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Summary. The paper presents an incremental updating algorithm to analyse streaming data
sets using generalized linear models. The method proposed is formulated within a new frame-
work of renewable estimation and incremental inference, in which the maximum likelihood es-
timator is renewed with current data and summary statistics of historical data. Our framework
can be implemented within a popular distributed computing environment, known as Apache
Spark, to scale up computation. Consisting of two data-processing layers, the rho architecture
enables us to accommodate inference-related statistics and to facilitate sequential updating of
the statistics used in both estimation and inference. We establish estimation consistency and
asymptotic normality of the proposed renewable estimator, in which the Wald test is utilized
for an incremental inference. Our methods are examined and illustrated by various numerical
examples from both simulation experiments and a real world data analysis.

Keywords: Incremental statistical analysis; Lambda architecture; On-line learning; Spark
computing platform; Stochastic gradient descent algorithm

1. Introduction

We consider a classical problem where a series of cross-sectional data sets becomes available
sequentially. Such a type of data collection is pervasive in practice and is referred to as streaming
data sets throughout this paper. Statistical analysis of streaming data sets has recently drawn
considerable attention in the emerging field of ‘big data’ analytics due to the availability of
modern powerful computing platforms such as Apache Spark (Bifet et al., 2015). The key
methodology that is relevant to such data analysis pertains to algorithms that enable us to
update certain statistics of interest sequentially. For example, the sample mean may be recursively
updated along data streams in which only previous sample means, instead of the entire historical
subject level data, are needed. Specifically, consider two data sets arriving sequentially, where
D1 = .x11, : : : , x1n1/ denotes the first data set of n1 observations. Suppose that we want to update
the sample mean when the second batch of data D2 = .x21, : : : , x2n2/ of n2 observations arrives.
Let δ.D1/ denote the sample mean for D1, which can be easily updated with the new batch D2,
i.e.

δ.D1 ∪D2/= 1
n1 +n2

(
n1∑

i=1
x1i +

n2∑
i=1

x2i

)
= 1

n1 +n2

{
n1δ.D1/+

n2∑
i=1

x2i

}
: .1/

The defining feature in this operation is that the mean from the previous data, δ.D1/, rather
than the data D1 themselves, is used in the calculation. In this paper, a statistic that satisfies such
a property is termed a renewable estimator. Indeed, the recursive operation that is exemplified
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in equation (1) works for many other statistics, such as sample moments and the least squares
estimator in the linear model (Stengel, 1994). This is because these statistics take certain linear
functions of data, so that a decomposition similar to equation (1) between current and past
data is feasible (see Section 3.3 for the detail). Using only summary statistics of previous data,
instead of historical raw data, is conceptually linked to a sufficient statistic and is of critical
importance in handling big data as far as computing memory and speed are concerned. This
strategy has been widely advocated in the literature of on-line learning, incremental analytics,
matrix or tensor decomposition and classification, and on-line Bayesian inference; see Bucak
and Gunsel (2009), Cardot and Degras (2018), Nion and Sidiropoulos (2009) and Qamar et al.
(2018), among others.

Whether or not, and, if so, to what extent, does the renewability property that is seen in
equation (1) hold in general? For example, can maximum likelihood estimation, which is one of
the most important statistical estimation and inference methods, be updated sequentially in a
similar fashion to the renewable estimation procedure given in equation (1)? If not, how good is
the maximum likelihood estimator (MLE) as a sufficient statistic? Answers to these questions
are not trivial, because the MLE is typically a non-linear function of data and often has no
closed form expression. Thus, an MLE solution can be obtained numerically only by iterative
algorithms, such as the Newton–Raphson algorithm. In this paper, we choose the class of
generalized linear models (GLMs) as an exemplary setting to illustrate the feasibility for finding
answers to these questions. It is known that GLMs play a central role in regression analysis,
and the renewable estimation analytics that are developed in such a context will provide a useful
arsenal for regression analysis of streaming data. Moreover, in the GLM setting, the class of
exponential dispersion models (Jørgensen, 1997) gives a connection between sufficient statistics
and MLEs, which helps to find solutions to these questions.

The interest in developing procedures allowing ‘quick’ updates of parameter estimates along
with sequentially arriving data may be dated back five decades or so. Robbins and Monro (1951)
proposed a seminal recursive estimation method that has become a very popular technique,
namely the well-known stochastic gradient descent (SGD) algorithm that has been extensively
used in the field of machine learning. The SGD method is applied to a data sequence in the
form of an open-ended set of independent observations, yi ∼IID f.y;θ0/, under a model f.·/
with a common unknown parameter θ0. Estimation of θ0 may be carried out sequentially by a
forward updating procedure, with a single data point yi involved at each iteration, i.e.

θ
sgd
i =θ

sgd
i−1 +γiCi∇θ log{f.yi;θ

sgd
i−1/},

where γi > 0 is a prespecified learning rate sequence such that iγi →γ as i →∞ and {Ci} is a
certain sequence of positive definite matrices. Throughout this paper, ∇θ denotes the gradient
operation with respect to the model parameter θ. This updating procedure was later termed
‘explicit SGD’ by Toulis et al. (2014). Under the condition that γiCi →I−1.θ0/, i→∞, where
I.θ0/ is the Fisher information matrix, this updating method enjoys some theoretical guarantees.
For example, as i→∞, θ

sgd
i →pθ0 with optimal asymptotic efficiency, namely, its asymptotic

covariance matrix is I−1.θ0/.
However, the SGD method is generally not robust to learning rate misspecification, and the

algorithm may fail to converge if γ is too large. An improvement, which was called ‘implicit
SGD’ by Toulis et al. (2014), is given by θim

i that appears on both sides of the updating equation,
i.e.

θim
i =θim

i−1 +γiCi∇θ log{f.yi;θim
i /}:

According to a comparison of these two versions of SGD algorithms in GLMs, Toulis et al.
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Table 1. Comparison of second-order on-line methods†

Method Computational Tuning Hessian Inference
cost per parameter matrix
iteration

Full Exact

SGD O.p/ Yes No No No
On-line O.p2/ Yes Yes No No

Newton
oBFGS O.p2/ Yes Yes No No
oLBFGS O.τp/, τ <p Yes No No No
Renew O.nbp2 +p3/ No Yes Yes Yes

†In the column ‘Method’, ‘SGD’ includes both first-order procedures and
second-order procedures that are based only on the diagonal elements
of an approximated Hessian matrix, not on the full estimated Hessian.
In the column ‘Hessian matrix’, ‘Full’ indicates whether the full p × p
(approximated) Hessian matrix is used in an algorithm and ‘Exact’
indicates whether the Hessian matrix is approximated or obtained by the
second-order derivative of the log-likelihood function (i.e. no approxima-
tion). In the column ‘Inference’, ‘Yes’ means the availability of statistical
inference. See more details in Appendix A.

(2014) concluded that implicit SGD appeared more robust to learning rate misspecification.
To improve statistical efficiency, Toulis et al. (2014) further proposed averaged implicit SGD
(AISGD); see the detail in Section 2.1. To avoid calculating the inverse of a Hessian matrix, some
alternative versions of SGD are proposed with adapted learning rates from diagonal elements
of an approximated Hessian, such as SGD-QN (Bordes et al., 2009) and AdaGrad (Duchi et al.,
2011). Although such alternative procedures can achieve the same computation speed as the first-
order methods, they are not useful for statistical inference because only part of the information
matrix (i.e. the Hessian’s diagonal elements) is recorded and updated over iterations.

There are some on-line second-order methods such as the natural gradient algorithm (Amari
et al., 2000) and the on-line Newton step (Hazan et al., 2007) that maintain complete information
matrices over iterations. Similarly to SGD, an outer product of the first gradients is used to
approximate the negative Hessian, and its inverse is updated through the Sherman–Morrison
formula. This updating scheme is widely used; see Vaits et al. (2015) and Hao et al. (2016).
However, this outer product approximation to the Fisher information may not work well in
general. In the setting beyond the conventional likelihood framework, because of the failure of
the Bartlett identity (Song (2007), chapter 2), the Fisher information alone cannot provide valid
statistical inference. For on-line quasi-Newton methods, both the Broyden–Fletcher–Goldfarb–
Shanno (Nocedal and Wright, 1999) and the limited memory Broyden–Fletcher–Goldfarb–
Shanno (Liu and Nocedal, 1989) algorithms have been modified for streaming data, respectively
termed oBFGS and oLBFGS (Schraudolph et al., 2007; Bordes et al., 2009). But, in these
procedures, it is unclear whether the estimated approximate Hessian is appropriate for statistical
inference. A detailed comparison between these second-order on-line methods is available in
Table 1.

Although some relevant analytic expressions for the asymptotic variances have been derived
in both explicit and implicit SGD (Toulis and Airold, 2017), the work of developing on-line con-
fidence intervals remains unexplored because of the lack of suitable asymptotic results that may
be directly applied to establish on-line inference. Recently Fang (2019) proposed a perturbation-
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based resampling method to construct confidence intervals for AISGD. Even though this on-line
bootstrap procedure can be parallelized to improve computational efficiency, as shown in the
simulation studies later in the paper, it does not achieve desirable statistical efficiency and may
produce misleading inference in the case of large regression parameters.

In addition to the SGD types of recursive algorithm, several cumulative updating methods
have been proposed specifically to perform sequential updating of regression coefficient estima-
tors, including the on-line least squares estimator (OLSE) for the linear model by Stengel (1994),
the cumulative estimating equation (CEE) estimator and the cumulatively updated estimating
equation (CUEE) estimator of Schifano et al. (2016) for non-linear models. Even though the
CUEE estimator is shown to have less estimation bias than the CEE with finite sample sizes, its
estimation consistency has been established on a strong regularity condition: the total number
of streaming data sets, say B, needs to satisfy the order of B=O.nk

j/, with k< 1
3 for all j, where

nj is the size of the jth data batch (Lin and Xi, 2011; Schifano et al., 2016). This condition is
also required by the CEE for its estimation consistency. This implies a very strong restriction
for these two methods; for example, their estimation consistency may not be guaranteed in the
situation where streaming data sets arrive perpetually with B →∞. Our proposed renewable
estimation method overcomes this unnatural restriction. Section 2.2 presents a more detailed
review of these existing methods.

Streaming data analytics may be implemented in the so-called lambda architecture (Marz
and Warren, 2015). It is a realtime big data system of computing and storage with synchronized
processing of batch and stream data flows. The lambda architecture consists of three layers: the
speed layer, the batch layer and the serving layer. Fig. 1 shows a schematic outline of how the
speed and batch layers interact when a new data batch arrives. Transient and rough realtime
views are captured at the speed layer by using incremental algorithms, where previously stored
views are updated with an incoming batch of data to generate renewed views. Indeed, SGD
is one of the most popular incremental algorithms used to process high throughput streaming

Fig. 1. Diagram concerning the flow of a new data stream through the batch and speed layers in the lambda
architecture: the serving layer is responsible for indexing and exposing the views from the batch and speed
layers so that they can be queried
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data via the Spark system (Bifet et al., 2015). The batch layer stores constantly growing data and
continuously recomputes the batch views when a new batch of data arrives. Despite latency, the
batch layer refines results that are produced in the speed layer where the accuracy of estimation
cannot be maintained consistently. Then the two view outputs are stored in the serving layer for
queries. This architecture is flexible and applicable to a wide range of streaming data analytics
in which the batch layer stores all sequentially accumulated raw data and produces reliable
results via recomputations. Unfortunately, this powerful architecture has completely ignored
the need for realtime statistical inference; for example, there are no gears in the system designed
to compute and store Fisher information sequentially or as such, which is a critical piece required
for statistical inference. To overcome this, in this paper we propose to expand the speed layer
by adding a new ‘inference layer’, and we name this new subarchitecture ‘rho architecture’
(from the initial letter of the Greek word for ‘stream’: ρ"νμα). Fig. 2 in Section 3.2 displays the
resulting expanded architecture enabling statistical inference to be conducted with streaming
data.

In the proposed rho architecture, we aim to address three basic questions:

(a) what types of summary statistics are to be stored in the inference layer;
(b) how to update those summary statistics required for estimation and inference without the

use of previous raw data;
(c) how to optimize the efficiency of estimation of renewable estimation so that it may be

asymptotically equivalent to the MLE obtained from the entire data set.

Our goal is to fit a GLM (McCullagh and Nelder, 1983) E.yi|xi/=g.xT
i β/, i=1, : : : , Nb, where

g.·/ is a known link function and Nb is the sample size of aggregated streaming data up to batch
b, Nb =Σb

j=1nj. At batch b � 2, a total of Nb observations becomes available in a series of b

batches of data, denoted by D1 ={y1, X1}, : : : , Db ={yb, Xb}, : : : , where y and X are the generic
notations of the response variables and associated covariates. Under a fixed design, suppose
that each observation is drawn from .yi; xi/∼f.y; x, β0, φ0/, i=1, : : : , Nb, independently, where
β0 ∈ Rp is the true value of the parameter of interest and φ0 is the true value of a nuisance
parameter. Let DÅ

b ={D1, : : : , Db} denote the cumulative data up to batch b. For convenience,
slightly abusing the notation, we use Db (a single batch b) or DÅ

b (an aggregation of b batches)
as the sets of indices for subjects involved. For a GLM, we may write out the associated log-
likelihood function in the form of an exponential dispersion model (Jørgensen, 1997):

lNb
.β, φ; DÅ

b /= ∑
i∈DÅ

b

log{f.yi; xi, β, φ/}= ∑
i∈DÅ

b

log{a.yi;φ/}− 1
2φ

∑
i∈DÅ

b

d.yi;μi/, .2/

where d.yi;μi/ is the unit deviance function involving the mean parameter μi =E.yi|xi/, and a.·/
is a suitable normalizing factor depending only on the dispersion parameter φ> 0. The system-
atic component of a GLM takes the form μi =g.xT

i β/, i∈DÅ
b . It is known that, in the Gaussian

linear model, the dispersion parameter φ is the variance parameter and, in both Bernoulli
logistic and Poisson log-linear regression models, φ = 1. Denote the (unit) score function by
U.yi; xi, β/ :=∇βd.yi;μi/. Then, the MLE β̂

Å
b satisfying Σi∈DÅ

b
U.yi; xi, β/=0 is the oracle esti-

mator, which in general has no closed form solution. It is often obtained numerically by certain
iterative algorithms such as the Newton–Raphson algorithm. Note that in the GLM the MLE
β̂

Å
b is derived with no involvement of nuisance parameter φ because of so-called parameter or-

thogonality (Cox and Reid, 1987). For details of the MLE, refer to, for example, McCullagh
and Nelder (1983) and Song (2007), chapter 2. Thus, unlike the case of the linear model where
the MLE has an explicit closed form expression, exact sequential updating procedures similar
to equation (1) are generally unavailable for GLMs.
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The focus of this paper is to develop a new on-line framework in which both likelihood
estimation and inference can be updated with current data and summary statistics of historical
data. Our new contributions include the following:

(a) we propose a rho architecture as an expansion of the Spark lambda architecture for on-line
statistical inference;

(b) the proposed renewable estimator is shown to be asymptotically equivalent to the oracle
MLE without the strong condition B=O.nk

j/, k< 1
3 ;

(c) the l2-norm difference between our renewable estimator and the oracle MLE vanishes as
the total sample size increases;

(d) being computationally advantageous, our method does not require reaccess to any old
subject level data after the completion of the current updating step.

Thus, our renewable estimation method is computationally efficient to address the challenge of
data storage and data processing, which is particularly useful in the case where the number of
batches of data increases fast and/or perpetually. Also, our method provides realtime interim
inference based on the Wald test.

The paper is organized as follows. Section 2 gives a brief overview of existing methods to
which the method proposed is compared. Section 3 presents our renewable estimation frame-
work and incremental updating algorithm to compute renewable estimates. Section 4 includes
some key large sample properties and hypothesis testing methods. Section 5 presents numerical
implementation and some examples of commonly used GLMs. Section 6 presents simulation
results of the proposed method with comparisons with the oracle MLE and existing on-line
methods. Section 7 illustrates the proposed method by a real data application. Concluding re-
marks are provided in Section 8. All technical details are included in Appendix A and the on-line
supplementary materials.

2. Existing methods

Two primary classes of on-line data analytics have been developed in the literature, including
SGD algorithms and sequential estimation procedures. At an intermediary batch b, β̂

Å
b denotes

the oracle MLE obtained with the entire cumulative data set DÅ
b , and β̃b denotes a renewable

estimator with the same data set DÅ
b . Throughout this paper, a circumflex over a symbol (e.g. β̂)

denotes an MLE, and an asterisk in the superscript (e.g. β̂
Å
b ) indicates a statistic that is derived

from a cumulative data set DÅ
b ; otherwise, it is based on a single batch of data (e.g. β̂b from Db).

Likewise, a tilde over a symbol (e.g. β̃) denotes a quantity that is obtained sequentially by an
incremental algorithm. For example, β̃ denotes an estimator obtained by an on-line updating
procedure (e.g. OLSE). For convenience, we list all the necessary notation in Table 2.

2.1. Stochastic gradient descent algorithm: averaged implicit stochastic gradient
descent
Toulis et al. (2014) proposed an AISGD algorithm that was shown to be more stable than the
explicit SGD algorithm. Later, Fang (2019) extended AISGD by adding a random weight W

.s/
i

to the gradient, resulting in the following implicit SGD procedure:

β
.s/im
i =βim

i−1 +γiW
.s/
i U.yi; xi, β

.s/im
i /, β

.s/aim
i = 1

i

i∑
k=1

β
.s/im
k , i=1, : : : , Nb: .3/

When fixing W
.s/
i ≡ 1, expression (3) gives the AISGD estimate. Using samples drawn from,
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Table 2. Summary of notation†

Method Estimator Single-batch Aggregated Variance
Hessian Hessian

Oracle MLE β̂
Å
b — — V̂

Å
b

AISGD βaim
Nb

— — —

OLSE β̃
olse
b XT

b Xb Σb
j=1XT

j Xj Ṽ
olse
b

CEE β̃
cee
b Acee

b Ã
cee
b Ṽ

cee
b

CUEE β̃
cuee
b Acuee

b Ã
cuee
b Ṽ

cuee
b

Renew β̃b Jb J̃b φ̃bJ̃
−1
b

†The variances of OLSE, CEE and CUEE are all given in the on-line
supplementary material section S1.

say, W
.s/
i ∼IID exponential.1/, s = 1, : : : , S, we obtain S copies of β

.s/aim
i . Further, using these

replicates, we can assess the variability of β
.s/aim
i and calculate the empirical standard error

of the AISGD estimator for statistical inference. In Section 6, through simulation studies we
compare our renewable estimation method with this AISGD method.

2.2. Sequential updating methods
There are several sequential updating procedures in the literature, proposed by Lin and Xi (2011)
and Schifano et al. (2016), among others. Here we present a brief introduction to this class of
methods, and more details may be found in the on-line supplementary material section S1.

2.2.1. On-line least squares estimation
Consider a linear model yi = xT

i β0 + εi, with independent and identically distributed (IID)
errors εis, i=1, : : : , Nb. The least squares estimator (LSE) for the current single data batch Db

is β̂b = .XT
b Xb/−1XT

b yb. With initial β̃
olse
1 = β̂1, the OLSE (Schifano et al., 2016) β̃

olse
b proceeds

recursively according to the following decomposition:

β̃
olse
b =

(
b−1∑
j=1

XT
j Xj +XT

b Xb

)−1( b−1∑
j=1

XT
j Xjβ̃

olse
b−1 +XT

b Xbβ̂b

)
, b=2, 3, : : : : .4/

2.2.2. On-line estimating equations
Let β0 be a parameter value satisfying Σi∈DÅ

b
E{ψ.yi, xi;β0/} = 0, where ψ.·/ is an unbiased

estimating function. Proposed first by Lin and Xi (2011) and adapted later to the sequential
estimation setting by Schifano et al. (2016), the CEE estimator β̃

cee
b takes the following meta-

estimation form:

β̃
cee
b = .Ã

cee
b−1 +Acee

b /−1.Ã
cee
b−1β̃

cee
b−1 +Acee

b β̂b/, Ã
cee
b =

b∑
j=1

Acee
j , b=1, 2, : : : , .5/

with initial Ã
cee
0 = 0p×p, and Acee

b = −Σi∈Db
∇βψ.yi, xi; β̂b/ is the negative Hessian matrix of

single data batch Db.
It is easy to show that the bias of β̃

cee
b in expression (5) is of order O.Σb

j=1n
−1=2
j /, which is

bn−1=2 in the case of equal batch size nj =n for all j. This suggests that, for a small nj, b becomes
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a dominating factor in the bias, and consequently β̃
cee
b in expression (5) suffers an increased

bias as b→∞. To reduce bias, the CUEE estimator was proposed by Schifano et al. (2016). See
the related detail in the on-line supplementary material section S1. It is worth pointing out that
estimation consistency of the CEE or CUEE is established under a strong regularity condition,
b =O.nk

j/, for k < 1
3 and all j. This condition hardly holds for high throughput data streams,

where nj is typically small whereas b grows at a high rate. In this case, the theory of statistical
inference is not yet available in the current literature.

3. Renewable estimation

Let β̃b be a renewable estimator, initialized by the MLE β̃1 or β̂1, from the first batch of data
D1. For b = 2, 3, : : : , a previous estimator β̃b−1 is sequentially updated to β̃b when data batch
Db arrives; after the updating, data batch Db is no longer accessible except estimate β̃b and
summary statistics Jb.Db; β̃b/ and φ̃b, which are carried forward in future calculations. Let
Ub.Db;β/=Σi∈Db

U.yi; xi, β/ be the score function of data batch Db. Denote the single-batch
negative Hessian by Jb.Db;β/ :=−∇βUb.Db;β/.

3.1. Method
We begin with a simple scenario of two batches of data D1 and D2, where D2 arrives after D1.
We want to update the initial MLE β̂1 (or β̂

Å
1 ) to a renewed MLE β̂

Å
2 without using any subject

level data but only some summary statistics from D1. Here, MLE β̂1 in a GLM satisfies the
score equation, U1.D1; β̂1/=0, and β̂

Å
2 satisfies the following aggregated score equation:

U1.D1; β̂
Å
2 /+U2.D2; β̂

Å
2 /=0: .6/

Although the dispersion parameter φ is not involved in equation (6), it is needed in the calculation
of the Fisher information. Solving equation (6) for β̂

Å
2 actually involves the use of subject level

data in both D1 and D2. To derive a renewable estimate, we take the first-order Taylor series
expansion of the first term in equation (6) around the MLE β̂1,

U1.D1; β̂1/+J1.D1; β̂1/.β̂1 − β̂
Å
2 /+U2.D2; β̂

Å
2 /+Op.‖β̂Å

2 − β̂1‖2/=0: .7/

Since D1 and D2 are independently sampled from the same underlying model with a common
true parameter β0, when min{n1, n2} is sufficiently large, under some mild regularity conditions,
both β̂1 and β̂

Å
2 are consistent estimators of β0 (e.g. Fahrmeir and Kaufmann (1985)). This

implies that the error term Op.‖β̂Å
2 − β̂1‖2/ in equation (7) may be asymptotically ignored.

Removing such a term, we propose a new estimator β̃2 as a solution to the equation of the form

U1.D1; β̂1/+J1.D1; β̂1/.β̂1 − β̃2/+U2.D2; β̃2/=0:

Since U1.D1; β̂1/=0, the proposed estimator β̃2 satisfies the following estimating equation:

J1.D1; β̂1/.β̂1 − β̃2/+U2.D2; β̃2/=0: .8/

β̃2 in equation (8) approximates the oracle MLE β̂
Å
2 in equation (6) up to second-order asymp-

totic errors. Through equation (8), the initial β̂1 is renewed by β̃2. Because of this, in this paper β̃2
is called a renewable estimator of β0, and equation (8) is termed an incremental estimating equa-
tion. Numerically, it is quite straightforward to find β̃2 by, for example, the Newton–Raphson
algorithm or Fisher scoring algorithm with φ= 1. These two algorithms are equivalent in the
GLM with a canonical link, i.e., at the .r +1/th iteration,

β̃
.r+1/

2 = β̃
.r/

2 +{J1.D1; β̂1/+J2.D2; β̃
.r/

2 /}−1{J1.D1; β̂1/.β̂1 − β̃
.r/

2 /+U2.D2; β̃
.r/

2 /},
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where no subject level data of D1, but only the prior estimate β̂1 and the prior negative Hessian
J1.D1; β̂1/, are used in the above iterative algorithm. To speed up the calculations, we may avoid
updating the negative Hessian J2.D2, β̃

.r/

2 / at each iteration. Replacing β̃
.r/

2 with β̂1 leads to the
following incremental updating algorithm:

β̃
.r+1/

2 = β̃
.r/

2 +
{

2∑
j=1

Jj.Dj; β̂1/

}−1

{J1.D1; β̂1/.β̂1 − β̃
.r/

2 /+U2.D2; β̃
.r/

2 /}

= β̃
.r/

2 +{J1.β̂1/+J2.β̂1/}−1Ũ
.r/

2 , .9/

where Ũ
.r/

2 = J1.D1; β̂1/.β̂1 − β̃
.r/

2 / + U2.D2; β̃
.r/

2 /. In equation (9), β̃2 is iteratively solved by
using the adjusted score function Ũ

.r/

2 and the aggregated negative Hessian {J1.β̂1/+ J2.β̂1/}
evaluated at the previous estimate β̂1. We name algorithm (9) the incremental updating algorithm.
Essentially, equation (9) presents a kind of gradient descent algorithm, so its solution will
converge to the root of equation (8). Similar ideas have been used in the literature to speed up
the calculation of a Hessian matrix; see, for example, Song et al. (2005). The difference between
the proposed β̃2 and the oracle MLE β̂

Å
2 stems from an approximation to the score function

U1.D1; β̂
Å
2 /. As shown in theorem 3 in Section 4.1, such a distance vanishes at the rate of 1=N2,

with N2 =|DÅ
2 |=n1 +n2. In practice, because the cumulative sample size Nb =Σb

j=1nj increases
to ∞ very fast, these two estimators, β̃b and β̂

Å
b , are numerically very close, and eventually

become the same. To run algorithm (9), we extend the Spark lambda architecture to store three
key components: {β̂1, J1.D1; β̂1/, φ̂1}. Here, the initial

φ̂1 = 1
n1 −p

∑
i∈D1

.yi − μ̂i/
2

v.μ̂i/

based on the Pearson residuals, where μ̂i =g.xT
i β̂1/ and v.·/ is the unit variance function.

Generalizing the above procedure to streaming data sets, we now propose a renewable esti-
mation of β0 as follows. A renewable estimator β̃b of β0 is defined as a solution to the following
incremental estimating equation:

b−1∑
j=1

Jj.Dj; β̃j/.β̃b−1 − β̃b/+Ub.Db; β̃b/=0, .10/

where β̂1 = β̃1 at the initial data batch D1. When b= 2, equation (10) reduces to equation (8).
Let J̃b =Σb

j=1Jj.Dj; β̃j/ denote the aggregated negative Hessian matrix. Solving equation (10)
may be easily done by the following incremental updating algorithm:

β̃
.r+1/

b = β̃
.r/

b +{J̃b−1 +Jb.Db; β̃b−1/}−1Ũ
.r/

b , .11/

where the adjusted score Ũ
.r/

b = J̃b−1.β̃b−1 − β̃
.r/

b / + Ub.Db; β̃
.r/

b / is updated over iterations.
Again, algorithm (11) uses only subject level data of current batch Db and summary statistics
{β̃b−1, J̃b−1, φ̃b−1} from historical data. Also, a consistent estimator of parameter φ is updated
by

φ̃b = Nb−1 −p

Nb −p
φ̃b−1 + nb −p

Nb −p
φ̂b,

with

φ̂b = 1
nb −p

∑
i∈Db

.yi − μ̂i/
2

v.μ̂i/
:
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Fig. 2. Rho architecture:an expanded speed layer of the lambda architecture with an addition of an inference
layer for incremental updating of quantities required by statistical inference

3.2. Rho architecture
Apache Spark is a unified data analytics platform for large-scale data processing. Built on a
distributed computing paradigm, it offers high performance for both batch and streaming data.
Its lambda architecture is designed to achieve efficient communication and co-ordination be-
tween the batch layer and speed layer to handle streaming data. To implement our proposed
algorithm that provides both realtime estimation and statistical inference, we expand the speed
layer in the lambda architecture to accommodate inferential statistics, i.e. information matrices
(in short ‘info.mats’), such as the Fisher information. As shown in Fig. 2, the resulting rho
architecture consists of a speed layer and an inference layer that is responsible for inferential
statistics updating. When a new batch of data arrives, the speed layer updates the views (or esti-
mates) in the GLMs with the utility of prior inferential statistics from the inference layer. Then,
the updated views are sent back to the inference layer, where, together with the current data,
realtime updates of information matrices are generated. The incremental updating algorithm in
equation (11) is implemented in the rho architecture.

3.3. An example: linear model
To see the specific operational details that were discussed above, here we present renewable esti-
mation in the Gaussian linear model. For the linear model, the renewable estimation proposed
turns out to be identical to OLSE given in equation (4), with more details available in the on-line
supplementary material section S1.

3.3.1. Example 1
Consider data batch Db = {yb, Xb} with outcome yb = .yb1, : : : , ybnb

/T and covariates Xb =
.xb1, : : : , xbnb

/T, and yb|Xb are independently sampled from a Gaussian distribution with mean
μb = .μb1, : : : , μbnb

/T and variance φI such that μbi =E.ybi|xbi/=xT
biβ0 and variance V.ybi|xbi/=

φ0. Here the variance function v.μi/≡1. Then, the score function and the corresponding neg-
ative Hessian for data batch Db are respectively Ub.β/ = XT

b .yb − Xbβ/ and Jb.β/ = XT
b Xb: A
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closed form expression for the renewable estimator of β0 is obtained directly by solving the
incremental estimating equation (10):

β̃b = .J̃b−1 +Jb/−1.J̃b−1β̃b−1 +XT
b yb/, b=1, 2, : : : :

This β̃b is calculated at the speed layer. By convention, the initials are β̃0 = 0p and J̃0 = 0p×p.
Moreover, an unbiased estimator of φ0 based on β̃b takes the following recursive form:

φ̃b = 1
Nb −p

b∑
j=1

.yj −Xjβ̃b/T.yj −Xjβ̃b/

= 1
Nb −p

{.Nb−1 −p/φ̃b−1 + β̃
T
b−1J̃b−1β̃b−1 +yT

b yb − β̃
T
b J̃bβ̃b}, b=1, 2, : : : :

The above φ̃b is calculated and stored in the inference layer as part of the Fisher information
calculation, given by ṽar.β̃b/= φ̃b.J̃b−1 +Jb/−1. This estimated variance of β̃b gives exactly the
same standard error as that of the oracle MLE β̂

Å
b , which is obtained by fitting the linear model

once with the entire data DÅ
b . So, the proposed renewable estimator does not lose any estimation

efficiency but is advantageous in data storage and computing speed.

4. Large sample properties and incremental inference

In this section we first establish estimation consistency and asymptotic normality for the pro-
posed renewable estimator and then show its asymptotic equivalence to the oracle MLE. Also,
we present the incremental inference based on the Wald statistic.

4.1. Large sample properties
For an arbitrary batch b, suppose that .yi, xi/ are IID samples from an exponential dispersion
model with density f.y; x, β, φ/, i = 1, : : : , Nb, with mean μi = E.yi|xi/ = g.xT

i β/, β ∈Θ⊂ Rp,
and variance V.yi|xi/=φv.μi/, φ> 0, is the dispersion parameter, where v.·/ is the known unit
variance function. Let β0 and φ0 be the true parameters. Under the canonical link, denote

INb
.β0/=

Nb∑
i=1

E.UiUT
i /=φ=

Nb∑
i=1

xiv.μi/xT
i :

Let BNb
.δ/ be a neighbourhood of β0, BNb

.δ/={β :‖IT=2
Nb

.β−β0/‖�δ}∈Θ, δ >0, where ‘‖ ·‖’
is the l2-norm. Here IT=2

Nb
denotes the right Cholesky square root of INb

.β0/, according to
INb

=I1=2
Nb

IT=2
Nb

. We postulate the following regularity conditions.

Condition 1 (divergence). The smallest eigenvalue of INb
.β0/ satisfies λmin.INb

/ →∞, as
Nb →∞.

Condition 2. INb
.β/ is positive definite for all β∈BNb

.δ/.

Condition 3. The log-likelihood function l.β, φ, x; y/ is twice continuously differentiable and
INb

.β/ is Lipschitz continuous in Θ.

Remark 1. Under condition 1, the neighbourhood BNb
.δ/ shrinks to a singleton β0, as Nb →

∞. Condition 2 is necessary for both consistency and asymptotic normality. Both condition
1 and condition 2 are the standard regularity conditions that were assumed by Fahrmeir and
Kaufmann (1985). Different from the traditional MLE, the consistency for the renewable esti-
mator requires the continuity assumption 3 to be held over the whole parameter space Θ, rather
than over a neighbourhood of β0. Since, in the GLMs, the matrix INb

.β/ depends on β via the
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unit variance function v.·/, the Lipschitz continuity condition automatically holds on a compact
parameter space, which is sufficient for most applications.

Theorem 1. Under conditions 1–3, the renewable estimator β̃b given in equation (10) is
consistent, namely β̃b →p β0, as Nb =Σb

j=1nj →∞:

The proof of theorem 1 is given in Appendix A.1.

Theorem 2. Under conditions 1–3, the renewable estimator β̃b is asymptotically normally
distributed, i.e.

√
Nb.β̃b −β0/

d→N .0,Σ0/, as Nb =
b∑

j=1
nj →∞,

where Σ0 is the inverse of the Fisher information for a single observation at the true values.

The proof of theorem 2 is provided in Appendix A.2. It is interesting that the asymptotic
covariance matrix of the renewable estimator β̃b that is given in theorem 2 is the same as that
of the oracle MLE β̂

Å
b . This implies that the renewable estimator proposed is fully efficient;

see also remark 2 below. With no need for historical subject level data in the computation,
using only the prior aggregated negative Hessian matrix stored in the rho architecture, J̃b =
Σb

j=1Jj.Dj; β̃j/, we calculate the estimated asymptotic covariance matrix Σ̃b given by Σ̃b =
{.Nbφ̃b/−1Σb

j=1Jj.Dj; β̃j/}−1 =Nbφ̃bJ̃
−1
b : It follows that the estimated variance matrix for β̃b

is given by

Ṽ.β̃b/ := ṽar.β̃b/= 1
Nb

Σ̃b = φ̃bJ̃
−1
b : .12/

Remark 2. Because both SGD and AISGD may be regarded as special cases of the proposed
renewable estimator, with nj =1 for all j, the result of Sakrison’s asymptotic efficiency (Sakrison,
1965) remains true theoretically for AISGD (Toulis and Airoldi, 2015). Theorem 2 presents an
extension of the efficiency theory for the GLMs with streaming data.

The following theorem is the theoretical basis for the proposed renewable estimator β̃b, which
is shown to be asymptotically equivalent to the oracle MLE β̂

Å
b .

Theorem 3. Under conditions 1–3, the l2-norm difference between the oracle MLE β̂
Å
b and

the proposed renewable estimator β̃b vanishes at the rate of N−1
b , namely

‖β̃b − β̂
Å
b ‖2 =Op.1=Nb/, as Nb →∞:

Theorem 3 implies that the renewable estimator achieves optimal efficiency. The proof of
theorem 3 is included in Appendix A.3.

4.2. Incremental inference
The Wald test based on the asymptotic distribution of the renewable estimator in theorem 2
is a straightforward approach to testing hypotheses of individual coefficients or of nested pa-
rameter sets. For k<p and a pre-fixed null subvector βnull

1 , define the following null hypothesis
parameter space ΘH0 = {.β1, β2/ = .βnull

1 , βk+1, : : : , βp/}, a .p − k/-dimensional subspace of
Θ. The subvector β̃1b of β̃b corresponding to its first k parameters follows asymptotically a
k-dimensional marginal normal distribution, according to theorem 2. Specifically, a suitable
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block partition of the estimate β̃b and its asymptotic variance matrix are given by respectively
β̃b = .β̃

T
1b, β̃

T
2b/T and Σ0 = [Σij]i,j=1,2: a 2 × 2 block matrix. Under the null hypothesis H0 :

β1 =βnull
1 ,

√
Nb.β̃1b −βnull

1 /→d Nk.0,Σ11/, as Nb →∞: This gives rise to the following asymp-
totic χ2-distribution with k degrees of freedom, i.e. under the null H0,

W̃b = .β̃1b −βnull
1 /T{Ṽ.β̃b/11}−1.β̃1b −βnull

1 /

= .β̃1b −βnull
1 /T{.φ̃bJ̃

−1
b /11}−1.β̃1b −βnull

1 /
d→χ2

k, .13/

where .φ̃bJ̃
−1
b /11 is the .1, 1/-block of matrix Ṽ.β̃b/ in equation (12). Thus, a 100.1 − α/%

confidence ellipsoid for β1 is given by

C={β1 : .β̃1b −β1/T{.φ̃bJ̃
−1
b /11}−1.β̃1b −β1/<χ2

k.α/}:

It is worth pointing out that Rao’s score test and Wilks’s likelihood ratio test are not discussed
here because both methods require the renewable estimates of β under H0. Unlike the above
Wald test which is just a direct by-product of theorem 2, the other two tests involve constrained
estimates under the null. The related estimation does not seem to follow incremental operations.
Thus, incremental inference based on Rao’s score test or Wilks’s likelihood ratio test is an open
problem in the setting of streaming data analysis.

5. Implementation

5.1. Rho architecture and pseudocode
The renewable analytics proposed may be implemented in the rho architecture in Fig. 2. The
workflow chart in Fig. 3 facilitates the organization of the pseudocode for key numerical calcu-
lations, summarized by algorithm 1 in Table 3.

Fig. 3. Diagram of the rho architecture in which β̃b�1 is updated to β̃b at the speed layer and .J̃b�1, φ̃b�1/
are updated to .J̃b, φ̃b/ at the inference layer
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Table 3. Algorithm 1: implementation of the renewable analytics in the rho architecture

1 Inputs: model p.y|X,β0,φ0/, streaming data sets D1,: : : , Db,: : :
2 Outputs: β̃b and Ṽ.β̃b/, for b=1, 2, : : :

3 Initialize: set initial values β̃init, φ̃0 =0 and J̃0 =0p×p
4 for b=1, 2, : : : do
5 read in data set Db
6 at the inference layer, perform Cholesky decomposition of {J̃b−1 +Jb.Db; β̃b−1/} and cache

the resulting factorizations
7 at the speed layer, with β̃

.1/
b = β̃b−1, use the factorizations to run the following iterations:

β̃
.r+1/
b = β̃

.r/
b +{J̃b−1 +Jb.Db; β̃b−1/}−1{J̃b−1.β̃b−1 − β̃

.r/
b /+Ub.Db; β̃

.r/
b /}, until

convergence
8 at the inference layer, update both J̃b = J̃b−1 +Jb.Db; β̃b/ and

φ̃b = Nb−1 −p

Nb −p
φ̃b−1 + nb −p

Nb −p
φ̂b,

and then calculate Ṽ.β̃b/= φ̃bJ̃
−1
b

9 save β̃b at the speed layer, and J̃b and φ̃b at the inference layers
10 release data set Db from the memory
11 end
12 Return β̃b and Ṽ.β̃b/, for b=1, 2, : : :

(a) Line 1: all streaming data sets are modelled by a homogeneous GLM with a common
true parameter β0. Such a model automatically satisfies some of the regularity conditions
that were given in Section 4.1, such as condition 3.

(b) Line 2: outputs include renewable estimates of β and estimated asymptotic variances at
each batch b.

(c) Line 3: set certain initial values for β0, e.g. β̃init =0.
(d) Line 4: run through the on-line updating procedures along data streams.
(e) Line 6: at the inference layer, calculate the negative Hessian Jb.Db; β̃b−1/ and communi-

cate with the speed layer.
(f) Line 7: run the updating algorithm to renew β̃b−1 to β̃b, in which the cached factorizations

are repetitively used in iterations.
(g) Line 8: at the inference layer, update both the negative Hessian and the dispersion pa-

rameter estimate with current batch Db under newly updated β̃b from the speed layer.

5.2. Examples
Unlike the first example of the Gaussian linear model in Section 3.3 where an exact decomposi-
tion of batches of data is available, here we present two non-linear GLMs in that the proposed
renewable analytics are needed. They are the popular logistic model for binary outcomes and
log-linear model for count outcomes.

5.2.1. Example 2 (logistic model)
Assume data batch Db = {yb, Xb} with binary outcomes yb = .yb1, : : : , ybnb

/T and covariates
Xb = .xb1, : : : , xbnb

/T, where ybi|xbi are independently sampled from a Bernoulli distribution
with probability of success πbi =P.ybi =1|xbi/, and dispersion parameter φ=1. A logistic model
takes the form

g.πbi/= log
(

πbi

1−πbi

)
=xT

biβ:
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The score function and negative Hessian matrix (or the observed information matrix) for data
batch Db are respectively given by

Ub.β/=
nb∑

i=1
xbi

{
ybi − exp.xT

biβ/

1+ exp.xT
biβ/

}
,

Jb.β/=
nb∑

i=1
vbixbixT

bi,

where vbi.πbi/=πbi.1−πbi/= exp.xT
biβ/={1+ exp.xT

biβ/}2 is the variance function. The renew-
able estimate β̃b and the aggregated observed information matrices J̃b are updated according
to the procedure given in algorithm 1 under the rho architecture in Fig. 3.

5.2.2. Example 3 (Poisson log-linear model)
Consider Db = {yb, Xb} with outcomes of counts yb = .yb1, : : : , ybnb

/T and covariates Xb =
.xb1, : : : , xbnb

/T. Assume that ybi|xbi are independently sampled from a Poisson distribution with
mean μbi = E.ybi|xbi/ that is specified by a log-linear model g.μbi/ = log.μbi/ = xT

biβ. Here the
dispersion parameter φ=1. The score function and negative Hessian matrix (or the observed in-
formation matrix) for data batch Db are given by respectively Ub.β/=Σnb

i=1xbi{ybi −exp.xT
biβ/}

and Jb.β/=Σnb

i=1vbixbixT
bi, where vbi =μbi = exp.xT

biβ/ is the variance function. Again, the re-
newable estimate β̃b and the aggregated observed information matrices J̃b are produced in the
rho architecture (Fig. 3) respectively at the speed layer and the inference layer via algorithm 1.

6. Simulation experiments

6.1. Set-up
We conduct simulation experiments to assess the performance of the proposed renewable esti-
mator and incremental inference in the settings of linear and logistic models. We compare our
method with several leading methods in the current literature. They are

(a) the oracle MLE obtained by processing the entire data once,
(b) AISGD,
(c) the sequential estimation method of the OLSE in the linear model and
(d) the sequential estimation method of the CEE or CUEE for non-linear GLMs.

Comparisons concern the aspects of parameter estimation, computational efficiency and
hypothesis testing. The evaluation criteria for parameter estimation include

(a) the absolute bias Abias,
(b) the averaged estimated standard error ASE,
(c) the empirical standard error ESE and
(d) the coverage probability CP.

We use the MLE yielded by the R package glm as the gold standard in all comparisons. For the
AISGD method, we use the R package sgd with one-dimensional learning rate (Xu, 2011) and
hyperparameters set at α=1, γ0 =1 and c= 2

3 . Following Fang (2019), we set S =200 bootstrap
samples. Computational efficiency is also assessed by

(e) computation time CTime and
(f) running time RTime.

Rtime accounts only for the data processing time, whereas Ctime includes time that is spent on
both loading data streams and processing data. In the case of AISGD, one data point is run
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at one iteration; thus it is difficult to capture the data loading time properly. In this case, we
consider only Rtime for AISGD.

In all the simulation experiments that are considered in Tables 4–6, we set a terminal point B.
We generate the full data set DÅ

B with NB observations independently from the respective GLMs
with the mean model E.yi|xi/=g.xT

i β0/, i=1, : : : , NB. We set β0 = .0:2, −0:2, 0:2, −0:2, 0:2/T,
the intercept xi[1] ≡ 1, and xi[2:5] ∼ N4.0, V4/ independently where V4 is a 4 × 4 compound
symmetry covariance matrix with correlation ρ=0:5.

6.2. Evaluation of parameter estimation
6.2.1. Scenario 1: fixed NB but varying batch size nb

We begin with the comparison of four methods for the effect of data batch size nb on their
performances of point estimation and computational efficiency. These methods are

(a) the MLE,
(b) AISGD,
(c) the OLSE for the linear model, or the CEE or CUEE for the logistic model and
(d) renewable estimation, Renew.

We generate B data streams consisting of NB =|DÅ
B|= 100000 independent observations, each

batch with nb observations. Tables 4 and 5 report the evaluation criteria for the linear and logistic
models respectively, over 500 rounds of simulations. Additional simulation results in the linear,
logistic and log-linear models with other varying batch sizes may be found in Tables S1, S2 and
S3 respectively in the on-line supplementary material section S3.

6.2.1.1. Bias and coverage probability. In the linear model, because the LSE is a linear func-
tion of data, it can be perfectly decomposed across data batches. Thus, the MLE, OLSE and
Renew are identical, leading to exactly the same bias and coverage probability, as shown in
Table 4. It is easy to see that neither the bias nor the coverage probability in the linear model
is affected by data batch size nb. From Table 5 with the regression, our renewable estimator
always exhibits similar performances to the oracle MLE and appears quite robust to different
nb. In contrast, the CEE method appears numerically unstable; as the batch size nb decreases to
200, its coverage probability drops below 90%. Even though the CUEE method is proposed to
improve the CEE (Schifano et al., 2016), the bias of the CUEE estimator appears much larger
than that of the MLE as nb decreases to 50. In addition, the CUEE method has much larger
empirical standard error than that of the CEE estimator as nb grows smaller. AISGD processes
a single observation each time. So, its bias, estimated and empirical standard errors are not
related to nb, but all of them are constantly larger than those of the MLE or our renewable
estimator. Even though the coverage probability of AISGD by Fang’s method is 0.92, which is
close to the nominal level 0.95, it does not seem to be efficient as it has much larger standard
errors than the MLE and the renewable estimation method. See also the on-line supplementary
Tables S1–S3.

6.2.1.2. Computation time. Two metrics are used to evaluate computational efficiency. CTime
in Table 4 (see also in the supplementary Tables S2 and S3) refers to the total amount of
time required by data loading and algorithm execution, whereas RTime is the amount of time
that is required only for algorithm execution. With an increased B, our renewable estimation
method clearly outperforms the three competitors, MLE, the CEE and the CUEE. AISGD
appears computationally very competitive, because it avoids matrix inversion calculation in the
algorithm. However, this high computing speed pays the price for significantly big estimation
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Table 6. Comparison between different estimators in the logistic model with fixed batch size nb D 100 and
pD5†

Results for B=10 and NB =103 Results for B=100 and NB =104

MLE AISGD CEE CUEE Renew MLE AISGD CEE CUEE Renew

Abias×10−3 61.59 63.18 58.71 60.78 60.97 19.59 24.14 20.80 19.93 19.55
ASE×10−3 78.70 58.34 81.07 79.38 79.15 24.73 28.40 25.53 24.93 24.76
ESE×10−3 77.32 78.63 73.05 76.30 76.56 24.50 30.23 22.99 24.81 24.44
CP 0.96 0.83 0.97 0.96 0.96 0.95 0.92 0.95 0.95 0.95
CTime (s) 0.01 — 0.03 0.06 0.01 0.08 — 0.34 0.63 0.07
RTime (s) 0.007 0.008 0.028 0.056 0.006 0.045 0.064 0.311 0.599 0.047

Results for B=103 and NB =105 Results for B=104 and NB =106

Abias×10−3 6.23 23.44 12.63 7.66 6.22 1.92 23.44 12.43 4.67 1.92
ASE×10−3 7.82 27.94 8.07 7.88 7.82 2.47 27.94 2.55 2.49 2.47
ESE×10−3 7.78 29.39 7.31 9.42 7.78 2.42 29.39 2.28 5.98 2.42
CP 0.95 0.94 0.68 0.90 0.95 0.95 0.94 0 0.67 0.95
CTime (s) 2.88 — 3.056 5.74 0.64 343.5 — 32.60 56.51 6.46
RTime (s) 0.51 0.19 2.84 5.50 0.47 7.04 0.98 28.85 54.04 4.66

†NB increases from 103 to 106. Results are summarized from 500 replications.

bias, leading to problematic statistical inference. As pointed out above, we cannot evaluate
the data loading time for AISGD, since it passes one single data point at a time. The on-line
supplementary Fig. S1 presents a pictorial summary of all the results that were obtained in
simulation scenario 1.

6.2.2. Scenario 2: fixed batch size nb but varying B

Now we turn to an interesting scenario where streaming data sets arrive at a high speed. For
convenience, we fix batch size nb = 100 but let NB increase from 103 to 106. Table 6 lists the
summaries of simulation results under the logistic model.

6.2.2.1. Bias and coverage probability.When the batch size is as small as nb =100, increasing
NB does not seem to help to reduce the estimation bias of the CEE or CUEE. In effect, their
bias is exacerbated as more data streams are processed, resulting in clearly problematic perfor-
mances on statistical inference. When the number of batches of data B increases to 1000, the
coverage probability by the CEE or CUEE methods remains steadily below 90%, with no sign
of improvement in response to increased volumes of data. It is striking that, when B is further
increased to 104, the coverage probability of the CUEE falls to 67%, whereas the CEE gives
the worst 0% coverage probability. This confirms that when the condition B =O.nk

j/, k < 1
3 , is

violated, the CEE or CUEE methods will not have valid asymptotic distributions for inference.
In contrast, our proposed method confirms large sample properties which are similar to those of
the oracle MLE: the average absolute bias decreases rapidly as the total sample size accumulates,
and the coverage probability stays robustly around 95%. For competitor AISGD, the estimated
standard error is much smaller than the empirical standard error and the coverage probability
is only 83% when NB =103. When NB reaches 105 the coverage probability improves to around
95%. However, both the bias and the estimated standard errors are much larger than those of
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MLE or our renewable estimation method, suggesting that AISGD does not provide efficient
inference. Moreover, its bias stops decreasing after a certain level. For example, its bias remains
at 23:44×10−3 when NB increases from 105 to 106 with no sign of further improvement. A sim-
ilar phenomenon has been reported in the literature. According to Toulis and Airoldi (2015),
once AISGD reaches a convergence phase, the subsequent estimates will jitter around the true
parameter within a ball of slowly decreasing radius.

6.2.2.2. Computation time. Our renewable estimation method shows clear advantages as
NB increases: the combined amount of time for data loading and algorithm execution takes
only fewer than 10 s, whereas the oracle MLE, when processing a total of 106 samples once,
requires more than 5 min. This 35-fold faster computation by the method proposed does not
sacrifice any estimation precision and inference power. In addition, the running times for our
method and AISGD are comparable even under large sample size settings such as NB = 105

and NB = 106. Once again, AISGD produces much larger bias and standard errors than does
our method. The extra small amount of time that is used by our method on updating info.mats
at the inference layer is computationally worthwhile for achieving valid and efficient statistical
inference.

6.2.3. Scenario 3: large p with fixed NB and B

To examine the scalability of our method when p becomes large, we run simulations with
p = 1000, 2500, in the logistic model. We set NB = 2 × 105, B = 20 and nb = 104, and simulate
p-element vectors of covariates from xi ∼IID N .0, N−1

B Ip/. Following Sur and Candés (2019),
to guarantee the existence of the MLE in such high dimensional settings, we generate the true
values of β0 entrywise IID from N .10, 900/ under p=1000 and from N .10, 300/ under p=2500.
The same criteria are used in the subsequent assessment and comparisons.

6.2.3.1. Bias and coverage probability.Table 7 summarizes the simulation results over 200
replications. Our renewable estimation method has the same level of bias as the oracle MLE in
this high dimensional logistic regression. In this setting with nj � 10p, both the CEE and the
CUEE methods fail to provide reliable coverage probabilities because of severely large biases.
AISGD has the largest bias, more than 10 times that of the MLE, largely because the AISGD
updates may become trapped locally. Consequently, standard errors are not properly estimated
by Fang’s perturbation resampling method, resulting in 0% coverage probability. According to
Fang (2019), the resampling method may not be able to deal with high dimensional large-scale
data.

6.2.3.2. Computation time.For large p=1000 or p=2500, our renewable estimation method
is at least fourfold faster than the oracle MLE, and this computational efficiency is repeated
in the low dimension case (p = 5) shown in Table 6. Although AISGD runs faster than our
renewable estimation method, it is not applicable to the setting with very large p. The resulting
severe bias hampers reliable estimation or valid inference.

In summary, these simulation results clearly suggest that our proposed method can produce
realtime robust and reliable estimation and inference. Its performances seen in the simulation
studies are very similar to the oracle MLE that processes the entire data once, regardless of
low or high dimension p, and regardless of volume and speed of streaming data. In contrast,
we find that the existing on-line methods work only in some cases. For example, AISGD gives
proper coverage probability only when B is large and p is small, whereas the CEE or CUEE
produces valid inference when both B and p are small. Such evidence further demonstrates the
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Table 7. Comparisons between the various estimators in the logistic
model with fixed NB D2�105, nb D104 and B D 20†

Results for the following methods

AISGD MLE CEE CUEE Renew

p=1000
Abias 25.799 2.176 3.880 2.242 2.152
ASE 1:70×10−3 2.705 2.904 2.668 2.707
ESE 1:72×10−3 2.715 2.358 2.616 2.673
CP 0 0.948 0.757 0.937 0.951
CTime (min) — 17.959 17.288 20.470 4.207
RTime (min) 1.609 16.686 17.093 20.258 4.014

p=2500
Abias 16.386 2.212 6.994 2.581 2.192
ASE 1:71×10−3 2.728 3.475 2.523 2.789
ESE 1:72×10−3 2.745 1.804 2.442 2.715
CP 0 0.946 0.561 0.874 0.954
CTime (min) — 126.407 122.528 149.411 31.451
RTime (min) 4.737 123.904 122.037 148.924 30.917

†The number of covariates, p, varies from 1000 to 2500.

usefulness of our method in interim analyses over the course of data streams. As far as com-
putational efficiency is concerned, the method proposed is clearly superior to existing methods
when data streams arrive at a high speed. Note that the running time complexity of our method
is O.NBp2 +Bp3=3/. When p<nb, it reduces to O.NBp2/. This is a typical order for a second-
order on-line method. When NB is fixed and p is large, increasing the batch size nb makes B small,
leading to a potential improvement in computational efficiency. This gain of computing speed
has been repeatedly seen in both Tables 4 and 7, as well as in the supplementary Tables S1–S3.

6.3. Evaluation of hypothesis testing
Now we evaluate the performance of the proposed incremental inference based on the Wald
test that is available in the inference layer in the rho architecture. We run a simulation study
on the Wald test for H0 : β01 = 0:2 versus HA : β01 �= 0:2, where β01 is the intercept parameter
in the logistic model used in Tables 5 and 6. With βnull = .0:2, −0:2, 0:2, −0:2, 0:2/T, set βa =
.βa1, −0:2, 0:2, −0:2, 0:2/T with βa1 chosen to be a sequence of values from 0:205 to 0:250 with
an increment of 0:005. We evaluate both the size (or type I error) and power (1− type II error) of
the Wald test in equation (13) proposed in Section 4.2. On the basis of simulated data streams,
with NB = 100000, and each batch size nb = 200, we calculated the empirical type I error and
power from 500 replications.

Under H0, as shown in the (1,1)-panel of Fig. S2 in the on-line supplementary material,
the Q–Q-plot of 500 replicates of the Wald test statistic stays closely along the 45◦ diagonal,
indicating the validity of an asymptotic χ2

1-distribution. In addition, we increased the number
of coefficients in the test and found that under H0 the Wald statistics all behave approximately as
a χ2-distribution; see the other plots of Fig. S2. Supplementary Table S4 reports the empirical
type I errors and power based on 500 replications, where the type I errors of the Wald test for
H0 : β01 = 0:2 by the MLE, AISGD and our proposed Wald test are very close to the nominal
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Fig. 4. Power curves of the Wald tests based on the MLE ( ), AISGD ( ), CEE ( ), CUEE ( ) and
renewable estimation ( ), under a sequence of alternative values for the intercept β1

level of 0.05, whereas the Wald tests based on the CEE and CUEE have poor type I error control.
Fig. 4 shows that the power of AISGD is steadily significantly lower than that of the proposed
incremental Wald test or the MLE. In addition, the CEE or CUEE has lower power when the
parameter is close to the true value 0.2, suggesting poor local power.

7. Data example

To show the usefulness of our proposed renewable estimation and inference in practice, we
analysed streaming data from the National Automotive Sampling System crashworthiness data
system. Our primary interest was to evaluate the effectiveness of graduated driver licensing,
which is nationwide legislature for novice drivers of age 21 years or younger under various
conditions of vehicles operation. In contrast, there are no operating restrictions on operating
vehicles for older drivers (say, Age�65 years) in the current law. To assess the effect of driver’s
age on driving safety, we compared age groups with respect to the risk of a fatal crash when an
accident occurred. Three age groups were considered: ‘Age <21’, ‘21�Age <65’ and ‘Age�65’
years were coded as dummy variables in our analysis, with the middle age group as the reference.
Since the number of young or old drivers who are involved in accidents was much smaller than
those in the reference group, it was of interest to renew analysis results with more data being
collected sequentially over time. The event ‘Fatality’ in a crash is a binary outcome of interest,
which was analysed by using a logistic model. This outcome variable was created from the
variable maximum treatment in accident, ATREAT, in the database, which indicated the most
intensive treatment given to a driver in an accident.

In this example, streaming data were formed by monthly accident data from the period of
7 years over January 2009 to December 2015, with B = 84 batches of data and a total sample
size NB =23184 of recorded accidents in the USA. We applied our proposed method to update
sequentially parameter estimates and standard errors for the regression coefficients. We assumed
that the underlying risk of a fatal crash across age groups was constant over the 7-year time
window. Six additional confounding factors were included in the logistic model, including Sex,
Seat belt use, Light condition and Speed limit.

As shown in Fig. 5, the 95% pointwise confidence bands over the 84 batches became narrower
for all regression coefficients as more data streams arrived. Figs 5(a) and 5(b) display the trace
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Fig. 5. Trace plots for the coefficient estimates and 95% pointwise confidence bands of regression coef-
ficients (the numbers on each side denote the estimated regression coefficients after the arrival of the first
and last batches): , 0 reference line

plots of renewable estimates of the coefficients for the young and old age groups respectively. The
estimates for the young group stay below 0 over the 84-month period, meaning that the young
group (Age < 21) has lower adjusted odds of a fatal crash than does the reference group. This
finding is consistent with the reported results in the literature that graduated driver licensing
is an effective policy to protect novice drivers from severe injury (e.g. Chen et al. (2014)). In
contrast, the trace plot for the old age group (Age �65) shows an upward trend and stabilizes
when the sample size increases. This suggests that the adjusted odds of fatality in a vehicle
crash for the old age group become significantly higher than for the reference group when data
accumulated sufficiently large. This may suggest a need for a policy modification for a restrictive
vehicle operation for old drivers.
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Fig. 6. Trace plot of � log10.p/ over monthly batches of data during January 2009–December 2015, each
for one regression coefficient (numbers on the left-hand y-axis are the negative logarithm p-values obtained
by the proposed incremental Wald test and labels on the x -axis correspond to the last month of each year;
on the right-hand y -axis, the numerical numbers denote � log10.p/ obtained by the oracle MLE; the values
in parentheses next to the covariate names denote the areas under the p-value curves): 1, Young (39.50);
2, Old (664.68); 3, Sex (242.49); 4, Seat belt (2582.72); 5, Light condition (186.90); 6, Drinking (589.02);
7, Speed limit (1030.77); 8, Traffic control function (324.02)

Fig. 6 shows the trends of − log10.p/, p-values of the incremental Wald test in the base 10
logarithm, for each regression coefficient over 84 months. Clearly, all the evidence against the
null H0 :βj =0 increases over time. Seat belt turns out to have the strongest association with the
odds of fatality in a crash among all the covariates that were included in the model. This is an
overwhelming confirmation for enforcement of the policy ‘buckle up’ when sitting in a moving
vehicle. In addition, to characterize the overall level of significance for each covariate over the
84-month period, we proposed to calculate the summary statistic area under the p-value curve.
Most of these curves have well-separated patterns, so the ranking of the overall significance
by the areas calculated is well aligned with the ranking of p-values obtained at the end time of
streaming data availability, namely December 2015. It is interesting that Traffic control function,
Light condition and Sex are among the weakest predictors.

Applying the proposed renewable estimation and inference to the above crashworthiness data
system data analysis enabled us to visualize time course patterns of data evidence accrual as
well as stability and reproducibility of inference. As shown clearly in Fig. 5, at the early stage
of data streams, because of limited sample sizes and possibly sampling bias, both parameter
estimates and test power may be unstable and even misleading. These potential shortcomings
can be convincingly overcome when estimates and inferential quantities are continuously
updated along with data streams, which eventually reached stability and reliable conclusions.
Table 8 reports the related analysis at the terminal time of these streaming data. Our pro-
posed rho architecture has made the above incremental analysis straightforward. As a matter
of fact, this expanded architecture with an addition of the inference layer has given rise to
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Table 8. Results from the MLE method and the proposed renewable estimation method in
the logistic model with N D23184, pD9 and B D84

Predictor Results for MLE Results for Renew

Estimate ASE p-value Estimate ASE p-value

Intercept −4:284 0.174 3:91×10−134 −4:254 0.169 6:18×10−140

Young −0:081 0.127 0.524 −0:080 0.132 0.541
Old 0.889 0.104 1:16×10−17 0.876 0.105 9:99×10−17

Sex 0.343 0.079 1:60×10−5 0.326 0.077 2:32×10−5

Seat belt −1:080 0.084 3:55×10−38 −1:085 0.081 2:87×10−41

Light condition 0.208 0.042 7:25×10−7 0.202 0.042 1:24×10−6

Drinking 0.835 0.106 2:42×10−15 0.833 0.108 1:33×10−14

Speed limit 0.719 0.078 2:94×10−20 0.734 0.077 2:19×10−21

Traffic control −0:414 0.085 1:18×10−6 −0.397 0.084 2:09×10−6

function

tremendous convenience in data storage and data analytics for processing high throughput
streaming data.

8. Concluding remarks

Although a large number of statistical methods and computational recipes have been developed
to address various challenges for big data analytics, such as the subsampling-based methods
(Liang et al., 2013; Kleiner et al., 2014; Ma et al., 2015) divide-and-conquer techniques (Lin
and Xi, 2011; Guha et al., 2012; Chen and Xie, 2014; Tang et al., 2019; Zhou and Song, 2017),
little is known about statistical inference in streaming data analyses under dynamic data storage
and incremental updates. This paper has filled the gap with the proposed renewable estimation
and incremental inference.

The renewable estimation methodology is based primarily on a second-order approximation
to the oracle MLE. It can sequentially renew both point estimation and asymptotic normal-
ity along data streams. We proposed a rho architecture for implementation as an extension to
the Apache Spark lambda architecture, which adds an inference layer to carry out storage and
updating of information matrices. Both the proposed statistical methodology and the compu-
tational algorithms have been justified theoretically and examined numerically in the setting of
GLMs. Being a key methodology contribution, incremental inference has shown to be statis-
tically valid and efficient. It has no loss of estimation efficiency in comparison with the oracle
MLE method but is computationally much more efficient than the MLE.

Summary statistics that are involved in our proposed renewable estimation framework behave
similarly to the classical sufficient statistic. Appendix A.4 presents an extension of the classical
concept of sufficiency in this setting of renewable analytics, where only summary statistics of
historical data are accessible. The proposed approximate sufficiency enables us to explain the
renewable estimation properties in terms of a sufficient statistic. This extension builds a useful
theoretical connection between the classical theory of statistical sufficiency and modern on-line
learning analytics. More details on the technical proofs are included in the on-line supplementary
material section S2.

Through various simulation studies, we demonstrate that our proposed method runs compu-
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tationally faster than two existing methods: the CEE and CUEE. Our updating algorithm keeps
using the same inverse Hessian matrix over all the iterations, which is only computed once per
batch of data. It is worth pointing out once again that the consistency of estimation of the CEE
or CUEE is established under a strong regularity condition concerning the ratio of batch size
nb to the number of data batches B. Such a condition may not hold in some real applications
when data streams arrive perpetually. Our method has overcome this restriction and produces
stable, reliable and efficient solutions to the three questions that were raised in Section 1. Thus,
our method is appealing practically. Reliability of statistical inference is of great importance in
practice to handle data streams, such as phase IV clinical trials where drug safety, side effects
and efficacy must to be assessed at the general population mobile health data analysis, as well
as traditional sensor networks, web logs and computer network traffic (Gaber et al., 2005).

The proposed renewable estimation analytics may be treated as a competitive alternative to
currently popular parallel computation. Allocating memory has become a main focus in the
development of big data analytics. The crucial technical challenge pertains to whether or not
historical raw data, instead of summary statistics, are needed in iterative updates to search
for the MLE. Some R packages such as biglm (Lumley, 2013) and speedglm (Enea et al.,
2015) have been proposed to address the problem of loading a large data set, and they have
been shown to provide exactly the same results as the MLE from the R package glm. Both
biglm and speedglm avoid reading in the entire big data set at once; instead calculating the
sufficient statistics needed, XTWX and XWZ, in sequential increments and then summing them
up in the iteratively weighted least square algorithm. However, these two methods must use
historical subject level data in calculations. Thus, they are more expensive in data storage and
are computationally inefficient in comparison with our proposed method. From this perspective,
our method could also serve as a powerful alternative to biglm and speedglm, and as well as
to the parallel computing paradigm when analysing very large static data.

The formulation of renewable estimation analytics is in the context of GLMs where the
log-likelihood functions have nice properties such as twice continuously differentiability. Both
theoretical and numerical experiences learned from the GLMs in this paper shed light on fur-
ther generalization of such methods to other important settings such as generalized estimating
equations, Cox regression and quantile regression. In addition, our method is based on the
assumption that batches of data are all sampled from a homogeneous study population, which
may be violated in some practical studies. In this case of heterogeneous data streams, sequential
updating procedures will be a challenging but useful methodology research topic, which is worth
further exploration.
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Appendix A

A.1. Proof of consistency
Assume that conditions 1–3 given in Section 4.1 hold. The MLE of the cumulative data set to time point
b is

β̂
Å
b =arg max

β∈Rp
lNb

.β, φ; DÅ
b /:
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Under condition 2, i.e. INb
.β/ is positive definite, there is a unique solution to the score equation

Σb
j=1Uj.Dj ;β/=0, which is the MLE β̂

Å
b for this cumulative data set.

Let β0 be the true parameter and β̃b be the renewable estimator. For the prior data batch D1, we
have β̃1 = β̂

Å
1 = β̂1, which is consistent by the classical theory of MLE in the GLMs. Now we prove the

consistency of β̃b for an arbitrary b�2 by the method of induction.
Define a function

fb.β/=− 1
Nb

b−1∑
j=1

Jj.Dj ; β̃j/.β− β̃b−1/+ 1
Nb

Ub.Db;β/:

According to equation (10), the renewable estimator β̃b satisfies

fb.β̃b/=0: .14/

When β̃b−1 is consistent, we have

fb.β0/= 1
Nb

b−1∑
j=1

Jj.Dj ; β̃j/.β̃b−1 −β0/+ 1
Nb

Ub.Db;β0/=op.1/: .15/

Taking the difference between equations (15) and (14), we obtain

fb.β0/−fb.β̃b/= 1
Nb

b−1∑
j=1

Jj.Dj ; β̃j/.β̃b −β0/− 1
Nb

Ub.Db; β̃b/+ 1
Nb

Ub.Db;β0/=op.1/: .16/

Then, taking the first-order Taylor series expansion of term Ub.Db; β̃b/ in equation (16) around β0, we
obtain

Ub.Db; β̃b/=Ub.Db;β0/−{Jb.Db;β0/−Jb.Db;β0/+Jb.Db;ξb/} .β̃b −β0/, .17/

where ξb lies in between β̃b and β0. By the Lipschitz continuity in condition 3, there exists M.Db/>0 such
that

‖Jb.Db;ξb/−Jb.Db;β0/‖�M.Db/‖ξb −β0‖�M.Db/‖β̃b −β0‖: .18/

Using inequality (18) we rewrite equation (17) as

Ub.Db; β̃b/=Ub.Db;β0/−Jb.Db;β0/.β̃b −β0/+Op.nb‖β̃b −β0‖2/: .19/

Combining equations (16) and (19) yields

fb.β0/−fb.β̃b/= 1
Nb

{
b−1∑
j=1

Jj.Dj ; β̃j/+Jb.Db;β0/

}
.β̃b −β0/+Op

(
nb

Nb

‖β̃b −β0‖2

)
=op.1/: .20/

Under the assumption that β̃j is consistent and β̃j ∈BNj
.δ/ for j =1, : : : , b−1, and, by condition 2, we

know that N−1
b {Σb−1

j=1Jj.Dj ; β̃j/+Jb.Db;β0/} is positive definite. It follows that β̃b −β0 →p 0, as Nb →∞.

A.2. Proof of asymptotic normality

(a) For the first data batch, with b=1 and n1 =N1, the MLE β̂
Å
1 = β̂1 = β̃1 satisfies .1=N1/U1.D1; β̃1/=0

and
√

N1.β̃1 −β0/→d N .0, Σ0/, as N1 =n1 →∞. In addition, its score function has the following
stochastic expression:

1
N1

U1.D1;β0/= 1
N1

J1.D1; β̂1/.β̂1 −β0/+Op

(
n1

N1
‖β̂1 −β0‖2

)
, .21/

where we leave n1=N1 =1 in the expression for the convenience of mathematical arguments that are
used in the subsequent proof.

(b) Consider updating β̃b−1 to β̃b. The oracle MLE β̂
Å
b for the cumulative data set DÅ

b satisfies
.1=Nb/Σb

j=1Uj.Dj ; β̂
Å
b /=0. Taking the first-order Taylor series expansion around β0 leads to

1
Nb

b∑
j=1

Uj.Dj ;β0/− 1
Nb

b∑
j=1

Jj.Dj ;β0/.β̂
Å
b −β0/+Op.‖β̂Å

b −β0‖2/=0: .22/
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From the definition of fb.β/, equations (14) and (20), we know that

fb.β0/=− 1
Nb

b−1∑
j=1

Jj.Dj ; β̃j/.β0 − β̃b−1/+ 1
Nb

Ub.Db;β0/

= 1
Nb

{
b−1∑
j=1

Jj.Dj ; β̃j/+Jb.Db;β0/

}
.β̃b −β0/+Op

(
nb

Nb

‖β̃b −β0‖2

)
=op.1/:

It follows that

− 1
Nb

{
b−1∑
j=1

Jj.Dj ; β̃j/+Jb.Db;β0/

}
.β̃b −β0/+ 1

Nb

b−1∑
j=1

Jj.Dj ; β̃j/.β̃b−1 −β0/+ 1
Nb

Ub.Db;β0/

+Op

(
nb

Nb

‖β̃b −β0‖2

)
=0: .23/

Similarly to equation (21), at the .b−1/th data batch, it is easy to show that

1
Nb−1

b−1∑
j=1

Uj.Dj ;β0/= 1
Nb−1

b−1∑
j=1

Jj.Dj ; β̃j/.β̃b−1 −β0/+Op

(
b−1∑
j=1

nj

Nb−1
‖β̃j −β0‖2

)
: .24/

Plugging equation (24) into equation (23), we obtain

1
Nb

b∑
j=1

Uj.Dj ;β0/− 1
Nb

{
b−1∑
j=1

Jj.Dj ; β̃j/+Jb.Db;β0/

}
.β̃b −β0/+Op

(
b∑

j=1

nj

Nb

‖β̃j −β0‖2

)
=0:

Since, according to theorem 1, all β̃j are consistent for j = 1, : : : , b − 1, and, by condition 3, the
continuous mapping theorem implies that

1
Nb

b∑
j=1

Uj.Dj ;β0/− 1
Nb

b∑
j=1

Jj.Dj ;β0/.β̃b −β0/+Op

(
b∑

j=1

nj

Nb

‖β̃j −β0‖2

)
=0:

Furthermore, since φ̃b is a consistent estimator of φ0 because of the weak law of large numbers,
we have .1=Nb/φ̃

−1
b Σb

j=1Jj.Dj ;β0/→p Σ−1
0 , Nb →∞: By condition 2, I−1

Nb
.β0/ exists, and thus the

central limit theorem implies that

√
Nb.β̃b −β0/=

{
b∑

j=1
Jj.Dj ;β0/

}−1 1√
Nb

b∑
j=1

Uj.Dj ;β0/+op.1/
d→N .0, Σ0/, Nb →∞:

.25/

A.3. Proof of asymptotic equivalency
Now we prove theorem 3. The difference of the two equations (22) and (17) suggests that

1
Nb

b∑
j=1

Jj.Dj ;β0/.β̃b − β̂
Å
b /=Op

(
b∑

j=1

nj

Nb

‖β̃j −β0‖2 +‖β̂Å
b −β0‖2

)
=Op

(
1

Nb

)
:

Theorem 2 or equation (25) implies that ‖β̃j −β0‖2 =Op.1=Nj/, j =1, : : : , b. By condition 2, it is easy to
see that

‖β̃b − β̂
Å
b ‖2 =Op.1=Nb/:

A.4. Approximate sufficient statistic
To understand what types of summary statistics are suitable for the recursive updating procedures in
the proposed renewable analytics, we establish a new notion of approximate sufficient statistic. This is an
extension of the classical concept of sufficiency in the connection to the second-order incremental updating
procedures, where only summary statistics of historical raw data are accessible in the subsequent updates.

Definition 1 (approximate sufficient statistic). Let D={di}n
i=1 ∼IID f.d;β0, φ0/ denote a set of random

samples of size n, and fn.D;β0, φ0/ is the joint probability density function or probability mass function of
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D. Suppose that the nuisance parameter φ0 is unknown and consistently estimated by φ̂n, namely φ̂n →p φ0.
Let Bn.δ/ be a neighbourhood of β0 defined similarly to that given in Section 4.1. A statistic Sn.D/ is said
to be an approximate sufficient statistic for β, if there are functions g{Sn.D/;β} and cn.D; φ̂n/ such that,
for all samples in D and all parameters β∈Bn.δ/, fn.D;β, φ̂n/=gn.D;β, φ̂n/cn.D; φ̂n/, with gn.D;β, φ̂n/=
g{Sn.D/;β}+op.1/: In particular, when the nuisance parameter φ0 is known, the factorization expression
reduces to fn.D;β/=gn{D;β}cn.D/, with gn.D;β/=g{Sn.D/;β}+op.1/:

This definition is well suited to the logistic model and Poisson model with φ0 = 1, as well as the linear
model or gamma model with an unknown φ0. In the latter case, we replace the nuisance parameter φ0 with
an unbiased or consistent estimator in the derivation of Sn.D/. Thus, β depends on data D through Sn.D/
only, approximately. In the on-line supplementary material section S2, we prove that the summary statistics
that are used in the proposed renewable analytics are approximate sufficient statistics in the framework of
GLMs. Also, we present an interesting example of an approximate sufficient statistic in the linear model
where the factorization holds exactly.
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