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Abstract

Motivated by structures that appear in deep neural networks, we investigate nonlinear com-
posite models alternating proximity and affine operators defined on different spaces. We
first show that a wide range of activation operators used in neural networks are actually
proximity operators. We then establish conditions for the averagedness of the proposed
composite constructs and investigate their asymptotic properties. It is shown that the limit
of the resulting process solves a variational inequality which, in general, does not derive
from a minimization problem. The analysis relies on tools from monotone operator theory
and sheds some light on a class of neural networks structures with so far elusive asymptotic
properties.

Keywords Averaged operator - Deep neural network - Monotone operator -
Nonexpansive operator - Proximity operator - Variational inequality

1 Introduction

A powerful tool from fixed point theory to analyze and solve optimization and inclusion
problems in a real Hilbert space H is the class of averaged nonexpansive operators, which
was introduced in [3]. Let T: H — 7 be a nonexpansive operator, i.e., T is 1-Lipschitzian.
Then « € ]0, 1] is an averagedness constant of 7" if Id +o 1T — 1d) remains nonexpan-
sive, in which case we say that T is «-averaged; if « = 1/2, T is firmly nonexpansive. The
importance of firmly nonexpansive operators in convex optimization and variational meth-
ods has long been recognized [19, 27, 36, 41, 46]. The broader class of averaged operators
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was shown in [7] to play a prominent role in the analysis of convex feasibility problems. In
this context, the underlying problem is to find a common fixed point of averaged operators.
In [20], it was shown that many convex minimization and monotone inclusion problems
reduce to the more general problem of finding a fixed point of compositions of averaged
operators, which provided a unified analysis of various proximal splitting algorithms. Along
these lines, several fixed point methods based on various combinations of averaged opera-
tors have since been devised, see [1, 2, 5,9, 11, 13, 14, 17, 18, 24, 25, 38, 43, 47] for recent
work. Motivated by deep neural network structures with thus far elusive asymptotic proper-
ties, we investigate in the present paper a novel averaged operator model involving a mix of
nonlinear and linear operators.

Artificial neural networks have attracted considerable attention as a tool to better under-
stand, model, and imitate the human brain [31, 37, 42]. In a Hilbertian setting [6], an
(n + 1)-layer feed-forward neural network architecture acting on real Hilbert spaces
(Hi)ogi<n is defined as the composition of operators R, o (W;, - +b,)o- -0 Rjo (Wi -+b1)
where, for every i € {1,...,n}, R;i: H; — H; is a nonlinear operator known as an acti-
vation operator, W;: H;—1 — H,; is a linear operator, known as a weight operator, and
b; € H,; is a so-called bias parameter. Deep neural networks feature a (possibly large) num-
ber n of layers. In recent years, they have been found to be quite successful in a wide array
of classification, recognition, and prediction tasks; see [34] and its bibliography. Despite
their success, the operational structure and properties of deep neural networks are not yet
well understood from a mathematical viewpoint. In the present paper, we propose to analyze
them within the following iterative model. We emphasize that our purpose is not to study
the training of the network, which consists of optimally setting the weight operators and
bias parameters from data samples, but to analyze mathematically such a structure once it is
trained. Our model is also of general interest in constructive fixed point theory for monotone
inclusion problems.

Model 1.1 Let m > 1 be an integer, let H and (H;)o<;<m be nonzero real Hilbert spaces,
such that H,,, = Ho = H.Foreveryi € {1,...,m}andeveryn € N,let W; ,: Hi_1 — H;
be a bounded linear operator, letb; , € H;,andlet R; ,,: H; — H;.Letxg € H, let (\;)neN
be a sequence in ]0, +ool, set

VneNVie{l,....m}) Tip: Hici — Hi: x> Riy(Winx +bin), (1D

and iterate

forn=0,1,...
Xl,n = Tl,nxn

X2n = T2,nx1,n (12)

Xm,n= Tm,nxm—l,n
Xpt1= Xy + Ay (xm,n — Xp).

In sharp contrast with existing algorithmic frameworks involving averaged operators (see
cited works above), the operators involved in Model 1.1 are not necessarily all defined on
the same Hilbert space and, in addition, they need not all be averaged. Let us also note
that the relaxation parameters (A,),cN in (1.2) allow us to model skip connections [44], in
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the spirit of residual networks [33]. If A,, = 1, we obtain the standard feed-forward archi-
tecture [31].
Our contributions are articulated around the following findings.

®  We show that a wide range of activation operators used in neural networks are actually
proximity operators, which paves the way to the analysis of such networks via fixed
point theory for monotone inclusion problems.

® We provide a new analysis of compositions of proximity and affine operators, estab-
lishing mild conditions that guarantee that the resulting operator is averaged.

®  We show that, under suitable assumptions, the asymptotic output of the network con-
verges to a point defined via a variational inequality. Furthermore, in general, this
variational inequality does not derive from a minimization problem.

The remainder of the paper is organized as follows. In Section 2, we bring to light strong
connections between the activation functions employed in neural networks and the theory
of proximity operators in convex analysis. In Section 3, we derive new results on the aver-
agedness properties of compositions of proximity and affine operators acting on different
spaces. In Section 4, we investigate the asymptotic behavior of a class of deep neural net-
works structures and show that their fixed points solve a variational inequality. The main
assumption on this subclass of Model 1.1 is that the structure of the network is periodic in
the sense that a group of layers is repeated. Finally, in Section 5, the same properties are
established for a broader class of networks.

Notation We follow standard notation from convex analysis and operator theory [8, 40].
Thus, the expressions x, — x and x, — x denote, respectively, weak and strong con-
vergence of a sequence (x,),eN to x in H, and ['o(H) is the class of lower semicontinuous
convex functions ¢: H — ]—00, +-00] such that domg = {x € H | p(x) < 400} # @.
Now let ¢ € I'g(H). The conjugate of ¢ is denoted by ¢*, its subdifferential by d¢, and its
proximity operator is prox,,: H—>H:x+— argmin_ve% (e(y)+lx — y||2/2). The symbols
ranT, dom 7T, Fix T, and zer T denote respectively the range, the domain, the fixed point
set, and the set of zeros of an operator T. The space of bounded linear operators from a
Banach space X’ to a Banach space ) is denoted by B (X, )). Finally, ¢ L denotes the set
of summable sequences in [0, 4-00].

2 Proximal Activation in Neural Networks

The following facts will be needed.

Lemma 2.1 Let ¢ € Tg(H). Then the following hold:

(i) [3, Proposition 12.29] Fix prox, = Argmin ¢.
(i) [8, Corollary 24.5] Let g € To(H) be such that p = g — || - ||2/2. Then prox, = Vg*.

2.1 Activation Functions

An activation function is a function o: R — R which models the firing activity of neurons.
The simplest instance, that goes back to the perceptron machine [42], is that of a binary

@ Springer



P.L. Combettes, J.-C. Pesquet

firing model: the neuron is either firing or at rest. For instance, if the firing level is 1 and
the rest state is 0, we obtain the binary step function

_ 1, if £ > 0;
@EH{Qﬁgga

which was initially proposed in [37]. As this discontinuous activation model may lead to
unstable neural networks, various continuous approximations have been proposed. Our key
observation is that a vast array of activation functions used in neural networks belong to the
following class.

2.1)

Definition 2.2 The set of functions from R to R which are increasing, 1-Lipschitzian, and
take value O at 0 is denoted by A(R).

Remarkably, we can precisely characterize this class of activation functions as that of
proximity operators.

Proposition 2.3 Let o: R — R. Then o € A(R) if and only if there exists a function
¢ € I'o(R), which has 0 as a minimizer, such that o = ProXg,.

Proof The fact that the class of increasing, 1-Lipschitzian functions from R to R coincides
with that of proximity operators of functions in I'g(R) is shown in [22, Proposition 2.4]. In
view of Lemma 2.1(i) and Definition 2.2, the proof is complete. O

To illustrate the above results, let us provide examples of common activation functions
o € A(R), and identify the potential ¢ they derive from in Proposition 2.3 (see Fig. 1).

Example 2.4 The most basic activation function is 0 = Id = prox,. It is in particular useful
in dictionary learning approaches, which correspond to the linear special case of Model 1.1

[45].

Example 2.5 The saturated linear activation function [31]

1, if &€>1;
0:R—>R: & &, if —1<ELT, 2.2)
—1, if & < —1

can be written as o = proxg, where ¢ is the indicator function of [—1, 1].

Example 2.6 The rectified linear unit (ReLU) activation function [39]

£, if £ >0;

0, if £<0 23

0 R—->R: & [
can be written as o = proxg, where ¢ is the indicator function of [0, +00].

Example 2.7 Let « € 10, 1]. The parametric rectified linear unit activation function [32] is

. ) § if §>0;
Q'R_)R'S'_){ag’,ifgg(). 2.4)
We have o = prox,, where
. . 0, if &> 0;
¢'R_)]_oo’+oo]'$'_>{(1/0{—1)%‘2/2, if £<0. 2.5)

@ Springer



Deep Neural Network Structures Solving Variational Inequalities
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Fig.1 The function ¢ (top) and the corresponding proximal activation function (bottom) ¢ in Proposition 2.3.
Example 2.10 is in red, Example 2.11 is in blue, Example 2.17 is in green

Proof Let & € R. Then ¢/(§) = 0if & > 0, and ¢'(§) = (I/a — 1)§ if & < 0. In turn
(Id+¢)E = £if & > 0, and (Id +¢)(€) = £/« if & < 0. Hence, 0 = (Id+¢')~ is given
by (2.4). O

Example 2.8 The bent identity activation function o: R — R: & > (§ + /&2 4+1—1)/2
satisfies 0 = prox,, where

§/2—(InE +1/2)/4 if &> -1/2 ) o

¢:R—>]—oo,+OO]:E'—>{+OO, if &< —1/2.

Proof This follows from [23, Lemma 2.6 and Example 2.18]. O
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Example 2.9 The inverse square root unit activation function [16] is g: R — R: & +—

£//1+ &2 We have o = prox,, where

¢:R—>]—oo,+oo]:€|—>{_52/2—v1—§2, if |5l <1 @)
+00, if |&] > 1.

Proof Let§ € ]-1, 1[ = dom V¢ = dom d¢ = ran prox,. Then & +¢'E) =E/J1 —E2
and therefore proxg = (Id —|—¢’)_1 =Ty AVa T O

Example 2.10 The inverse square root linear unit activation function [16]

§, if §2>0;
0:R>R: &> § it £ <0 (2.8)
V1+&2
can be written as o = proxg, where
0, if £ >0;
¢p:R—>]-00,4o0]: E> {1 —-£2/2—/1—£2,if —1<&<O; (2.9
+o00, if £ <—1.

Proof Let § € ]-1, 400 = dom V¢ = ranproxy. Then § + @) =&if & > 0, and

E+¢' (&) =¢&/y1 —£2if& < 0. Hence, o = (Id +¢’)~! is given by (2.8). O
Example 2.11 The arctangent activation function (2/7)arctan is the proximity operator of
2 b4 1, . )
$: R — ]—00, +00] : £ > { ——in(eos(F)) — 58 i EI< L o)
+00, if [§] > 1.

Proof Let§ € ]—1, 1] = dom V¢ = ran prox,. Then § + ¢’ (&) = tan(w&/2) and therefore
0 = (Id+¢")~! = (2/m)arctan. a

Example 2.12 The hyperbolic tangent activation function tanh [35] is the proximity operator
of

(1+&In(1+8)+ (1 —§)In(l —§) — &

5 if |&] <1;
¢:R—]-00,+00]: & — In2) —1/2 if |§]=1
oo, if €] > 1.

.11

Proof Leté € ]—1, 1[ = dom V¢ = ran prox,. Then § + ¢’ (¢) = arctanh(¢) and therefore
0 = (Id+¢)~! = tanh. O
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Example 2.13 The unimodal sigmoid activation function [30]
1 1
:R— R: _— == 2.12
O:R>Rif> o — 5 (2.12)
is the proximity operator of

¢: R — ]—00, +00]
(E+1/2)InE +1/2)+(1/2 - §)In(1/2 = §) — %(%‘2 +1/4) if |§] < 1/2;

§ > —1/4, if [§]=1/2;
+o00, it €] > 1/2.
(2.13)

Proof Leté € ]—1/2,1/2[ = dom V¢ = ranprox,. Then £ +¢'(§) = In((14+2§)/(1-2¢))
and therefore prox, = Id+¢) 7' s (1/2) (e =1 /(e +1) = 1/(1+e ) —1/2. O

Remark 2.14 Examples 2.12 and 2.13 are closely related in the sense that the function of
(2.12) can be written as ¢ = (1/2)tanh(-/2).

Example 2.15 The Elliot activation function is [28] o: R — R: & +— &/(1 4 |€|) can be
written as ¢ = prox,, where
¢: R — ]—o00, +00]
EZ
£ | Il =In0 = JED = T g < 1 2.14)
~+o00, if |E] > 1.

Proof Let§ € ]—1, 1[ = dom V¢ = ran prox. Then & +¢'(§) = &£/(1 — |€]) and therefore
proxs = (Id+¢)) "' > w/(1 + |u)). O

Example 2.16 The inverse hyperbolic sine activation function arcsinh is the proximity
operator of ¢ = cosh — | - |2/2.

Proof Leté € R. Then & + ¢'(§) = sinh& and therefore prox, = (Id +¢/)~! = arcsinh.
O
Example 2.17 The logarithmic activation function [10]
0: R — R: &> sign()In (1 + &) (2.15)
is the proximity operator of
52

gz>:1R<—>]—oo,+oo]:s»—>e‘f'—|g|—1—7 (2.16)

Proof Wehave ¢': & > sign(€)(e!é! — 1) —&. Hence (Id +¢') : & — sign(&)(el¥! — 1) and,
in turn, prox, = Id+¢H 1 &> sign(¢) In(1 + |&]). O
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The class of activation functions A(R) has interesting stability properties.

Proposition 2.18 The following hold:

(i) Leta € 10, 4oo[ and B € 10, +o0[ be such that afp < 1, and let 0 € A(R). Then

ao(B) € AR).

(ii) Let (0i)ier be a finite family in A(R) and let (w;)ic; be real numbers in 10, 1] such
that Y,y w; = 1. Then )", ; wioi € AR).

(iii) Let o1 € A(R) and 02 € AR). Then o1 0 02 € AR).

(iv) Leto € A(R). ThenId —p € A(R).

(v) Leto; € AR) and 03 € A(R). Then (01 — 02 +1d)/2 € A(R).

(vi) Let o1 € A(R) and g3 € AR). Then 91 o (20> — 1d) +1d —02 € AR).

Proof (i)—(iii): This follows at once from Definition 2.2.

(iv)—(v): The fact that the resulting operators are proximity operators is established in
[21, Section 3.3]. The fact that they are proximity operators of a function ¢ € I'o(H) that is
minimal at 0 is equivalent to the fact that prox,0 = 0 Lemma 2.1(i). This identity is easily
seen to hold in each instance.

(vi): Set o = 01 o (202 — Id) 4 Id —7. Then o is firmly nonexpansive [8, Proposi-
tion 4.31(i1)]. It is therefore increasing and nonexpansive. Finally, o(0) = 0. O

Remark 2.19 Using Proposition 2.18, the above examples can be combined to obtain
additional activation functions. For instance, it follows from Example 2.5 and Proposi-
tion 2.18(iv) that the soft thresholder

E—1,if & > 1;
0:R—->R: & {0, if —1<&E<1; (2.17)
E+1,if £ <—1

belongs to A(R). It was proposed as an activation function in [48].
2.2 Activation Operators

In Section 2.1, we have described activation functions which model neuronal activity in
terms of a scalar function. In this section, we extend this notion to more general activation
operators.

Definition 2.20 Let H be a real Hilbert space and let R: 7 — . Then R belongs to the
class A(H) if there exists a function ¢ € I'o(H) which is minimal at the zero vector and
such that R = prox,,.

Property (ii) below shows that activation operators in A (7) have strong stability proper-
ties. On the other hand, the boundedness property (iv) is important in neural network-based
functional approximation [26, 29].

Proposition 2.21 Let H be a real Hilbert space and let R € A(H). Then the following
hold:

i RO=0.
(i) Letx and y be inH. Then |Rx — Ry|?> < |lx — y|I> — |lx — y — Rx + Ry|~
(iii) Let x € H. Then ||Rx|| < ||x]|.
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(iv) Let ¢ € To(H) be such that R = prox,,. Then ran R is bounded if and only if dom ¢
is bounded.

Proof (i): This follows from Lemma 2.1(i).

(ii): This follows from the firm nonexpansiveness of proximity operators [8, Proposi-
tion 12.28].

(iii): Set y = 0 in (ii) and use (i).

(iv): We have ran R = ran (Id +8(p)’1 = dom (Id +9¢) = dom d¢. On the other hand,
dom d¢ is a dense subset of dom ¢ [8, Corollary 16.39]. O

Proposition 2.22 Let H and G be real Hilbert spaces. Then the following hold.:

(i) Let L € B (H, G) be such that ||L|| < 1 and let R € A(H). Then L* o R o L € A(H).
(ii) Let (R;)ier be a finite family in A(H) and let (w;)ic; be real numbers in 10, 1] such
that ) ;c;w; = 1. Then )", .; w; R; € A(H).
(iii) Let R € A(H). Then1d —R € A(H).
(iv) Let Ry € A(H) and Ry € A(H). Then (R — Ry +1d)/2 € A(H).

Proof The fact that the resulting operators are proximity operators is established in [21,
Section 3.3]. In addition, O is clearly a fixed point of the resulting operators. In view of
Lemma 2.1(i), the proof is complete. O

Example 2.23 The softmax activation operator [15] is

N
R:RY - RY: &) icuen > | exp@&) [ Y exp(&)) —u, (2.18)
Jj=1 1<k<N

where u = (1,...,1)/N € R¥. We have R = prox,,, where ¢ = ¢ (- + u) + (- | u) and

v RY - 1—0c0, +00]
N 2 N

ék . N
1 —=),if i 0,1 d =1;
Ercren > ;(Sknsk 5 )i Eicicn €10, 11 an ;sk 2.19)
+o00, otherwise,

with the convention 0In0 = 0.

Proof Set
g: RY - ]—o0, +00]
N N
D_GIng if Eiceay €10, 11V and g =1 o0

k=1 k=1
+00, otherwise.

Eighgy =

Then ¢ = g — || - ||?/2 and [40, Section 16] asserts that

N
g RY 5 R: (&)1<hey > In <Z‘ exp(gk)) ) (2.21)

k=1
Since Vg* = R + u, according to Lemma 2.1(ii), R = prox,, — u. We complete the proof
by invoking the shift properties of proximity operators [8, Proposition 24.8(iii)]. O
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Separable activation operators supply another important instance of activation operators.

Proposition 2.24 Let H be a separable real Hilbert space, let (er)rekcN be an orthonor-
mal basis of H, and let (¢r)kex be a family of functions in To(R) such that (Vk € K)
¢k = ¢r(0) = 0. Define

R:H —H:x—> Y (proxg, (x | ex))ex. (2.22)
keK

Then R € A(H).

Proof The fact that R is the proximity operator of the I'o(#H) function ¢: x >
> kex Ox((x | ex)) is established in [23, Example 2.19]. In addition, it is clear that ¢ is
minimal at 0. O

3 Compositions of Firmly Nonexpansive and Affine Operators

Our analysis will revolve around the following property for a family of linear operators
Wii<i<ms1-

Condition 3.1 Letm > 0 be an integer, let (H;)o<;<m be real Hilbert spaces, set Hy, 1 =
Ho, and leta € [1/2,1]. Foreveryi € {1,...,m + 1},let W; € B (H;_1, H;) and set

i—1
Li:Hox-xHi—1 = Hi: (p)ogk<i—1 = Z (Wio-- o Wiy1)xi. 3.1
k=0

It is required that, for every x = (x;)o<i<m € Ho X% -+ x Hp, such that

1 if i =0;
1 < ’ s
iell....mh Il < { ILi(xo, ..., xi—DI, if i >1, (3.2
there holds
I Lmr1x — 2" 11 — a)xoll + | L1 |l < 2" allxo . (3.3)

Remark 3.2 In Condition 3.1, we take o > 1/2 because, if x = (x;)o<i<m € (Ho ~ {0}) x
Hi x -+ x H,y satisfies (3.3), then 2"t (1 — @) ||xoll < || Lmg1x — 211 — a)xo|l +
I Lmsrx ] < 2™ alxol.

We establish some preliminary results before providing properties that imply Condi-
tion 3.1.

Lemma 3.3 Letm > 1 be an integer, let (H;)o<i<m be real Hilbert spaces, and set 0y = 1.
Foreveryi € {1,...,m}, let W; € B (H;_1, H;) and set

i = [[Wio---o Wil

i—1
+Y D IWio o Wil Wy 0 0 Wi i pill -+ [Wj, 00 Wi,
k=11<j1<..<jri<i—1

3.4)
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Let (x;)ogi<m € Ho % -+ X Hy, be such that (3.2) is satisfied. Then the following hold:

() (Vi € (1,...,m}) 6; = Y06l Wio-- o0 Wil
(i) (i € {1,...,m}) Ixill < 6;llxol.

Proof (i): This follows recursively from (3.4).

(ii): For every i € {l,...,m}, let L; be as in (3.1). We proceed by induction on
m. We first observe that the inequality is satisfied if m = 1 since ||x1| < ||[Lixoll =
[Wixoll < [[Will llxoll = O1llx0]l. Now assume that m > 2 and that the inequalities hold for
(x1, ..., xm—1). Then, since (i) yields

m—1
On =W oo Will+ Y Ol Wy 00 Wepll, (3.5)
k=1
we obtain
m—1
1 Il < L (X0, -+ XDl = || Y (Wi 0+ 0 Wiy 1)xx
k=0
m—1
<Y A Waow o Wit 1k
k=0
m—1
< <||Wmo~~owl||+Zeknwmo~-oWk+1||>||xo||
k=1
= Omx0ll (3.6)
which concludes the proof. O

Lemma 3.4 Let H be a real Hilbert space, and let x and y be in ‘H. Then
Iyl = e b y) < el + 1yl = llx + yIDdx+ Iy ID. (3.7

Proof Since [lx + yI> — 2llx + ylI(IxIl + Iy ) + (lx ]l + IyID? > 0, we have
Il 1% 4+ e 1 y) 4 el iyl

TS ||x+y||2—2||x||2— I (||x||+||y||)22— eI — 2

_ Iy 4 A+ iy’

B 2

>+ yldx ]+ 1y D, (3.8)
as claimed. O

Notation 3.5 Letm > 0 be an integer, and let (H;)o<i<m be real Hilbert spaces. Let X be
the standard vector space Ho X - - - x H,, equipped with the norm ||- ||x: x = (x;)o<i<m >
maxog;<m ||l%; ]| and let ) be the standard vector space Ho x Ho equipped with the norm
I -lly:y =1, y2) = lyill + ly21l. Henceforth, the norm of M € B (X, Y) is denoted
by | Mlx.y-

Proposition 3.6 Let m > 0 be an integer, let (H;)o<i<m be nonzero real Hilbert spaces, set
Hyr1 = Ho, and use Notation 3.5. For everyi € {1,...,m + 1}, let W; € B (H;_1, H;).
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Further, leta € [1/2, 1], let 6y = 1, let (6;)1<i<m+1 be as in (3.4), and set

W= Wm+1 O-+-0 W1 (3.93)
= inf  (Wx]|x) (3.9b)
xeHy, |xl|=1
m
MZX—)HQZXHZ@,’(WerlO---O ,~+1)x,~ (3.9ac)
i=0
M:X>Y: x> m(Mx — 2"l — a)xg, Mx). (3.9d)

Suppose that one of the following holds:

(i) Thereexistsi € {1,...,m+ 1} such that W; = 0.
(i) (Mlxy <1
(i) W —2"T1 =) | — [W] + 2011 < 2" a.
(iv) o # 1, foreveryi € {1,...,m+1} W; # 0, and there exists n € [0, o/ (1 —a)0p+1)]
such that
Om+1 < mtly
{a9m+1 + A =) Id =W = nlIWDOnt1 — W) <2"Q2a — 1)+(1 —(;1)1/60)

Then (W;)1<i<m+1 satisfies Condition 3.1.

Proof We use the operators (L;)<;<m+1 introduced in Condition 3.1. Per Notation 3.5 and
(3.94),

1My — 2" (1= a)yoll + 1Myl _

sup sup [Mylly =IMlxy 3.1

yexX 2mtlg yex
ma i |<1 <1
Ogiém”h I< Iyl <

and therefore

(Vyed) max |yl<l = IMy—2"t (1 —a)yol + Myl < 2" al|M| x.y.

<is<m
3.12)
Now let x € X be such that
1 if i =0;
. gt b ; .
(Vi e{0,....,m}) x| < { ILi(on - xi Dl if i > 1. (3.13)
(i): We assume that m > 1. For every k € {i, ..., m}, it follows from (3.4) that 6y = 0

and in turn from Lemma 3.3(ii) and (3.13) that x; = 0. Therefore,
m i—1
Lnpix =Y (Wyp10-oWig)xx =Y (Wpgr0--0Werx =0, (3.14)

k=0 k=0
and (3.3) clearly holds.
(ii): In view of (i), we assume that, if m > 1, (Vi € {1, ..., m}) W; # 0. We then derive

from (3.4) that (Vi € {1,...,m}) 6; > H;;:l [Wi|l > 0. If xo = 0, (3.3) trivially follows
from Lemma 3.3(ii), we therefore assume otherwise. Now set

Xi
6illxoll”
According to Lemma 3.3(ii), (Vi € {0,...,m}) [lyi|| < 1. On the other hand, it follows
from (3.9¢), (3.15), and (3.1) that My = L,,+1x/|x0]|. Altogether, we deduce from (3.12)
that (3.3) holds.

Viel{0,....,m}) y = (3.15)
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(ili)=(ii): Take y € X such that ||y|lx < 1. Then it follows from (3.9¢c) and
Lemma 3.3(i) that

My — 2" (1 — @)yoll + My
m
<NIW =21 A =) Id || Iyoll + IW I 1Yol +2 ) il Wang1 0+ 0 Wit [l 1]

i=1

W 2" (1 =) Id || — W]l + 201

<2"a. (3.16)
In turn, (3.11) yields [M|lx,y < 1.
(iv)=(ii): Let y = (30, ..., ym) € X be such that || yo|| = --- = |lym| = 1, and set
m
- ;&(V"mﬂ o---0oWip1)yi, if m #0; 317
0, if m=0.
The assumptions and (3.9b) imply that
MOm1 < /(1 —a)
Ons1 < 2" Ha (3.18)

abpt1+ A =) Id=nW[ = nlIWIDOpn+1 — IWID
<2"Qa— 1D+ (1 —a)(Wyo | yo).

On the other hand,
alWyo + u — (1 —a)(yo | u)
= a|Wyo+u| — (1 —a)nWyo + Ad —nW)yo | u)
< al|Wyo +uf —n(1 —a)(Wyo | u) + (1 —a)[|[Ad —pW)yoll llull.  (3.19)
Since, by Lemma 3.3(i) and (3.18),
m
nge,-nwmﬂ 00 Wistll = 01 < 7. (3.20)
we deduce from (3.17) that
(1 —a)(IWyoll + llul) < e. (3.21)
However, by Lemma 3.4,
IWyoll llull = (Wyo [ u) < (I1Wyoll + llull = [Wyo +ulDUWyoll + llull).  (3.22)
In view of (3.21), this yields
n(1 = a)(IWyoll lull = (Wyo | u)) < a(IWyoll + llull = [IWyo + ul)), (3.23)
that is,
a|Wyo + ull —n(1 —a)(Wyo [ u) < a(IWyoll + llull) —n(1 — ) [[Wyoll llull. (3.24)
Therefore, since (3.21) implies that  — n(1 — a)||u|| = 0, it results from (3.19) that
aWyo + ul — (1 —a)(yo | u)

< a((Wyoll + [lull) = n(1 = a)[Wyoll llull 4+ (1 = ) [I(Id —n W) yol| [|u]|
= alflull + (& = (1 =) ul)|Wyoll + (1 = ) [|(Id —nW)yol| [|u]|
< aflull + (@ = n(1 =a)lulDIW] + (I =) [|(Ad =nW)yoll [|ull

a|Wil+ (@ = n(1 =) W) llull + (1 =) | 1d =n W] [|u]. (3.25)
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However, since (3.20) implies that « — n(1 — ) |[W| = 0, while (3.17) implies that ||u|| <
Om+1 — |W], we derive from (3.25) that

alWyo +ul — (1 —a)(yo | u)
<alWl+ (e = =) W) Bns1 — IWI) + A — ) Id=n Wl g1 — WD

(3.26)
We also have
[Wyo +ull < IWI + llull < On+1- (3.27)
Hence, using (3.26), (3.27), (3.9¢), (3.9a), and (3.9d) we obtain
[Wyo +ul < 2"+l
3.18) =
(3-18) @[ Wyo + 1] — (1 — ) lyo | Wyo+ ) < 2" Qe — 1)
IMy| < 2"Hla
< m(o2 2
a[My|| = (1 —a)(yo | My) <27 (e — (1 —)?)
- IMy| < 2"Hla
| My —2mF1(1 — a)yol? < (2" — [My])
& My —2"" (1 =)yl + Myl < 2"
& Mylly <1. (3.28)
Now set C = {ye X | llyoll == llymll = 1}. Then, in view of (3.11), (3.28),
and [8, Proposition 11.1(ii)], we conclude that |[M|xy = SUPycconve IMYlly =
supyec | Mylly < 1. O

The next result establishes a link between deep neural network structures and the
operators introduced in (3.1).

Lemma 3.7 Let m > 1 be an integer and let (H;)o<i<m+1 be nonzero real Hilbert spaces.
Foreveryi e {1,...,m+ 1}, let W; € B (H;—1, H;) and let L; be as in (3.1). Further, for
everyi € {1,...,m}, let P;: H; — H; be firmly nonexpansive. Set

Tn =Wpnyr1oPypoWyo---0ProWp, (3.29)

let x and y be distinct points in Ho, and set vo = (x — y)/llx — yl|l. Then there exists
(W1, m) € Hy X -+ x H,, such that

(Vie{l,....m}) |l <lLi(vo, ..., vi-1)ll

2"(Tux — Tiy) (3.30)
=t T Y o L1 (00s s U).
lx =yl
Proof Foreveryi € {1,...,m}, since P; is firmly nonexpansive, there exists a nonexpan-
sive operator Q; : H; — H,; such that
Id i
P = LQ’ (3.31)
2
We proceed by induction on m. Suppose that m = 1 and set
Wix) — w
_ 21(Wix) — Ou( 1y)7 (3.32)

llx =yl
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which implies that [y || < [[Wi(x — »)[I/llx — yll = [[L1voll. Then

2(Tix —Try) = WaoW)(x —y)+ (Wro Q10 W)x — (Wro Q10 W)y

= [lx — yll((W2 0 W) + Wavy)). (3.33)
Thus, (3.30) holds for m = 1. Next, we assume that m > 1 and that there exists
(1, ..., Vm_1) € Hi x --- x H,_1 such that

(Vie{l,....m—1} il < |ILi(vo, ..., vi-D)ll

2" N (Thyeyx — Tyo1y (3.34)
( - “ ) :Lm(v()v"'vvnlfl)v
lx = ¥l
and we set
2m-1 T)x — Ty
o — ((Qn © Tn-0)x = (O 0 Tu-1)y) (3.35)
lx — ¥l
Then (3.29), (3.31), and (3.34) yield
(Wm—H o Tm—l)-x - (Wm+l o Tm—l)y
Tnx — T,y = 3
+(Wm+l 0oQpo Tmfl)x - (Wm+l ocQpo Tmfl)y
2
Y o Lo tmt) + Wsrum)
= om m+1 m 05 -+ -5 Unm—1 m+1VUm
lx — Il
- 2my Lons1 (V0s -+ - Um)- (3.36)
In addition, it follows from (3.34) and (3.35) that
2" N Tu1x = Ty
lomll < d e AR () (3.37)
lx — ¥l
which completes the proof. O

‘We now establish connections between Condition 3.1 for linear operators and the concept
of averagedness for composite nonlinear operators.

Theorem 3.8 Let m > 1 be an integer, let (H;)o<i<m—1 be nonzero real Hilbert spaces,
set H,, = Ho, and let o« € [1/2,1]. Foreveryi € {1,...,m}, let W; € B (H;—1, H;) and
let P;: H; — H; be firmly nonexpansive. Suppose that (W;)1<i<m satisfies Condition 3.1.
Then Py o Wy, 0---0 P1 o Wy is a-averaged.

Proof SetT = Py 0o Wy, 0---0 P; o Wi. We must show that

0= (l - é) Id-l-éT (3.38)

is nonexpansive. By assumption, for every i € {1,...,m}, there exists a nonexpansive
operator Q;: H; — H; such that (3.31) holds. Let (L;)1<i<m be asin (3.1) and let x and
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y be distinct points in Hg. According to Lemma 3.7, there exists v = (vo, ..., Un—1) €
Ho X -+ x Hpu—1 such that
x—y
0 =
=yl
~Vie{l,....m—1}) vl < |Li(vo, ..., vi-Dl

2" (W 0 Pyu—jo-+-0ProW)x — (Wy 0 Py_i--0ProW)y)

= L,v.
lx =yl
(3.39)
Condition 3.1 imposes that
[Lmv —2"(1 —)voll + [ Lmoll < 2"atllvoll = 2", (3.40)

which is equivalent to

{(WyoPpyo---0oProWp)x —(WypoPy_1---0oProWp)y—2(1 —a)(x —y)l

+ I (WpoPpqo---0oProWp)x —(WyoPy_1---0ProWp)yll <2alx —yll.
(3.41)

In turn, we derive from (3.38) and (3.31) that

1Qx — Oyl
1 /1d 1d
<—H< +Qmono-~-oPloW1)x—( +Qmono---oPloW1)y
o 2 2
~(1 =) )|
1
< E(”(WmopmflO"'OPIOW])X_(WmOmel"'OPl o Wiy

=21 —a)(x = I+ 1(Qm o Wy o Py—yo---0ProWpx
_(QmOWmOmel"'oplOWl)y”)

N

%(n(wm 0 Py_io--0PLoW)X — (W o Pu_i--o0PoWp)y
21 —a)x =+ (W0 Py_10---0ProWpx
~ (Wi 0 Pyt -++0 Py o Wi)yll)
lx — I, (3.42)

N

which establishes the nonexpansiveness of Q. O
Example 3.9 Consider Theorem 3.8 with m = 2. In view of Proposition 3.6(iii), P» o W3 o
P o W is a-averaged if [Wa o Wi —4(1 — ) Id || + [|W2 o Wi + 2|W2] |W1 ]| < 4c.
In particular, if @ = 1, this condition is obviously less restrictive than requiring that W; and
W, be nonexpansive.

4 A Variational Inequality Model

In this section, we first investigate an autonomous version of Model 1.1.
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Model 4.1 This is the special case of Model 1.1 in which, for every i € {1, ..., m}, there
exist R; € A(H;), say R; = prox,, for some ¢; € To(H;) with ¢;(0) = infg; (H;),
W; € B(H;—1, H;), and b; € H; such that (Vn € N) Rin=Ri, Wi, =W, bi,n = b;. We
set

~Viell,....m}) T;:Hi-1 > Hi: x> R;(Wjx + b;) “.1)

and

F=Fix(T,,0---0T1)

H=H D - D®Hnu1DHn

=

ﬂz%m@%l@"'@%mfl

—
S:H— H: (xt, .o X1, Xm) = sy X1+ ooy Xp1) 4.2)
—

W:H—> H: (xp, X1, ... Xm—1) > Wixy, Waxy, ..., Wyxim—1)

@: H —> ]-00,+00] 1 x > YL @i(x;)

¥ H — |—00, 400l : x > 27 (i (xi) — (xi | b))

F:{xe'H|x1 = Tixm, X2 =Doxq,..., xm:mem_]},
where x = (x1, ..., x;) denotes a generic element in H.

4.1 Static Analysis
We start with a property of the compositions of the operators (T;)1<i<m of (4.1).

Proposition 4.2 Consider the setting of Model 4.1, let i and j be integers such that 1 <
J<i<m,andletx € H;_1. Then

i

[T 1w ||>. (4.3)

k=q+1

i i
Ty 0o Tpxll < Il [T Wil + ) (ann
k=j q=J

Proof In view of (4.1), the property is satisfied when i = j. We now assume that i > j.
Since R; € A(H,;), Proposition 2.21(i) yields
I(Tio---oTpxl = IR (Wi(Ti—10---0Tj)x + bl
|R;(W;(Ti—10o---0oTj)x +b;) — R0
< NWi(Tizio--- 0 Tj)x + bi|
< AWWillllTi—y o -+~ o Tx |l + [1bill. (4.4)
We thus obtain (4.3) recursively. O

Next, we establish a connection between Model 4.1 and a variational inequality.

Proposition 4.3 [n the setting of Model 4.1, consider the variational inequality problem

by €x1 — Wixpy + 091 (x1)

by € X2 — Wox1 + 0¢2(X2)
find xy € Hy, ..., Xm € Hm such that . 4.5)

b € X — WinXm—1 + 0@m (Xm).
Then the following hold:
(i) The set of solutions to (4.5) is F.

@ Springer



P.L. Combettes, J.-C. Pesquet

(i) F=zer(ld — Wo S+ 9y) = Fix(prox, o Wo S).

(iii) F = {(T]fm, (T oT)Xmy ooy (Tu—10-+-0T)Xpm, Xim) | Xm € F}.

(iv)  Suppose that (W;)1<i<m Satisfies Condition 3.1 for some a € [1/2,1]. Then F is
closed and convex.

(v)  Suppose that (W;)1<i<m satisfies Condition 3.1 for some a € [1/2, 1] and that one
of the following holds:

(@) ran(T,, o---oT) is bounded.
(b) There exists j € {1, ..., m} such that dom @; is bounded.

Then F and F are nonempty.
(vi) Suppose that Id — W o S is monotone. Then F is closed and convex. In addition, F
and F are nonempty if any of the following holds:

(@) Id — W o S+ 99 is surjective.

(b) 9@ — W o S is maximally monotone.

(c) maxigigm IWill < 1, S* — W has closed range, and ker(S — W*) = {0}.

(d) maxigigm |Will < 1and, foreveryi € {1, ..., m}, dom ¢¥ = H,;.

(e) Foreveryie{l,...,m}, domg; =H and dom ¢} = H;.

(f) S* — W has closed range, ker(S — W*) = {0}, and, for everyi € {1,...,m},
dom ¢; = H;.

(g) Foreveryi €{l,...,m}, dom ¢; is bounded.

Proof We first observe that S € B (H, ;‘l), WeB (7?[, H),p € To(H),and ¥ € To(H).
(i): Let x € H. Then

Wixm + b1 € x1 + 9¢1(x1)

Wox1 +ba € x2 + 0¢g2(x2)

x solves (4.5) & (4.6)

WinXm—1 + b € X + 0@ (Xm).

x1 = proxy, (Wixm + b1) = Tixm

X2 = proX,, (Waxi + b2) = Thxy
& ) 4.7

Xm = PFOX%(Wme—l +bm) = TuXm-1-

(ii): Let x € H. Using (4.2), we obtain

xsolves (45) & 0ex—W(Sx)+0y(x) < x=proxy,(W(Sx)). (4.8)

(iii): Clear from the definitions of F' and F.

(iv): Define m firmly nonexpansive operators by (Vi € {1,...,m}) P;: H; — H;: y —
R; (y+b;). Then it follows from (4.1) and Theorem 3.8 applied to (P;)1<;<m that Tj,0- - -0T)
is nonexpansive. In turn, we derive from [8, Corollary 4.24] that its fixed point set F is
closed and convex.

(v): Thanks to (iii), it is enough to show that F # &.Set T = T,, o - -- o T and recall
that it is nonexpansive by virtue of Theorem 3.8.

(a): Let C be a closed ball such that ran7T C C andset S = T'|c. Then S: C — C'is
nonexpansive and therefore [8, Proposition 4.29] asserts that Fix T = Fix S # @.
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(b)=(a): We have ranT; C ranR; = ranprox, = dom(Id+d¢;) = domdg; C
dom ¢ ;. Hence ran T is bounded and Proposition 4.2 (with i = m) implies that

m

ran 7, if j ;
if j<m—1

(Two---oTjp1)(ranT;), if 1< @2

ranT C {
is likewise.

(vi): Set A = Id — W o S + d¢. Since Id — W o § is monotone and continuous,
it is maximally monotone [8, Corollary 20.28], with H as its domain. Since 3¢ is also
maximally monotone [8, Theorem 20.25], A is likewise [8, Corollary 25.5(i)] and hence
F = zer A is closed and convex [8, Proposition 23.39]. Next, we note that, in view of (iii),
F#£0 & F #0.

(a): The hypothesis implies that (b;)1<i<m € ran (Id — W o § + d¢) and therefore that
(4.5) has a solution, i.e., F # @.

(b)=(a): The claim follows from Minty’s theorem [8, Theorem 21.1].

(c)=(a): We have ||W o S|| = [|[W]| = maxigigm [IWill < 1. Therefore, —W o S is
nonexpansive, which implies that (Id — W o §)/2 is firmly nonexpansive [8, Corollary 4.5],
that is (Vx € H) (x — W(Sx) | x) > |lx — W(Sx)||?/2. Consequently, Id — W o S is
3* monotone [8, Proposition 25.16], while d¢ is also 3* monotone [8, Example 25.13].
Finally, since S is unitary,

ran (Id — W o S) =ran ($* — W) =ran (S — W*)* = (ker (s— W*)>l =H, (4.10)

which shows that Id — W o S is surjective. Altogether, since [8, Corollary 25.5(i)] implies
that Id — W o S + 9¢ is maximally monotone, it follows from [8, Corollary 25.27(i)] that
Id — W o S + 0¢ is surjective.

(d)=(a): We have dom ¢* = H. Therefore, since intdom ¢* C dom d¢* [8, Proposi-
tion 16.27], we have ran 3¢ = dom (3¢)~! = dom d¢* = H. Hence, d¢ is surjective. We
conclude using the same arguments as in (c): d¢ and Id — W o § are both 3* monotone and
their sum is maximally monotone, which allows us to invoke [8, Corollary 25.27(1)].

(e)=(a): As seen in (d), d¢ is surjective. We have H = intdom ¢ C dom d¢ [8, Propo-
sition 16.27]. Consequently, H = dom (Id — W o §) C dom d¢. Altogether, since d¢ is
3* monotone, it follows from [8, Corollary 25.27(ii)] that Id — W o § + d¢ is surjective.

(f)=(a): As seen in (c), Id — W o § is surjective and d¢ is 3* monotone. In addition,
dom(Id — W o S) C domde since H = intdom¢e C domd¢ [8, Proposition 16.27].
Altogether, it follows from [8, Corollary 25.27(ii)] that Id — W o S + d¢ is surjective.

(g): Here dom A = dom d¢ C dom¢ = X:"Zldom @; is bounded. Hence, F = zer A #
& [8, Proposition 23.36(iii)]. O

Remark 4.4 In Proposition 4.3(vi), it is required that Id — W o S be monotone, or equiva-
lently, that its self-adjoint part Id — (W o S+ S* o W*) /2 be positive. In a finite-dimensional
setting, this just means that the eigenvalues of the matrix WS + S*W* are in ]—o0, 2].

Remark 4.5 Let x € H be a solution to the variational inequality (4.5). A natural question
is whether X solves a minimization problem. In general the answer is negative. For instance,
for m > 3 layers, even if the Hilbert spaces (H;)1<i<n are identical, W = Id, the vectors
(bi)1<i<m are zero, and the functions (¢;)1<;<m are indicator functions of closed convex
sets (C;)1<i<m, the solutions to (4.5) do not minimize any function ®: ‘H — R [4]. A
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rather restrictive scenario in which the answer is positive is when Id — W o § is monotone
and Wo S is self-adjoint. Then X is a minimizer of ®: x — (1/2)(x — W(Sx) | x)+v¥ (x).

Example 4.6 In Model 4.1, suppose that, for every i € {1,...,m}, H; = RN for some
strictly positive integer NV;. In addition, assume that, for every i € {1, ..., m}, R; is a sepa-
rable activation operator with respect to the canonical basis of RV (see Proposition 2.24),
and that it employs the ReLU activation functions of Example 2.6. Foreveryi € {1, ..., m},
let x; = Gix)igk<n; € RMi and set b; = (Bi,x)1<k<n; - Then it follows from Proposi-
tion 4.3(i) that (xq, ..., x,,) € F if and only if, for every i € {1,...,m}, x; € [0, —l—oo[Nf
and

Vke{l,....,N1}) [Wixpule +Bix — &1k € Z(E1p)
(Vke{l,...,N2}) [Waxilk + Bok — &k € Z(52k)

: 4.11)
(Vk € {17 B Nm—l}) [Wm—lxm—2]k + Bm—l,k - Sm—l,k € I(Em—l,k)
~Vkef{l,...., Ny} [Wpxm—1lk + Bm.k - Sm,k € I(fm,k)
where, given x € H;_1, [W;x] is the kth component of W;x and
_ J o if § €]0, +o0[;
(V€ € [0, +00)  Z(£) —{]_OO’ 0. if £ 0. @.12)

Altogether, we conclude that F is a closed convex polyhedron.
4.2 Asymptotic Analysis
We investigate the asymptotic behavior of (1.2) in the context of Model 4.1.

Theorem 4.7 In the setting of Model 4.1, set T = T, o---0 Ty, leta € [1/2,1], and
suppose that the following hold:

(a) F #@.
(b)  (Wi)i<igm satisfies Condition 3.1 with parameter a.
(c) One of the following is satisfied:

i) p=1l/a=1land Tx, — x, — O.
(i) (Ap)nen lies in 10, 1/l and Y, oy An(1 — ady) = 400.

Then (x,),eN converges weakly to a point x,, € F and (T\x,;, (Tp o T)Xm, ..., (Ty—1 ©

-0 T1)Xm, Xm) solves (4.5). Now suppose that, in addition, any of the following holds:

(iii) Foreveryi € {1,...,m — 1}, R; is weakly sequentially continuous.

(iv) Foreveryi € {1,...,m — 1}, R; is a separable activation operator in the sense of
Proposition 2.24.

(v) Foreveryi € {l,...,m — 1}, H; is finite-dimensional.

(vi) For some ¢ € 10,1/2[, (Ap)nen lies in [e, (1 — &)(e + 1/a)] and, for every i €
{1,...,m}, H; = H and there exists B; € 10, 1[ such that |W; —2(1 — B;)1d || +

Wl < 2B:.
Then, for everyi € {1,...,m — 1}, (x; n)neN converges weakly to x; = (T; o --- o T1)Xy,
and (X1, ...,Xy) solves (4.5).
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Proof We first derive from (1.2) and Model 4.1 that
VneN) xp41=xn + A (Tx, — xp). 4.13)

Now set (Vi € {1,...,m}) P;: H; — H;i:y — R;i(y + b;). Then (4.1) yields T =
Py o Wy 0+ 0 Py o W and, since the operators (R;)|g;m are firmly nonexpansive, the
operators (P;)1<i<m are likewise. Hence, it follows from (b), Theorem 3.8, and (4.2) that

T is a-averaged and Fix T = F. 4.14)

(1): In view of (4.14), T is nonexpansive and hence we derive from [8, Theorem 5.14(i)]
that (x,)nen converges weakly to a point in F. The second assertion follows from
Proposition 4.3(iii).

(ii): In view of (4.13) and (4.14), [8, Theorem 5.15(iii) and Proposition 5.16(iii)]
imply that (x,),en converges weakly to a point in F, and we conclude by invoking
Proposition 4.3(iii).

We now prove the convergence of the individual sequences under each assumption.

(iii): We have already established that x,, — X,,. Since W] is weakly continuous as a
bounded linear operator, so is 77 in (4.1). Hence, (1.2) implies that x; , = T1x, — T1X, =
x1. Likewise, we obtain successively x2 , = Tox1,, — ToXx| = X2, x3,, = T3x2,, —
T3x; = X3,..., Xm,n = Tm-xmfl,n = TnXpm—1 =Xn.

(iv)=(iii): See [8, Proposition 24.12(iii)].

(v)=(iii): A proximity operator is nonexpansive and therefore continuous, hence weakly
continuous in a finite-dimensional setting.

(vi): As shown above, x, — X, € F. It follows from Proposition 3.6(iii) and Theo-
rem 3.8 (applied with m = 1) that, forevery i € {1, ..., m}, T; is B;-averaged. Hence, upon
applying [24, Theorem 3.5(ii)] with « as an averaging constant of 7', we infer that

Id-T))x, — Ad—-T)x,, — O
(Id =T2)(T1x) — Ad =T2)(T1 X)) — O
. (4.15)

Ad =T)(Tp-1 00 T)xp) — Ad=T) (Tn—1 0 - - 0 T1)Xp) — 0.

Thus, x1,, —x, = T1x, — xn, = T1X, — X, which implies that x; , = (x1,, —xp) +x, —
(T*p — Xm) + X = T1X,,. However, since x3, — x1,, = (T2 0o T1)x, — T1x, — (T2 0
T\)xm — T1X,,, we obtain x2 , — (T2 o T1)X,,. Continuing this telescoping process yields
the claim. O

The next result covers the case when the variational inequality problem (4.5) has no
solution.

Proposition 4.8 In the setting of Model 4.1, suppose that (W;)1<; <m satisfies Condition 3.1
witha € [1/2, 1], that (Ay)nenN liesin [e, (1/a) —¢€], for some ¢ € 10, 1/2[, and that F = @.
Then ||x, || — +o0.

Proof We derive from (4.13) and (4.14) that, forevery n € N, x,4+1 = x,, + u, (Qx, — xp),
where O = (1 — 1/a)Id+(1/a)T is nonexpansive and such that Fix Q = F, and u, =
aip € ]0, 1[. Hence the claims follows from [8, Proposition 4.29] and [12, Corollary 9(b)].

O

Remark 4.9 When assumptions (a)—(c) in Theorem 4.7 are satisfied, the neural network
described in Model 1.1 is robust to perturbations of its input. Indeed, since T is «-averaged
in (4.13), we can write the updating rule as x,+1 = Q,x,, where Q, is nonexpansive. In
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turn, if xo and X are two inputs in H, for a given n € N, the resulting outputs x,, and X,
are such that ||x, — X, | < |lxo — Xoll.

Remark 4.10 In connection with Theorem 4.7 and Remark 4.5, let us underline that in
general the weak limit X, of (x,),en does not solve a minimization problem. A very special
case in which it does is the following. Suppose that m = 2, H; = H, ||[W;] < 1, and
Wy, = W{k Set vy = @1 — (- |b1)and Yo = ¢ — (- | bp), and let x; € F,ie., Xy =
(proxy, o Wio proxy, o Wixz. It follows from [21, Remark 3.10(iv)] that there exists a
function ¥ € T'o(H) such that Wy o prox,, o W; = prox,. Thus, X7 is a fixed point of the
backward-backward operator prox,,, o proxy. It then follows from [20, Remark 6.13] that
X, is a minimizer of "9 4 yrp, where "2 x > infycs (9 (y) + [lx — y[|?/2) is the Moreau
envelope of 9.

Remark 4.11 To model closely existing deep neural networks, we have chosen the activa-
tion operators in Definition 2.20 and Model 4.1 to be proximity operators. However, as is
clear from the results of Section 3 and in particular the central Theorem 3.8, an activation
operator R; : H; — H; could more generally be a firmly nonexpansive operator that admits
0 as a fixed point. By [8, Corollary 23.9], this means that R; is the resolvent of some max-
imally monotone operator A;: H; — 2Hi (ie., R; = (Id+A;)~) such that 0 € A;0. In
this context, the variational inequality (4.5) assumes the more general form of a system of
monotone inclusions, namely,

by ex1 — Wix, + Ai1x
by € xo — WoXx| + Axxy
find x; € Hi,..., Xm € H,; such that . (4.16)

bm € Xm — Wmfmfl + Amfm~

5 Analysis of Nonperiodic Networks
We analyze the deep neural network described in Model 1.1 in the following scenario.

Assumption 5.1 In the setting of Model 1.1, there exist sequences (wp)peN € oL,

(Pn)neN € Eﬂr, (Mn)neN € Eﬂr, and (vp)peN € er for which the following hold for every
ief{l,...,m}:

(i) There exists Wi € B (Hi_1, H;) such that (Vn € N) |W; , — W;|| < wy.
(ii) There exists R; € A(H;) suchthat (Yn € N)(Vx € H;) |Rinx —Rix|| < pullx||+ 0.
(iii)  There exists b; € H; such that ¥Yn € N) ||b; ,, — b;|| < vy.

In addition, we set
~Viefl,....m}) T;:Hi—1 —> Hi: x> Ry(Wix + b;). (5.1)
Proposition 5.2 In the setting of Model 1.1, suppose that Assumption 5.1 is satisfied, let
i ef{l,...,m}, and set
VneN) xin=pPullWinl +©n and &in = pullbinll + 1y + va. (5.2)

Then (Xinnen € L4, Gindnen € €L, and (Yn € N)(Vx € Hi_y) |Tinx — Tix|| <
Xin X\l + Sin-
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Proof According to Assumptions 5.1(1) and 5.1(iii), sup,cy |Winll < oo and
sup,,en l16inll < +oo. It then follows from (5.2) that (x; n)neN € E}‘_ and (& n)neN € EL.
Hence, we deduce from (1.1), (5.1), the nonexpansiveness of R;, and Assumption 5.1 that

(Vn e N)(Vx € H;—) [ITinx — Tix||
S NRi,n(Winx +bin) — Ri(Winx +bi )| + | Ri (Wi nx + bin) — Ri(Wix + ;)|
< PallWinx + binll + nn + IWinx +bin — Wix — bi|
< o (IWinll XN+ 1D n 1) 4 10 + 1 Wiy — Will lx Nl + 1bi,n — bi
< on(IWinll XN+ 1Din ) + 10 + @n x| + v
= XinllX|l + &in, (5.3)

as claimed. O

Proposition 5.3 In the setting of Model 1.1, suppose that Assumption 5.1 is satisfied. Then,
foreveryi € {1, ..., m}, there exist (Tj n)neN € Zi_ and (6; p)neN € Zﬁ_ such that

VneN)Vx € H) [[(Tino--oTipx— (Tio o T)x| < Tiplxll +6ipn.  (5.4)

Proof For every i € {1,...,m}, define (x;n)nen and (& n)neN as in (5.2), According to
Proposition 5.2, (5.4) is satisfied for i = 1 by setting (Vn € N) 11, = x1,, and 61, = {1 .
Next, let us assume that (5.4) holds fori € {1, ..., m — 1} and set

I
Tivtn = (IWistll + Xig 1) Tin + Xigrn | [ Wil

(Vn € N) k=l ;
Oisrn = (IWitall + Xit1n)00n + Xitin Y (nb,-n I1 ||Wk||> + it
=1 k=j+1

(5.5)
Then the sequences (Ti+1,4)neN and (8;+1.n)neN belong to Elr. Now letn € Nand x € H.
Upon invoking Proposition 5.2, the nonexpansiveness of R;; |, and Proposition 4.2, we
obtain

I(Tiv1no---oTin)x — (Tixr0--- 0 T)x||

SNTittnoTipo--oTp)x —(Tix1 0T no--- 0Ty p)x|
H(Tiv10Tino---oTip)x — (Tix10Ti 0+ 0 Ty)x|

< Xi+tnll(Tin oo Trp)x|l + Git1n
H(Tig10Tino---oTiwx —(Tix10Ti 00 Tp)x|

S Xi+tn(Tipo-- 0Ty p)x = (To---oTx|| + [(Ti o+ o TX|) + Git1n
+|Rix1 (Wig1 0 Tin o+ Tin)x + big1) —Rig1(Wig1 0 T 0 -+ 0 T)x + big1) |

< UWigill + Xi+1.0N(Tip o0 Ty p)x — (Tr 0 -+ - o T1)x||
FXi+1.0ll(Ti oo T)x|| + Sit1n

< UWigtll + Xi+1.0) (Tinll X1l + i)

i i i
+xi+1,n<||x|| [TIwell+> (nbjn I1 ||Wk||>) + Gt
k=1 j=1 k=j+1
= TitLnlxll + Oit1,n, (5.6)

which proves the result by induction. O

@ Springer



P.L. Combettes, J.-C. Pesquet

We can now present the main result of this section on the asymptotic behavior of
Model 1.1. The proof of this result relies on Theorem 4.7, which it extends.

Theorem 5.4 Consider the setting of Model 1.1 and let o« € [1/2,1]. Suppose that
Assumption 5.1 is satisfied as well as the following:

(a) F =FixT # &, where T =Ty, 0---0T1.
(b)  (Wii<igm satisfies Condition 3.1 with parameter o.
(c) One of the following is satisfied:

() Am=a=1land Tx, —x, — O.
(i)  (Apnen liesin 10, /[ and Y, oy dn(1 — ady) = 400.

Then (xp)yeN converges weakly to a point x,, € F and (T\x;, (Tp o T)Xm, ..., (Ty—1 ©
<o+ 0 T1)Xm, X ) solves (4.5). Now suppose that, in addition, any of the following holds:

(iii) Foreveryi € {1,...,m — 1}, R; is weakly sequentially continuous.

(iv) Foreveryi € {1,...,m — 1}, R; is a separable activation function in the sense of
Proposition 2.24.

(v) Foreveryi € {l,...,m — 1}, H; is finite-dimensional.

(vi) For some ¢ € ]0,1/2[, (Ap)nen lies in [e, (1 — e)(e + 1/a)] and, for every i €
{1,...,m}, H; = H and there exists B; € 10, 1[ such that |W; —2(1 — B)Id | +
[Will < 2B;.

Then, for everyi € {1,...,m — 1}, (X; n)neN converges weakly to x; = (T; o --- o T1)X ),
and (X1, ...,Xy) solves (4.5).

Proof Let (y,)nen be the sequence defined by yp = xg and

forn=0,1,...
Vin = len
Yoon = TZyl,n
. 5.7
Ym,n= Tmymfl,n
Yn+1= Yn + )\n(ym,n — Yn).
Foreveryn e N,set S, = T, , 0--- 0o Ty ,. We derive from (1.2) and (5.7) that
vVn e N)  |xpg1 — Ynttll = 10+ 20 (Suxn —Xn) = Yn —An (T yn — yu) |l
< AnllSnxn —Txp |+ 1%0 — Yy + 20 (Txp — Ty —xu+yu) .
(5.8)

At the same time, by Proposition 5.3, there exist (T, 1)neN € EL and (0, n)neN € €1+ such
that

Vn e N)  |1Spxn — Tx,|l Tm,n 1% 1| + em,n (5.9)

<
< T (1X0 = Yall + 1Yall) + O n- (5.10)
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On the other hand, by Theorem 3.8, Assumption 5.1(ii), and (b), T is a-averaged. Hence,
there exists a nonexpansive operator Q: H — H such that T = (1 — ) Id +« Q. Since (c)
implies that (A, ),en lies in ]0, 1/«], we deduce that

VneN) |lxy —yu +Aa(Txp — Tyy — xp + yu)ll
11— adn)(xn — yn) + @rn (Qxn — Qyu)ll
(I —ar)llxn — yull +arn | Qxn — Quull
lXn — yull. (5.11)
Altogether (5.8), (5.10), and (5.11) yield

NN

T 1
1 eN) e =yl < (14 22 )1 = 3l + = (malyll + ). (5:12)
However, Theorem 4.7 guarantees that § = sup,, <y |l yr|l < +00 and therefore that

Tm,n

1
€Nt = el < (14 22 ) 1 = 3l + = (a8 + ). (513)

o
Since (Tm,n)nen and (T nd + Op n)neN are in ¢}, there exists v € [0, 400 such that

lx, — ynll = v [8, Lemma 5.31]. Consequently, 8’ = sup, ey lxn ]l < 8 + sup,ey X0 —
Vnll < 4+00. Now, set

1
VneN) e, = —(Spxp, — Txy). (5.14)
o
Then it follows from (5.9) that

1 &8 1
D lenl < =37 (Tmnllinll +6mn) < — 3 Twn+ — Y Onn < +00. (515

neN neN neN neN

In view of (1.2), we have
VrneN) xpp1 =x5 + un(Qxy + ey —x,), where p, =ak, €10, 1[. (5.16)

(1): The weak convergence of (x,),en to a point x,, € Fix Q = F follows from (5.16)
and [8, Theorem 5.33(iv)] by arguing as in the proof of [8, Theorem 5.14(i)].

(ii): It follows from (5.16) that )", .y hn (1 —pn) = +00. Hence [8, Proposition 5.34(iii)]
implies that (x,),cN converges weakly to a point X, € Fix Q = F.

In (i)—(ii) above, Proposition 4.3(iii) ensures that (T1X,,, (T2 o T1)Xm, ..., (Tjy—10--- 0
T1)Xm, X) solves (4.5).

(iii)—(v): If one of these assumptions holds, by proceeding as in the proof of Theo-
rem 4.7(iii)—(v), we obtain that, foreveryi € {1,...,m — 1}, (Tjo--- o Tp)x, — X; =
(T; o---oT1)X,, and that, furthermore, (xy, ..., X,;,) solves (4.5). However, Proposition 5.3
asserts that, for every i € {1,...,m — 1}, there exist (7; y)pen € E}F and (6; n)neN € Zi_
such that, for every n € N,

||xi,n_(Ti°' oT)x,|l = ”(Ti,no' : 'OTl,n)xn —(Tio---oT)xu| < Ti,n||xn||+9i,n- (5.17)

Since (x,)nen is bounded, x; , — (T; o - - - o T1)x,, — 0 and therefore x; , — X;.
(vi): Foreveryi € {1, ..., m}, set

(Vn e N) €in = (Ti,n o Tifl,n ©:---0 Tl,n)xn —(T;o Tifl,n o:---0 Tl,n)-xn, (5.18)

and let (x; n)neN and (& »)nen be defined as in (5.2). By Propositions 4.2, 5.2, and 5.3, we
have

(Vl’l € N) ”el,n” < Xl.n”xn” + {l,n (519)
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and
(Vief2, ..., mNA -1 nnen € LA G- 1)nen € L) (Vn € N)
leinll < Xinll(Tictn o0 Tin)Xnll+&in
< Xin(I(Tiziw oo Tip)xn—(Tizy o+ o TDxpll+(Ti—1 0 - 0 TDXn ) + &Lin

N

i—1 i—1 i—1
xi,n(n_l,nnxnn+9i_1,n+||xn||]"[||Wk||+2||b,-||< I1 ||Wk||))+;,»,n.

k=1 j=1 k=j+1
(5.20)

Thus, since (x,),<nN is bounded,

i e{l,....m}) (leinlDnen € €. (5:21)
In addition, by (5.18) and (1.2),

(Vn EN) Xp+1=Xp + )‘-n(Tm (Tmfl(' T (Tix, + el,n)+ €2n )+em71,n) +emn — xn)~
(5.22)

Thus, since Proposition 3.6(iii) and Theorem 3.8 imply that the operators (7;)<;<m are
averaged, the proof can be completed as that of Theorem 4.7(vi) since [24, Theorem 3.5(ii)]
asserts that (4.15) remains valid under (5.21). O
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