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Abstract
Motivated by structures that appear in deep neural networks, we investigate nonlinear com-
posite models alternating proximity and affine operators defined on different spaces. We
first show that a wide range of activation operators used in neural networks are actually
proximity operators. We then establish conditions for the averagedness of the proposed
composite constructs and investigate their asymptotic properties. It is shown that the limit
of the resulting process solves a variational inequality which, in general, does not derive
from a minimization problem. The analysis relies on tools from monotone operator theory
and sheds some light on a class of neural networks structures with so far elusive asymptotic
properties.

Keywords Averaged operator · Deep neural network · Monotone operator ·
Nonexpansive operator · Proximity operator · Variational inequality

1 Introduction

A powerful tool from fixed point theory to analyze and solve optimization and inclusion
problems in a real Hilbert space H is the class of averaged nonexpansive operators, which
was introduced in [3]. Let T : H → H be a nonexpansive operator, i.e., T is 1-Lipschitzian.
Then α ∈ ]0, 1] is an averagedness constant of T if Id+α−1(T − Id) remains nonexpan-
sive, in which case we say that T is α-averaged; if α = 1/2, T is firmly nonexpansive. The
importance of firmly nonexpansive operators in convex optimization and variational meth-
ods has long been recognized [19, 27, 36, 41, 46]. The broader class of averaged operators
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was shown in [7] to play a prominent role in the analysis of convex feasibility problems. In
this context, the underlying problem is to find a common fixed point of averaged operators.
In [20], it was shown that many convex minimization and monotone inclusion problems
reduce to the more general problem of finding a fixed point of compositions of averaged
operators, which provided a unified analysis of various proximal splitting algorithms. Along
these lines, several fixed point methods based on various combinations of averaged opera-
tors have since been devised, see [1, 2, 5, 9, 11, 13, 14, 17, 18, 24, 25, 38, 43, 47] for recent
work. Motivated by deep neural network structures with thus far elusive asymptotic proper-
ties, we investigate in the present paper a novel averaged operator model involving a mix of
nonlinear and linear operators.

Artificial neural networks have attracted considerable attention as a tool to better under-
stand, model, and imitate the human brain [31, 37, 42]. In a Hilbertian setting [6], an
(n + 1)-layer feed-forward neural network architecture acting on real Hilbert spaces
(Hi )0�i�n is defined as the composition of operators Rn ◦ (Wn ·+bn)◦· · ·◦R1 ◦ (W1 ·+b1)

where, for every i ∈ {1, . . . , n}, Ri : Hi → Hi is a nonlinear operator known as an acti-
vation operator, Wi : Hi−1 → Hi is a linear operator, known as a weight operator, and
bi ∈ Hi is a so-called bias parameter. Deep neural networks feature a (possibly large) num-
ber n of layers. In recent years, they have been found to be quite successful in a wide array
of classification, recognition, and prediction tasks; see [34] and its bibliography. Despite
their success, the operational structure and properties of deep neural networks are not yet
well understood from a mathematical viewpoint. In the present paper, we propose to analyze
them within the following iterative model. We emphasize that our purpose is not to study
the training of the network, which consists of optimally setting the weight operators and
bias parameters from data samples, but to analyze mathematically such a structure once it is
trained. Our model is also of general interest in constructive fixed point theory for monotone
inclusion problems.

Model 1.1 Let m � 1 be an integer, let H and (Hi )0�i�m be nonzero real Hilbert spaces,
such thatHm = H0 = H. For every i ∈ {1, . . . , m} and every n ∈ N, letWi,n : Hi−1 → Hi

be a bounded linear operator, let bi,n ∈ Hi , and letRi,n : Hi → Hi . Let x0 ∈ H, let (λn)n∈N
be a sequence in ]0,+∞[, set

(∀n ∈ N)(∀i ∈ {1, . . . , m}) Ti,n : Hi−1 → Hi : x �→ Ri,n(Wi,nx + bi,n), (1.1)

and iterate

for n = 0, 1, . . .
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

x1,n = T1,nxn

x2,n = T2,nx1,n
...

xm,n= Tm,nxm−1,n
xn+1= xn + λn(xm,n − xn).

(1.2)

In sharp contrast with existing algorithmic frameworks involving averaged operators (see
cited works above), the operators involved in Model 1.1 are not necessarily all defined on
the same Hilbert space and, in addition, they need not all be averaged. Let us also note
that the relaxation parameters (λn)n∈N in (1.2) allow us to model skip connections [44], in
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the spirit of residual networks [33]. If λn ≡ 1, we obtain the standard feed-forward archi-
tecture [31].

Our contributions are articulated around the following findings.

• We show that a wide range of activation operators used in neural networks are actually
proximity operators, which paves the way to the analysis of such networks via fixed
point theory for monotone inclusion problems.

• We provide a new analysis of compositions of proximity and affine operators, estab-
lishing mild conditions that guarantee that the resulting operator is averaged.

• We show that, under suitable assumptions, the asymptotic output of the network con-
verges to a point defined via a variational inequality. Furthermore, in general, this
variational inequality does not derive from a minimization problem.

The remainder of the paper is organized as follows. In Section 2, we bring to light strong
connections between the activation functions employed in neural networks and the theory
of proximity operators in convex analysis. In Section 3, we derive new results on the aver-
agedness properties of compositions of proximity and affine operators acting on different
spaces. In Section 4, we investigate the asymptotic behavior of a class of deep neural net-
works structures and show that their fixed points solve a variational inequality. The main
assumption on this subclass of Model 1.1 is that the structure of the network is periodic in
the sense that a group of layers is repeated. Finally, in Section 5, the same properties are
established for a broader class of networks.

Notation We follow standard notation from convex analysis and operator theory [8, 40].
Thus, the expressions xn ⇀ x and xn → x denote, respectively, weak and strong con-
vergence of a sequence (xn)n∈N to x inH, and �0(H) is the class of lower semicontinuous
convex functions ϕ : H → ]−∞, +∞] such that domϕ = {

x ∈ H
∣
∣ ϕ(x) < +∞} 	= ∅.

Now let ϕ ∈ �0(H). The conjugate of ϕ is denoted by ϕ∗, its subdifferential by ∂ϕ, and its
proximity operator is proxϕ : H → H : x �→ argminy∈H(ϕ(y)+‖x −y‖2/2). The symbols
ran T , dom T , Fix T , and zer T denote respectively the range, the domain, the fixed point
set, and the set of zeros of an operator T . The space of bounded linear operators from a
Banach space X to a Banach space Y is denoted by B (X ,Y). Finally, �1+ denotes the set
of summable sequences in [0, +∞[.

2 Proximal Activation in Neural Networks

The following facts will be needed.

Lemma 2.1 Let ϕ ∈ �0(H). Then the following hold:

(i) [8, Proposition 12.29] Fix proxϕ = Argminϕ.

(ii) [8, Corollary 24.5] Let g ∈ �0(H) be such that ϕ = g − ‖ · ‖2/2. Then proxϕ = ∇g∗.

2.1 Activation Functions

An activation function is a function 	 : R → R which models the firing activity of neurons.
The simplest instance, that goes back to the perceptron machine [42], is that of a binary
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firing model: the neuron is either firing or at rest. For instance, if the firing level is 1 and
the rest state is 0, we obtain the binary step function

	 : ξ �→
{

1, if ξ > 0;
0, if ξ � 0,

(2.1)

which was initially proposed in [37]. As this discontinuous activation model may lead to
unstable neural networks, various continuous approximations have been proposed. Our key
observation is that a vast array of activation functions used in neural networks belong to the
following class.

Definition 2.2 The set of functions from R to R which are increasing, 1-Lipschitzian, and
take value 0 at 0 is denoted by A(R).

Remarkably, we can precisely characterize this class of activation functions as that of
proximity operators.

Proposition 2.3 Let 	 : R → R. Then 	 ∈ A(R) if and only if there exists a function
φ ∈ �0(R), which has 0 as a minimizer, such that 	 = proxφ .

Proof The fact that the class of increasing, 1-Lipschitzian functions from R to R coincides
with that of proximity operators of functions in �0(R) is shown in [22, Proposition 2.4]. In
view of Lemma 2.1(i) and Definition 2.2, the proof is complete.

To illustrate the above results, let us provide examples of common activation functions
	 ∈ A(R), and identify the potential φ they derive from in Proposition 2.3 (see Fig. 1).

Example 2.4 The most basic activation function is 	 = Id = prox0. It is in particular useful
in dictionary learning approaches, which correspond to the linear special case of Model 1.1
[45].

Example 2.5 The saturated linear activation function [31]

	 : R → R : ξ �→
⎧

⎨

⎩

1, if ξ > 1;
ξ, if − 1 � ξ � 1;
−1, if ξ < −1

(2.2)

can be written as 	 = proxφ , where φ is the indicator function of [−1, 1].

Example 2.6 The rectified linear unit (ReLU) activation function [39]

	 : R → R : ξ �→
{

ξ, if ξ > 0;
0, if ξ � 0

(2.3)

can be written as 	 = proxφ , where φ is the indicator function of [0,+∞[.

Example 2.7 Let α ∈ ]0, 1]. The parametric rectified linear unit activation function [32] is

	 : R → R : ξ �→
{

ξ, if ξ > 0;
αξ, if ξ � 0.

(2.4)

We have 	 = proxφ , where

φ : R → ]−∞,+∞] : ξ �→
{

0, if ξ > 0;
(1/α − 1)ξ2/2, if ξ � 0.

(2.5)
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Fig. 1 The function φ (top) and the corresponding proximal activation function (bottom) 	 in Proposition 2.3.
Example 2.10 is in red, Example 2.11 is in blue, Example 2.17 is in green

Proof Let ξ ∈ R. Then φ′(ξ) = 0 if ξ > 0, and φ′(ξ) = (1/α − 1)ξ if ξ � 0. In turn
(Id+φ′)ξ = ξ if ξ > 0, and (Id+φ′)(ξ) = ξ/α if ξ � 0. Hence, 	 = (Id+φ′)−1 is given
by (2.4).

Example 2.8 The bent identity activation function 	 : R → R : ξ �→ (ξ +√ξ2 + 1 − 1)/2
satisfies 	 = proxφ , where

φ : R → ]−∞, +∞] : ξ �→
{

ξ/2 − ( ln(ξ + 1/2)
)

/4, if ξ > −1/2;
+∞, if ξ � −1/2.

(2.6)

Proof This follows from [23, Lemma 2.6 and Example 2.18].
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Example 2.9 The inverse square root unit activation function [16] is 	 : R → R : ξ �→
ξ/
√

1 + ξ2. We have 	 = proxφ , where

φ : R → ]−∞, +∞] : ξ �→
{−ξ2/2 −√1 − ξ2, if |ξ | � 1;

+∞, if |ξ | > 1.
(2.7)

Proof Let ξ ∈ ]−1, 1[ = dom∇φ = dom ∂φ = ran proxφ . Then ξ + φ′(ξ) = ξ/
√

1 − ξ2

and therefore proxφ = (Id+φ′)−1 : μ �→ μ/
√

1 + μ2.

Example 2.10 The inverse square root linear unit activation function [16]

	 : R → R : ξ �→
⎧

⎨

⎩

ξ, if ξ � 0;
ξ

√

1 + ξ2
, if ξ < 0 (2.8)

can be written as 	 = proxφ , where

φ : R → ]−∞,+∞] : ξ �→
⎧

⎨

⎩

0, if ξ � 0;
1 − ξ2/2 −√1 − ξ2, if − 1 � ξ < 0;
+∞, if ξ < −1.

(2.9)

Proof Let ξ ∈ ]−1,+∞[ = dom∇φ = ran proxφ . Then ξ + φ′(ξ) = ξ if ξ � 0, and

ξ + φ′(ξ) = ξ/
√

1 − ξ2 if ξ < 0. Hence, 	 = (Id+φ′)−1 is given by (2.8).

Example 2.11 The arctangent activation function (2/π)arctan is the proximity operator of

φ : R → ]−∞,+∞] : ξ �→
{

− 2

π
ln
(

cos
(πξ

2

))

− 1

2
ξ2, if |ξ | < 1;

+∞, if |ξ | � 1.
(2.10)

Proof Let ξ ∈ ]−1, 1[ = dom∇φ = ran proxφ . Then ξ +φ′(ξ) = tan(πξ/2) and therefore
	 = (Id+φ′)−1 = (2/π)arctan.

Example 2.12 The hyperbolic tangent activation function tanh [35] is the proximity operator
of

φ : R → ]−∞,+∞] : ξ �→

⎧

⎪
⎪
⎨

⎪
⎪
⎩

(1 + ξ) ln(1 + ξ) + (1 − ξ) ln(1 − ξ) − ξ2

2
if |ξ | < 1;

ln(2) − 1/2 if |ξ | = 1;
+∞, if |ξ | > 1.

(2.11)

Proof Let ξ ∈ ]−1, 1[ = dom∇φ = ran proxφ . Then ξ +φ′(ξ) = arctanh(ξ) and therefore
	 = (Id+φ′)−1 = tanh.
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Example 2.13 The unimodal sigmoid activation function [30]

	 : R → R : ξ �→ 1

1 + e−ξ
− 1

2
(2.12)

is the proximity operator of

φ : R → ]−∞,+∞]

ξ �→

⎧

⎪
⎨

⎪
⎩

(ξ+1/2) ln(ξ + 1/2)+(1/2 − ξ) ln(1/2 − ξ) − 1

2
(ξ2 + 1/4) if |ξ | < 1/2;

−1/4, if |ξ | = 1/2;
+∞, if |ξ | > 1/2.

(2.13)

Proof Let ξ ∈ ]−1/2, 1/2[ = dom∇φ = ran proxφ . Then ξ+φ′(ξ) = ln((1+2ξ)/(1−2ξ))

and therefore proxφ = (Id+φ′)−1 : μ �→ (1/2)(eμ−1)/(eμ+1) = 1/(1+e−μ)−1/2.

Remark 2.14 Examples 2.12 and 2.13 are closely related in the sense that the function of
(2.12) can be written as 	 = (1/2)tanh(·/2).

Example 2.15 The Elliot activation function is [28] 	 : R → R : ξ �→ ξ/(1 + |ξ |) can be
written as 	 = proxφ , where

φ : R → ]−∞, +∞]

ξ �→
⎧

⎨

⎩

−|ξ | − ln(1 − |ξ |) − ξ2

2
, if |ξ | < 1;

+∞, if |ξ | � 1.
(2.14)

Proof Let ξ ∈ ]−1, 1[ = dom∇φ = ran proxφ . Then ξ +φ′(ξ) = ξ/(1−|ξ |) and therefore
proxφ = (Id+φ′)−1 : μ �→ μ/(1 + |μ|).

Example 2.16 The inverse hyperbolic sine activation function arcsinh is the proximity
operator of φ = cosh − | · |2/2.
Proof Let ξ ∈ R. Then ξ + φ′(ξ) = sinh ξ and therefore proxφ = (Id+φ′)−1 = arcsinh.

Example 2.17 The logarithmic activation function [10]

	 : R → R : ξ �→ sign(ξ) ln
(

1 + |ξ |) (2.15)

is the proximity operator of

φ : R → ]−∞, +∞] : ξ �→ e|ξ | − |ξ | − 1 − ξ2

2
. (2.16)

Proof We have φ′ : ξ �→ sign(ξ)(e|ξ | −1)−ξ . Hence (Id+φ′) : ξ �→ sign(ξ)(e|ξ | −1) and,
in turn, proxφ = (Id+φ′)−1 : ξ �→ sign(ξ) ln(1 + |ξ |).

Author's personal copy



P.L. Combettes, J.-C. Pesquet

The class of activation functions A(R) has interesting stability properties.

Proposition 2.18 The following hold:

(i) Let α ∈ ]0,+∞[ and β ∈ ]0,+∞[ be such that αβ � 1, and let 	 ∈ A(R). Then
α	(β·) ∈ A(R).

(ii) Let (	i)i∈I be a finite family in A(R) and let (ωi)i∈I be real numbers in ]0, 1] such
that

∑

i∈I ωi = 1. Then
∑

i∈I ωi	i ∈ A(R).
(iii) Let 	1 ∈ A(R) and 	2 ∈ A(R). Then 	1 ◦ 	2 ∈ A(R).
(iv) Let 	 ∈ A(R). Then Id−	 ∈ A(R).
(v) Let 	1 ∈ A(R) and 	2 ∈ A(R). Then (	1 − 	2 + Id)/2 ∈ A(R).
(vi) Let 	1 ∈ A(R) and 	2 ∈ A(R). Then 	1 ◦ (2	2 − Id) + Id−	2 ∈ A(R).

Proof (i)–(iii): This follows at once from Definition 2.2.
(iv)–(v): The fact that the resulting operators are proximity operators is established in

[21, Section 3.3]. The fact that they are proximity operators of a function φ ∈ �0(H) that is
minimal at 0 is equivalent to the fact that proxφ0 = 0 Lemma 2.1(i). This identity is easily
seen to hold in each instance.

(vi): Set 	 = 	1 ◦ (2	2 − Id) + Id−	2. Then 	 is firmly nonexpansive [8, Proposi-
tion 4.31(ii)]. It is therefore increasing and nonexpansive. Finally, 	(0) = 0.

Remark 2.19 Using Proposition 2.18, the above examples can be combined to obtain
additional activation functions. For instance, it follows from Example 2.5 and Proposi-
tion 2.18(iv) that the soft thresholder

	 : R → R : ξ �→
⎧

⎨

⎩

ξ − 1, if ξ > 1;
0, if − 1 � ξ � 1;
ξ + 1, if ξ < −1

(2.17)

belongs to A(R). It was proposed as an activation function in [48].

2.2 Activation Operators

In Section 2.1, we have described activation functions which model neuronal activity in
terms of a scalar function. In this section, we extend this notion to more general activation
operators.

Definition 2.20 Let H be a real Hilbert space and let R : H → H. Then R belongs to the
class A(H) if there exists a function ϕ ∈ �0(H) which is minimal at the zero vector and
such that R = proxϕ .

Property (ii) below shows that activation operators in A(H) have strong stability proper-
ties. On the other hand, the boundedness property (iv) is important in neural network-based
functional approximation [26, 29].

Proposition 2.21 Let H be a real Hilbert space and let R ∈ A(H). Then the following
hold:

(i) R0 = 0.
(ii) Let x and y be inH. Then ‖Rx − Ry‖2 � ‖x − y‖2 − ‖x − y − Rx + Ry‖2.
(iii) Let x ∈ H. Then ‖Rx‖ � ‖x‖.
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(iv) Let ϕ ∈ �0(H) be such that R = proxϕ . Then ran R is bounded if and only if dom ϕ

is bounded.

Proof (i): This follows from Lemma 2.1(i).
(ii): This follows from the firm nonexpansiveness of proximity operators [8, Proposi-

tion 12.28].
(iii): Set y = 0 in (ii) and use (i).
(iv): We have ranR = ran (Id+∂ϕ)−1 = dom (Id+∂ϕ) = dom ∂ϕ. On the other hand,

dom ∂ϕ is a dense subset of domϕ [8, Corollary 16.39].

Proposition 2.22 LetH and G be real Hilbert spaces. Then the following hold:

(i) Let L ∈ B (H,G) be such that ‖L‖ � 1 and let R ∈ A(H). Then L∗ ◦ R ◦ L ∈ A(H).
(ii) Let (Ri)i∈I be a finite family in A(H) and let (ωi)i∈I be real numbers in ]0, 1] such

that
∑

i∈I ωi = 1. Then
∑

i∈I ωiRi ∈ A(H).
(iii) Let R ∈ A(H). Then Id−R ∈ A(H).
(iv) Let R1 ∈ A(H) and R2 ∈ A(H). Then (R1 − R2 + Id)/2 ∈ A(H).

Proof The fact that the resulting operators are proximity operators is established in [21,
Section 3.3]. In addition, 0 is clearly a fixed point of the resulting operators. In view of
Lemma 2.1(i), the proof is complete.

Example 2.23 The softmax activation operator [15] is

R : RN → R
N : (ξk)1�k�N �→

⎛

⎝exp(ξk)

/
N
∑

j=1

exp(ξj )

⎞

⎠

1�k�N

− u, (2.18)

where u = (1, . . . , 1)/N ∈ R
N . We have R = proxϕ , where ϕ = ψ(· + u) + 〈· | u〉 and

ψ : RN → ]−∞, +∞]

(ξk)1�k�N �→

⎧

⎪
⎨

⎪
⎩

N
∑

k=1

(

ξk ln ξk− ξ2k

2

)

, if (ξk)1�i�N ∈ [0, 1]N and
N
∑

k=1

ξk =1;
+∞, otherwise,

(2.19)

with the convention 0 ln 0 = 0.

Proof Set

g : RN → ]−∞,+∞]

(ξk)1�k�N �→

⎧

⎪
⎨

⎪
⎩

N
∑

k=1

ξk ln ξk, if (ξk)1�k�N ∈ [0, 1]N and
N
∑

k=1

ξk = 1;
+∞, otherwise.

(2.20)

Then ψ = g − ‖ · ‖2/2 and [40, Section 16] asserts that

g∗ : RN → R : (ξk)1�k�N �→ ln

(
N
∑

k=1

exp(ξk)

)

. (2.21)

Since ∇g∗ = R + u, according to Lemma 2.1(ii), R = proxψ − u. We complete the proof
by invoking the shift properties of proximity operators [8, Proposition 24.8(iii)].
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Separable activation operators supply another important instance of activation operators.

Proposition 2.24 Let H be a separable real Hilbert space, let (ek)k∈K⊂N be an orthonor-
mal basis of H, and let (φk)k∈K be a family of functions in �0(R) such that (∀k ∈ K)

φk � φk(0) = 0. Define

R : H → H : x �→
∑

k∈K

(

proxφk
〈x | ek〉

)

ek . (2.22)

Then R ∈ A(H).

Proof The fact that R is the proximity operator of the �0(H) function ϕ : x �→
∑

k∈K φk(〈x | ek〉) is established in [23, Example 2.19]. In addition, it is clear that ϕ is
minimal at 0.

3 Compositions of Firmly Nonexpansive and Affine Operators

Our analysis will revolve around the following property for a family of linear operators
(Wi)1�i�m+1.

Condition 3.1 Let m � 0 be an integer, let (Hi )0�i�m be real Hilbert spaces, setHm+1 =
H0, and let α ∈ [1/2, 1]. For every i ∈ {1, . . . , m + 1}, let Wi ∈ B (Hi−1,Hi ) and set

Li : H0 × · · · × Hi−1 → Hi : (xk)0�k�i−1 �→
i−1
∑

k=0

(

Wi ◦ · · · ◦ Wk+1
)

xk . (3.1)

It is required that, for every x = (xi)0�i�m ∈ H0 × · · · × Hm such that

(∀i ∈ {0, . . . , m}) ‖xi‖ �
{

1, if i = 0;
‖Li(x0, . . . , xi−1)‖, if i � 1,

(3.2)

there holds

‖Lm+1x − 2m+1(1 − α)x0‖ + ‖Lm+1x‖ � 2m+1α‖x0‖. (3.3)

Remark 3.2 In Condition 3.1, we take α � 1/2 because, if x = (xi)0�i�m ∈ (H0 � {0}) ×
H1 × · · · × Hm satisfies (3.3), then 2m+1(1 − α)‖x0‖ � ‖Lm+1x − 2m+1(1 − α)x0‖ +
‖Lm+1x‖ � 2m+1α‖x0‖.

We establish some preliminary results before providing properties that imply Condi-
tion 3.1.

Lemma 3.3 Let m � 1 be an integer, let (Hi )0�i�m be real Hilbert spaces, and set θ0 = 1.
For every i ∈ {1, . . . , m}, let Wi ∈ B (Hi−1,Hi ) and set

θi = ‖Wi ◦ · · · ◦ W1‖

+
i−1
∑

k=1

∑

1�j1<...<jk�i−1

‖Wi ◦ · · · ◦ Wjk+1‖ ‖Wjk
◦ · · · ◦ Wjk−1+1‖ · · · ‖Wj1 ◦ · · · ◦ W1‖.

(3.4)
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Let (xi)0�i�m ∈ H0 × · · · × Hm be such that (3.2) is satisfied. Then the following hold:

(i) (∀i ∈ {1, . . . , m}) θi = ∑i−1
k=0 θk‖Wi ◦ · · · ◦ Wk+1‖.

(ii) (∀i ∈ {1, . . . , m}) ‖xi‖ � θi‖x0‖.

Proof (i): This follows recursively from (3.4).
(ii): For every i ∈ {1, . . . , m}, let Li be as in (3.1). We proceed by induction on

m. We first observe that the inequality is satisfied if m = 1 since ‖x1‖ � ‖L1x0‖ =
‖W1x0‖ � ‖W1‖ ‖x0‖ = θ1‖x0‖. Now assume that m � 2 and that the inequalities hold for
(x1, . . . , xm−1). Then, since (i) yields

θm = ‖Wm ◦ · · · ◦ W1‖ +
m−1
∑

k=1

θk‖Wm ◦ · · · ◦ Wk+1‖, (3.5)

we obtain

‖xm‖ � ‖Lm(x0, . . . , xm−1)‖ =
∥
∥
∥
∥

m−1
∑

k=0

(Wm ◦ · · · ◦ Wk+1)xk

∥
∥
∥
∥

�
m−1
∑

k=0

‖Wm ◦ · · · ◦ Wk+1‖ ‖xk‖

�
(

‖Wm ◦ · · · ◦ W1‖ +
m−1
∑

k=1

θk‖Wm ◦ · · · ◦ Wk+1‖
)

‖x0‖

= θm‖x0‖, (3.6)

which concludes the proof.

Lemma 3.4 LetH be a real Hilbert space, and let x and y be inH. Then

‖x‖ ‖y‖ − 〈x | y〉 � (‖x‖ + ‖y‖ − ‖x + y‖)(‖x‖ + ‖y‖). (3.7)

Proof Since ‖x + y‖2 − 2‖x + y‖(‖x‖ + ‖y‖) + (‖x‖ + ‖y‖)2 � 0, we have

‖x‖2 + ‖y‖2 + 〈x | y〉 + ‖x‖ ‖y‖
= ‖x‖2 + ‖y‖2 + ‖x + y‖2 − ‖x‖2 − ‖y‖2

2
+ (‖x‖ + ‖y‖)2 − ‖x‖2 − ‖y‖2

2

= ‖x + y‖2 + (‖x‖ + ‖y‖)2
2

� ‖x + y‖(‖x‖ + ‖y‖), (3.8)

as claimed.

Notation 3.5 Let m � 0 be an integer, and let (Hi )0�i�m be real Hilbert spaces. LetX be
the standard vector spaceH0×· · ·×Hm equipped with the norm ‖·‖X : x = (xi)0�i�m �→
max0�i�m ‖xi‖ and let Y be the standard vector space H0 × H0 equipped with the norm
‖ · ‖Y : y = (y1, y2) �→ ‖y1‖ + ‖y2‖. Henceforth, the norm of M ∈ B (X ,Y) is denoted
by ‖M‖X ,Y .

Proposition 3.6 Let m � 0 be an integer, let (Hi )0�i�m be nonzero real Hilbert spaces, set
Hm+1 = H0, and use Notation 3.5. For every i ∈ {1, . . . , m + 1}, let Wi ∈ B (Hi−1,Hi ).
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Further, let α ∈ [1/2, 1], let θ0 = 1, let (θi)1�i�m+1 be as in (3.4), and set
⎧

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

W = Wm+1 ◦ · · · ◦ W1 (3.9a)
μ = inf

x∈H0, ‖x‖=1
〈Wx | x〉 (3.9b)

M : X → H0 : x �→
m
∑

i=0

θi(Wm+1 ◦ · · · ◦ Wi+1)xi (3.9ac)

M : X → Y : x �→ 1

2m+1α

(

Mx − 2m+1(1 − α)x0,Mx
)

. (3.9d)

Suppose that one of the following holds:

(i) There exists i ∈ {1, . . . , m + 1} such that Wi = 0.
(ii) ‖M‖X ,Y � 1.
(iii) ‖W − 2m+1(1 − α) Id ‖ − ‖W‖ + 2θm+1 � 2m+1α.
(iv) α 	= 1, for every i ∈ {1, . . . , m+1} Wi 	= 0, and there exists η ∈ [0, α/((1−α)θm+1)]

such that
{

θm+1 � 2m+1α

αθm+1 + (1 − α)(‖ Id−ηW‖ − η‖W‖)(θm+1 − ‖W‖) � 2m(2α − 1)+(1 − α)μ.
(3.10)

Then (Wi)1�i�m+1 satisfies Condition 3.1.

Proof We use the operators (Li)1�i�m+1 introduced in Condition 3.1. Per Notation 3.5 and
(3.9d),

sup
y∈X

max
0�i�m

‖yi‖�1

‖My − 2m+1(1 − α)y0‖ + ‖My‖
2m+1α

= sup
y∈X

‖y‖X�1

‖My‖Y = ‖M‖X ,Y (3.11)

and therefore

(∀y ∈ X ) max
0�i�m

‖yi‖ � 1 ⇒ ‖My−2m+1(1−α)y0‖+‖My‖ � 2m+1α‖M‖X ,Y .

(3.12)
Now let x ∈ X be such that

(∀i ∈ {0, . . . , m}) ‖xi‖ �
{

1, if i = 0;
‖Li(x0, . . . , xi−1)‖, if i � 1.

(3.13)

(i): We assume that m � 1. For every k ∈ {i, . . . , m}, it follows from (3.4) that θk = 0
and in turn from Lemma 3.3(ii) and (3.13) that xk = 0. Therefore,

Lm+1x =
m
∑

k=0

(Wm+1 ◦ · · · ◦ Wk+1)xk =
i−1
∑

k=0

(Wm+1 ◦ · · · ◦ Wk+1)xk = 0, (3.14)

and (3.3) clearly holds.
(ii): In view of (i), we assume that, if m � 1, (∀i ∈ {1, . . . , m}) Wi 	= 0. We then derive

from (3.4) that (∀i ∈ {1, . . . , m}) θi �
∏i

k=1 ‖Wk‖ > 0. If x0 = 0, (3.3) trivially follows
from Lemma 3.3(ii), we therefore assume otherwise. Now set

(∀i ∈ {0, . . . , m}) yi = xi

θi‖x0‖ . (3.15)

According to Lemma 3.3(ii), (∀i ∈ {0, . . . , m}) ‖yi‖ � 1. On the other hand, it follows
from (3.9c), (3.15), and (3.1) that My = Lm+1x/‖x0‖. Altogether, we deduce from (3.12)
that (3.3) holds.
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(iii)⇒(ii): Take y ∈ X such that ‖y‖X � 1. Then it follows from (3.9c) and
Lemma 3.3(i) that

‖My − 2m+1(1 − α)y0‖ + ‖My‖
� ‖W − 2m+1(1 − α) Id ‖ ‖y0‖ + ‖W‖ ‖y0‖ + 2

m
∑

i=1

θi‖Wm+1 ◦ · · · ◦ Wi+1‖ ‖yi‖

� ‖W − 2m+1(1 − α) Id ‖ − ‖W‖ + 2θm+1

� 2m+1α. (3.16)

In turn, (3.11) yields ‖M‖X ,Y � 1.
(iv)⇒(ii): Let y = (y0, . . . , ym) ∈ X be such that ‖y0‖ = · · · = ‖ym‖ = 1, and set

u =

⎧

⎪
⎨

⎪
⎩

m
∑

i=1

θi(Wm+1 ◦ · · · ◦ Wi+1)yi, if m 	= 0;
0, if m = 0.

(3.17)

The assumptions and (3.9b) imply that
⎧

⎪
⎨

⎪
⎩

ηθm+1 � α/(1 − α)

θm+1 � 2m+1α
αθm+1 + (1 − α)(‖ Id−ηW‖ − η‖W‖)(θm+1 − ‖W‖)
� 2m(2α − 1) + (1 − α)〈Wy0 | y0〉.

(3.18)

On the other hand,

α‖Wy0 + u
∥
∥− (1 − α)〈y0 | u〉

= α‖Wy0 + u
∥
∥− (1 − α)〈ηWy0 + (Id−ηW)y0 | u〉

� α‖Wy0 + u
∥
∥− η(1 − α)〈Wy0 | u〉 + (1 − α)‖(Id−ηW)y0‖ ‖u‖. (3.19)

Since, by Lemma 3.3(i) and (3.18),

η

m
∑

i=0

θi‖Wm+1 ◦ · · · ◦ Wi+1‖ = ηθm+1 �
α

1 − α
, (3.20)

we deduce from (3.17) that

η(1 − α)(‖Wy0‖ + ‖u‖) � α. (3.21)

However, by Lemma 3.4,

‖Wy0‖ ‖u‖ − 〈Wy0 | u〉 � (‖Wy0‖ + ‖u‖ − ‖Wy0 + u‖)(‖Wy0‖ + ‖u‖). (3.22)

In view of (3.21), this yields

η(1 − α)
(‖Wy0‖ ‖u‖ − 〈Wy0 | u〉) � α(‖Wy0‖ + ‖u‖ − ‖Wy0 + u‖), (3.23)

that is,

α‖Wy0 + u‖ − η(1 − α)〈Wy0 | u〉 � α(‖Wy0‖ + ‖u‖) − η(1 − α)‖Wy0‖ ‖u‖. (3.24)

Therefore, since (3.21) implies that α − η(1 − α)‖u‖ � 0, it results from (3.19) that

α‖Wy0 + u
∥
∥− (1 − α)〈y0 | u〉

� α(‖Wy0‖ + ‖u‖) − η(1 − α)‖Wy0‖ ‖u‖ + (1 − α)‖(Id−ηW)y0‖ ‖u‖
= α‖u‖ + (α − η(1 − α)‖u‖)‖Wy0‖ + (1 − α)‖(Id−ηW)y0‖ ‖u‖
� α‖u‖ + (α − η(1 − α)‖u‖)‖W‖ + (1 − α)‖(Id−ηW)y0‖ ‖u‖
= α‖W‖ + (α − η(1 − α)‖W‖)‖u‖ + (1 − α)‖ Id−ηW‖ ‖u‖. (3.25)
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However, since (3.20) implies that α − η(1 − α)‖W‖ � 0, while (3.17) implies that ‖u‖ �
θm+1 − ‖W‖, we derive from (3.25) that

α‖Wy0 + u
∥
∥− (1 − α)〈y0 | u〉

� α‖W‖ + (α − η(1 − α)‖W‖)(θm+1 − ‖W‖)+ (1 − α)‖ Id−ηW‖ (θm+1 − ‖W‖).
(3.26)

We also have

‖Wy0 + u‖ � ‖W‖ + ‖u‖ � θm+1. (3.27)

Hence, using (3.26), (3.27), (3.9c), (3.9a), and (3.9d) we obtain

(3.18) ⇒
{ ‖Wy0 + u‖ � 2m+1α

α‖Wy0 + u
∥
∥− (1 − α)〈y0 | Wy0 + u〉 � 2m(2α − 1)

⇔
{ ‖My‖ � 2m+1α

α‖My
∥
∥− (1 − α)〈y0 | My〉 � 2m

(

α2 − (1 − α)2
)

⇔
{

‖My‖ � 2m+1α
∥
∥My − 2m+1(1 − α)y0‖2 �

(

2m+1α − ‖My
∥
∥
)2

⇔ ‖My − 2m+1(1 − α)y0‖ + ‖My‖ � 2m+1α

⇔ ‖My‖Y � 1. (3.28)

Now set C = {

y ∈ X
∣
∣ ‖y0‖ = · · · = ‖ym‖ = 1

}

. Then, in view of (3.11), (3.28),
and [8, Proposition 11.1(ii)], we conclude that ‖M‖X ,Y = supy∈convC ‖My‖Y =
supy∈C ‖My‖Y � 1.

The next result establishes a link between deep neural network structures and the
operators introduced in (3.1).

Lemma 3.7 Let m � 1 be an integer and let (Hi )0�i�m+1 be nonzero real Hilbert spaces.
For every i ∈ {1, . . . , m + 1}, let Wi ∈ B (Hi−1,Hi ) and let Li be as in (3.1). Further, for
every i ∈ {1, . . . , m}, let Pi : Hi → Hi be firmly nonexpansive. Set

Tm = Wm+1 ◦ Pm ◦ Wm ◦ · · · ◦ P1 ◦ W1, (3.29)

let x and y be distinct points in H0, and set v0 = (x − y)/‖x − y‖. Then there exists
(v1, . . . , vm) ∈ H1 × · · · × Hm such that

⎧

⎪
⎨

⎪
⎩

(∀i ∈ {1, . . . , m}) ‖vi‖ � ‖Li(v0, . . . , vi−1)‖
2m(Tmx − Tmy)

‖x − y‖ = Lm+1(v0, . . . , vm).
(3.30)

Proof For every i ∈ {1, . . . , m}, since Pi is firmly nonexpansive, there exists a nonexpan-
sive operator Qi : Hi → Hi such that

Pi = Id+Qi

2
. (3.31)

We proceed by induction on m. Suppose that m = 1 and set

v1 = Q1(W1x) − Q1(W1y)

‖x − y‖ , (3.32)
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which implies that ‖v1‖ � ‖W1(x − y)‖/‖x − y‖ = ‖L1v0‖. Then
2(T1x − T1y) = (W2 ◦ W1)(x − y) + (W2 ◦ Q1 ◦ W1)x − (W2 ◦ Q1 ◦ W1)y

= ‖x − y‖((W2 ◦ W1)v0 + W2v1)
)

. (3.33)

Thus, (3.30) holds for m = 1. Next, we assume that m > 1 and that there exists
(v1, . . . , vm−1) ∈ H1 × · · · × Hm−1 such that

⎧

⎪
⎨

⎪
⎩

(∀i ∈ {1, . . . , m − 1}) ‖vi‖ � ‖Li(v0, . . . , vi−1)‖
2m−1

(

Tm−1x − Tm−1y
)

‖x − y‖ = Lm(v0, . . . , vm−1),
(3.34)

and we set

vm = 2m−1
(

(Qm ◦ Tm−1)x − (Qm ◦ Tm−1)y
)

‖x − y‖ . (3.35)

Then (3.29), (3.31), and (3.34) yield

Tmx − Tmy = (Wm+1 ◦ Tm−1)x − (Wm+1 ◦ Tm−1)y

2

+ (Wm+1 ◦ Qm ◦ Tm−1)x − (Wm+1 ◦ Qm ◦ Tm−1)y

2

= ‖x − y‖
2m

(

(Wm+1 ◦ Lm)(v0, . . . , vm−1) + Wm+1vm

)

= ‖x − y‖
2m

Lm+1(v0, . . . , vm). (3.36)

In addition, it follows from (3.34) and (3.35) that

‖vm‖ � 2m−1‖Tm−1x − Tm−1y‖
‖x − y‖ = ‖Lm(v0, . . . , vm−1)‖, (3.37)

which completes the proof.

We now establish connections between Condition 3.1 for linear operators and the concept
of averagedness for composite nonlinear operators.

Theorem 3.8 Let m � 1 be an integer, let (Hi )0�i�m−1 be nonzero real Hilbert spaces,
set Hm = H0, and let α ∈ [1/2, 1]. For every i ∈ {1, . . . , m}, let Wi ∈ B (Hi−1,Hi ) and
let Pi : Hi → Hi be firmly nonexpansive. Suppose that (Wi)1�i�m satisfies Condition 3.1.
Then Pm ◦ Wm ◦ · · · ◦ P1 ◦ W1 is α-averaged.

Proof Set T = Pm ◦ Wm ◦ · · · ◦ P1 ◦ W1. We must show that

Q =
(

1 − 1

α

)

Id+ 1

α
T (3.38)

is nonexpansive. By assumption, for every i ∈ {1, . . . , m}, there exists a nonexpansive
operator Qi : Hi → Hi such that (3.31) holds. Let (Li)1�i�m be as in (3.1) and let x and
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y be distinct points in H0. According to Lemma 3.7, there exists v = (v0, . . . , vm−1) ∈
H0 × · · · × Hm−1 such that

⎧

⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎩

v0 = x − y

‖x − y‖
(∀i ∈ {1, . . . , m − 1}) ‖vi‖ � ‖Li(v0, . . . , vi−1)‖
2m−1

(

(Wm ◦ Pm−1 ◦ · · · ◦ P1 ◦ W1)x − (Wm ◦ Pm−1 · · · ◦ P1 ◦ W1)y
)

‖x − y‖ = Lmv.

(3.39)
Condition 3.1 imposes that

‖Lmv − 2m(1 − α)v0‖ + ‖Lmv‖ � 2mα‖v0‖ = 2mα, (3.40)

which is equivalent to

‖(Wm ◦ Pm−1 ◦ · · · ◦ P1 ◦ W1)x − (Wm ◦ Pm−1 · · · ◦ P1 ◦ W1)y − 2(1 − α)(x − y)‖
+ ‖(Wm ◦ Pm−1 ◦ · · · ◦ P1 ◦ W1)x − (Wm ◦ Pm−1 · · · ◦ P1 ◦ W1)y‖ � 2α‖x − y‖.

(3.41)

In turn, we derive from (3.38) and (3.31) that

‖Qx − Qy‖
� 1

α

∥
∥
∥

( Id+Qm

2
◦ Wm ◦ · · · ◦ P1 ◦ W1

)

x−
( Id+Qm

2
◦ Wm ◦ · · · ◦ P1 ◦ W1

)

y

−(1 − α)(x − y)

∥
∥
∥

� 1

2α

(

‖(Wm ◦ Pm−1 ◦ · · · ◦ P1 ◦ W1)x − (Wm ◦ Pm−1 · · · ◦ P1 ◦ W1)y

−2(1 − α)(x − y)‖ + ‖(Qm ◦ Wm ◦ Pm−1 ◦ · · · ◦ P1 ◦ W1)x

−(Qm ◦ Wm ◦ Pm−1 · · · ◦ P1 ◦ W1)y‖
)

� 1

2α

(

‖(Wm ◦ Pm−1 ◦ · · · ◦ P1 ◦ W1)x − (Wm ◦ Pm−1 · · · ◦ P1 ◦ W1)y

−2(1 − α)(x − y)‖ + ‖(Wm ◦ Pm−1 ◦ · · · ◦ P1 ◦ W1)x

−(Wm ◦ Pm−1 · · · ◦ P1 ◦ W1)y‖
)

� ‖x − y‖, (3.42)

which establishes the nonexpansiveness of Q.

Example 3.9 Consider Theorem 3.8 with m = 2. In view of Proposition 3.6(iii), P2 ◦ W2 ◦
P1 ◦ W1 is α-averaged if ‖W2 ◦ W1 − 4(1 − α) Id ‖ + ‖W2 ◦ W1‖ + 2‖W2‖ ‖W1‖ � 4α.
In particular, if α = 1, this condition is obviously less restrictive than requiring that W1 and
W2 be nonexpansive.

4 A Variational Inequality Model

In this section, we first investigate an autonomous version of Model 1.1.
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Model 4.1 This is the special case of Model 1.1 in which, for every i ∈ {1, . . . , m}, there
exist Ri ∈ A(Hi ), say Ri = proxϕi

for some ϕi ∈ �0(Hi ) with ϕi(0) = infϕi(Hi ),
Wi ∈ B (Hi−1,Hi ), and bi ∈ Hi such that (∀n ∈ N) Ri,n = Ri , Wi,n = Wi , bi,n = bi . We
set

(∀i ∈ {1, . . . , m}) Ti : Hi−1 → Hi : x �→ Ri(Wix + bi) (4.1)

and
⎧

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

F = Fix (Tm ◦ · · · ◦ T1)

H = H1 ⊕ · · · ⊕ Hm−1 ⊕ Hm→
H = Hm ⊕ H1 ⊕ · · · ⊕ Hm−1

S : H →
→
H : (x1, . . . , xm−1, xm) �→ (xm, x1, . . . , xm−1)

W :
→
H → H : (xm, x1, . . . , xm−1) �→ (W1xm, W2x1, . . . , Wmxm−1)

ϕ : H → ]−∞, +∞] : x �→ ∑m
i=1 ϕi(xi)

ψ : H → ]−∞, +∞] : x �→ ∑m
i=1

(

ϕi(xi) − 〈xi | bi〉
)

F = {

x ∈ H
∣
∣ x1 = T1xm, x2 = T2x1, . . . , xm = Tmxm−1

}

,

(4.2)

where x = (x1, . . . , xm) denotes a generic element inH.

4.1 Static Analysis

We start with a property of the compositions of the operators (Ti)1�i�m of (4.1).

Proposition 4.2 Consider the setting of Model 4.1, let i and j be integers such that 1 �
j � i � m, and let x ∈ Hj−1. Then

‖(Ti ◦ · · · ◦ Tj )x‖ � ‖x‖
i
∏

k=j

‖Wk‖ +
i
∑

q=j

(

‖bq‖
i
∏

k=q+1

‖Wk‖
)

. (4.3)

Proof In view of (4.1), the property is satisfied when i = j . We now assume that i > j .
Since Ri ∈ A(Hi ), Proposition 2.21(i) yields

‖(Ti ◦ · · · ◦ Tj )x‖ = ‖Ri(Wi(Ti−1 ◦ · · · ◦ Tj )x + bi)‖
= ‖Ri(Wi(Ti−1 ◦ · · · ◦ Tj )x + bi) − Ri0‖
� ‖Wi(Ti−1 ◦ · · · ◦ Tj )x + bi‖
� ‖Wi‖ ‖(Ti−1 ◦ · · · ◦ Tj )x‖ + ‖bi‖. (4.4)

We thus obtain (4.3) recursively.

Next, we establish a connection between Model 4.1 and a variational inequality.

Proposition 4.3 In the setting of Model 4.1, consider the variational inequality problem

find x1 ∈ H1, . . . , xm ∈ Hm such that

⎧

⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎩

b1 ∈ x1 − W1xm + ∂ϕ1(x1)

b2 ∈ x2 − W2x1 + ∂ϕ2(x2)
...

bm ∈ xm − Wmxm−1 + ∂ϕm(xm).

(4.5)

Then the following hold:

(i) The set of solutions to (4.5) is F .
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(ii) F = zer(Id − W ◦ S + ∂ψ) = Fix(proxψ ◦ W ◦ S).
(iii) F = {

(T1xm, (T2 ◦ T1)xm, . . . , (Tm−1 ◦ · · · ◦ T1)xm, xm)
∣
∣ xm ∈ F

}

.
(iv) Suppose that (Wi)1�i�m satisfies Condition 3.1 for some α ∈ [1/2, 1]. Then F is

closed and convex.
(v) Suppose that (Wi)1�i�m satisfies Condition 3.1 for some α ∈ [1/2, 1] and that one

of the following holds:

(a) ran(Tm ◦ · · · ◦ T1) is bounded.
(b) There exists j ∈ {1, . . . , m} such that dom ϕj is bounded.

Then F and F are nonempty.
(vi) Suppose that Id − W ◦ S is monotone. Then F is closed and convex. In addition, F

and F are nonempty if any of the following holds:

(a) Id − W ◦ S + ∂ϕ is surjective.
(b) ∂ϕ − W ◦ S is maximally monotone.
(c) max1�i�m ‖Wi‖ � 1, S∗ − W has closed range, and ker(S − W ∗) = {0}.
(d) max1�i�m ‖Wi‖ � 1 and, for every i ∈ {1, . . . , m}, dom ϕ∗

i = Hi .
(e) For every i ∈ {1, . . . , m}, dom ϕi = H and dom ϕ∗

i = Hi .
(f) S∗ − W has closed range, ker(S − W ∗) = {0}, and, for every i ∈ {1, . . . , m},

dom ϕi = Hi .
(g) For every i ∈ {1, . . . , m}, dom ϕi is bounded.

Proof We first observe that S ∈ B (H,
→
H),W ∈ B (

→
H,H), ϕ ∈ �0(H), andψ ∈ �0(H).

(i): Let x ∈ H. Then

x solves (4.5) ⇔

⎧

⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎩

W1xm + b1 ∈ x1 + ∂ϕ1(x1)

W2x1 + b2 ∈ x2 + ∂ϕ2(x2)
...

Wmxm−1 + bm ∈ xm + ∂ϕm(xm).

(4.6)

⇔

⎧

⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎩

x1 = proxϕ1
(W1xm + b1) = T1xm

x2 = proxϕ2
(W2x1 + b2) = T2x1

...
xm = proxϕm

(Wmxm−1 + bm) = Tmxm−1.

(4.7)

(ii): Let x ∈ H. Using (4.2), we obtain

x solves (4.5) ⇔ 0 ∈ x − W (Sx) + ∂ψ(x) ⇔ x = proxψ

(

W (Sx)
)

. (4.8)

(iii): Clear from the definitions of F and F .
(iv): Define m firmly nonexpansive operators by (∀i ∈ {1, . . . , m}) Pi : Hi → Hi : y �→

Ri(y+bi). Then it follows from (4.1) and Theorem 3.8 applied to (Pi)1�i�m that Tm◦· · ·◦T1
is nonexpansive. In turn, we derive from [8, Corollary 4.24] that its fixed point set F is
closed and convex.

(v): Thanks to (iii), it is enough to show that F 	= ∅. Set T = Tm ◦ · · · ◦ T1 and recall
that it is nonexpansive by virtue of Theorem 3.8.

(a): Let C be a closed ball such that ran T ⊂ C and set S = T |C . Then S : C → C is
nonexpansive and therefore [8, Proposition 4.29] asserts that Fix T = Fix S 	= ∅.
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(b)⇒(a): We have ran Tj ⊂ ranRj = ran proxϕj
= dom (Id+∂ϕj ) = dom ∂ϕj ⊂

domϕj . Hence ran Tj is bounded and Proposition 4.2 (with i = m) implies that

ran T ⊂
{

ran Tm, if j = m;
(Tm ◦ · · · ◦ Tj+1)(ran Tj ), if 1 � j � m − 1

(4.9)

is likewise.
(vi): Set A = Id − W ◦ S + ∂ψ . Since Id − W ◦ S is monotone and continuous,

it is maximally monotone [8, Corollary 20.28], with H as its domain. Since ∂ψ is also
maximally monotone [8, Theorem 20.25], A is likewise [8, Corollary 25.5(i)] and hence
F = zerA is closed and convex [8, Proposition 23.39]. Next, we note that, in view of (iii),
F 	= ∅ ⇔ F 	= ∅.

(a): The hypothesis implies that (bi)1�i�m ∈ ran (Id − W ◦ S + ∂ϕ) and therefore that
(4.5) has a solution, i.e., F 	= ∅.

(b)⇒(a): The claim follows from Minty’s theorem [8, Theorem 21.1].
(c)⇒(a): We have ‖W ◦ S‖ = ‖W‖ = max1�i�m ‖Wi‖ � 1. Therefore, −W ◦ S is

nonexpansive, which implies that (Id −W ◦S)/2 is firmly nonexpansive [8, Corollary 4.5],
that is (∀x ∈ H) 〈x − W (Sx) | x〉 � ‖x − W (Sx)‖2/2. Consequently, Id − W ◦ S is
3∗ monotone [8, Proposition 25.16], while ∂ϕ is also 3∗ monotone [8, Example 25.13].
Finally, since S is unitary,

ran
(

Id − W ◦ S
) = ran

(

S∗ − W
) = ran

(

S − W ∗)∗ =
(

ker
(

S − W ∗))⊥ = H, (4.10)

which shows that Id − W ◦ S is surjective. Altogether, since [8, Corollary 25.5(i)] implies
that Id − W ◦ S + ∂ϕ is maximally monotone, it follows from [8, Corollary 25.27(i)] that
Id − W ◦ S + ∂ϕ is surjective.

(d)⇒(a): We have domϕ∗ = H. Therefore, since int domϕ∗ ⊂ dom ∂ϕ∗ [8, Proposi-
tion 16.27], we have ran ∂ϕ = dom (∂ϕ)−1 = dom ∂ϕ∗ = H. Hence, ∂ϕ is surjective. We
conclude using the same arguments as in (c): ∂ϕ and Id −W ◦S are both 3∗ monotone and
their sum is maximally monotone, which allows us to invoke [8, Corollary 25.27(i)].

(e)⇒(a): As seen in (d), ∂ϕ is surjective. We haveH = int domϕ ⊂ dom ∂ϕ [8, Propo-
sition 16.27]. Consequently, H = dom (Id − W ◦ S) ⊂ dom ∂ϕ. Altogether, since ∂ϕ is
3∗ monotone, it follows from [8, Corollary 25.27(ii)] that Id − W ◦ S + ∂ϕ is surjective.

(f)⇒(a): As seen in (c), Id − W ◦ S is surjective and ∂ϕ is 3∗ monotone. In addition,
dom (Id − W ◦ S) ⊂ dom ∂ϕ since H = int domϕ ⊂ dom ∂ϕ [8, Proposition 16.27].
Altogether, it follows from [8, Corollary 25.27(ii)] that Id − W ◦ S + ∂ϕ is surjective.

(g): Here domA = dom ∂ϕ ⊂ domϕ = ×m

i=1domϕi is bounded. Hence, F = zerA 	=
∅ [8, Proposition 23.36(iii)].

Remark 4.4 In Proposition 4.3(vi), it is required that Id − W ◦ S be monotone, or equiva-
lently, that its self-adjoint part Id −(W ◦S+S∗ ◦W ∗)/2 be positive. In a finite-dimensional
setting, this just means that the eigenvalues of the matrix WS + S∗W ∗ are in ]−∞, 2].

Remark 4.5 Let x ∈ H be a solution to the variational inequality (4.5). A natural question
is whether x solves a minimization problem. In general the answer is negative. For instance,
for m � 3 layers, even if the Hilbert spaces (Hi )1�i�m are identical, W = Id , the vectors
(bi)1�i�m are zero, and the functions (ϕi)1�i�m are indicator functions of closed convex
sets (Ci)1�i�m, the solutions to (4.5) do not minimize any function � : H → R [4]. A
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rather restrictive scenario in which the answer is positive is when Id − W ◦ S is monotone
and W ◦S is self-adjoint. Then x is a minimizer of � : x �→ (1/2)〈x − W (Sx) | x〉+ψ(x).

Example 4.6 In Model 4.1, suppose that, for every i ∈ {1, . . . , m}, Hi = R
Ni for some

strictly positive integer Ni . In addition, assume that, for every i ∈ {1, . . . , m}, Ri is a sepa-
rable activation operator with respect to the canonical basis of RNi (see Proposition 2.24),
and that it employs the ReLU activation functions of Example 2.6. For every i ∈ {1, . . . , m},
let xi = (ξi,k)1�k�Ni

∈ R
Ni and set bi = (βi,k)1�k�Ni

. Then it follows from Proposi-
tion 4.3(i) that (x1, . . . , xm) ∈ F if and only if, for every i ∈ {1, . . . , m}, xi ∈ [0,+∞[Ni

and

⎧

⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎩

(∀k ∈ {1, . . . , N1}) [W1xm]k + β1,k − ξ1,k ∈ I(ξ1,k)

(∀k ∈ {1, . . . , N2}) [W2x1]k + β2,k − ξ2,k ∈ I(ξ2,k)
...

(∀k ∈ {1, . . . , Nm−1}) [Wm−1xm−2]k + βm−1,k − ξm−1,k ∈ I(ξm−1,k)

(∀k ∈ {1, . . . , Nm}) [Wmxm−1]k + βm,k − ξm,k ∈ I(ξm,k)

(4.11)

where, given x ∈ Hi−1, [Wix]k is the kth component of Wix and

(∀ξ ∈ [0,+∞[) I(ξ) =
{ {0}, if ξ ∈ ]0,+∞[ ;
]−∞, 0] , if ξ = 0.

(4.12)

Altogether, we conclude that F is a closed convex polyhedron.

4.2 Asymptotic Analysis

We investigate the asymptotic behavior of (1.2) in the context of Model 4.1.

Theorem 4.7 In the setting of Model 4.1, set T = Tm ◦ · · · ◦ T1, let α ∈ [1/2, 1], and
suppose that the following hold:

(a) F 	= ∅.
(b) (Wi)1�i�m satisfies Condition 3.1 with parameter α.
(c) One of the following is satisfied:

(i) λn ≡ 1/α = 1 and T xn − xn → 0.
(ii) (λn)n∈N lies in ]0, 1/α[ and

∑

n∈N λn(1 − αλn) = +∞.

Then (xn)n∈N converges weakly to a point xm ∈ F and (T1xm, (T2 ◦ T1)xm, . . . , (Tm−1 ◦
· · · ◦ T1)xm, xm) solves (4.5). Now suppose that, in addition, any of the following holds:

(iii) For every i ∈ {1, . . . , m − 1}, Ri is weakly sequentially continuous.
(iv) For every i ∈ {1, . . . , m − 1}, Ri is a separable activation operator in the sense of

Proposition 2.24.
(v) For every i ∈ {1, . . . , m − 1},Hi is finite-dimensional.
(vi) For some ε ∈ ]0, 1/2[, (λn)n∈N lies in [ε, (1 − ε)(ε + 1/α)] and, for every i ∈

{1, . . . , m}, Hi = H and there exists βi ∈ ]0, 1[ such that ‖Wi − 2(1 − βi ) Id ‖ +
‖Wi‖ � 2βi .

Then, for every i ∈ {1, . . . , m − 1}, (xi,n)n∈N converges weakly to xi = (Ti ◦ · · · ◦ T1)xm

and (x1, . . . , xm) solves (4.5).
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Proof We first derive from (1.2) and Model 4.1 that

(∀n ∈ N) xn+1 = xn + λn(T xn − xn). (4.13)

Now set (∀i ∈ {1, . . . , m}) Pi : Hi → Hi : y �→ Ri(y + bi). Then (4.1) yields T =
Pm ◦ Wm ◦ · · · ◦ P1 ◦ W1 and, since the operators (Ri)1�i�m are firmly nonexpansive, the
operators (Pi)1�i�m are likewise. Hence, it follows from (b), Theorem 3.8, and (4.2) that

T is α-averaged and Fix T = F . (4.14)

(i): In view of (4.14), T is nonexpansive and hence we derive from [8, Theorem 5.14(i)]
that (xn)n∈N converges weakly to a point in F . The second assertion follows from
Proposition 4.3(iii).

(ii): In view of (4.13) and (4.14), [8, Theorem 5.15(iii) and Proposition 5.16(iii)]
imply that (xn)n∈N converges weakly to a point in F , and we conclude by invoking
Proposition 4.3(iii).

We now prove the convergence of the individual sequences under each assumption.
(iii): We have already established that xn ⇀ xm. Since W1 is weakly continuous as a

bounded linear operator, so is T1 in (4.1). Hence, (1.2) implies that x1,n = T1xn ⇀ T1xm =
x1. Likewise, we obtain successively x2,n = T2x1,n ⇀ T2x1 = x2, x3,n = T3x2,n ⇀

T3x2 = x3,. . . , xm,n = Tmxm−1,n ⇀ Tmxm−1 = xm.
(iv)⇒(iii): See [8, Proposition 24.12(iii)].
(v)⇒(iii): A proximity operator is nonexpansive and therefore continuous, hence weakly

continuous in a finite-dimensional setting.
(vi): As shown above, xn ⇀ xm ∈ F . It follows from Proposition 3.6(iii) and Theo-

rem 3.8 (applied with m = 1) that, for every i ∈ {1, . . . , m}, Ti is βi-averaged. Hence, upon
applying [24, Theorem 3.5(ii)] with α as an averaging constant of T , we infer that

⎧

⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎩

(Id−T1)xn − (Id−T1)xm → 0
(Id−T2)(T1xn) − (Id−T2)(T1xm) → 0

...
(Id−Tm)((Tm−1 ◦ · · · ◦ T1)xn) − (Id−Tm)((Tm−1 ◦ · · · ◦ T1)xm) → 0.

(4.15)

Thus, x1,n −xn = T1xn −xn → T1xm −xm, which implies that x1,n = (x1,n −xn)+xn ⇀

(T1xm − xm) + xm = T1xm. However, since x2,n − x1,n = (T2 ◦ T1)xn − T1xn → (T2 ◦
T1)xm − T1xm, we obtain x2,n ⇀ (T2 ◦ T1)xm. Continuing this telescoping process yields
the claim.

The next result covers the case when the variational inequality problem (4.5) has no
solution.

Proposition 4.8 In the setting of Model 4.1, suppose that (Wi)1�i�m satisfies Condition 3.1
with α ∈ [1/2, 1], that (λn)n∈N lies in [ε, (1/α)−ε], for some ε ∈ ]0, 1/2[, and that F = ∅.
Then ‖xn‖ → +∞.

Proof We derive from (4.13) and (4.14) that, for every n ∈ N, xn+1 = xn + μn(Qxn − xn),
where Q = (1 − 1/α) Id+(1/α)T is nonexpansive and such that FixQ = F , and μn =
αλn ∈ ]0, 1[. Hence the claims follows from [8, Proposition 4.29] and [12, Corollary 9(b)].

Remark 4.9 When assumptions (a)–(c) in Theorem 4.7 are satisfied, the neural network
described in Model 1.1 is robust to perturbations of its input. Indeed, since T is α-averaged
in (4.13), we can write the updating rule as xn+1 = Qnxn, where Qn is nonexpansive. In
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turn, if x0 and x̃0 are two inputs in H0, for a given n ∈ N, the resulting outputs xn and x̃n

are such that ‖xn − x̃n‖ � ‖x0 − x̃0‖.
Remark 4.10 In connection with Theorem 4.7 and Remark 4.5, let us underline that in
general the weak limit xm of (xn)n∈N does not solve a minimization problem. A very special
case in which it does is the following. Suppose that m = 2, H1 = H, ‖W1‖ � 1, and
W2 = W ∗

1 . Set ψ1 = ϕ1 − 〈· | b1〉 and ψ2 = ϕ2 − 〈· | b2〉, and let x2 ∈ F , i.e., x2 =
(proxψ2

◦ W ∗
1 ◦ proxψ1

◦ W1)x2. It follows from [21, Remark 3.10(iv)] that there exists a
function ϑ ∈ �0(H) such that W ∗

1 ◦ proxψ1
◦ W1 = proxϑ . Thus, x2 is a fixed point of the

backward-backward operator proxψ2
◦ proxϑ . It then follows from [20, Remark 6.13] that

x2 is a minimizer of 1ϑ + ψ2, where
1ϑ : x �→ infy∈H(ϑ(y) + ‖x − y‖2/2) is the Moreau

envelope of ϑ .

Remark 4.11 To model closely existing deep neural networks, we have chosen the activa-
tion operators in Definition 2.20 and Model 4.1 to be proximity operators. However, as is
clear from the results of Section 3 and in particular the central Theorem 3.8, an activation
operator Ri : Hi → Hi could more generally be a firmly nonexpansive operator that admits
0 as a fixed point. By [8, Corollary 23.9], this means that Ri is the resolvent of some max-
imally monotone operator Ai : Hi → 2Hi (i.e., Ri = (Id+Ai)

−1) such that 0 ∈ Ai0. In
this context, the variational inequality (4.5) assumes the more general form of a system of
monotone inclusions, namely,

find x1 ∈ H1, . . . , xm ∈ Hm such that

⎧

⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎩

b1 ∈ x1 − W1xm + A1x1
b2 ∈ x2 − W2x1 + A2x2

...
bm ∈ xm − Wmxm−1 + Amxm.

(4.16)

5 Analysis of Nonperiodic Networks

We analyze the deep neural network described in Model 1.1 in the following scenario.

Assumption 5.1 In the setting of Model 1.1, there exist sequences (ωn)n∈N ∈ �1+,
(ρn)n∈N ∈ �1+, (ηn)n∈N ∈ �1+, and (νn)n∈N ∈ �1+ for which the following hold for every
i ∈ {1, . . . , m}:
(i) There exists Wi ∈ B (Hi−1,Hi ) such that (∀n ∈ N) ‖Wi,n − Wi‖ � ωn.
(ii) There existsRi ∈ A(Hi ) such that (∀n ∈ N)(∀x ∈ Hi ) ‖Ri,nx−Rix‖ � ρn‖x‖+ηn.
(iii) There exists bi ∈ Hi such that (∀n ∈ N) ‖bi,n − bi‖ � νn.

In addition, we set

(∀i ∈ {1, . . . , m}) Ti : Hi−1 → Hi : x �→ Ri(Wix + bi). (5.1)

Proposition 5.2 In the setting of Model 1.1, suppose that Assumption 5.1 is satisfied, let
i ∈ {1, . . . , m}, and set

(∀n ∈ N) χi,n = ρn‖Wi,n‖ + ωn and ζi,n = ρn‖bi,n‖ + ηn + νn. (5.2)

Then (χi,n)n∈N ∈ �1+, (ζi,n)n∈N ∈ �1+, and (∀n ∈ N)(∀x ∈ Hi−1) ‖Ti,nx − Tix‖ �
χi,n‖x‖ + ζi,n.
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Proof According to Assumptions 5.1(i) and 5.1(iii), supn∈N ‖Wi,n‖ < +∞ and
supn∈N ‖bi,n‖ < +∞. It then follows from (5.2) that (χi,n)n∈N ∈ �1+ and (ζi,n)n∈N ∈ �1+.
Hence, we deduce from (1.1), (5.1), the nonexpansiveness of Ri , and Assumption 5.1 that

(∀n ∈ N)(∀x ∈ Hi−1) ‖Ti,nx − Tix‖
� ‖Ri,n(Wi,nx + bi,n) − Ri(Wi,nx + bi,n)‖ + ‖Ri(Wi,nx + bi,n) − Ri(Wix + bi)‖
� ρn‖Wi,nx + bi,n‖ + ηn + ‖Wi,nx + bi,n − Wix − bi‖
� ρn(‖Wi,n‖ ‖x‖ + ‖bi,n‖) + ηn + ‖Wi,n − Wi‖ ‖x‖ + ‖bi,n − bi‖
� ρn(‖Wi,n‖ ‖x‖ + ‖bi,n‖) + ηn + ωn ‖x‖ + νn

= χi,n‖x‖ + ζi,n, (5.3)

as claimed.

Proposition 5.3 In the setting of Model 1.1, suppose that Assumption 5.1 is satisfied. Then,
for every i ∈ {1, . . . , m}, there exist (τi,n)n∈N ∈ �1+ and (θi,n)n∈N ∈ �1+ such that

(∀n ∈ N)(∀x ∈ H) ‖(Ti,n ◦ · · · ◦ T1,n)x − (Ti ◦ · · · ◦ T1)x‖ � τi,n‖x‖ + θi,n. (5.4)

Proof For every i ∈ {1, . . . , m}, define (χi,n)n∈N and (ζi,n)n∈N as in (5.2), According to
Proposition 5.2, (5.4) is satisfied for i = 1 by setting (∀n ∈ N) τ1,n = χ1,n and θ1,n = ζ1,n.
Next, let us assume that (5.4) holds for i ∈ {1, . . . , m − 1} and set

(∀n ∈ N)

⎧

⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎩

τi+1,n = (‖Wi+1‖ + χi+1,n)τi,n + χi+1,n

i
∏

k=1

‖Wk‖

θi+1,n = (‖Wi+1‖ + χi+1,n)θi,n + χi+1,n

i
∑

j=1

(

‖bj‖
i
∏

k=j+1

‖Wk‖
)

+ ζi+1,n.

(5.5)
Then the sequences (τi+1,n)n∈N and (θi+1,n)n∈N belong to �1+. Now let n ∈ N and x ∈ H.
Upon invoking Proposition 5.2, the nonexpansiveness of Ri+1, and Proposition 4.2, we
obtain

‖(Ti+1,n ◦ · · · ◦ T1,n)x − (Ti+1 ◦ · · · ◦ T1)x‖
� ‖(Ti+1,n ◦ Ti,n ◦ · · · ◦ T1,n)x − (Ti+1 ◦ Ti,n ◦ · · · ◦ T1,n)x‖

+‖(Ti+1 ◦ Ti,n ◦ · · · ◦ T1,n)x − (Ti+1 ◦ Ti ◦ · · · ◦ T1)x‖
� χi+1,n‖(Ti,n ◦ · · · ◦ T1,n)x‖ + ζi+1,n

+‖(Ti+1 ◦ Ti,n ◦ · · · ◦ T1,n)x − (Ti+1 ◦ Ti ◦ · · · ◦ T1)x‖
� χi+1,n(‖(Ti,n ◦ · · · ◦ T1,n)x − (Ti ◦ · · · ◦ T1)x‖ + ‖(Ti ◦ · · · ◦ T1)x‖) + ζi+1,n

+∥∥Ri+1
(

(Wi+1 ◦ Ti,n ◦ · · · T1,n)x + bi+1
)−Ri+1

(

(Wi+1 ◦ Ti ◦ · · · ◦ T1)x + bi+1
)∥
∥

� (‖Wi+1‖ + χi+1,n)‖(Ti,n ◦ · · · ◦ T1,n)x − (Ti ◦ · · · ◦ T1)x‖
+χi+1,n‖(Ti ◦ · · · ◦ T1)x‖ + ζi+1,n

� (‖Wi+1‖ + χi+1,n)(τi,n‖x‖ + θi,n)

+χi+1,n

(

‖x‖
i
∏

k=1

‖Wk‖ +
i
∑

j=1

(

‖bj‖
i
∏

k=j+1

‖Wk‖
))

+ ζi+1,n

= τi+1,n‖x‖ + θi+1,n, (5.6)

which proves the result by induction.
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We can now present the main result of this section on the asymptotic behavior of
Model 1.1. The proof of this result relies on Theorem 4.7, which it extends.

Theorem 5.4 Consider the setting of Model 1.1 and let α ∈ [1/2, 1]. Suppose that
Assumption 5.1 is satisfied as well as the following:

(a) F = FixT 	= ∅, where T = Tm ◦ · · · ◦ T1.
(b) (Wi)1�i�m satisfies Condition 3.1 with parameter α.
(c) One of the following is satisfied:

(i) λn ≡ α = 1 and T xn − xn → 0.
(ii) (λn)n∈N lies in ]0, 1/α[ and

∑

n∈N λn(1 − αλn) = +∞.

Then (xn)n∈N converges weakly to a point xm ∈ F and (T1xm, (T2 ◦ T1)xm, . . . , (Tm−1 ◦
· · · ◦ T1)xm, xm) solves (4.5). Now suppose that, in addition, any of the following holds:

(iii) For every i ∈ {1, . . . , m − 1}, Ri is weakly sequentially continuous.
(iv) For every i ∈ {1, . . . , m − 1}, Ri is a separable activation function in the sense of

Proposition 2.24.
(v) For every i ∈ {1, . . . , m − 1},Hi is finite-dimensional.
(vi) For some ε ∈ ]0, 1/2[, (λn)n∈N lies in [ε, (1 − ε)(ε + 1/α)] and, for every i ∈

{1, . . . , m}, Hi = H and there exists βi ∈ ]0, 1[ such that ‖Wi − 2(1 − βi ) Id ‖ +
‖Wi‖ � 2βi .

Then, for every i ∈ {1, . . . , m − 1}, (xi,n)n∈N converges weakly to xi = (Ti ◦ · · · ◦ T1)xm

and (x1, . . . , xm) solves (4.5).

Proof Let (yn)n∈N be the sequence defined by y0 = x0 and

for n = 0, 1, . . .
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

y1,n = T1yn

y2,n = T2y1,n
...

ym,n= Tmym−1,n
yn+1= yn + λn(ym,n − yn).

(5.7)

For every n ∈ N, set Sn = Tm,n ◦ · · · ◦ T1,n. We derive from (1.2) and (5.7) that

(∀n ∈ N) ‖xn+1 − yn+1‖ = ‖xn+λn(Snxn−xn)−yn−λn(T yn−yn)‖
� λn‖Snxn−T xn‖+‖xn−yn+λn(T xn−Tyn−xn+yn)‖.

(5.8)

At the same time, by Proposition 5.3, there exist (τm,n)n∈N ∈ �1+ and (θm,n)n∈N ∈ �1+ such
that

(∀n ∈ N) ‖Snxn − T xn‖ � τm,n‖xn‖ + θm,n (5.9)

� τm,n(‖xn − yn‖ + ‖yn‖) + θm,n. (5.10)
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On the other hand, by Theorem 3.8, Assumption 5.1(ii), and (b), T is α-averaged. Hence,
there exists a nonexpansive operator Q : H → H such that T = (1 − α) Id+αQ. Since (c)
implies that (λn)n∈N lies in ]0, 1/α], we deduce that

(∀n ∈ N) ‖xn − yn + λn(T xn − Tyn − xn + yn)‖
= ‖(1 − αλn)(xn − yn) + αλn(Qxn − Qyn)‖
� (1 − αλn)‖xn − yn‖ + αλn‖Qxn − Qyn‖
� ‖xn − yn‖. (5.11)

Altogether (5.8), (5.10), and (5.11) yield

(∀n ∈ N) ‖xn+1 − yn+1‖ �
(

1 + τm,n

α

)

‖xn − yn‖ + 1

α

(

τm,n‖yn‖ + θm,n

)

. (5.12)

However, Theorem 4.7 guarantees that δ = supn∈N ‖yn‖ < +∞ and therefore that

(∀n ∈ N) ‖xn+1 − yn+1‖ �
(

1 + τm,n

α

)

‖xn − yn‖ + 1

α

(

τm,nδ + θm,n

)

. (5.13)

Since (τm,n)n∈N and (τm,nδ + θm,n)n∈N are in �1+, there exists ν ∈ [0,+∞[ such that
‖xn − yn‖ → ν [8, Lemma 5.31]. Consequently, δ′ = supn∈N ‖xn‖ � δ + supn∈N ‖xn −
yn‖ < +∞. Now, set

(∀n ∈ N) en = 1

α
(Snxn − T xn). (5.14)

Then it follows from (5.9) that
∑

n∈N
‖en‖ � 1

α

∑

n∈N

(

τm,n‖xn‖ + θm,n

)

� δ′

α

∑

n∈N
τm,n + 1

α

∑

n∈N
θm,n < +∞. (5.15)

In view of (1.2), we have

(∀n ∈ N) xn+1 = xn + μn(Qxn + en − xn), where μn = αλn ∈ ]0, 1[ . (5.16)

(i): The weak convergence of (xn)n∈N to a point xm ∈ FixQ = F follows from (5.16)
and [8, Theorem 5.33(iv)] by arguing as in the proof of [8, Theorem 5.14(i)].

(ii): It follows from (5.16) that
∑

n∈N μn(1−μn) = +∞. Hence [8, Proposition 5.34(iii)]
implies that (xn)n∈N converges weakly to a point xm ∈ FixQ = F .

In (i)–(ii) above, Proposition 4.3(iii) ensures that (T1xm, (T2 ◦ T1)xm, . . . , (Tm−1 ◦ · · · ◦
T1)xm, xm) solves (4.5).

(iii)–(v): If one of these assumptions holds, by proceeding as in the proof of Theo-
rem 4.7(iii)–(v), we obtain that, for every i ∈ {1, . . . , m − 1}, (Ti ◦ · · · ◦ T1)xn ⇀ xi =
(Ti ◦ · · · ◦T1)xm and that, furthermore, (x1, . . . , xm) solves (4.5). However, Proposition 5.3
asserts that, for every i ∈ {1, . . . , m − 1}, there exist (τi,n)n∈N ∈ �1+ and (θi,n)n∈N ∈ �1+
such that, for every n ∈ N,

‖xi,n−(Ti ◦· · ·◦T1)xn‖ = ‖(Ti,n◦· · ·◦T1,n)xn−(Ti ◦· · ·◦T1)xn‖ � τi,n‖xn‖+θi,n. (5.17)

Since (xn)n∈N is bounded, xi,n − (Ti ◦ · · · ◦ T1)xn → 0 and therefore xi,n ⇀ xi .
(vi): For every i ∈ {1, . . . , m}, set
(∀n ∈ N) ei,n = (Ti,n ◦ Ti−1,n ◦ · · · ◦ T1,n)xn − (Ti ◦ Ti−1,n ◦ · · · ◦ T1,n)xn, (5.18)

and let (χi,n)n∈N and (ζi,n)n∈N be defined as in (5.2). By Propositions 4.2, 5.2, and 5.3, we
have

(∀n ∈ N) ‖e1,n‖ � χ1,n‖xn‖ + ζ1,n (5.19)
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and

(∀i ∈{2, . . . , m})(∃ (τi−1,n)n∈N ∈ �1+)(∃ (θi−1,n)n∈N ∈ �1+)(∀n ∈ N)

‖ei,n‖ � χi,n‖(Ti−1,n ◦ · · · ◦ T1,n)xn‖+ζi,n

� χi,n

(‖(Ti−1,n ◦ · · · ◦ T1,n)xn−(Ti−1 ◦ · · · ◦ T1)xn‖+‖(Ti−1 ◦ · · · ◦ T1)xn‖
)+ ζi,n

� χi,n

(

τi−1,n‖xn‖ + θi−1,n+‖xn‖
i−1
∏

k=1

‖Wk‖+
i−1
∑

j=1

‖bj‖
( i−1
∏

k=j+1

‖Wk‖
))

+ ζi,n.

(5.20)

Thus, since (xn)n∈N is bounded,

(∀i ∈ {1, . . . , m}) (‖ei,n‖)n∈N ∈ �1+. (5.21)

In addition, by (5.18) and (1.2),

(∀n∈N) xn+1=xn + λn

(

Tm(Tm−1(· · ·T2(T1xn + e1,n)+ e2,n · · · )+em−1,n) + em,n − xn

)

.

(5.22)

Thus, since Proposition 3.6(iii) and Theorem 3.8 imply that the operators (Ti)1�i�m are
averaged, the proof can be completed as that of Theorem 4.7(vi) since [24, Theorem 3.5(ii)]
asserts that (4.15) remains valid under (5.21).
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