3terms

0.08 | CG, 5 terms
(b) 0 0.05 01 (¢ 10" 10° 10

Time AT

Fig. 5 (a) VACF predicted by both CG and MD simulations, where the
inset shows the diffusion coefficient D(t); (b) zoom-in view of short-time
VACF; (c) long-time |VACF]| in log-log scale.
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simulations each conducted for 10° time steps after the thermal
equilibrium state was reached.

We note that the predicted VACF at ¢ = 0 agrees with its
theoretical value; i.e., VACF(0) = 3kgT/M = 0.0968, which con-
firms that the second FDT was accurately satisfied in the CG
simulations. Also, all CG predictions are able to correctly
reproduce the zero slope of VACF at ¢ = 0, as can be seen in
Fig. 5(b). As time evolved, the CG simulation using 5 terms to fit
the memory kernel is more accurate for reproducing VACF(¢)
and D(¢t) than the CG simulation using 2 or 3 terms, as shown in
Fig. 5(a and c). It concludes that more accurate approximation
of the memory kernel leads to more accurate predictions of
dynamic properties, especially for long-time dynamics. Overall,
the CG simulation using 5 terms and the G-JF temporal
integrator achieved good accuracy in conserving all dynamic
properties, particularly in reproducing the entire curves of
VACF, D, and MSD as functions of time up to 10°. At short
time scales, the star polymers experienced a supper-diffusion
regime, where MSD() o ¢*, then a sub-diffusion regime with a
decreasing D(¢), and finally reached a normal diffusion at long
time scales, where MSD(¢) oc t. The CG modeling is able to
reproduce all stages of the diffusion process (across 5 orders in
time) of the star polymers in solution, as shown in Fig. 6.

Velocity-Verlet vs. G-JF temporal integrator. We further com-
pared the velocity-Verlet and G-JF schemes for solving the
extended dynamics (eqn (6)) with respect to both accuracy
and efficiency.

To examine the accuracy, we computed the VACF using both
schemes with different timestep sizes At and compared with
the VACF obtained from the MD simulation.

The errors were calculated for ¢ < 20 using the normalized
Euclidean norm and summarized in Table 1. Note that the
velocity-Verlet scheme was not stable for larger timesteps,
hence, no data is shown for A¢ > 0.01. The G-JF scheme

Table 1 Errors of the VACF computed from the CG simulations using the
velocity-Verlet and G-JF schemes with different At

At(7) Velocity-Verlet (error%) G-JF (error%)
0.005 1.24 0.82
0.01 2.10 0.79
0.05 — 0.89
0.1 — 1.84
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achieved higher-order accuracy than the velocity-Verlet for any
timestep size compared and was stable for larger timesteps
when the velocity-Verlet already failed. By further comparing
the VACF at a short time scale, as depicted in Fig. 7, we find
that the G-JF scheme is robust in reproducing the VACF at
t = 0, accurately satisfying the second FDT with any At. In
contrast, the velocity-Verlet scheme exhibits noticeable errors
in reproducing VACF(0), which becomes more pronounced with
larger At.

The efficiency of the two schemes was assessed according to
the computer time used by each scheme to achieve the same
accuracy on the prediction of VACF. From the results in Table 1,
we chose to compare the velocity-Verlet using A¢ = 0.01 with the
G-JF using At = 0.1, which achieved similar accuracy for the
VACEF. In each case, the simulation was conducted for 10>z on a
single core of Intel i5-6500 CPU. The computer time used by
each scheme was reported in Table 2. In this comparison, the
computer time spent for constructing the CG model is not
included. Compared with the MD simulation, while both CG
simulations achieved significant speedup by one to two orders,
the G-JF scheme was about one order faster than the velocity-
Verlet. It implies that the more accurate G-JF scheme does not
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Table 2 Comparison of computational cost of CG simulations using the
velocity-Verlet and G-JF schemes

Simulation At(7) Cost (s) Speedup factor
MD 0.001 3.44¢° —

CG velocity-Verlet 0.01 1.76¢" 19.55

CG G-JF 0.1 3.07¢ 112.05

introduce significant computational overhead compared with
the velocity-Verlet scheme.

Due to the superior performance of the G-JF scheme in both
accuracy and efficiency, it was chosen as the temporal integrator
for all the CG simulations presented in the rest of this paper.

3.2 Dilute solution of homogeneous star polymers

To further examine the applicability of the proposed implicit-
solvent CG modeling to dilute solutions, we next studied a
dilute solution of homogeneous star polymers.

3.2.1 Microscopic model. In the microscopic model, 125
N31 star polymers and 125500 solvent beads are filled into a
periodic cubic box of length 56.9619¢ with the number density
of 0.7. The concentration of N31 star polymers in the solution is
3%, defined as the total number of polymer beads divided by
the total number of all beads in the cubic box. The force fields
and other settings of the MD simulations were the same as
described in Section 3.1.1.

3.2.2 CG model. Same as in Section 3.1.2, in the CG model,
each N31 star polymer is coarse-grained as a single CG particle;
the solvent DOFs are eliminated, and the solvent-mediated
kinetic effect is incorporated in the GLE via the non-Markovian
memory. Following the same CG procedure, we employed eqn (6)
to govern the CG particle’s dynamics. First, the memory kernel
K(t) computed from the MD simulations was approximated as in
eqn (11) with 4" = 4, 6, or 8 terms of exponentially damped
oscillators. K(¢) was computed and fitted up to ¢ = 10 when |K(¢)|/
K(0) < 107>, As shown in Fig. 8, more fitting terms lead to more
accurate approximation of K(¢); the approximation with 8 terms
agrees with the “exact” K(f) reasonably well. Next, eqn (6) was
solved using the G-JF integrator with At = 0.01. The computed

3000 | 10° —

2000 + g —4 terms ]
= ol -~ 6terms
Nz 10

1000 1l

10
0 -
0 0.5

Time
Fig. 8 Dilute solution of homogeneous star polymers: memory kernel
K(t) computed from MD simulations and its approximations via egn (11)
with " = 4, 6, or 8 fitting terms. The inset shows the global view of |K(t)| in
log-log scale.
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Fig. 10 Dilute solution of homogeneous star polymers: MSD predicted by
both CG and MD simulations.

VACF and D(¢) are presented in Fig. 9; and, Fig. 10 shows the
computed MSD as a function of time until ¢ = 10°. In a very dilute
solution, the N31 star polymers display much longer memory in
dynamics. By comparison with the results of MD simulations,
the CG simulation using more terms to fit the memory kernel is
more accurate for reproducing VACF(¢) and D(¢). In particular,
the CG simulation using 8 terms accurately captured all dynamic
properties of the N31 star polymers in a dilute solution, at both
short and long time scales.

Finally, we examined the dilute solutions of N31 star poly-
mers at different concentrations. Up to the concentration of
15%, the polymers’ VACF and FVCF do not exhibit significant
changes, as depicted in Fig. 11. Thus, the CG model con-
structed at the concentration of 3% can be transferable to
other concentrations up to 15%. More concentrate solutions,
e.g., at 30%, display noticeably different VACF and FVCF, for
which the CG model must be reconstructed.

3.3 Inhomogeneous mixture of various star polymers in
solution

Next, we studied an inhomogeneous system with different
kinds of star polymers mixed in solution. In particular, it
consists of three kinds of star polymers: N5 (4 arms with 1
monomer per arm), N21 (10 arms with 2 monomers per arm),
and N101 (10 arms with 10 monomers per arm). Its microscopic

This journal is © The Royal Society of Chemistry 2019
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Fig. 11 Dilute solution of homogeneous star polymers: VACF and FVCF
predicted by MD simulations at different concentrations. The solution at
15% concentration consists of 626 N31 star polymers and 109 969 solvent
beads; and, the solution at 30% concentration consists of 1252 N31 star
polymers and 90563 solvent beads. The inset shows the global view of
|VACF| or |FVCF]| in log-log scale.
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Fig. 12 (a) Microscopic and (b) CG representations of a mixture of three
kinds of star polymers (N5, N21, and N101) in solution.

and CG representations are illustrated in Fig. 12. In the CG
modeling, each star polymer was coarse-grained as a single CG
particle, and the solvent DOFs were eliminated. Thus, the CG
model consists of a collection of three kinds of CG particles.

3.3.1 Microscopic model. In the microscopic model, the
three kinds of star polymers are composed of 5, 21, and 101
identical monomers, respectively. The solution consists of 1000
N5, 1000 N21, and 216 N101 star polymers. The monomers are
represented as L] beads connected by FENE bonds; the solvent
contains 5000 LJ beads. The star polymers and solvent were
filled into a periodic cubic box of length 41.82065 with the
number density of 0.7. The force fields and other settings of the
MD simulations were the same as in Section 3.1.1.

3.3.2 CG model. The CG system consists of three kinds of
CG particles, in total, 1000 + 1000 + 216 CG particles in the
periodic cubic box of length 41.82060. For each kind of CG
particles, we determined its extended dynamics following the
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Fig. 13 Inhomogeneous star polymers in solution: memory kernel K(t)
computed from MD simulations and its approximations via egn (11) with
different numbers (1) of fitting terms for the three kinds of star polymers:
(@) N5, (b) N21, and (c) N101. The inset shows the global view of |K(t)| in
log-log scale.

same procedure as in Section 3.1.1. First, the memory kernel
K(t) was determined for each kind of star polymers from the
MD simulations. Next, K(¢{) was approximated by a linear
combination of exponentially damped oscillators, where K(t)
was computed and fitted up to ¢ = 20 when |K(¢)|/K(0) < 10>,
Fig. 13 summarizes the “exact” K(t) computed from the MD
simulations and its approximations using different numbers of
fitting terms for each kind of star polymers. We note that the
fitting using 4, 10, and 7 terms for N5, N21, and N101 star
polymers, respectively, could achieve satisfactorily accurate
approximation of K(¢).

Given the fitting parameters in eqn (11), the matrices A and
B could be obtained and in turn eqn (6) was determined for
each kind of CG particles corresponding to N5, N21, and N101
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Fig. 14 Inhomogeneous star polymers in solution: (a) VACF predicted by
both CG and MD simulations for N5 star polymers, where the inset shows
the diffusion coefficient D(t); (b) zoom-in view of short-time VACF; (c)
long-time [VACF| in log—log scale.

star polymers, respectively. Thus, the CG simulations solved
eqn (6) using the G-JF temporal integrator with A¢ = 0.01 and
computed the VACF, D(t), and MSD for each kind of CG
particles, as presented in Fig. 14-17. By comparison with the
MD simulation results, we demonstrate that the proposed
implicit-solvent CG modeling is able to conserve both the
short-time and long-time dynamic properties of star polymers
even in an inhomogeneous solution system. We also note that
more accurate approximation of the memory kernel using more
fitting terms led to more accurate prediction of VACF and
thereby its time integral D(t), especially for long-time predic-
tions, e.g., t > 5. If the short-time (¢ < 5) dynamics was of
interest, the approximations using less fitting terms already
enabled reasonably accurate predictions on the VACF, e.g,
using only 2 terms for the N5 and 4 terms for both N21 and
N101 star polymers, as shown in Fig. 14-16. Using less fitting
terms resulted in lower dimensional extended dynamics, and in
turn, more efficient CG simulations.
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Fig. 15 Inhomogeneous star polymers in solution: (a) VACF predicted
by both CG and MD simulations for N21 star polymers, where the inset
shows the diffusion coefficient D(t); (b) zoom-in view of short-time VACF;
(c) long-time |[VACF]| in log-log scale.

7576 | Soft Matter, 2019, 15, 7567-7582

View Article Online

Soft Matter

0.03 T T T ; .
_.0.005
w 0.02 | =
S (=}
< 0
=>0.01 ¢ 0 5 10 15 20
Time
@ % ‘
0 1 2 3 4 5 6
Time
0.03 1071
0.028
LL LL
——MD 10-3
S;:) 0.026 —CG, 2 terms %
-~ CG, 4 terms .
0.024 CG, 7 terms 107
0022 0 0.05 0.1 1 0 1
: . 10° 10 10
() Time ©

Time

Fig. 16 Inhomogeneous star polymers in solution: (a) VACF predicted by
both CG and MD simulations for N101 star polymers, where the inset
shows the diffusion coefficient D(t); (b) zoom-in view of short-time VACF;
(c) long-time |VACF| in log-log scale.

102 b slope = 1I.0
10%}
?
-2 -- N5, CG, 4 terms
=10 --N21, MD
- ---N21, CG, 10 terms
10 N101, MD
6 slope = 2.0 ~=N101, CG, 7 terms
10°
102 10t 10° 10? 102 103

Time
Fig. 17 Inhomogeneous star polymers in solution: MSD predicted by both
CG and MD simulations for all three kinds of star polymers.

3.4 Branched-chain polymers in solution

In this section, we simulated branched-chain polymers in
solution. Each polymer chain is built-up from five bonded
N31 star polymers. In the CG modeling, each star polymer
was coarse-grained as a single CG particle; the solvent and
bond connections between N31 star polymers were eliminated,
and their effects on the polymers’ kinetics were incorporated in
the non-Markovian memory in GLE. The microscopic and CG
representations of this system are illustrated in Fig. 18.

Q00 00u
@ Ogg 0

(b)

Fig. 18 (a) Microscopic model of the branched-chain polymers in
solution, where each polymer chain consists of five bonded N31 star
polymers; (b) CG model with each N31 star polymer coarse-grained as a
single CG particle, where both solvent and bond connections are
removed.
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Fig. 19 Branched-chain polymers in solution: memory kernel K(t) computed
from MD simulations and its approximations via egn (11) with 4" = 4, 5, or 6
fitting terms. The inset shows the global view of |K(t) in log—log scale.

3.4.1 Microscopic model. The microscopic model of this
system contains 200 polymer chains and 5000 solvent beads.
The N31 star polymers are the same as described in Section
3.1.1. Bonds were applied between two monomers of each two
adjacent N31 star polymers in a chain. All bonds assumed the
same FENE potential. The MD force fields are as described in
Appendix A. The MD simulations were performed in a periodic
cubic box of length 37.188¢ with the number density of 0.7.
Other settings of the MD simulations were the same as in
Section 3.1.1.

3.4.2 CG model. Without solvent and bond connections,
the CG system consists of 200 x 5 independent CG particles in
the same periodic cubic box of length 37.188¢. The CG system
was governed by the extended dynamics, which was determined
following the same procedure as described in Section 3.1.2.
Fig. 19 depicts the memory kernel K(¢) obtained from the MD
simulations, which was fitted by a linear combination of 4, 5, or
6 exponentially damped oscillators. This system exhibits long
and oscillating memory. Fitting it with more terms led to more
accurate approximation of K(z).

Given the fitting parameters in eqn (11), the extended
dynamics (eqn (6)) was formulated accordingly and then solved
using the G-JF temporal integrator with At = 0.01. Fig. 20
presents the VACF and D(t) computed from both CG and MD
simulations. And Fig. 21 depicts the computed MSD. It can be
seen that the CG model with the memory kernel approximated
by 6 terms can accurately reproduce the dynamic properties of
the branched-chain polymers in solution, at both short and
long time scales. Recall that both solvent and bond connections
were removed in the CG model. Thus, we demonstrate that the
non-Markovian memory in GLE can incorporate the kinetic
effects of bond connections in chain polymers as well as the
solvent.

3.5 Tri-n-butyl phosphate in chloroform

After studying three model polymer solution systems, we
further examined the proposed CG modeling for a real polymer
solution system. In this system, tri-n-butyl phosphate (TBP)
molecules are immersed in chloroform (CHCI;). The chemical
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Fig. 22 Chemical composition of a TBP molecule.

composition of a TBP molecule is sketched in Fig. 22. Each TBP
molecule was coarse-grained as a single CG particle in the CG
modeling. The all-atom and CG representations of this system
are illustrated in Fig. 23. Unlike in the previous sections, all
simulations here employed real units.

3.5.1 All-atom model. The all-atom model consists of 27
TBP and 1000 CHCI; molecules filled into a periodic cubic box.
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Fig. 23 (a) All-atom model of TBP molecules immersed in CHCls solvent;
(b) coarse-graining each TBP molecule as a single CG particle; (c) CG
model as a collection of CG particles, each representing a TBP molecule.
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Fig. 24 TBP in CHCls: memory kernel K(t) computed from MD simula-
tions and its approximation as in eqn (11) with 4" = 3, 4, or 5 fitting terms.
The inset shows the global view of |K(t)| in log—-log scale.

The Optimized Potentials for Liquid Simulations-All Atom
(OPLS-AA) force fields®® were employed to simulate the TBP mole-
cules, while the all atom model without polarization®® was used for
the CHCl; molecules. (Details about the OPLS-AA force fields are
provided in Appendix B.) To proceed, the volume of the system in
equilibrium must be determined first, which gives the appropriate
size of the periodic box to be used for modeling the system. Thus, a
MD simulation was first performed in the isothermal-isobaric
ensemble (NPT) using the Nose-Hoover thermostat for 1 ns under
the standard pressure 1 atm and room temperature 300 K. As a
result, the length of the cubic periodic box to be used was deter-
mined as 52.8 A. With that, the MD simulations in the canonical
ensemble (NVT) were next performed under the temperature 300 K
with the timestep At = 1 fs. Data were collected and the ensemble-
averaged quantities of interest were computed after the thermal
equilibrium state was reached; i.e., after 1 ns.

3.5.2 CG model. The CG model consists of 27 CG particles
in a periodic cubic box of length 52.8 A. Following the same CG
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Fig. 25 TBP in CHCls: (a) VACF predicted by both CG and MD simulations,
where the inset shows the diffusion coefficient D(t); (b) zoom-in view of
short-time VACF; (c) long-time |VACF]| in log-log scale.
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procedure as described in Section 3.1.2, we formulated eqn (6)
to govern the dynamics of each CG particle. First, the memory
kernel K(¢) computed from the MD simulations was approximated
as in eqn (11). Here, we used 3, 4, or 5 terms of exponentially
damped oscillators to fit K(¢), as shown in Fig. 24. Next, eqn (6) was
solved using the GJF temporal integrator with At = 10 fs. Fig. 25
depicts the computed VACF and D(¢) of TBP molecules, and Fig. 26
shows the computed MSD as a function of time. By comparison
with the results of MD simulations, we demonstrate in a real
polymer system that the proposed CG modeling is able to
accurately capture the dynamics of polymers in solution, at both
short and long time scales. Without explicit solvent in the CG
model, the non-Markovian memory in GLE properly incorporated
the effect of CHCI; solvent on the dynamics of TBP molecules.

4 Conclusion

We have presented a bottom-up implicit-solvent coarse-graining
strategy for polymer solutions, which has been validated on
homogeneous coarse-graining of monosized polymers and sub-
units of chain polymers, and also heterogeneous coarse-graining
for a mixture of non-monosized polymers. The CG model was
constructed by grouping a cluster of bonded atoms into a single
CG particle and removing the solvent DOFs. Elimination of
DOFs, especially the solvent DOFs, introduced non-negligible
memory effects. By employing the Mori-Zwanzig projection to
the microscopic dynamics, the GLE with a non-Markovian
memory was derived to govern the CG dynamics. The micro-
scopic dynamics was generated by MD simulations, thus, the
memory kernel in the GLE was computed from the MD trajec-
tories. Directly solving the GLE with a non-Markovian memory
and colored noise can be computationally expensive. Thus, we
introduced auxiliary variables coupled to the momenta of CG
particles to replace the GLE with an extended dynamics, which
could circumvent computing the convolution and sampling
colored noise and be solved more efficiently. To this end, the
memory kernel was approximated by a linear combination of
exponentially damped oscillators.

Previous efforts in solving the extended dynamics mainly
used the velocity-Verlet temporal integrator. However, we found
that the velocity-Verlet scheme limited the efficiency of CG
simulations by requiring very small timestep sizes due to
stability and accuracy. Therefore, in this work, we introduced
the higher-order G-JF temporal integrator for solving the
extended dynamics. Compared with the velocity-Verlet scheme,
the G-JF integrator was found more stable and accurate given
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the same timestep size. For achieving the same accuracy, the
G-JF integrator allowed to use much larger timesteps but did
not introduce significantly more computational burden, and
hence greatly improved the efficiency of the CG simulations.

We have assessed and validated the proposed CG modeling
in four different polymer solution systems, including a homo-
geneous solution of monosized star polymers, inhomogeneous
mixture of non-monosized star polymers, branched-chain poly-
mers in solution, and also TBP polymers in chloroform. For all
these types of polymer solutions, we have demonstrated that
the proposed CG modeling can accurately reproduce the
dynamic properties of the reference microscopic (or all-atom)
systems. Although the solvent DOFs were eliminated in the CG
modeling, the non-Markovian memory properly incorporated
the solvent-mediated effect on the dynamics of polymers. In
the system of branched-chain polymers, although the bond
connections between CG clusters were also eliminated in the
CG modeling, the GLE with the non-Markovian memory was
still able to correctly capture the polymers’ dynamics. The
dynamic properties of polymers were characterized by the
VACF, diffusion coefficient D, and MSD as functions of time.
The predictions by the CG simulations agree well with the MD
simulation results for each of these quantities over the entire
curve across five orders in time. To construct the CG model, the
memory kernel was computed from a MD simulation and
approximated up to ¢ ~ ((10) until |K(¢)|/K(0) < 107>. The
diffusion process was predicted by the constructed CG model
until ¢ = 10°.

Approximating the memory kernel with more terms of
exponentially damped oscillators ensured more accurate CG
modeling for reproducing especially long-time dynamic properties.
Thus, the extended dynamics with auxiliary variables enables to
construct arbitrarily high-order CG models to characterize long-
time behaviors and complex transition dynamics of polymers in
solution. In practical applications, the number of terms used in the
CG modeling can be decided according to the time scales and
accuracy required in conserving the dynamic properties of the
reference microscopic systems.

In summary, we highlight two contributions of this work.
First, the GLE with a non-Markovian memory was previously
employed for coarse-graining polymers in melts (without
solvent) when the time scales are not well separated for the
momentum and random force of a CG cluster.’>®® And, only
homogeneous coarse-graining of monosized star polymers was
addressed. Here, we go beyond and have demonstrated that for
polymers in solution, in addition to coarse-graining polymer
molecules, the solvent DOFs may be removed in the CG
modeling, and their kinetic effect on the polymers can be
captured by the non-Markovian memory in the GLE derived via
the Mori-Zwanzig formalism. We addressed various polymer
systems: homogeneous or inhomogeneous solution of polymers
and star or chain polymers. Second, we introduced the higher-
order G-JF temporal integrator in the CG modeling for solving
the extended dynamics, which shows improved stability and
accuracy and can significantly accelerate the CG simulations,
compared with the commonly used velocity-Verlet integrator.
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We note that for dilute solutions, e.g., the solution of homo-
geneous star polymers studied in Section 3.2, the polymers’
VACF and FVCF do not vary significantly at different concentra-
tions. Thus, the memory kernel and CG model constructed can
be transferable for different concentrations in the dilute
regime. However, in general, the CG model constructed cannot
be transferred from one system to another and between different
thermodynamic conditions since the VACF and FVCF can be
significantly different. For polymers in solution, an analytical
formulation is still absent to scale the VACF and FVCF, and
thereby the memory kernel for different polymer systems and/or
different thermodynamic conditions.

To capture the structural properties of polymers in solution,
the present CG modeling needs to be extended to include
bonded and non-bonded conservative interactions between
CG sites, which is our next step. Even though it only focuses
on the dynamic properties, the proposed CG modeling via the
GLE with correct memory functions can play an important role
in applications involving anomalous diffusion. One example
is to understand and predict the experimental observations
of anomalous diffusion wusing single particle tracking
techniques,® "®> where the time evolution of a single tracing
particle can be tracked and recorded at high spatiotemporal
resolutions. A GLE model with effective memory function can
be constructed from the experimental data to correctly predict
the anomalous diffusion. Note that the acceleration (i.e., the
total force) can be obtained from instantaneous velocities
measured at high temporal resolutions, from which the FVCF
and VACF can be evaluated and used to determine the memory
kernel from eqn (4).
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Appendix A: MD force fields of
Lennard-Jones particles

In Sections 3.1-3.4, the microscopic representations of polymers
and solvent consist of L] particles. In the MD simulations, the
dynamics of these L] systems is governed by the Hamiltonian:

2

H=D o+ 2 E), (a1)

i#]

where H defines the phase space trajectories of the system;
ri = llrgll = llr; — 17| is the distance between two L] beads; E
denotes the total potential energy contributed by the inter-
atomic and bonded potentials. The inter-atomic potential
adopts the pure repulsive Weeks-Chandler-Andersen (WCA)
potential and given by:

o o 1
4 12 ZN6 _ r 21/6
Ewea(r) = 8{9) ¢ +4] = , (A2)

o0 r> 2106
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where r. = 2Y° is the cutoff distance. The bonded inter-
action between connected LJ beads in polymers is modeled as
a spring with a finitely extensible nonlinear elastic (FENE)

potential; i.e.,

I, \?
EFENE(I’) _ 75](7[) ln {1 — (%) :| r<< 107 (A3)

00 r>ry

where k = 30¢/c® is the spring constant, and 7, = 1.5¢ is the
maximum length of the FENE spring. In sum, we have:

E(ry) = Ewcal(ry) + Erene(ry)- (A4)

Appendix B: MD force fields for
tri-n-butyl phosphate and chloroform

The dynamics of atoms in TBP and CHCI; molecules also
follows the Hamiltonian in eqn (A1). The total potential energy
E is given by:

E = Z K,A(r—req)z-‘r Z KH(O_Oeq)2

bonds angles

1 1 1
+ —Vi(1+cos¢p)+=V>(1 —cos2¢p)+=V3(1+cos3
S [0 030+ 3Va(1 —cos2) 4550 eos3g)

o\ (a:\°| , Caigq;
2 |4 () ()
A Tij Tij Tij

The terms in eqn (B1), in order of appearance, correspond to the
bond-length, bond-angle, dihedral-angle, L], and electrostatic poten-
tials, respectively. The OPLS-AA force fields®®°**” with charges from
Modified Neglect of Differential Overlap (MNDO)® were used to
specify the parameters for the interaction potential of all atoms of a
TBP molecule, as in Tables 3-6. The CHCI; was represented with the

(B1)

Table 3 Bond-length potential parameters for TBP

Bond type K, (kcal mol™* A™?) Teq (A)
OS-P 230 1.610
0s-C 320 1.410
P-02 525 1.480
C-H 340 1.090
Cc-C 268 1.529
Table 4 Bond-angle potential parameters for TBP

Angle type Ky (keal mol™* rad?) Oeq (deg)
C-OS-P 100 120.5
OS-P-02 100 108.23
OS-P-0S 45 102.6
OS-C-H 35 109.5
OS-C-C 50 109.5
H-C-H 33 107.8
C-C-H 37.5 110.7
C-C-C 58.35 112.7
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Table 5 Dihedral angle potential parameters for TBP

Dihedral type ~ V; (kecal mol™ ") V, (kecal mol™ ")  V; (kcal mol ')

C-0S-P-02 0 0 0
C-0S-P-0S 0 0 0
H-C-0S-P 0 0 0.3
C-C-OS-P —1.42 —0.62 0.1
OS-C-C-H 0 0 0.468
C-C-C-0S 1.3 —0.05 0.2
H-C-C-H 0 0 0.3
C-C-C-H 0 0 0.3
C-C-C-C 1.3 —0.05 0.2

Table 6 LJ and electrostatic potential parameters for TBP

Atom type &;; (keal mol™?) o (A) qi (e)
02 0.2 3.15 —0.87
P 0.2 3.74 1.77
(O] 0.14 2.9 —0.56
C, 0.066 3.5 0.20
Cp 0.066 3.5 0.06
Ce 0.066 3.5 0.02
Cq 0.066 3.5 0.02
H, 0.03 2.5 —0.02
Hy 0.03 2.5 0
H, 0.03 2.5 0
Hy 0.03 2.5 0

Table 7 Bond/angle parameters for CHClz

Bond/angle type Teq (A) Ocq (deg)
Cc-C 1.76 —

C-H 1.07 —
Cl-C-Cl — 111.2
CI-C-H — 107.6
Table 8 LJ and electrostatic potential parameters for CHCls

Atom type & (keal mol™) o (A) qi (e)

C 0.137 3.41 0.5609
Cl 0.275 3.45 —0.1686
H 0.020 2.81 —0.0551

rigid five-site allatom model without polarization.”® The total
potential energy for CHCl; is the sum of LJ and electrostatic
potentials since it was represented by a rigid model. The parameters
for CHCI; are given in Tables 7 and 8. From Tables 6 and 8, the
parameters o; and ¢ in the 1] potential can be determined via the
geometric mixing rule a; = (0;0;)"” and &; = (e¢;)"”
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