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database systems, the strategy of divide-and-combine has been the method of choice

AMS 2010 subject classifications: for scalability. Due to partition, the sub-dataset sample sizes may be uneven and some
primary 62H15 possibly close to p, which calls for regularization techniques to improve numerical
secondary 62F12 stability. However, there is a lack of clear theoretical justification and practical guidelines

to combine results obtained from separate regularized estimators, especially when
the final objective is simultaneous inference for a group of regression parameters.
In this paper, we develop a strategy to combine bias-corrected lasso-type estimates
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Inference by using confidence distributions. We show that the resulting combined estimator

Lasso achieves the same estimation efficiency as that of the maximum likelihood estimator

Meta-analysis using the centralized data. As demonstrated by simulated and real data examples,

Parallel computing our divide-and-combine method yields nearly identical inference as the centralized
benchmark.

© 2019 Elsevier Inc. All rights reserved.

1. Introduction

We consider simultaneous inference for the generalized linear model (GLM) under the situation where data are
stored on distributed computer clusters instead of a centralized location. The use of distributed storage can be due
to either large data volume or protection of individual-level sensitive data from leaving data-owning entities. Such
distributed data presents great challenges in statistical analyses because the entire dataset cannot be loaded once to
a single processor for computation [9]. In the advent of cloud storage and computing, the method of divide-and-combine,
also known as divide-and-conquer [1], has become the state-of-the-art in big data analytics to effectively improve
scalability. Divide-and-combine is a computational procedure that divides the data into relatively independent, smaller
and computable batches, processes them in parallel and combines the separate results. However, not all existing statistical
methods are directly parallelizable. Some complicated methods require special treatment in order to be adapted to the
parallel computing architecture; see for examples, parallel matrix factorization by randomized matrix approximation
in [22], scalable bootstrap by bag of little boostraps in [16], divide-and-combine-type kernel ridge regression in [39],
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and communication efficient lasso regression in [17], among others. In this paper, we consider simultaneous inference
for the GLM using divide-and-combine. While both the sample size N and the number of covariates p may be large in
practice, here we focus on the case when N >> p, but p is not small and can vary from hundreds to thousands. The N
observations are split into K mutually independent sub-datasets.

Meta-analysis is an example of divide-and-combine that combines summary statistics from independent studies, see
for examples [14,28,29]. The classical fixed-effect meta-analysis uses inverse variance weighted average to combine
separate point estimates. Raw data can be processed locally and only summary quantities are communicated between
machines to reduce cost of data transfer [17]. In the development of distributed algorithms for statistical inference,
one question arises naturally: are the proposed divide-and-combine estimators and the maximum likelihood estimator
(MLE) obtained from the centralized data asymptotically equivalent, leading to comparable statistical inferences? Lin
and Zeng [20] showed that such a meta-estimator asymptotically achieves the Fisher's efficiency; in other words, it
follows asymptotically the same distribution as the centralized MLE. The Fisher's efficiency has also been established for a
combined estimator by [19] through aggregating estimating equations under a relatively strong condition that K is of order
O(n") where r < 1/3 and n is the sample size of a sub-dataset. Recently, Battey et al. [2] proposed test statistics and point
estimators in the context of the divide-and-combine, where the method of hypothesis testing is only developed for low
dimensional parameters, and the combined estimator takes a simple form of an arithmetic average over sub-datasets.
Different from [2], we consider simultaneous inference for all parameters and use the inverse of variance-covariance
matrices to combine estimates.

Although the overall sample size is large, it is reduced K times in the sub-datasets due to data partition. The sample size
reduction and potentially unbalanced sample sizes across sub-datasets may cause numerical instability in the search for
the MLE, especially in overfitted models when most of covariates are unimportant among all covariates that are included in
the analysis. As shown in Section 4, coverage probabilities of confidence intervals obtained by the classical meta-analysis
method deviate drastically from the nominal level as K increases. This motivates the use of regularized regression to
overcome such numerical instability. For regularized estimators, such as lasso [31] and SCAD [10], constructing confidence
intervals is analytically challenging because: (i) sparse estimators usually do not have a tractable limiting distribution, and
(ii) the oracle property [10] relying on knowledge of the truly non-zero parameters is not applicable to statistical inference
since the oracle is unknown in practice.

When penalized regression is applied on each sub-dataset, variable selection procedures will choose different sets of
important covariates by different tuning schemes. Such misaligned selection prohibits any weighting approaches from
combining the separate results; both dimensionality and meaning of the estimates across sub-datasets may be very
different. Chen and Xie [4] proposed a majority-voting method to combine the estimates of the covariates most frequently
identified by the lasso across the sub-datasets. Unfortunately, this method does not provide inference for the combined
estimator, and it is sensitive to the choice of inclusion criterion. To fill in this gap, we propose a new approach along the
lines of the post-selection inference developed for the penalized estimator by [13] and [40], which allows us to combine
bias-corrected lasso estimators obtained from sub-datasets.

In this paper, we use the confidence distribution approach [36] to combine results from the separate analyses of
sub-datasets. The confidence distribution, originally proposed by Fisher [11] and later formally formulated by Efron
[8], has recently attracted renewed attention in the statistical literature; see for examples, [26,36] and references
therein. An advantage of the confidence distribution approach is that it provides a unified framework for combining
distributions of estimators, so statistical inference with the combined estimator can be established in a straightforward
and mathematically rigorous fashion. Specifically related to divide-and-combine, Xie et al. [37] developed a robust
meta-analysis-type approach through confidence distribution, and Liu et al. [21] proposed to combine the confidence
distribution functions in the same way as combining likelihood functions for inference, and showed their estimator
achieves the Fisher’s efficiency. The step of combining via confidence distribution theory requires well-defined asymptotic
joint distributions of all model parameters of interest, which, in the current literature, are only available for p less than n,
the sample size of one sub-dataset under equal data split. Here, we consider the scenarios where p and K can both diverge
to infinity with rates slower than N. Our new contribution is two-fold: (i) the combined estimator achieves asymptotically
the Fisher's efficiency; that is, it is asymptotically as efficient as the MLE obtained from the direct analysis on the full
data; and (ii) the distributed procedure is scalable and parallelizable to address very large sample sizes through easy and
fast parallel algorithmic implementation. The latter presents a desirable numerical recipe to handle the case when the
centralized data analysis is time consuming and CPU demanding, or even numerically prohibitive.

This paper is organized as follows. Section 2 focuses on the asymptotics of the bias-corrected lasso estimator in sub-
datasets. Section 3 presents the confidence distribution method to combine results from multiple regularized regressions.
Section 4 provides extensive simulation results, and Section 5 illustrates our method by a real data. We conclude in
Section 6. We provide key technical details in the Appendix A and defer complete proofs and supporting information to
the Supplementary Material.

2. Distributed penalized regressions for sub-datasets

For GLM, the systematic component is specified by the mean of a response y; that is related to a p-dimensional vector
of covariates x; by a known monotonic canonical link function g(-) in the form pu; = E(y;) = g~ '(x] B), for subject
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i € {1,...,N}. The random component is specified by the conditional density of Y = (yi,...,yn)" given X =
(%1, ...,xy)". The variance of the response takes the form of var(y;) = ¢v(u;) where ¢ is the dispersion parameter
and v(-) is the unit variance function [23]. The associated likelihood function is given by Ly(8; Y, X) = ]_[f’:1 exp[{yi0; —
b(6:)}/ ¢ +c(yi, )], where b(-) = g~ (-) and the canonical parameters have the form 6; = x!.Tﬁ, with § being the p-element
vector of regression parameters of interest.

The centralized MLE solution, 8 = arg maxg £yx(B; Y, X), in general has no closed-form expression, except for the
Gaussian linear model, and is often obtained numerically by certain iterative algorithms such as Newton-Raphson. Thus,
it is not trivial to establish exact parallel algorithms that only require a single passing of each sub-dataset, and still achieve
the;( same efficiency as the centralized MLE. Sample partition naturally results in K sub-datasets, each with size ny, and
Z _1 Nk = N

kTﬁis section focuses on deriving the regularized estimator and confidence distribution for a single sub-dataset of
sample size n; for a specific k. Since the method in this section is general to all sub-datasets, for ease of exposition,
we suppress k unless otherwise noted. We start by deriving the asymptotic properties of lasso regularized regression, as
our divide-and-combine procedure is dependent on the asymptotic results. The regularization plays an important role in
stabilizing numerical performance on the divided datasets, which will be shown in later sections. We use lasso [31] in
the development of this paper. With little effort, other types of regularization, such as SCAD [10] or elastic net [42], may
be adopted in our proposed procedure.

2.1. Lasso in generalized linear models

The lasso estimator is obtained by maximizing the following penalized log-likelihood function with respect to the
regression parameters B subject to a normalizing constant,

ef 1
PL(B; Y, X) “—cn(ﬂ Y, X)— AlBlh

5 @ Z {yix! B — b(xT B)} — AlIBIl1,
i=1

where A is a nonnegative tuning parameter, and ||B||; = 5;1 |B;| is the £1-norm of the regression coefficient vector
B=(,..., ,Bp)T. Let B, = argmaxg PL(B; Y, X) be a lasso estimator of 8 at a given tuning parameter A > 0. Solution

B,\ may be obtained by coordinate descent via Donoho and Johnstone [7]'s soft-thresholding approach, with the tuning
parameter being determined by, say, cross-validation [25].

2.2. Confidence distribution for bias-corrected lasso estimator

To combine multiple lasso estimators obtained from separate sub-datasets, we need to overcome the issue of
misalignment: the sets of selected covariates with non-zero estimates in the model are different across sub-datasets. Our
solution is based on bias-corrected lasso estimators. The bias correction enables us not only to obtain non-zero estimates
of all regression coefficients, but also, more importantly, to establish the joint distribution of regularized estimators. The
latter is critical for us to utilize the confldence dlStl‘lbuthl‘l to combine estimators, which will be described in Section 3.

Denote the score function by §,(8) = n¢ Z, 1 {3’1 “(x Tﬂ)} x;. It is known that the lasso estimator, ﬁk, satisfies

the following Karush-Kuhn-Tucker (KI(]") condition: S (ﬂk) — Ak = 0, where subdifferentials £ = (k1, ..., p) satisfy
max; |&j| < 1, and &; = sign(B, ;) if B, ;j # 0. The first-order Taylor expansion of S,(f,) in the KKT condition at the true

value B, leads to —Sn(ﬁo)(fﬁ —Bo)+2rk ~ Sy(Bo). It follows that g5 — By ~ {—$n(ﬂo)}‘1sn(ﬂ0), where g is a bias-corrected
lasso estimator [13]:

= B+ {=Su(Bo)) "0kt = B + {=Su(Bo)} 'Su(By). (1)

The second equality in (1) follows directly from the KKT condition and the definition of the sensitivity matrix —S,(8) =
% 2?21 v( /Li)xixiT, which is assumed to be a positive-definite Hessian matrix, and v(-) is the variance function. For now, let
us first consider the case when p < n. We show in Theorem 1 that under some regularity conditions, 85 is asymptotically
normally distributed, namely,

c def 7

n'2(B5 — Bo) > N0, E(Bo)), as n — oo, 2

where X (fo) = [E{— (ﬁo) }171. Based on the joint asymptotic normality in (2), following [36], we form the asymptotic
confidence distribution density function of 8¢ as ha(Bo) oc exp[—5(Bo — ,BA) {Z(Bo)y " (Bo — B:)1. Replacing By in (1) by

the sparse lasso estimator ﬁx. we obtain

BS = By + {=Su(B.)} 'Su(B). (3)
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Likewise, replacing By by [% in the asymptotic covariance in (2) leads to a “data-driven” asymptotic confidence density
Fo(Bo) ox exp [~ (B0 — BT (~Su(BI(Bo — D). 4)

It is worth pointing out that this bias-corrected estimator in (3) is equivalent to a one-step Newton-Raphson updated
estimator of the lasso estimator. In the GLM framework, we have h,(fq) exp[—ﬁ(ﬂo — ﬂi)T{XTP,.,(,BA)X} (Bo — B,
where P,(B) = diag {v(i1), ..., v(un)} is the diagonal matrix of the variance functions. When the dispersion parameter
¢ is unknown, e.g., in the linear regression setting, we use a root-n consistent estimator:fb =n—|Bllo)”" Z?:] d(yi, fii),
where ||X||o is the number of non-zero entries of vector x, ji; = g‘l(xiTB), and d(-, -) is the unit deviance function; refer
to [27, Chapter 2] for details.

2.3. Examples

Example 1. Gaussian linear model. Assume y; follows a normal distribution with mean u; = x; T B, variance function
v(i;) = 1, and link function g(x) = x. The score function takes the form S,(8) = 1 Z, 4 {y, —X; ﬂ} x;/¢. The confidence
density function fln(ﬂo) in (4) is obtained by plugging in the bias—corrected estlmator ,BA = ﬂ,\ + XX X"y - Xﬁ,\)
Here Pn(ﬁx) =1I,.

Example 2. Binomial logistic model. Assume y; follows a Bernoulli distribution with probability of success u; € (0, 1),
variance function v; = [;(1 — jx;), link function g(u;) = log( 1‘“ )= x!.TB and ¢ = 1. Similarly, we obtain its confidence

density iy(Bo) with B5 = B + (X" Pa(B:)X) X" (Y — ), where ji = (fi1, ..., fun), fui = exp(x] B:)/{1+ exp(x! B;)} and
P,(B.) = diag(1. ... D).

Example 3. Poisson log-linear model. Assume y; follows a Poisson distribution with mean ul, variance function v(u;) = wi,
link function g(u;) = log(u;) = xTﬂ and ¢ = 1. We can obtain h 1(Bo) with ﬂA = ,BA +{X'p (ﬂk) X} 'XT{Y — 1}, where

o= (i1, ... 1), fu = 0 = exp(x] B;) and Pu(B;.) = diag(dr, ..., By).
2.4. Large sample property

From here on, we bring back the subscript k to denote a quantity concerning the kth sub-dataset as the results will
be carried forward to Section 3 where we discuss the combination step. Let o(M) and o(M) denote the minimum and
maximum singular values of a matrix M, respectively. Let ¢y, and cpax be the minimum and maximum across the set of
constants ¢y, k € {1, ..., K}. Denote the signal set by Ao x = {j : fo.x; # 0} and the non-signal set by Aj |, = {j 2 Pokj = O},
where By = (,Bo,k,L ey ,30_7<;\p) is the true coefficient. Here we allow p > n, and p may diverge to infinity. To establish
large-sample properties for /35’_,{ given in (3) based on the kth sub-dataset (Y, X¢), and subsequently the combined
estimator in Section 3 across all sub-datasets, we postulate the following regularity conditions:

(C1) Assume the score function is unbiased, namely, E[{Y} — g”(Xﬁﬂo,k)} Xi/ox] = 0.

(C2) Assume 0 < b, < g(nk_l/zxk) < E(nk_l/zxk) < By for constants by and By, and || X¢|lcc < Dy for some Dy > 0,
where || X[ o = max;; |x;;].

(C3) For some Vo > O, for all B satisfying [|B.ag Il1 < 3[|B.agll1, it holds that [|B.,, 17 < 11BI3S0.k/ ¥ » Where sq  is
the number of true signals in B and || B3 = ﬂTB In addition, assume A, = O{\/logp/mi} and so = o {(ni/p)"//log p}.

(C4) Assume the same underlying true parameters By = Box, k € {1,...,K}. Denote the common signal set, non-
signal set, and number of signals as Ay = Aoy, Ay = .Ag,k and so = So, respectively, for all k. Further, assume
0 < bpin < Bmax < 00 and ¥ min > 0.

Conditions (C1) and (C2) are two mild regularity conditions widely used in the literature; see for example [21]. It
follows from condition (C2) that, C > max,eco, V() > Min,eco, v() > ¢ > 0 with 25 = {g7'(x"B) : [|¥"B — &" Boxll1 <
8,x € RP} for some positive constants §, ¢, and C. Condition (C3) is the compatibility condition required to ensure the
convergence of lasso estimator in terms of both £; and £, norm [3]. When p = O(nﬁ) with § € [0, 1), condition (C3) states
that so x must be of the order of o(n,] WZ/logp) in the GLM, which is slightly stronger than order s; = o(n,l/z/logp), a
usual condition required in the linear model; see for examples [40] and [13] and detailed discussion therein. Condition
(C4) is the model homogeneity assumption as well as the uniformly bounded assumption across K sub-datasets, which
is required to combine results, as considered in Theorem 2.

Theorem 1. Under conditions (C1)-(C3), for p = O(ni), 8 € [0, 1), and any fixed integer q, let H be a matrix of rank q
with G(H) < oo. Then the fixed-length bias-corrected estimator y,, .« = HB;, ,, with B; , given in (3), is consistent and

asymptotically normally distributed, namely, n,](/z(qu,k — Yok) 4 N(0,J, 1 (Bok)) as ny — oo, where o = Hpoy, and
-1
Jyi(Bok) =E{-H S, (Bo)H"}.
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Theorem 1 may be viewed as an extension of the covariate-wise asymptotic result in [13] to the joint asymptotic
distribution on p, x, a fixed-length sub-vector of ﬂik’k. Matrix H chosen under a target subset of parameters allows
to perform a joint inference, and univariate inference is a special case with ¢ = 1. We emphasize the need of a joint
asymptotic distribution in order to use the method of confidence distribution in (4) to combine results in Section 3. This
is a critical step to yield a combined estimator and related inference. Corollary 1 establishes the validity of the bias-
corrected lasso estimator ., x with A, being selected via the commonly used R-fold cross-validation procedure. It
shows that such A, x satisfies a sufficient condition required by Theorem 1, and can be tuned locally within individual
sub-datasets. In effect, when the sample sizes {nk}’k‘=1 are balanced, a single tuning parameter A is needed. However, to
synchronously tune a common A across K sub-datasets will introduce additional overhead cost in communication. Thus,
we keep parameter tuning separate. More discussion is given in Remark 5 in Section 3. A brief proof of Theorem 1 is given
in the Appendix A, and the complete proofs of Theorem 1 and Corollary 1 are given in the Supplementary Material.

Corollary 1. Under the same conditions of Theorem 1, for any finite integer R, ., .. has the same asymptotic distribution
with the tuning parameter A, x being obtained from R-fold cross-validation using the kth sub-dataset.

Remark 1. The procedure based on Theorem 1 for the construction of the confidence density remains valid when
the adaptive lasso estimator [41] is used to replace B, in (3) and (4). An adaptive lasso estimator is obtained by
B, = arg maxﬂﬁ S vkl B — b(xiTAﬂ)} — A7, WjlB;l, where the weights {@;)7_, are given by i = (|8™])"%, with
an initial root-n consistent estimate 8™ of B and some suitable constant & > 0, which is typically set to 1.

Remark 2. Collinearity is often encountered in high-dimensional data analysis where some of the covariates are highly
correlated. One solution is to construct the confidence distribution in (4) by using the KKT condition of the elastic net
estimator [42]. Another remedy to improve numerical stability is to use a ridge-type estimator by adding a ridge term
tl,, where t > 0, to stabilize the matrix inverse of —S,(Bo), i.e., {—Sn(Bo) + I}~ .

3. Combined estimation and inference

We now consider a full data of size N being partitioned into K sub-datasets, {(Yk,Xk)}f:], each with size ny, and
N = Zle ni. Here, both p and K are allowed to diverge along with N. Let njys = infie(1,.. ) Nk be the sample size
infimum as N and K grow. Consider a target parameter set y = Hf, where q = dim(y) is fixed. At a rate p = O(nfnf), S €
[0, 1), we obtain p, = argmaxy—pg Ly, (B; Yi, Xi), where £, (B; Yi, Xi) is the log-likelihood function of the kth sub-
dataset (Y, Xy), k € {1, ..., K}. If there existed a “god-made” computer with unlimited computational capacity to store
and process the full data, the centralized MLE could be applied directly to obtain pme = argmax,_ggCln(B; Y, X) =
arg max,_pg Zf:] Ln,(B; Y, Xi), where £y(B; Y, X) is the log-likelihood function of the full data (Y, X). Arguably, P
is the gold standard for inference. There are many ways to combine estimates , obtained from sub-datasets. This paper
considers using the confidence distribution due to its generalizability under unified objective functions and its ease in
establishing statistical inferences. For each sub-dataset (Y, X), we first apply Theorem 1 to construct the asymptotic
confidence density hy,, (o), k € {1,...,K}. Then, in the same spirit as [21], we may combine the K confidence densities
to derive a combined estimator of y,, denoted by 4., Where dac refers to divide-and-combine, given as follows:

Viac = argmax,, log T g (¥)
: K 1 s T T 3 ur o V )
= argmin, Y4, 5-(r = 7o) | H{XEPo(BradXi]  HT| (7 = i,

where ,, « = H B/C\k.,k and ,@;k . is the estimate given in (3) with respect to the kth sub-dataset (Y, X ). The key advantage
of the approach in (5) is to derive an inference procedure for the combined estimator Py, as stated in Theorem 2 under
diverging p = 0(nl;), § € [0, 1).

Theorem 2. Assume K = O(N'/>7%), & e (0, 1/2]. Under conditions (C1)-(C4), if E S;kl(ﬂo)snk(ﬁo)] =0and],(Bo) =
Jy.k(Bo.k), respectively, for all k, then the MODAC estimator Ydac Obtained from (5) is consistent and asymptotically normally

distributed, namely, N'/*($yac — ¥0) 4 N0, Jgac,(Bo)) as ning — 00, With Jyec ,(Bo) = J,(Bo), where the latter is the
centralized Fisher information matrix of the full data. That is, the MODAC g, is asymptotically as efficient as the centralized
MLE Pre.

The key result of Theorem 2 is that the combined estimator p4, and the gold standard MLE . are asymptotically
equally efficient. Although it may be tempting to allocate CPUs to speed up computation, the order of K in Theorem 2
guides us to choose a proper number of CPUs to ensure that each CPU has enough samples. It is worth noting
that the dispersion parameter ¢ is not required to be homogeneous across sub-datasets as it does not affect the
estimation; and the divide-and-combine estimator p4, does not require additional conditions than those required by
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the regularized estimator in each sub-dataset. This is because constructing confidence densities makes the individual
asymptotic normal distributions readily available, and the asymptotic distribution of the combined estimator follows. The
practical implication of Theorem 2 is that as long as the sample size of each sub-dataset is not too small, the proposed
P4ac Will have little loss of estimation efficiency, while enjoying fast computing in the analysis of big data. The proof of
Theorem 2 is given in Appendix A.

For the ease of exposition, without loss of generality, we may take pjoc = Buqc, i-€., ¢ = p. In this way, we can stick on
the notation of B in the rest of this paper. By simple algebra, the solution to the divide-and-combine estimator By (5)
can be expressed explicitly as a form of Weighted average of ﬂik’k, k=1,...,K, as follows:

ﬂdac - {Zk 1 nkz ﬁ)»k {Zk 1 nk ﬂkk k)ﬁ)\k k (6)

where Z‘ (/Aﬁk k) = (le¢k) D¢ Pnk(ﬂkk )X . Note that the inverse matrix E (ﬂx,‘ k) in (6) is readily available from the
confldence distribution of each sub-dataset. The only matrix inversion requ1red is for the sum of the Flsher information

matrices. It follows that the variance-covariance matrix of ﬂdac is estimated by Z‘dac = {Zk ]nkznk (ﬂxk )1, from
which confidence regions for any sub-vector of 8 can be obtained by using standard multivariate analysis methods [15].

Remark 3. Note that when Ak = 0 for all k our proposed estimator ﬁdac in (6) reduces to the classical meta-

estimator ﬁmem = {Zk X e (,Bk 31 {Zk X n (ﬂk)ﬂk Lin and Xi [19] found a similar result as a special case of
the aggregated estlmatmg equation estimator. However, the aggregated estimating equation estimator requires a strong
assumption of K = O(n], in ¢) (r < 1/3), and it does not consider regularized estimation for variable selection. In addition,
regardless of ﬁmem and ﬂdac in (6) taking the same form, they are derived from different criteria with different purposes.
Specifically, ﬂmem aims to improve statistical power via weighted average, while ﬂdac is obtained by minimizing the
combined confidence densities for the interest of statistical inference theory. The flexibility of the confidence density
approach allows incorporating additional features in the combination; for example, the homogeneity may be relaxed by
imposing a mixture of normals in (5), which is not feasible in the meta-estimator.

Remark 4. A majonty votmg approach [4] to combine sparse estlmates from K sub-datasets takes the form ﬂmv =
A{Zk 1nkATS,1k (Bi)A Zk A Snk(ﬂk)Aﬂk 4}, where AW = {j Z ﬂkj # 0) > w} is a set of selected signals

in terms of a prespec1ﬁed voting threshold w € [0, K), ﬂk’ i denotes a corresponding sub-vector of the lasso estimate

Bi, and A is a p x | A")| subsetting matrix corresponding to set .A"). The majority voting estimator B, has been shown
to have the oracle property, which, however, is not applicable to statistical inference.

Remark 5. The role of tuning in individual datasets is not to induce sparsity in the final aggregated estimate, but
to produce intermediate sparse estimates that give rise to a robust approximation of the covariance in the individual
confidence distributions. Since the bias-correction procedure offsets the effect of sparsity tuning, the choice of tuning
parameter becomes of little relevance to the means of the derived confidence distributions. The purpose of our integrative
inference distinguishes from those estimation methods given in [17,33] that aim to produce aggregated sparse estimates,
in which a common tuning parameter has to be chosen across all K sub-datasets. As a result, their estimation methods
require one more round of synchronization, whereas in ours, tuning can be done in parallel (from Corollary 1).

The overall computational complexity of centralized MLE based on Fisher’s scoring is of order O(Np?>*<), € € (0, 1) [32],
which is dominated by the cost of matrix inversion. The complexity of divided procedures in MODAC involves coordinate
descent (of order O(2np) when A is given [12]) and evaluating Fisher information matrix (of order O(np?)), for each sub-
dataset. The aggregation step involves summation of order O(Kp?) and matrix inversion of order O(p?*€). Therefore, the
complexity under the ideal parallel situation is of order O(2np+np*+Kp>+p?*¢). Even in the worst scenario when parallel
procedures are run sequentially, the upper bound of overall complexity of MODAC is O(Knp?), which remains comparable
to that of the centralized MLE. Similarly, the complexity of the distributed meta-estimator is at order O(np?*¢ 4+Kp? 4+p?*¢)
with an upper bound O(Knp®*). The value € is purely dependent on the choice of a matrix inversion algorithm, and it
ranges over (0.3, 0.4) for some efficient algorithms.

4. Simulation studies

In this section, we demonstrate the numerical performance of our method under linear, logistic and Poisson regressions
through simulation experiments. Specifically, we compare across three divide-and-combine methods, including the meta-
analysis method by inverse variance weighted averaging described in Remark 3, the majority voting method described in
Remark 4, and our method. Note that when K = 1, under no data partition, meta-analysis is equivalent to the centralized
MLE, the majority voting method is equivalent to the centralized lasso regression [31], and our method is equivalent to
centralized lasso with post-selection inference from Theorem 1.

All methods are compared thoroughly on the performance of variable selection, statistical inference and computation
time. The evaluation metrics for variable selection include the sensitivity and specificity of correctly identifying non-
zero coefficients. The evaluation metrics for statistical inference include mean squared error, absolute bias, coverage
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Table 1

Simulation results, summarized from 500 replications, under the setting of N = 50, 000 and p = 300 for linear, logistic and Poisson models. Methods
with different K are compared. CMLE denotes the centralized MLE method; META denotes the meta-analysis method; MV denotes the majority
voting method; and MODAC denotes the proposed method of divide-and-combine.

Linear model

CMLE META META MV MV MV MODAC MODAC MODAC
K=1 (K=25 (K=100) (K=1) (K=25) (K=100) (K=1) (K=25) (K= 100)
(0 =12) (w = 50)

Sensitivity 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Specificity 0.95 0.95 0.95 091 1.00 1.00 0.95 0.95 0.95
MSE of B4, (x100) 0.01 0.01 0.01 0.03 0.01 0.01 0.01 0.01 0.01
MSE of B.ag (x100) 0.01 0.01 0.01 0.00 0.00 0.00 0.01 0.01 0.01
Absolute bias of B4, 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
Absolute bias of B.ag 0.01 0.01 0.01 0.00 0.00 0.00 0.01 0.01 0.01
Cov. prob. of B4, 0.95 0.95 0.95 - - - 0.95 0.95 0.95
Cov. prob. of B¢ 0.95 0.95 0.95 - - - 0.95 0.95 0.95
Asymp. st. err. of B4, 0.01 0.01 0.01 - - - 0.01 0.01 0.01
Asymp. st. err. of ﬂAé 0.01 0.01 0.01 - - - 0.01 0.01 0.01
Computation time 34.85 0.62 0.20 31.50 2.16 2.08 36.61 2.28 2.14

Logistic model

CMLE META META MV MV MV MODAC MODAC MODAC
K=1 (K=25 (K=100) (K=1) (K=25) (K=100) (K=1) (K=25) (K= 100)
(w=7) (w = 20)

Sensitivity 1.00 1.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00
Specificity 0.95 1.00 1.00 0.89 1.00 1.00 0.95 0.95 0.96
MSE of B4, (x100) 0.08 0.57 189.38 0.23 0.20 0.29 0.08 0.09 0.10
MSE of ﬂA(c) (x100) 0.08 0.05 4.15 0.00 0.00 0.00 0.08 0.08 0.07
Absolute bias of ﬁ Ao 0.02 0.07 1.36 0.04 0.04 0.05 0.02 0.02 0.02
Absolute bias of 8 A5 0.02 0.02 0.16 0.00 0.00 0.00 0.02 0.02 0.02
Cov. prob. of B 4, 0.95 0.36 1.00 - - - 0.95 0.94 0.92
Cov. prob. of ﬂAg 0.95 1.00 1.00 - - - 0.95 0.95 0.96
Asymp. st. err. of BAO 0.03 0.03 1895.12 - - - 0.03 0.03 0.03
Asymp. st. err. of 8 A8 0.03 0.03 1893.23 - - - 0.03 0.03 0.03
Computation time 66.01 1.63 1.40 260.48 15.78 10.42 266.09 15.92 10.53
Poisson model
CMLE META META MV MV MV MODAC MODAC MODAC
K=1) (K =25) (K = 100) (K=1) (K =25) (K = 100) (K=1) (K =25) (K = 100)
(w=7) (w = 26)
Sensitivity 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Specificity 0.95 0.94 091 091 1.00 1.00 0.95 0.95 0.95
MSE of B4, (x100) 0.70 0.80 0.90 1.70 0.80 0.50 0.70 0.70 0.70
MSE of ﬂA(c) (x100) 0.70 0.70 0.80 0.00 0.10 0.00 0.70 0.70 0.70
Absolute bias of ﬁAU 0.01 0.01 0.01 0.01 0.01 0.00 0.01 0.01 0.01
Absolute bias of ﬂAE 0.01 0.01 0.01 0.00 0.00 0.00 0.01 0.01 0.01
Cov. prob. of B 4, 0.95 0.93 0.90 - - - 0.95 0.95 0.95
Cov. prob. of ﬂAg 0.95 0.94 091 - - - 0.95 0.95 0.95
Asymp. st. err. of BAO 0.01 0.01 0.01 - - - 0.01 0.01 0.01
Asymp. st. err. of BAS 0.01 0.01 0.01 - - - 0.01 0.01 0.01
Computation time 42.26 1.46 0.40 132.06 26.57 25.00 136.85 26.67 25.08

probability and asymptotic standard error of coefficients in the signal set Ay and the non-signal set A, respectively.
Coverage probabilities and standard errors are not reported for the majority voting method since it does not provide
inference. We use results from the centralized MLE, B, as our gold standard in all cAomparisons. In order to ensure the
best variable selection results of the majority voting method, we carefully select w in B, such that the sum of sensitivity
and specificity is maximized. The computation time of all methods includes the time taken to read data from disks to
memory and the time taken by numerical calculations. Under the divide-and-combine setting with K > 1, computation
time is reported as the sum of the maximum time used among parallelized jobs and the time used to combine results.
All shrinkage estimates are obtained by applying the R package glmnet with tuning parameter i, selected to yield the
smallest average 10-fold cross-validated error. All simulation experiments are conducted by R software on a standard
Linux cluster with 16 GB of random-access memory per CPU.

Table 1 presents the simulation results from a moderate size dataset with N = 50,000 and p = 300 so that methods
without data partition can be repeated in multiple rounds of simulations within a reasonable amount of time. Clearly, this
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Fig. 1. The y-axis measures the ratio of mean squared error over that of the gold standard CMLE, for regression coefficients in set A4o. Median and
interquartile ranges of the ratios of META (triangles) and MODAC (solid dots) are shown as the ratio p/n; increases. We fix N at 50,000 and p at
300. META fails to converge for logistic and Poisson regressions when p/ny is large and the results are unavailable.

is a typical regression data setting with N >> p. We consider linear, logistic and Poisson models, with responses generated
from the mean model E(y;) = g”(xfﬂo), ie{1,...,N}, with covariates {xi}ﬁi , generated from the multivariate normal
distribution with mean zero and variance one, and with a compound symmetric covariance structure with correlation
p = 0.8, a simulation setting similar to that considered by [13]. We report scenarios when the full dataset is randomly
divided into K = 25 and K = 100 subsets of equal sizes, each with sample size n, = 2000 and n, = 500, respectively.
Results for K = 1 are also reported. We randomly select s = 10 coefficients from B, to be set at non-zero. The non-zero
coefficients are set to 0.3 for linear models, 0.3 for logistic models, and 0.1 for Poisson models. CMLE, META, MV and
MODAC denote the centralized MLE, meta-analysis, majority voting and our method of divide-and-combine (MODAC),
respectively. Results are based on 500 replications.

The results of the Gaussian linear model in Table 1 reassuringly show that all methods perform as well as the gold
standard. META and MODAC exhibit identical performances as that of CMLE regardless of the choices of K. This is because
under the linear model, CMLE can be directly parallelized, so META and MODAC solutions are exact and identical to CMLE.
Among all methods, MV has the highest sensitivity and specificity when w = 12 for K = 25 and w = 50 for K = 100.
This shows the improvement of selection consistency by divide-and-combine. Under the same model settings, Figs. 1 and
2 display additional simulation results at varying choices of K with N fixed at 50,000, summarized over 100 replications.
Fig. 1 shows the ratio comparison of mean squared error of META and MODAG, respectively, to that of CMLE, for 8.4, as K
increases. Fig. 2 compares the coverage probabilities of 4, between CMLE, META and MODAC. Since META and MODAC
are identical to CMLE, their mean-squared errors and coverage probabilities are almost identical, as shown in Figs. 1(a)
and 2(a).

The existence of exact solutions for divide-and-combine methods under the linear model no longer holds in other
generalized linear models, where iterative numerical procedures are needed to search for the estimates. For example
in the logistic model, the p/ny ratio is responsible for numerical stability, as shown in Figs. 1(b) and 2(b). When p/n;
approaches one, the mean squared errors and coverage probabilities of META quickly deviate from those of CMLE, whereas
MODAC remains stable. Although p is much smaller than N, data partitioning may sometimes result in p closer to n; for
some sub-datasets. Regularization is shown in our simulation to be an appealing strategy to reduce the dimension of
the optimization to achieve more stable numerical performance. The regularization helps stabilize the Newton-Raphson
iterative updating algorithm, in which the Hessian matrix may be otherwise poorly estimated in case of p/n; being close to
one. The numerical results of META appear to be unstable within each sub-dataset in both cases K = 25 and K = 100. Such
poor numerical performance results from the estimated probabilities /i; approaching the boundaries in [0, 1], causing the
variance estimates /1;(1— jt;) too close to 0. In short, META gives biased parameter estimates and overestimated standard
errors of these parameter estimates, and is very sensitive to the choice of K. On the other hand, through the regularized
estimation of u;, the proposed MODAC exhibits stable performance similar to that of CMLE. The bias of MV for Aj is
higher than that of CMLE as expected due to the ¢, penalty.

In regard to the Poisson model, Table 1 shows that similar to our findings in the linear and logistic models, MODAC
again gives the most stable results among all divide-and-combine methods. On the other hand, META gives improper
coverage probabilities in comparison to the nominal 95% level, as well as poorer selection accuracy than CMLE. In Fig. 1(c),
we see that the mean squared errors of MODAC are stable against the change of p/ny. In contrast, the mean squared errors
of META quickly deviate from the mean squared error of CMLE for the Poisson model as p/n; increases. In Fig. 2(c), as
similar to the logistic model, the 95% confidence interval coverage probabilities of MODAC remains close to the nominal
level, whereas the coverage probabilities of META deviate from 95% when p/ny, gets close to one. MV gives the best variable
selection with w carefully chosen.

The key message from Table 1 and Figs. 1-2 is that the invocation of regularization greatly helps to achieve consistent
and stable mean and variance estimation in the application of divide-and-combine methods. We see that MODAC produces
the most comparable results to those of the gold standard, and is virtually unaffected by the partition size K. In contrast,
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Fig. 2. Coverage probabilities of regression coefficients in set A, for the gold standard CMLE (open dots), META (triangles) and MODAC (solid dots)
as the ratio of p and ny increases. The total sample size N and number of covariates p are fixed at 50,000 and 300, respectively, for all cases. META
fails to converge for logistic regression when p/n; > 0.3 and the results are unavailable.
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Fig. 3. Median computation time and interquartile ranges for CMLE (open dots) and MODAC (solid dots) as N increases. The sample size of each
sub-dataset ny in our method is fixed at 500 by increasing K. CMLE fails when N = 10° due to memory limitation and the results are unavailable.

the performances of META and MV vary over the partition size K. Another noticeable advantage of MODAC is the saving
of computation time in comparison to gold standard CMLE due to MODAC's scalability, as shown in Fig. 3 with increase in
N and n, = 500 in MODAC, based on 100 replications. We see that the computational burden increases sharply for CMLE
as N increases, whereas the computation time for MODAC remains almost the same in all three types of models, which
clearly demonstrates its scalability. Computation time for CMLE when N = 108 is not reported because the computation
exceeds the maximum memory limit allowed on the Linux cluster. In summary, MODAC achieves significant computation
time reduction without sacrificing statistical accuracy. Despite the fact that META is the fastest as it does not involve
a tuning parameter selection step, its results are clearly unstable in both the logistic and Poisson models. We present
additional simulations in the Supplementary Material to show (i) sensitivity of MV regarding choices of w, (ii) sensitivity
of MODAC under different levels of correlation in design matrices, and (iii) comparison with another faster version of
CMLE given by R package speedglm.

5. Real data application

We illustrate our method using a publicly available dataset from the National Highway and National Automotive
Sampling System Crashworthiness Data System between the years of 2009 and 2015. Details on the access of the data are
provided in the Supplementary Material. This national database contains detailed information of about 5000 crashes each
year sampled across the United States. The response variable of interest is a binary outcome of injury severity, where 1
corresponds to a crash leading to moderate or severer injury, and 0 for minor or no injury. Most of the predictors included
in this study are categorical, and are transformed into dummy variables before regression. Our logistic regression analysis
includes 37,535 drivers with 48 predictors after the transformation. The full data are randomly partitioned into K = 50
sub-datasets, each with sample size of about 750. The logistic regression estimation and inference results are provided
in Table 2, which shows the estimated coefficients, standard errors and p-values of 48 potential risk factors obtained by
CMLE, META and MODAC. Recall that CMLE is the centralized MLE method, which reads in all K data batches and fit one
logistic regression. CMLE gives the exact solution of maximum likelihood estimate and thus serves as our gold standard
for comparisons. In terms of time, MODAC requires 0.66 s, one half of that by CMLE, which is 1.17 s. MODAC yields the
exact same inference result as that of CMLE. Although META is the fastest and finishes in 0.03 s, its inference results
deviate from those of CMLE and MODAC. For example, as inferred by both CMLE and MODAC, African American is less
likely to have moderate to severe injury in a crash than White, and accidents are more likely to result in minor injuries
on Wednesday than Sunday; in contrast, META is unable to capture these factors at the same confidence level.
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Table 2

Estimation and inference results of association study between potential risk factors and binary injury outcome. Logistic model is fitted
using the centralized maximum likelihood estimation method (CMLE), the meta-analysis method (META), and our proposed method
of divide-and-combine (MODAC). Run time is presented in square brackets.

CMLE (1.17s) META (0.03s) MODAC (0.62s)
Predictors Estimate St. Err. p-value Estimate St. Err. p-value Estimate St. Err. p-value
Age 0.08 001 0.00 0.08 0.01 0.00 0.08 001 0.00
If any other passenger —0.17 0.03 0.00 —0.16  0.03 0.00 —0.17 0.03 0.00
If passenger below 14 —031 0.06 0.00 —0.27 0.06 0.00 —0.26 0.05 0.00
If driver female —0.08 003 001 —0.08 003 0.02 —0.08 0.03 0.01
Driver weight 0.10 001 0.00 009 0.01 0.00 0.10 0.01 0.00
Driver height —0.09 0.02 0.00 —0.08 0.02 0.00 —0.09 0.02 0.00
If restraint used —-1.07 003 0.00 —1.00 0.03 0.00 —1.05 0.03 0.00
Number of lanes 003 001 003 0.03 0.01 0.04 003 001 0.03
Speed limit 001 001 065 000 0.01 081 000 001 072
Vehicle age 001 001 043 001 0.01 0.40 001 001 040
Vehicle curb weight —-0.02 002 030 —0.01 002 048 —0.02 0.02 034
If truck —0.05 0.04 0.19 —0.05 004 021 —0.05 0.04 0.18
If vehicle in previous accident —0.11 0.03 0.00 —0.10 0.03 0.00 —0.10 0.03 0.00
If four wheel drive 001 004 069 002 0.04 067 001 004 070
If drinking involved 000 004 090 001 0.05 0.78 000 0.04 090
If drug involved 003 004 051 003 0.05 049 003 004 054
If Hispanic 0.12 004 0.00 0.11 0.04 0.00 0.11 0.04 0.00
If roadway condition bad 000 005 098 003 0.05 0.60 000 005 098
If inclement weather —0.02 0.06 0.77 —0.03 006 058 —0.02 0.06 0.77
Driver race - White (baseline)
Driver race - Asian —0.08 0.07 023 —0.01 0.07 083 —0.08 0.07 023
Region - West (baseline)
Region - Mid-Atlantic —-0.16 004 0.00 —-0.15 004 0.00 —-0.15 0.04 0.00
Region - Northeast —0.07 0.06 0.22 —0.04 006 052 —0.07 0.06 023
Region - Northwest 027 005 0.00 026 0.05 0.00 028 005 0.00
Region - South —-029 005 0.00 —-0.26 005 0.00 —0.27 0.04 0.00
Region - Southeast —-0.29 0.06 0.00 —0.25 006 0.00 —0.26 0.06 0.00
Region - Southwest —0.13 0.04 0.00 —0.12 004 0.00 —0.12 0.04 0.00
Light condition - daylight (baseline)
Light condition - dark 005 005 024 007 0.05 0.16 005 004 026
Light condition - dawn/dusk —0.02 0.06 0.76 003 0.07 071 —0.02 0.06 0.76
Light condition - dark/lighted —0.03 0.03 033 —0.02 003 045 —0.03 003 033
Season - Summer (baseline)
Season - Spring 0.12 003 0.00 0.11 0.04 0.00 0.11 0.03 0.00
Season - Fall 001 004 0383 000 0.04 093 000 003 0388
Season - Winter 003 004 034 003 0.04 0.46 003 004 037
Trafficway flow - divided with barrier (baseline)
Trafficway flow - divide without barrier 002 004 064 001 0.04 073 001 004 071
Trafficway flow - not divided —0.02 0.04 063 —0.03 0.04 049 —0.02 0.04 053
Trafficway flow - one way —-0.19 006 0.00 —0.16 006 0.01 —-0.17 0.06 0.00
Day of Week - Sun (baseline)
Day of week - Mon —0.21 0.05 0.00 —-0.19 0.05 0.00 —0.21 0.04 0.00
Day of week - Tue —-022 005 0.00 —-021 005 0.00 —0.21 0.04 0.00
Day of week - Thu —0.17 0.04 0.00 —0.17 0.05 0.00 —0.17 0.04 0.00
Day of week - Fri —-0.15 004 0.00 —-0.15 004 0.00 —-0.15 0.04 0.00
Day of week - Sat —-0.19 0.04 0.00 —0.18 004 0.00 —0.18 0.04 0.00
Year - 2009 (baseline)
Year - 2010 —0.06 0.04 0.15 —0.05 004 026 —0.05 0.04 0.18
Year - 2011 001 004 078 001 0.04 083 001 004 081
Year - 2012 0.11 004 0.01 0.11 0.04 0.01 0.10 0.04 0.01
Year - 2013 008 004 008 0.07 0.04 0.09 007 004 0.09
Year - 2014 004 005 032 006 0.05 0.22 004 004 034
Year - 2015 0.14 005 0.00 0.15 0.05 0.00 0.14 0.05 0.00

6. Discussion

In this paper, we proposed a scalable regression method in the context of GLM with reliable statistical inference through
the seminal work of confidence distribution. Although the divide-and-combine idea has been widely adopted in practice
to solve computational challenges arising from the analysis of big data, statistical inference has been little investigated
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in such setting. We found in this paper that regularized estimation is appealing in the context of the GLM, especially in
the logistic regression because regularization can effectively increase the numerical stability of regression analysis where
there are many noisy features. In fact, such divide-and-combine inference may adopt other regularized estimators with
regular limiting distributions, but we recommend sparse estimators for better numerical stability in estimating the bias
terms and approximating the Fisher information matrices.

In practice, heterogeneity in covariate distributions may arise from various forms of distributed data storage over time
and/or space. Some careful analyses are required to understand the nature of heterogeneity, which guide us to choose
suitable methods in the integrative inference. Our method is essentially applicable to the targeted regression parameters
that are the same across the sub-datasets, while both untargeted regression parameters and parameters of the second
moments are allowed to differ across sub-datasets. When such targeted parameters are not clearly defined a prior, we
may run an additional subgrouping analysis to identify the unknown subpopulations [see examples considered in 30,35],
and then apply the proposed method to perform a group-based inference. Additionally, extension to allow unbalanced
covariates’ distributions and/or missing covariates across sub-datasets is an important direction to account for potential
imbalances of data divisions, yet proper inference will require additional conditions similar to those proposed in [18,34]
to handle these complications.

Our method can be readily built in into some of the most popular open source parallel computing platforms, such
as MapReduce [5] and Spark [38], to handle massive datasets where sample sizes are in the order of millions. Examples
include estimating conversion rates using the Criteo online advertising data that have more than 2 million observations [6]
and predicting patient disease status based on 9 million patients’ electronic health records [33]. Although divide-and-
combine is not needed for small datasets, our simulation results show that it is still preferable to impose regularization
for large p using the bias-correction technique. For reproducibility, R code is provided in the Supplementary Material.
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Appendix A. Proofs

Proof of Theorem 1. We present here the key steps in the proof of Theorem 1 and relegate the complete proof to the
Supplementary Material (Section S1.1). We explicitly write subscript k in the proof because the results will be used in
Corollary 1. Denote some positive constants by C;, [ € {1,...,4}. For any fixed integer g, consider the bias-corrected

estimator y,, x = Hﬁxk « With ﬂx, K= ﬂ)\k r+{— Snk(ﬂkk W S,,k(ﬂkk k), where the lasso estimator ﬂx,( ¢ satisfies the KKT
condition Snk(ﬂxk, ) — Akky = 0. Let Ap (B) = n], i ]v(uk,)xk ,xk, and B,, = ”k 1:1 Xk,:xk,,- where py; = g~ (x,uﬁ).
Under condition (C2), it is easy to show that for any uy; € §2s,

Clcb Ipxp = Can, = An, (ﬁ) = Cank = CkBkIpxpa (7)

where A < B indicates B — A is positive semi-definite. So S.nk(ﬂoiyk) = qbk_lAnk(ﬁo) is invertible. With PL([%; Y. X) >
PL(Bo; Y, X), we have

\

1 N o
McllBokllt = P [ﬁnk(ﬁo.k; Yi, Xi) — L (Brg.ts Yo Xk)] + Akl Brkllt
. 1 . - . .
= —Sn(Bok) (Brek — Box) + E(ﬂxk,k — Bo.) An(Bi)(Brk — Bok) + Acll Brykll1.
k

where Bk is a certain value between Sy and /AS,\k,k. It follows that

1PY2(BOX i Bic — Boil3 /(i) + 2hkl okl < 28, (Bo) (Bisek — Bo.k) + 22l Bouk -
According to Corollary 6.2 in [3] and conditions (C1)-(C3), we show that
”Xk(ﬁlk.k — BolI5/mk + }»k”iﬁkx — Boxllt < CiAgsok, (8)

where s = Y7, I(Boxj # 0).
To show the consistency and asymptotic normality of p,, r, we begin with the first-order Taylor expansion on the KKT
condition. Under conditions (C1)-(C3), we obtain

Vik — Yok = a)kHA;kl(.BO,k)snk(ﬂO,k) — Ry, (Bx, Box; H) + Bn,<(1§kk,lca Bo,k; H), (9)
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where R, (B Bo: H) = HA, ! (Bo.) i X {Pu(B) — P (Bo.)| XilBry — Bo) and

B (B Bo: H) = Hou | A, (B — A, (B0 | [Su(Bru) = S Bo)]
+ Hoy {A;,:(l}xk,k) - A,Tk](/go.k)] Sn.(Bo k) Y h+ L
Note that from condition (C2) and (7),
~ N 2
1Rog (B Bosc BDI3 < Cac2bic*p [ IXuBok — BoI3} 52(H0a. (10)

Similarly, we have

A

~ 2
I1kl3 = O3 i IXuBrk — BoaI3) (Mt + Jaso + 1) 7(H)a,

Ikll5 < Cany ' Agsg o (H)g. (11)

Furthermore, by the multivariate Lindeberg-Levy central limit theorem [24] and Slutsky’s theorem, the first term in

(9) satisfies (f)kHA;i(ﬂoﬁk)Snk(,Boqk) 4 J\/’(O,],,(ﬂo,k)) asymptotically as ny — oo. Also, under condition (C3) that A, =
1-8 ~

0{(logp/n)'"?} and so = 0 {n,? (logp)”z}, inequalities (8), (10) and (11) guarantee |[Ry,(Bx. Box; H)ll2 = op(n; /%)

and ||Bnk(/§/\k,lw Box; H)l2 = op(n;l/z). Thus, Theorem 1 follows. O

Proof of Corollary 1. See the Supplementary Material. O
Proof of Theorem 2. Denote ry(y) = % ;le dlog ﬁn,((y)/ay and r(y) = lim ry(p). Itis easy to show r(p4c) — 0. On

Njpf—> 00
the other hand,

c—1 ~ -1 A c—1 ~ A
P = — % i e S, Bl | {yo — Bk + HS, (B 0SBy}

.1 A -1 .1 A N N
= | BSL Bl B (B S (Bryi) + H(Bo - Bt

— 1y HS (B} HS '(By)s N1 (K nl/? 12
= 4 Y {HS, (Bo) . (B0)Sn (Bo) + 0y 1) (12)
where the second equality holds under conditions (C1)-(C4). Then, by the law of large numbers, r(y,) = fle %

. -1 .
E [{Hsnkl(ﬂo)HT} HSn,<l(ﬂo)Snk(ﬂo)] = 0, where the first equation follows from the condition that K = o(N) and the

second equation follows from condition that E {HS',:I:(ﬂO)Snk(ﬂO) = 0. Furthermore, we have r(yy) = ];1(;30), which

is a negative-definite matrix given conditions (C1) and (C2). By combining this with r(yy) = 0 and r(Psc) — O, the
consistency of P4qc follows.
By simple algebra, we obtain

-1
N \—1,~ -1 R LN
Ydac = [Zfﬂ N {—HSnk (ﬂxk,k)HT} ] [ pa [—Hsnk (ﬂAka)HT] ykk,k]

-1
e—1 -1 .1 -1 R
- [% o {Hsnk (ﬂO)HT} ] [% ket e {Hsnk (ﬂo)HT} }’Ak,ki| + 0,(N"'K) + 0,(N~1/2),

and var(Puac) = N™"J 4qc ,(Bo)- Applying the condition that K = O(N'/>~%) with £ € (0, 1/2] and the central limit theorem,
we establish the asymptotic normal distribution of Pqc.
Finally, it suffices to show that P, has the same asymptotic distribution as 44c. By the definition of P in Theorem 2,

we have Pie — ¥ = —HS,gl(ﬂo)SN(,Bo)—i-op(N ~1/2), The asymptotically equivalent efficiency claimed in Theorem 2 follows
by the central limit theorem. O

Appendix B. Supplementary data

Supplementary material related to this article can be found online at https://doi.org/10.1016/j.jmva.2019.104567.
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