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ABSTRACT
This article is motivated by a regression analysis of electroencephalography (EEG) neuroimaging data
with high-dimensional correlated responses with multilevel nested correlations. We develop a divide-
and-conquer procedure implemented in a fully distributed and parallelized computational scheme for
statistical estimation and inference of regression parameters. Despite significant efforts in the literature,
the computational bottleneck associated with high-dimensional likelihoods prevents the scalability of
existing methods. The proposed method addresses this challenge by dividing responses into subvectors
to be analyzed separately and in parallel on a distributed platform using pairwise composite likelihood.
Theoretical challenges related to combining results from dependent data are overcome in a statistically
efficient way using a meta-estimator derived from Hansen’s generalized method of moments. We provide
a rigorous theoretical framework for efficient estimation, inference, and goodness-of-fit tests. We develop
an R package for ease of implementation. We illustrate our method’s performance with simulations and
the analysis of the EEG data, and find that iron deficiency is significantly associated with two auditory
recognition memory related potentials in the left parietal-occipital region of the brain. Supplementary
materials for this article are available online.
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1. Introduction

This article focuses on developing a systematic divide-and-
conquer procedure, readily implemented in a parallel and
scalable computational scheme, for statistical estimation
and inference. We consider a regression setting with high-
dimensional correlated responses with multilevel nested
correlations. The proposed distributed and integrated method
of moments (DIMM) is flexible, fast, and statistically efficient,
and reduces computing time in two ways: (i) in the distributed
step, composite likelihood is executed in parallel at a number
of distributed computing nodes, and (ii) at the integrated
step, an efficient one-step meta-estimator is derived from
Hansen’s (1982) seminal generalized method of moments
(GMM) with no need to load the entire data on a common
server.

Let Y i be theM-dimensional correlated response for subject
i, i = 1, . . . ,N, and μi = E(Y i|Xi,β) the mean response-
covariate relationship of interest for some M × p dimensional
matrix of covariates Xi and a p-dimensional parameter of
interest β . In this article, we consider the case where the
dimensionM of Y i may diverge to infinity, while the dimension
p of β is fixed. For convenience this is referred to as high-
dimensional correlated response or, in short, high-dimensional
response.Wemodelμi by a generalized linearmodel of the form
h(μi) = Xiβ , where h is a known link function. The difficulties
associated with current methods for high-dimensional corre-
lated response modeling stem from computational burdens and
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modeling challenges associated with a high-dimensional
likelihood. The generalized estimating equation (GEE) pro-
posed by Liang and Zeger (1986), one of the widely used
methods for the analysis of correlated response data, uses a
quasilikelihood approach based on the first two moments of
the response to avoid the specification of a parametric joint
distribution. GEE is not well suited to high-dimensionality
due to the potentially large number of nuisance parameters
to estimate and the inversion of large matrices (see Banerjee
et al. 2008; Cressie and Johannesson 2008). Additionally,
common assumptions by GEE on the correlation structure
of the response are too simple to capture multilevel nested
correlations, resulting in a substantial loss of efficiency (see
Fitzmaurice, Laird, and Rotnitzky 1993). Simple cases where
the estimator of the nuisance parameter does not exist are
also outlined in Crowder (1995). Mixed effects models are
also popular in the literature to analyze correlated outcomes,
and in the linear mixed-effects model regression parameters
may be interpreted as population-average effects, similar to the
interpretation given by the GEE approach. In the nonlinear
case, the interpretation of the population-average effects is
obstructed by the random effects. Unfortunately, mixed effects
model estimation can be computationally expensive due to the
inversion of large matrices and non-convexity of the objective
function (Laird, Lange, and Stram 1987; Lindstrom and Bates
1988; Perry 2017). Additionally, when the correlation of the
response is complex, computation may become prohibitive due
to the large number of random effects required to estimatemean
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parameters efficiently. The computational burden can increase
significantly due to the evaluation of high-dimensional integrals
with respect to the distributions of random effects in nonlinear
models (Song 2007, chap. 4).

Composite likelihood (CL) was proposed by Lindsay (1988)
as a method to perform inference on β by only considering low
dimensional marginals of the joint distribution. Pairwise CL,
in particular, constructs a pseudolikelihood by multiplying the
likelihood objects of pairs of observations. In this way, CL is
free of the computational burden of inverting high-dimensional
correlation matrices and benefits from an objective function
that facilitates model selection. Pairwise CL has been used with
longitudinal (Kuk and Nott 2000; Kong, Wang, and Gray 2015),
spatial (Heagerty and Lele 1998; Arbia 2014), spatiotemporal
(Bai, Song, and Raghunathan 2012; Bevilacqua et al. 2012), and
genetic (Larribe and Fearnhead 2011) data. A well-known bot-
tleneck of CL is the high computational cost of evaluating a large
number of low-dimensional likelihoods and their derivatives, a
problem exacerbated by largeM.

The use of CL relies on knowledge of low-dimensional
dependencies among Y i to specify pairwise CLs properly.
Fortunately, in practice, observations within Y i can often be
partitioned into groups of sub-responseswith simple correlation
structures according to previous science: for example, genomic
response data can be grouped by gene or genetic function,
metabolomic data by pathway, spatial data by proximity,
and brain imaging data by brain function regions. This
substantive scientific knowledge may be used to strategically
partition response variables to speed up computations. The
method of divide-and-conquer is a state of the art approach
to analyzing data that can be partitioned. In the current
literature, this method proposes to randomly split subjects
into independent groups of subjects in the “divide” step (or
“Mapper”) and combines results in the “conquer” step (or
“Reducer”); see, for example, kernel ridge regression (Zhang,
Duchi, andWainwright 2015) andmatrix factorization (Mackey,
Talwalkar, and Jordan 2015). The independent groups can be
analyzed in parallel, greatly reducing computation time. Chen
and Xie (2014) and Battey et al. (2015) used this approach
to analyze large datasets by combining information from
independent sources. These methods are not well suited to
our problem due to assumptions of independence. Chang et al.
(2015) proposed a divide-and-conquer CL approach for high-
dimensional spatial data, but their Bayesian hierarchical model
relies on the Metropolis–Hastings algorithm for estimation,
which is time-consuming. Indeed, their divide-and-conquer
strategy is primarily adopted in model building rather than
to reduce computational speed. Extending the divide-and-
conquer approach to our problem, we propose to split the
high-dimensional correlated response into subvectors to form
correlated response groups according to substantive scientific
knowledge. Each subvector is analyzed separately, then results
from these analyses are combined. While this method is
computationally appealing, our groups of data are correlated,
leading to new methodological challenges. In particular,
correlation between groups of data must be taken into account
when combining results. To our knowledge, our method is
among the few attempts, including Li (2017) and Chang et
al. (2015), to establish a rigorous theoretical framework for

combining results from correlated groups of data. The key
technique to establish the related theoretical framework relies
on an extended version of the confidence distribution (CD)
based on pairwise CL to derive a GMM estimator of β . For
discussion on the CD and related work with independent
cross-sectional data see Singh, Xie, and Strawderman 2005;
Xie, Singh, and Strawderman 2011; Xie and Singh 2013; Liu,
Liu, and Xie 2015; for CD approaches to meta-analysis of
independent studies see Claggett, Xie, and Tian 2014; Yang et
al. 2014; for a divide-and-conquer approach with independent
scalar responses see Lin and Xi 2011. We invoke an optimal
weighting matrix that nonparametrically accounts for between-
group correlations to alleviate the computational and modeling
challenges associated with existing methods.

We illustrate our method with a motivating cohort study
to assess the association between iron deficiency and auditory
recognition memory in infants. Electrical activity in the brain
during a 2000 msec period was measured in 157 infants
under two vocal stimuli using an electroencephalography
(EEG) net consisting of 64-channel sensors on the scalp as
visualized in Figure 1. For each sensor and each stimulus,
three important event-related potentials (ERPs) related to
auditory recognition memory were calculated; as shown
in Figure 2, P2 averages electrical signal between 175 and
300 msec, P750 between 350 and 600 msec, and late slow
wave (LSW) between 850 and 1100 msec. The investigator
wanted to analyze the data in subregions, where 46 of the
nodes belong to six brain function regions related to auditory
recognition memory, as seen in Figure 1. The complex data-
generating mechanism results in a response of dimension
M = 46(nodes) × 3(ERPs) × 2(stimuli) = 276 that has
a multilevel nested correlation structure that is difficult to
model, including longitudinal correlations between the three
ERP’s, spatial correlations between the 46 nodes and within
the six brain function regions, and correlations within each
voice stimulus. Due to this complex correlation structure and
the large number of response variables, traditional methods
for correlated data analysis are greatly challenged. Zhou and
Song (2016) developed a method to analyze the LSW outcome,
but no existing method is suitable to analyze this dataset in
its entirety. We develop DIMM, a fast and efficient method
to analyze all 276 responses simultaneously by partitioning
the response according to ERPs and brain function regions.
DIMM also performs well with higher dimensional correlated
outcomes, as seen in simulations.

Our proposed DIMM loses minimal estimation efficiency
for two reasons: first, CL performs well on smaller groups of
responses with simple but well-approximated local correlation
structure; and second, we use an optimal weighting matrix in
the GMM. More importantly, our method is computationally
attractive for two reasons: first, pairwise CL only evaluates
low-dimensional likelihoods and CL analyses can be run in
parallel; and second, we provide a closed-form of the combined
estimator that only depends on CL estimates and group-
specific sufficient statistics. Finally, this article contributes
to the existing literature with two key innovations: DIMM
provides a rigorous theoretical framework for combining
estimates from dependent groups of data, and is scalable to
large M. In addition, the proposed DIMM is illustrated on a
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Figure 1. Left: Average P2 amplitude for iron sufficient children under stimulus of mother’s voice. Color plot and additional plots in the supplementary materials. Right:
Layout of the 64-channel sensor net with brain regions related to auditory recognition memory.
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Figure 2. Plot of electrical potential for subject 1 at electrode 2 over time.

complex dataset that has previously not been analyzed in its
entirety.

The rest of the article is organized as follows. Section 2
describes DIMM. Section 3 discusses large sample properties.
Section 4 presents the closed form one-step meta-estimator,
and its implementation in a parallel and scalable computational
scheme. Section 5 illustrates DIMM’s finite sample performance
with simulations. Section 6 presents the EEG data analysis.
Section 7 concludes with a discussion. Proofs of theorems and
additional simulation and data analysis results are deferred to
the Appendix and supplementary materials.

2. Formulation

Let
{
yi,Xi

}N
i=1 be N independent observations, where the

dimension M of yi is so big and potentially diverging that

a direct analysis of the data is computationally intensive
or prohibitive. Let f (Y i;�i,Xi) be the M-variate joint dis-
tribution of Y i|Xi, where �i contains parameters of high-
order dependencies that may be difficult to handle compu-
tationally. We aim to obtain a statistically efficient (small
variance) and computationally fast estimator for the regression
coefficient β given the challenges arising from the high-
dimensionality and complex dependencies of the response.
Our DIMM solution uses a divide-and-conquer approach
based on pairwise CL methodology for locally homogeneous
data blocks. We formulate an informal definition of homo-
geneous correlation: we say a vector of random variables
is homogeneously correlated if their covariance (or second
moments) can be parameterized with a small number of
parameters. For example, responses with compound sym-
metric or AR(1) covariance structures are homogeneously
correlated.
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2.1. Division: Distributed Composite Likelihoods

For each i ∈ {1, . . . ,N}, we propose to split theM-dimensional

response yi and associated covariates into J blocks
{
yi,j,Xi,j

}N
i=1

for j = 1, . . . , J, J finite, as follows: yi = ( yTi,1 . . . yTi,J )T

and Xi = ( XT
i,1 . . . XT

i,J )T . Within block j, let mj be the
dimension of subject i’s response,

∑J
j=1mj = M, where yi,j =(

yi1,j, . . . , yimj,j
)T ∈ R

mj is subject i’s jth sub-response vector
and Xi,j ∈ R

mj×p is the associated covariate matrix, and p

is finite. For each j,
{
yi,j

}N
i=1

are independent realizations of
the random variables Y i,j|Xi,j whose mj-variate distributions
conditional on Xi,j are denoted by f (yi,j;�i,j,Xi,j). Parameter
�i,j encodes information on the marginal moments of Y i,j. This
yields J regression models hj(μi,j) = Xi,jβ j, where μi,j =
E(Y i,j|Xi,j,β j) is the marginal mean of Y i,j, j = 1, . . . , J. For
simplification of the technical presentation, we assume homo-
geneity of the link function hj and the regression parameter
β j holds such that hj ≡ h and β j ≡ β for j = 1, . . . , J;
we drop the subscript j by using β and h to denote β j and
hj. On some occasions, homogeneity may not hold, for exam-
ple when each sub-response Y i,j corresponds to continuous,
count, or dichotomous outcomes. In this case, we propose to
perform a subgroup analysis by combining regression param-
eter estimates over the blocks where homogeneity in hj and β j
holds; this approachwill be illustrated in Section 6. Additionally,
we propose a formal test of the homogeneity assumption in
Section 3. To create blocks, we suggest splitting the response
data according to substantive scientific knowledge, resulting in
homogeneous correlations within each response subvector that
are suitable for simplifications in structure. If such knowledge
is lacking, data preprocessing may help to learn structural fea-
tures of dependencies. As long as appropriate conditions are
satisfied, estimation remains consistent, butmay not be efficient,
when the data split is not aligned with the true dependence
structure.

We can obtain an estimate of β for each of the J blocks of data
using pairwise CL methods. The above partition enables us to
reduce the challenge of modelingM-order dependencies to that
of modeling mj-order dependencies of (approximately) local
homogeneity. In addition, there may be tremendous computa-
tional burdens associated with the log-likelihood or its deriva-
tive, such as the computation of a high-dimensional inverse
covariance matrix in the multivariate normal model. CL has
been suggested by many researchers (see Varin, Reid, and Firth
2011 and references therein) to resolve this difficulty, and takes
the following form:

Lj(β , γ j; yi,j) =
mj−1∏
r=1

mj∏
t=r+1

fj(yir,j, yit,j;β , γ j,Xi,j), (1)

where γ j only contains information on second-order moments
of Y i,j. Let β0, γ j0 the true values of β ∈ R

p and γ j ∈ R
dj ,

respectively, dj finite, and denote γ = ( γ T
1 . . . γ T

J )T ,
γ 0 = ( γ T

10 . . . γ T
J0 )T . The nature of the data partition

gives rise to different dependence parameters γ j, allowing us to
make simplifying assumptions on the high-order dependencies

of Y i,j. Here, density fj can be chosen according to the data type
under investigation as bivariate margins of an mj-variate joint
distribution. For example, fj can be bivariate Normal for con-
tinuous data, or, using bivariate dispersion models generated by
Gaussian or vine copulas, can be bivariate Poisson or Bernoulli
for count or dichotomous data; (see Song 2007, chap. 6; Joe 2014,
chap. 3). We set fj bivariate Normal for the EEG data. Within
block j, the log-CL for the first and second moment parameters
is

c�j(β , γ j; yj) = log
N∏
i=1

Lj(β , γ j; yi,j)

=
N∑
i=1

mj−1∑
r=1

mj∑
t=r+1

log fj(yir,j, yit,j;β , γ j,Xi,j).

Define ψ j.sub(β ; yi,j, γ j) = (1/m2
j )

∑mj−1
r=1

∑mj
t=r+1 ∇β log fj

(yir,j; yit,j;β , γ j,Xi,j) ∈ R
p and g j.sub(γ j; yi,j,β) = (1/m2

j )∑mj−1
r=1

∑mj
t=r+1 ∇γ j log fj(yir,j; yit,j;β , γ j,Xi,j) ∈ R

dj . The
pairwise CL estimating equations for the mean and covariance
parameters are, respectively:

� j.sub(β ; yj, γ j) = 1
N

N∑
i=1

ψ j.sub(β ; yi,j, γ j) = 0 ∈ R
p, (2)

Gj.sub(γ j; yj,β) = 1
N

N∑
i=1

g j.sub(γ j; yi,j,β) = 0 ∈ R
dj . (3)

Following Varin, Reid, and Firth (2011), the maximum com-
posite likelihood estimators (MCLE) of β and γ j within block
j, denoted, respectively, by β̂ j and γ̂ j, are the joint solution
to the system of unbiased estimating equations in (2) and (3).
It is worth noting that the original CL proposed by Lindsay
(1988) advocated for the use of weights in the log-CL function
to improve estimation efficiency. This approach is shown to
workwell in Bevilacqua et al. (2012). Lindsay (1988) determined
that the optimal weights that minimize the variance of the
maximum composite likelihood estimator depend on higher
order moments of the estimating function, and therefore can
be demanding to compute. Again, we see the trade-off between
computational and statistical efficiency.

Generally, γ j is block-specific and unknown, and β̂ j depends
on γ̂ j. When γ j is a function of β only, as in generalized linear
models, finding β̂ j amounts to profile likelihood estimation.
If γ j is known or absent, then the above simplifies to find-
ing β̂ j as the solution to � j.sub(β ; yj, γ j) = 0. We denote

β̂MCLE = (β̂1
T , . . . , β̂J

T
)T and γ̂MCLE = (γ̂ 1

T , . . . , γ̂ J
T)T . In

some practical studies where interest is in block-specific mean
parameters and combined dependence parameters, we can treat
β as a nuisance parameter and γ j as the parameter of interest by
switching the roles of� j.sub andGj.sub. In the case where both β

and γ j are of interest and believed to be homogeneous over all
blocks, we replace � j.sub with (�T

j.sub,G
T
j.sub)

T . The description
of DIMM in the rest of the article, including Section 4, holds
with these minor changes.
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2.2. Integration: The GeneralizedMethod ofMoments

Suppose that we have successfully obtained J estimates of β

based on J estimating equations (2). In the integration step,
we treat each estimating equation � j.sub(β ; yj, γ j) = 0 as a
moment condition on β coming from block j, j = 1, . . . , J.
We would like to derive an estimator β̂c of β that satisfies
all J moment conditions. Unfortunately, there is no unique
solution to all J estimating equations because they over-
identify our parameter; that is, the dimension of parameter
β is less than Jp, the dimension of the equation restrictions
on β . To overcome this, we invoke Hansen’s (1982) seminal
GMM to combine the moment conditions that arise from each
block. Stack the J estimating equations by letting ψ(β ; yi) =
(ψT

1.sub(β ; yi,1, γ 10), . . . ,ψT
J.sub(β ; yi,J , γ J0))

T ∈ R
Jp for each

subject i, and

�N
(
β ; y

) = (
�T

1.sub(β ; y1, γ 10) . . . �T
J.sub(β ; yJ , γ J0)

)T
= 1

N

N∑
i=1

ψ(β ; yi) ∈ R
Jp.

Define the outer-product as a⊗2 = aaT for a ∈ R
Jp. Since

�N(β ; y) = 0 has no unique solution, following Hansen’s
GMMwe minimize a quadratic form of �N with weight matrix
V̂N,ψ , the Jp×Jp sample variance-covariancematrix of�N(β ; y)
evaluated at the MCLE’s:

V̂N,ψ = 1
N

N∑
i=1

(
ψT

1.sub(β̂1; yi,1, γ̂ 1), . . . ,

ψT
J.sub(β̂J ; yi,J , γ̂ J)

)T ⊗2. (4)

Then define the combined GMM estimator of β as

β̂c = argmin
β

{
N�T

N(β ; y)V̂−1
N,ψ�N(β ; y)

}
= argmin

β
QN(β).

(5)

To solve (5), we replace γ j0 by γ̂ j in the evaluation of �N(β ; y).
The role of the γ j’s is two-fold: first, their specification
parametrizes the second-order moment in the block bivariate
distributions in addition to the regression model for first
moments; second, they may improve estimation efficiency of
β . Note that using plug-in estimators γ̂ j may impact efficiency
of β̂c, but it will generally not affect consistency. A finite
sample improvement on the efficiency may be obtained by re-
estimating γ j in the integration step, but this could become
computationally intensive since these parameters are block-
specific and heterogeneous. We notice similarities of (5) to
Qu, Lindsay, and Li (2000) but with a completely different way
of constructing moment conditions, and to Wang, Wang, and
Song (2012) but with a completely different way of partitioning
data and the added generality of allowing between-block
correlations. The uniqueness of DIMM stems from combining
estimating equations� j.sub with GMM instead of combining β̂ j

or data blocks
{
yi,j,Xi,j

}N
i=1

directly. This new approach allows

us to find a GMM estimator β̂c that benefits from a wealth of
established theoretical properties. The sample covariance V̂N,ψ
is not parameter dependent and can therefore accommodate any

between-block covariance, including unstructured. By using the
sample covariance V̂N,ψ we not only account for between-block
correlations but find the optimal GMM estimator in the sense
that β̂c has variance at least as small as any other estimator
exploiting the same moment conditions, hereafter referred to as
“Hansen optimal.” The combined GMM estimator β̂c will yield
significant computational advantages when the dimension of
�N is smaller than that of Y by reducing the computational
burden associated with handling Y directly. This is often
the case in applications where M is very large, J is between
M and p, and the number of covariates p is small enough
that p � M/J.

To better understand our estimator, we can show that β̂c
maximizes a density in amanner similar to the classicmaximum
likelihood estimator (MLE) by deriving the quadratic form in
(5) using an extended version of the confidence distribution
(CD) (or density) (Fisher 1930). For more discussion on CD
and applications toMLE with independent cross-sectional data,
refer to Xie and Singh (2013), Singh, Xie, and Strawderman
(2005), and Liu, Liu, and Xie (2015). So far, little work has been
done on the development of CD for correlated data. Of note,
a dissertation by Li (2017) considered a sequential split-and-
conquer copula approach to extend the CD to combine infor-
mation from correlated datasets. The proposed copula method
assumes a known joint distribution or a known correlation
matrix, which is mostly for theoretical convenience, and takes
advantage of the structure of the spatial Gaussian process model
to sequentially transform the dependent datasets into indepen-
dent datasets. Li (2017) considered the case N = 1 and M →
∞ for applications in spatial data modeling. Additional work
on deriving a consistent estimator of the correlation matrix is
required to make this method practically useful.� j.sub are suffi-
cient statistics for β within each block and are asymptotically
Normally distributed under mild assumptions by the central
limit theorem (CLT). Their joint distribution is the distribution
of �N , which is also asymptotically Normal under the same
mild assumptions of the CLT. Then if V̂N,ψ is a consistent
estimator of the variance of �N ,

√
NV̂−1/2

N,ψ �N(β0; y) asymp-
totically follows a standard normal distribution. By maximiz-
ing the distribution of �N as a function of β , we can find
an estimator that accounts for correlation between sufficient
statistics and is the most likely value to arise from the data. We
define the confidence estimating function (CEF) as Fψ (β0) =
�

(√
NV̂−1/2

N,ψ �N(β0; y)
)
, where �(·) is the Jp-variate stan-

dard normal distribution function. Define the density of the
CEF as

fψ (β) = φ
(√

NV̂−1/2
N,ψ �N(β ; y)

)
∝ exp

{
−N

2
�T

N(β ; y)V̂−1
N,ψ�N(β ; y)

}
, (6)

where φ(·) is the Jp-variate standard normal density. The CEF
density has the advantage over the confidence density of not
having a sandwich estimator for the variance, and thus not
requiring the computation of a sensitivity matrix. It reflects the
joint distribution of the J estimating equations (2). Maximizing
fψ (β) in (6) yields the minimization defined in (5). The formu-
lation in (6) is different from the aggregated estimating equation
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approach proposed by Lin and Xi (2011) for independent scalar
responses.

3. Asymptotic Properties

In this section, we study the asymptotic properties of β̂c with
J and p fixed, where we allow M to diverge, implying that mj
diverges for at least one sub-response dimension mj. Due to
the use of a simple correlation structure in each block, the
dimension dj of γ j is fixed. It follows from (2) and (3) that
� j.sub and Gj.sub are expressed as sums of two-dimensional
marginal likelihoods as mj → ∞. Following Cox and Reid’s
(2004) study of the behavior of the CL when the dimension
of the outcome grows with the sample size, we can similarly
show the consistency of (β̂ j, γ̂ j) with no conditions required on
the divergence rate of M. This is formalized in the following
proposition.

Proposition 1. Let j ∈ {1, . . . , J} such that mj → ∞. Suppose
� j.sub andGj.sub are unbiased at (β0, γ j0) and their expectations
have a unique zero at (β0, γ j0). Then (β̂ j, γ̂ j) are consistent
estimators of (β0, γ j0) as N → ∞.

The proof is given in the supplementary materials. Proposi-
tion 1 justifies why standard asymptotic theory is applicable
even when M → ∞. � j.sub and Gj.sub are unbiased if the
bivariate marginals fj are correctly specified. Existing model
diagnostics can help detect ill-posed model structures on
the fj.

Let vψ (β) = limM→∞ Eβ

{
ψ(β ; yi)ψT(β ; yi)

} ∈ R
Jp×Jp

and sψ (β) = limM→∞ −∇βEβψ(β ; yi) ∈ R
Jp×p be, respec-

tively, the positive definite variability matrix and the sensitivity
matrix of �N . Let

[
v−1
ψ (β)

]
i,j
be the rows (i − 1)p + 1 to ip

and columns (j − 1)p + 1 to jp of matrix v−1
ψ (β). We assume

throughout that V̂N,ψ is nonsingular. Let ‖·‖ be the Euclidean
norm. Let the variability and sensitivity matrices in block j,
respectively, be

vj,ψ j(β) = lim
M→∞ varβ

{√
N� j.sub(β ; yj, γ j0)

}

= lim
M→∞Eβ

{
ψ⊗2

j.sub(β ; yi,j, γ j0)
}
,

sj,ψ j(β) = lim
M→∞ −∇βEβ

{
� j.sub(β ; yj, γ j0)

}

= lim
M→∞ −∇βEβ

{
ψ j.sub(β ; yi,j, γ j0)

}
.

As a GMM estimator, β̂c enjoys several key asymptotic prop-
erties for valid statistical inference under mild regularity con-
ditions C.1–C.3 listed in the Appendix, including consistency
and asymptotic normality. We show in Lemma 1 that V̂N,ψ in
(4) converges to the true variability matrix of the estimating
equations.

Lemma 1 (Hansen optimality). Under condition C.1, V̂N,ψ
p→

vψ (β0) as N → ∞.

The proof of Lemma 1, given in the Appendix, is straightfor-
ward, and makes use of the consistency of the MCLE’s and the
CLT. Lemma 1 shows our GMM estimator is Hansen optimal
because we use a weighting matrix that converges to the true
variance of the estimating equations. Asymptotically, β̂c has
variance at least as small as any other estimator exploiting
the same CL moment conditions. Since the pairwise CL is
not a full likelihood, there are no general efficiency results
about β̂ j. In the linear setting with normally distributed
responses, the mean and variance fully specify the joint
distribution within each block, and therefore, if the first two
moments are correctly specified, the MCLE loses minimal
estimation efficiency. The MCLE in the nonlinear setting will
inevitably lose some efficiency because higher order moments
are not modeled. Extensive simulations were performed in
the dissertation of Jin (2011) for linear and binary correlated
data that show that the CL approach performs quite well, and
generally shows little loss of efficiency in comparison to the
full likelihood approach in the cases of compound symmetry,
AR(1), and unstructured correlation structures. This means
DIMM generally performs well. In Theorems 1 and 2, we show
that β̂c is consistent and asymptotically normal under mild
moment conditions.

Theorem 1 (Consistency of β̂c). Given conditions C.1 and C.2,
β̂c

p→ β0 as N → ∞.

Theorem 2 (Asymptotic normality of β̂c). Given conditions C.1–
C.3,

√
N

(
β̂c − β0

) d→ N
(
0, j−1

ψ (β0)
)
as N → ∞, where the

Godambe information of�N(β ; y) can be rewritten as jψ (β) =
sTψ (β)v−1

ψ (β)sψ (β) =
J∑

i,j=1
sTi,ψ i

(β)
[
v−1
ψ (β)

]
i,j
sj,ψ j(β).

The proof of Theorem 1, given in the Appendix, derives
from the consistency of the GMM estimator due to Hansen
(1982) and, more generally, to Newey and McFadden (1994).
The proof of Theorem 2 follows from Theorem 7.2 in Newey
and McFadden (1994) and Theorem 1. Theorems 1 and
2 do not require the differentiability of � j.sub and QN .
Instead, they require the differentiability of their population
versions, and that �N behave “nicely” in a neighborhood
of β0. These theoretical results provide a framework for
constructing asymptotic confidence intervals and conducting
Wald tests, so that we can perform inference for β when M
diverges. Using an optimal weight matrix improves statistical
power so DIMM can detect signals other methods may
miss.

So far, we have been vague about how the data partition
should be done, only suggesting it be done according to estab-
lished scientific knowledge. There may be some uncertainty
about how to partition data, whichwediscuss in Section 7.A for-
mal approach to testing if the data split was done appropriately
can be interpreted as a test of the over-identifying restrictions:
if the blocks are improperly specified (in number, size, etc.),
the estimating equation �N will have mismatched moment
restrictions on β . Formally, we can show that QN evaluated at
β̂c follows a chi-squared distribution with (J − 1)p degrees of
freedom.
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Theorem 3 (Test of over-identifying restrictions). Let β̂c =
argmin

β
QN(β). Given conditions C.1–C.3, QN(β̂c)

d→ χ2
(J−1)p

as N → ∞.

The proof is given in the supplementary materials. Since
the test statistic depends on β̂c, it should be performed after
estimation of the model parameters to determine goodness of
fit. It can be computed in a distributed fashion by computing
ψ j.sub(β̂c; yi,j, γ̂ j) in parallel and plugging into the formula for
QN . DIMM has the advantage of an objective function that
allows for formal testing, whereas GEE model selection relies
on information criteria that can be subjective. The test can also
be thought of as a test of the homogeneity assumption on the
mean parameter β , since the model h(μi) = Xiβ translates into
moment restrictions on β . Unfortunately, it may be difficult to
tell if invalid moment restrictions stem from an inappropriate
data split or incorrect model specification. Residual analysis for
model diagnostics can remove doubt in the latter case.

4. Implementation: The One-Step Estimator

In practice, searching for the integrated solution of the GMM
equation (5) can be very slow or computationally prohibitive.
Iterative methods must repeatedly evaluate �N(β ; y) at each
candidate β , which requires the computation of the pairwise CL
from each block at every iteration. Additionally, it may not be
the case that the dimension of �N is smaller than that of Y . We
propose ameta-estimator ofβ that delivers a one-step update via
a linear function of MCLE’s β̂ j. Our derivation of the one-step
estimator is rooted in asymptotic properties of the estimating
equations � j.sub and �N in a neighborhood of (β0, γ j0), in a
similar spirit to Newton–Raphson. Let [V̂−1

N,ψ ]i,j be the rows
(i− 1)p+ 1 to ip and columns (j− 1)p+ 1 to jp of matrix V̂−1

N,ψ .
Let Sj,ψ j(β ; yj) be a

√
N-consistent sample estimate of sj,ψ j(β).

We can obtain a one-step estimator of β :

β̂DIMM =
⎛
⎝ J∑

i,j=1
STi,ψ i

(β̂ i; yi)
[
V̂−1
N,ψ

]
i,j
Sj,ψ j(β̂ j; yj)

⎞
⎠−1

J∑
i,j=1

STi,ψ i
(β̂ i; yi)

[
V̂−1
N,ψ

]
i,j
Sj,ψ j(β̂ j; yj)β̂ j. (7)

With β̂DIMM in (7), DIMM can be implemented in a fully
parallelized and scalable computational scheme following, for
example, the MapReduce paradigm on the Hadoop platform,
where only one pass through each block of data is required.
These passes can be run on parallel CPUs, and return values of
summary statistics {β̂ j,ψ j.sub(β̂ j; yi,j, γ̂ j), Sj,ψ j(β̂ j; yj)}Jj=1. After
computing V̂N,ψ as a function of these summary statistics, com-
putation of β̂DIMM in (7) can be done in one step. Big data stored
on several servers never need be combined, meaning DIMM
can be run on distributed correlated response data. β̂DIMM can
also be used for subgroup analyses, as in Section 6, to combine
estimates from specific subgroups of interest. In the following
asymptotic theory, we assume J, p, and dj are fixed; we allowM
to diverge. We show in Theorem 4 that the one-step estimator

β̂DIMM in (7) has the same asymptotic distribution as and is
asymptotically equivalent to β̂c.

Theorem 4. Given conditions C.1–C.4, β̂DIMM and β̂c have
the same asymptotic distribution:

√
N

(
β̂DIMM − β0

) d→
N

(
0, j−1

ψ (β0)
)
as N → ∞. Moreover, β̂c and β̂DIMM are

asymptotically equivalent:
√
N

∥∥β̂DIMM − β̂c
∥∥ p→ 0 as N →

∞.

The proof of this theorem is given in the supplementary
materials. The additional conditions specify the convergence
rate of the MCLE’s β̂ j to ensure the proper convergence rate
of β̂DIMM. These are necessary because the computation of the
one-step estimator relies solely on the MCLE’s. This theorem is
the key result that allows us to use the one-step estimator, which
is more computationally attractive than β̂c, without sacrificing
any of the asymptotic properties enjoyed by β̂c, such as estima-
tion efficiency.

Finally, it is clear from Theorem 4 and the form of the
Godambe information jψ (β) = ∑J

i,j=1 sTi,ψ i
(β)[v−1

ψ (β)]i,j
sj,ψ j(β) that under conditions C.1–C.4, a consistent estimator
of the asymptotic covariance of β̂DIMM is (N

∑J
i,j=1 STi,ψ i

(β̂ i; yi)
[V̂−1

N,ψ ]i,jSj,ψ j(β̂ j; yj))−1. Equipped with β̂DIMM and an estimate
of its asymptotic covariance, we can doWald tests and construct
confidence intervals for inference on β . When conditions C.1–
C.4 hold, it is clear that QN(β̂DIMM)

d→ χ2
(J−1)p as N → ∞,

allowing us to test the goodness of fit of our model. For
reasonably large Jp, say ≈5000, inversion of V̂N,ψ can be
numerically unstable, although we have never encountered
such a situation. In this case, there are several options from
the literature, such as linear shrinkage estimation (Han and
Song 2011). Our preference is to use a regularized modified
Cholesky decomposition of V̂N,ψ following Pourahmadi (1999).
Computation of a regularized estimate of V̂−1

N,ψ requires the
inversion of a diagonal matrix, which is fast to compute, and
the selection of a tuning parameter by cross-validation. Details
are available in the supplementary materials, and our R package
allows for the implementation of a regularized weight matrix.

In summary, DIMM proceeds in three steps:

Step 1. Split the data according to established scientific knowl-
edge to form J blocks of lower-dimensional response
subvectors with homogeneous correlations.

Step 2. Analyze the J blocks in parallel using pairwise
CL. MCLEs are obtained using the R function
optim. We run 500 iterations of Nelder–Mead
with initial values β = (1, . . . , 1)T . End values
of this optimization are used as starting values for
the BFGS algorithm, which yields β̂ j. We return
{β̂ j,ψ j.sub(β̂ j; yi,j, γ̂ j), Sj,ψ j(β̂ j; yj)}Jj=1.

Step 3. Compute V̂N,ψ and then find β̂DIMM in (7).

An R package to implement DIMM is provided in the sup-
plementary materials. We conclude this section with a brief
discussion of the computational complexity of DIMM with
general block-covariance structure. All methods depend on N
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in the first order, which is therefore omitted from the discus-
sion. Let mmax = maxj=1,...,J mj and first consider the case
where M is finite. In Step 2, inverting the two-dimensional
covariance matrices is O(22+ε) for some ε > 0, and summing
over all pairs of observations is O(m2

j ). In Step 3, inverting
V̂N,ψ is O((Jp)2+ε). This yields a general computational com-
plexity of O((Jp)2+ε + m2

max) for DIMM. By contrast, GEE
is generally O(M2+ε) = O(J2+εm2+ε

max) due to the inversion
of the covariance matrix of the outcome. DIMM is compu-
tationally advantageous when p2+ε ≤ m2+ε

max − m2
max/J2+ε .

As M diverges, mmax and M are of the same order since J is
fixed, and O(m2+ε

max − m2
max/J2+ε) = O(M2+ε − M2) so that

DIMM becomes increasingly advantageous as M diverges. For
computational complexity of mixed effects models see Perry
(2017), which discusses various estimation procedures whose
iterations are at best approximatelyO(q3), where q is the number
of fixed and random effects. In the linear model, considering
the simplest mixed model case with nested random effects for
subjects and response groups, we can compare these two meth-
ods and find that DIMM is computationally advantageous when
(Jp)2+ε + m2

max ≤ (p + NJ)3 for fixed M. As M diverges,
DIMM isO(M2) and its advantage depends on the relative rates
of convergence ofM and N.

5. Simulations

We examine through simulations the performance and finite
sample properties in Theorem 4 of the one-step estimator
β̂DIMM under the linear regression setting μi = Xiβ , where
μi = E(Y i|Xi,β), Y i ∼ N (Xiβ ,�). We consider two sets of
simulations: the first illustrates DIMM for different dimensions
M of Y , J = 5 for all settings, with an intercept included in Xi,

and varying number of covariates; the second pushes DIMM to
its extremes with very largeM and J, and five covariates. In both
settings, to mimic the infant EEG data, we let � = S ⊗ A with
nested correlation structure, where ⊗ denotes the Kronecker
product, A an AR(1) covariance matrix, and S a J × J positive-
definite matrix.

{Y i,Xi}Ni=1 can be partitioned into J blocks of data with local
AR(1) covariance structure. Data within each block is modeled
using the bivariate normal marginal distribution. We note that
β̂ j has a closed-form solution following generalized least squares

(GLS): estimating β̂ j can be done by iteratively updating β̂ j
(k) =

(XT
j �̂

(k)
j Xj)−1XT

j {�̂(k)
j }−1yj and �̂

(k)
j , where �̂

(k)
j has a known

covariance structure, for k = 1, 2, . . . until convergence. We use
GLS because it performs slightly faster, with the exception of
Figure 4 where we use optim for computational reasons. True
value of β is set to β0 = (0.3, 0.6, 0.8, 1.2, 0.45, 1.6)T in the case
of five covariates, and subsets thereof for fewer covariates.

We discuss the first set of simulations. Let sample size be
N = 1000 and the AR(1) covariance matrix A have standard
deviation σ = 2 and correlation ρ = 0.5. CL estimation of β̂ j is
done first by using the correct AR(1) block covariance structure
(DIMM-AR(1)). To evaluate how our method performs under
covariance misspecification, we estimate β̂ j using a compound
symmetry (DIMM-CS) block covariance structure.

We compute β̂DIMM from (7) and its covariance, and report
root mean squared error (RMSE), empirical standard error
(ESE), mean asymptotic standard error (ASE), and mean bias
(BIAS) with M = 200 and five scalar covariates (Table 1)
and with M = 1000 and two vector covariates (Table 2).
We compare DIMM to estimates of β obtained using GEE
with a compound symmetry covariance structure (GEE-CS)
and independence covariance structure (GEE-IND) using the

Table 1. Simulation results: RMSE, BIAS, ESE, ASE with five covariates, N = 1000,M = 200, J = 5, averaged over 500 simulations.

Measure×10−2 DIMM-AR(1) DIMM-CS GEE-CS GEE-IND LMM GLS-oracle

β0 RMSE/BIAS 4.34/−0.35 4.32/−0.32 4.88/−0.33 4.88/−0.33 4.85/−0.33 4.12/−0.36
ESE/ASE 4.33/4.21 4.32/4.21 4.87/4.85 4.87/4.85 4.84/5.07 4.11/4.12

β1 RMSE/BIAS 1.83/0.03 1.84/0.04 2.09/0.08 2.09/0.08 2.07/0.09 1.8/0.06
ESE/ASE 1.83/1.78 1.84/1.78 2.09/2.05 2.09/2.05 2.07/2.14 1.8/1.74

β2 RMSE/BIAS 3.41/−0.04 3.47/−0.07 3.75/0.08 3.75/0.08 3.69/0.09 3.24/−0.02
ESE/ASE 3.41/3.23 3.47/3.23 3.76/3.72 3.76/3.72 3.7/3.89 3.25/3.17

β3 RMSE/BIAS 1.51/0.14 1.51/0.14 1.67/0.09 1.67/0.09 1.66/0.1 1.45/0.13
ESE/ASE 1.50/1.45 1.51/1.45 1.67/1.67 1.67/1.67 1.66/1.74 1.45/1.42

β4 RMSE/BIAS 5.50/0.23 5.49/0.2 5.98/0.19 5.98/0.19 5.94/0.2 5.26/0.29
ESE/ASE 5.50/5.15 5.49/5.15 5.98/5.92 5.98/5.92 5.94/6.19 5.25/5.04

β5 RMSE/BIAS 3.53/−0.09 3.56/−0.07 3.99/−0.08 3.99/−0.08 3.97/−0.1 3.42/−0.04
ESE/ASE 3.53/3.21 3.56/3.21 3.99/3.74 3.99/3.74 3.97/3.9 3.43/3.18

NOTE: Block sizes are (m1,m2,m3,m4,m5) = (45, 42, 50, 34, 29). X1 ∼ N (0, 1), X2 ∼ Bernoulli(0.3), X3 ∼ Categorical(0.1, 0.2, 0.4, 0.25, 0.05), X4 ∼ Uniform(0, 1), and
X5 = X1 × X2.

Table 2. Simulation results: RMSE, BIAS, ESE, ASE with two covariates, N = 1000,M = 1000, J = 5, averaged over 500 simulations.

Measure×10−2 DIMM-AR(1) DIMM-CS GEE-CS GEE-IND LMM GLS-oracle

β0 RMSE/BIAS 0.71/0.01 0.72/0.01 0.82/0.01 0.82/0.01 0.82/0.01 0.69/0.00
ESE/ASE 0.71/0.72 0.72/0.72 0.82/0.82 0.82/0.82 0.82/0.85 0.69/0.7

β1 RMSE/BIAS 0.15/0.00 0.19/0.00 0.21/0.00 0.21/0.00 0.15/0.00 0.13/0.00
ESE/ASE 0.15/0.19 0.19/0.19 0.21/0.2 0.21/0.2 0.15/0.16 0.13/0.13

β2 RMSE/BIAS 0.45/0.01 0.45/0.01 0.52/0.00 0.52/0.00 0.51/0.00 0.44/0.02
ESE/ASE 0.45/0.46 0.46/0.46 0.52/0.52 0.52/0.52 0.51/0.52 0.44/0.45

NOTE: Block sizes are (m1,m2,m3,m4,m5) = (225, 209, 247, 170, 149). X1 ∼ NormalM(0, S), where S is a positive-definiteM×Mmatrix, X2 a vector of alternating 0’s and
1’s to imitate an exposure.
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R package geepack (Højsgaard, Halekoh, and Yan 2006),
using a linear mixed-effects (LMM) model with nested random
intercepts for subject and blockmembershipwithAR(1) within-
group correlation using the R package nlme, and using GLS
with known covariance (GLS-oracle) (our code). The latter
can be considered the “oracle setting,” as we do not estimate
the covariance of the response but use the true covariance
to estimate β . In the supplementary materials, we include
simulations that show the statistical efficiency gain of using
V̂N,ψ to take into account the correlation between blocks. For
these simulations, we compute an estimator derived by using a
diagonal weighting matrix instead of V̂N,ψ in equation (7), and
compare the length of 95% confidence intervals. We examine
Type I error of the test H0 : βq = 0 for q = 1, . . . , p for each
simulation scenario, and the chi-squared distribution of test
statistic QN(β̂DIMM) with M = 200, J = 3, 5, with one and
two covariates (see the supplementary materials). Simulations
are conducted using R software on a standard Linux cluster
with 16GB of random-access memory per CPU. CL evaluation

is coded in C++ but minimization of the CL occurs in R. One
simulation in each of the following settings failed to converge
with LMM: one covariate with M = 500, five covariates with
M = 500, one covariate with M = 1000. This is because
of the numerical instability of LMM with high-dimensional
outcomes.

In Table 1, β̂DIMM appears consistent since BIAS is close to
zero. RMSE, ESE, and ASE are approximately equal, meaning
DIMM is unbiased and has correct variance formula in The-
orem 4. Moreover, DIMM mean variance is generally smaller
thanGEE and LMMmean variance. In data analyses, this results
in increased statistical power andmore signal detection. Finally,
DIMM is close to attaining the estimation efficiency under
the GLS-oracle case of known covariance, which is the best
efficiency possible. In Table 2, we corroborate these observa-
tions for spatially/longitudinally varying vector covariates. Our
method also still performs well when dimension is equal to
sample size. Finally from Figure 3, we see that DIMM is com-
putationally much faster than GEE and LMM and maintains
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Figure 3. Upper panels: Comparison of computation time on log10 scale of five methods for varying dimension M based on 500 simulations. Lower panels: Comparison
of 95% confidence interval coverage of five methods for varying dimension M based on 500 simulations. Left column has X1 ∼ N (0, 1); middle column has
X1 ∼ NM(0, S), where S is a positive-definite M × M matrix, and X2 a vector of alternating 0’s and 1’s; right column has X1 ∼ N (0, 1), X2 ∼ Bernoulli(0.3),
X3 ∼ Multinomial(0.1, 0.2, 0.4, 0.25, 0.05), X4 ∼ Uniform(0, 1), and X5 an interaction between X1 and X2.
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appropriate confidence interval coverage, corroborating the the-
oretical asymptotic distribution in Theorem 4 for large sample
size. For fixedmj, DIMM is scalable, since the dimension of the
response in each block does not increase. We remark that CPU
time consists of time spent by the CPU on calculations and is
generally shorter than elapsed time, especially for analyses that
use the entire data such as GEE, LMM, and GLS-oracle. Elapsed
time depends greatly on implementation and hardware, and is
harder to compare between methods. For DIMM, CPU time is
the sum ofmaximumCPU time over parallelized block analyses
and CPU time spent on other computations, such as computing
V̂N,ψ and β̂DIMM.

We now discuss the second set of simulations. We let sample
sizeN = 1500 and consider a very challenging linear regression
problem with high-dimension M = 10,000, and J = 12 such
that (m1, . . . ,m12) = (917, 863, 988, 734, 906, 603, 756, 963,
915, 856, 641, 858). We let Xi be a matrix of five covariates
and an intercept, and the AR(1) covariance matrix A with
standard deviation σ = 16 and correlation ρ = 0.8.
We compute β̂DIMM from (7) and its estimated covariance,
and plot RMSE, ESE, ASE, and BIAS in Figure 4. We were
unable to compare DIMM with existing competitors due to
the tremendous computational burden associated with such
high-dimensional M. As in the first set of simulations, β̂DIMM
is consistent with ignorable BIAS. RMSE, ESE, and ASE are
approximately equal, confirming the large-sample properties of
DIMM in this numerical example. ASE slightly underestimates
ESE for certain covariate types. This could be due to the high-
dimensionality Jp = 72 of �N , or the poorer performance of
GMM in smaller samples (see Section 7). Beyond theoretical
validation, the simulation results presented in this section
highlight the applicability, flexibility, and computational power
of DIMM. The empirical evidence from simulations is encour-
aging and advocates the ability of DIMM to deal with high-
dimensional correlated response data with multilevel nested
correlations.

6. Application to Infant EEG Data

We present the analysis of the infant EEG data introduced in
Section 1. EEG data from 157 two-month-old infants under two
stimuli at 46 nodeswas used. Six brain regionswere identified by
the investigator as related to auditory recognitionmemory, with
an additional reference node (VREF), as visualized in Figure 1:

left frontal-central (11, 12, 13, 14, 15, 18, 19), middle frontal-
central (3, 4, 6, 7, 8, 9, 54), right frontal-central (2, 53, 56, 57,
58, 59, 60), left parietal-occipital (24, 25, 26, 27, 28, 29, 30, 32),
middle parietal-occipital (31, 33, 34, 35, 36, 37, 38, 39, 40), and
right parietal-occipital (42, 43, 44, 45 46, 47, 48, 52).

The primary scientific objective of this study is to quantify
the effect of iron deficiency on auditory recognition memory.
From cord blood at birth, 50 infants were classified as iron
deficient (sufficiency_status = 1) and 107 as iron sufficient
based on serum ferritin and zinc protoporphyrin levels. Addi-
tional available covariates are age and type of stimulus (mother’s
voice coded with voice_stimulus = 1). The response for one
infant has a complex nested correlation structure with response
dimension M = 276; see Figure 5. This figure aligns with
substantive scientific knowledge and suggests a partition of data
into 18 blocks of response subvectors, one for each ERP and
brain region. It also corroborates prior knowledge of high corre-
lations within frontal-central regions, parietal-occipital regions,
and between ERPs P2 and P750.

Let Y i,j be the vector of EEG measurements in one brain
region and ERP (block j, j = 1, . . . , 18) for infant i, and consider
the linear model with block-specific coefficients:

E
(
Y i,j

) = β0,j + β1,jagei,j + β2,jvoice_stimulusi,j
+ β3,jsufficiency_statusi,j. (8)

Instead of assuming global homogeneous covariate effects,
which is not biologically meaningful, we perform analyses
based on certain locally homogeneous covariate-response
relationships to identify specific regions affected or not by
iron deficiency. Through individual block analyses (see the
supplementary materials) and existing knowledge, we identify
homogeneous covariate effects across frontal-central regions in
each ERP (M = 42 for each ERP), the left parietal-occipital
region in P2 and P750 (M = 32), the middle and right parietal-
occipital regions from P2 (M = 34), the middle and right
parietal-occipital regions from P750 (M = 34), and parietal-
occipital regions fromLSW(M = 50).Asmentionedpreviously,
DIMM’s flexibility allows us to conduct subgroup analyses by
combining blocks of homogeneous effects to improve statistical
power.

Weuse an inverse normal transformation of the responses for
each analysis. To estimate regression parameters using DIMM,
we assume a compound symmetric covariance structure of the
response within each brain region and each ERP; block analyses
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Figure 4. RMSE, BIAS, ESE, ASE based on 100 simulations with an intercept and five covariates, andM = 10,000. Covariates are simulated as in the right column of Figure 3.
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Figure 5. Correlation of electrical amplitude at three ERPs for iron sufficient children under stimulus ofmother’s voice (color plot and additional plots in the supplementary
materials).

Table 3. Select EEG data analysis results: Iron sufficiency status effect estimates and statistics for each combination scheme.

Estimate CPU CPU
Combine region, ERP Method (SD×10−2) p-value seconds time ratio*

Left, middle, and right fc, P2 GEE-CS 0.103 (12.0) 0.39 0.72 0.55
LMM 0.103 (11.8) 0.38 1.97 1.49
DIMM 0.087 (11.9) 0.47 1.32 1

Left po, P2 and P750 GEE-CS −0.174 (8.3) 0.04 0.22 0.43
LMM −0.174 (8.3) 0.04 1.47 2.86
DIMM −0.226 (8.1) 0.005 0.51 1

Left, middle, and right po, LSW GEE-CS 0.041 (8.7) 0.64 0.55 1.41
LMM 0.041 (7.4) 0.58 3.53 9.07
DIMM 0.087 (8.4) 0.30 0.39 1

NOTE: fc, frontal-central; po, parietal-occipital; SD, standard deviation.
*CPU time ratio is computed as CPU time of method divided by CPU time of DIMM.

are run in parallel; we compute the one-step estimator β̂DIMM
for the set of homogeneous regions of interest. We compare
DIMM to GEE-CS and LMM with nested random intercepts
for subject, stimulus, ERP, and brain region with within-group
compound symmetry correlation structure to reinforce gains in
computation time and statistical power. Based on simulations
mimicking our data setting (see the supplementary materials),
we find that DIMM, GEE-CS, and LMM have adequate power.
We present iron sufficiency status effect estimates for selected
subgroup analyses in Table 3 (complete results available in the
supplementary materials).

DIMM finds a more precise estimate than GEE for all analy-
ses, and for a majority of analyses for LMM. This is because the
covariance structures assumed byGEE and LMMover the entire
response may not be close to the true covariance, resulting in a
loss of efficiency. DIMM always performs faster than LMM, and
for half the analyses DIMM also performs faster than GEE. This
is because of the parallelization of DIMM.DIMMmay be slower
than GEE in the few analyses because of the limited sample size

and small response dimensionality, limiting the improvements
of DIMM over GEE. Nonetheless, in data simulations (see the
supplementary materials), on average DIMM performs faster
than GEE. Effect estimates from GEE, LMM, and DIMM tend
to be in the same direction, increasing confidence in our results.
The estimated effect for the left parietal-occipital region in
P2 and P750 is significant: iron deficient infants had expected
transformed left parietal-occipital P2 and P750 amplitude 0.226
units lower than iron sufficient infants of the same age and sex.
We findmore precise estimates faster than using GEE and LMM
by making better model assumptions and running analyses in
parallel. The proposed DIMM shows promise in simple data
analyses, and has the theoretical justification to perform well in
more complex scenarios.

7. Discussion

The proposed DIMM allows for the fast and efficient estima-
tion of regression parameters with high-dimensional correlated
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response. Simulations show the scalability of DIMM for fixed J
and confirm key asymptotic properties of the DIMM estimator.
The β̂DIMM estimator can be implemented using a fully paral-
lelized computational scheme, for example using the MapRe-
duce paradigm on the Hadoop platform. Investigators split data
into blocks of responses with simple and homogeneous covari-
ance structures. The data partitionmay be driven by some estab-
lished scientific knowledge or certain data-driven approaches.
Errors in prior knowledge can lead to misspecification of the
data split, which may be checked via model diagnostics or
goodness-of-fit tests. If sample size is large enough, investigators
may consider imposing no or limited structure on γ j to avoid
misspecifying response blocks.

In the linear regression setting, the mean and variance of the
composite likelihood approach fully specify the joint distribu-
tion of the subresponse yi,j, and minimal inferential efficiency is
lost in the block analysis when the model is correctly specified.
Empirical evidence from the simulations in Section 5 support
this argument. In the nonlinear setting, inferential efficiency
will inevitably be lost in the block analyses because the pairwise
composite likelihood is a misspecified likelihood. This loss can
be mitigated by using trivariate (or higher) marginal distri-
butions to construct the block-specific estimating equations.
By using the optimal weight matrix in the GMM, we avoid
assumptions on the between-block covariance structure, and
any further loss of efficiency. This may seem counter-intuitive
given that divide-and-conquer approaches typically lead to a
loss of efficiency. With DIMM, there is a trade-off between
efficiency and homogeneity in the parameter β . Indeed, the
assumption of homogeneity in β can be restrictive but allows us
to borrow information across blocks and use an efficient GMM,
controlling the variance of β in the process.

In practice, potential trade-offs between number of blocks J
and block size mj should be evaluated when there is no strong
substantive knowledge to guide the choice of partition. Our
numerical experience has suggested that although large J leads
to smaller mj and therefore faster computation and less strict
model assumptions, DIMM may yield inefficient results due to
large dimensionality of the integrated CL score vector �N . On
the other hand, largemj but small J will have the opposite effect
of slower computation and stricter model assumptions within
each block but better combination of results.

Finally, issues related to poor performance of GMM in small
samples have been documented in the literature and must be
considered when sample size is small (see Hansen, Heaton, and
Yaron 1996 and others in the same issue). In this case, to reduce
the dimensionality of the integrated CL score vector �N , we
suggest integrating analyses from a small number of blocks for
more reliable results, as done in Section 6.

DIMM utilizes the full strength of GMM to combine
information from multiple sources to achieve greater statistical
power, an approach that has been shown to work well with
longitudinal data (see, e.g., Wang, Wang, and Song 2012,
2016). DIMM has the potential to combine multimodal data,
an important analytic task in biomedical data analysis for
personalized medicine. Indeed, response data in each block can
be modeled using any pairwise distribution fj, where

{
fj
}J
j=1

can be made compatible with f (Y ;�) using Fréchet classes

(see Joe 1997, chap. 3). We anticipate numerous extensions to
DIMM, including the addition of penalty terms toCL estimating
equations, and allowing for spatially varying mean parameter
β and prediction of neighboring response variables. Also of
interest is the study of the asymptotic behavior of the DIMM
estimator when J is allowed to grow with the sample size.
Additional conditions to regularize the process of block (and
dimension) growth, such as in Donald, Imbens, and Newey
(2003), Newey (2004), and Qu, Lee, and Lindsay (2008), could
be considered to study the GMM estimator β̂c, but much
work remains to study the DIMM estimator β̂DIMM since
the dimensions of �N and V̂N,ψ depend on J, introducing
additional theoretical challenges. We anticipate that DIMM
will be useful for many types of data, including genomic,
epigenomic, and metabolomic, indicating the promising
methodological potential of DIMM.

Appendix: Proofs of Asymptotic Properties

Let
 be the compact parametric space ofβ and γ .We list the regularity
conditions required to establish large sample properties in the article.

C.1 Assume Eβ0�N(β ; y) has a unique zero at β0, Eγ j0Gj.sub
(γ j; yj,β0) has a unique zero at γ j0, −∇βEβψ(β ; yi) is smooth
in a neighborhood of β0 and positive definite, vψ (β0) is finite,
positive-definite and nonsingular, and

∥∥∥ψ j.sub(β1; yi, γ j1) − ψ j.sub(β2; yi, γ j2)
∥∥∥

≤ C
(∥∥β1 − β2

∥∥ +
∥∥∥γ j1 − γ j2

∥∥∥)
for all β1, γ j1,β2, γ j2 in a neighborhood of β0, γ j0 and some
constant C > 0.

C.2 Following Newey and McFadden (1994), assume
Q0(β) = Eβ

{
�T
N(β ;Y)

}
v−1
ψ

(β0) Eβ {�N(β ;Y)} is twice-
continuously differentiable in a neighborhood of β0.

C.3 Let β̂c be as defined in (5), and β0 an interior point of 
.
Following Newey and McFadden (1994), assume QN(β̂c) ≤
inf
β∈


QN(β) + op(1), and, for any δN → 0,

sup
‖β−β0‖≤δN

√
N

1 + √
N

∥∥β − β0
∥∥

∥∥�N(β ; y) − �N(β0; y) − Eβ�N(β ;Y)
∥∥ p→ 0.

C.4 For each j = 1, . . . , J, assume β̂ j = β0 + Op(N−1/2) and γ̂ j =
γ j0 + Op(N−1/2). Assume

sup
√
N

1 + √
N

∥∥∥(β , γ j) − (β0, γ j0)
∥∥∥∥∥� j.sub(β ; yj, γ j) − � j.sub(β0; yj, γ j0)

− Eβψ j.sub(β ; yi,j, γ j0)
∥∥ = Op(N−1/2).

for any δN → 0, where the supremum is taken over the ball∥∥∥(β , γ j) − (β0, γ j0)
∥∥∥ ≤ δN .
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Proof of Lemma 1. Denote ψ(β̂MCLE; yi) = (ψT
1.sub(β̂1; yi,1, γ̂ 1),

. . . ,ψT
J.sub(β̂J ; yi,J , γ̂ J))

T . By consistency of the MCLE due to
Proposition 1 and C.1, β̂ j −β0 = op(1) and γ̂ j − γ j0 = op(1). Since J,
p finite,

∥∥β̂MCLE − β0
∥∥ = op(1) and

∥∥γ̂MCLE − γ 0
∥∥ = op(1). Then

by C.1,

∥∥ψ(β̂MCLE; yi) − ψ(β0; yi)
∥∥

≤ C
(∥∥β̂MCLE − β0

∥∥ + ∥∥γ̂MCLE − γ 0
∥∥) = op(1).

Plugging into V̂N,ψ , we have V̂N,ψ = 1
N

∑N
i=1 ψ⊗2(β̂MCLE; yi) =

1
N

∑N
i=1 ψ⊗2(β0; yi)+op(1). Since 1

N
∑N

i=1 ψ⊗2(β0; yi) = vψ (β0)+
op(1), then, V̂N,ψ = vψ (β0) + op(1).

Proof of Theorem 1. It is sufficient to show that, by conditions C.1 and
C.2, 1

NQN(β) converges uniformly in probability to Q0(β). Note that∥∥∥ 1
NQN(β) − Q0(β)

∥∥∥ is equal to

∥∥∥�T
N(β ; y)V̂−1

N,ψ�N(β ; y)

− 2Eβ

{
�T
N(β ;Y)

}
V̂−1
N,ψ�N(β ; y)

+ 2Eβ

{
�T
N(β ;Y)

}
V̂−1
N,ψ�N(β ; y)

− 2Eβ

{
�T
N(β ;Y)

}
V̂−1
N,ψEβ {�N(β ;Y)}

+ 2Eβ

{
�T
N(β ;Y)

}
V̂−1
N,ψEβ {�N(β ;Y)}

−Eβ

{
�T
N(β ;Y)

}
v−1
ψ

(β0)Eβ {�N(β ;Y)}
∥∥∥

≤
∥∥∥∥ [

�N(β ; y) − Eβ {�N(β ;Y)}]T V̂−1
N,ψ

[
�N(β ; y)

− Eβ {�N(β ;Y)} ]∥∥∥∥
+ 2

∥∥∥Eβ

{
�T
N(β ;Y)

}
V̂−1
N,ψ

[
�N(β ; y) − Eβ {�N(β ;Y)}]∥∥∥

+
∥∥∥Eβ

{
�T
N(β ;Y)

} [
V̂−1
N,ψ − v−1

ψ
(β0)

]
Eβ {�N(β ;Y)}

∥∥∥
≤ Op(N−1/2) + op(1).

It follows that sup
β∈


∥∥∥ 1
NQN(β) − Q0(β)

∥∥∥ p→ 0 asN → ∞. ByTheorem

2.1 in Newey and McFadden (1994), the combined GMM estimator
satisfies β̂c

p→ β0 as N → ∞.

Supplementary Materials

Additional technical details, proofs of theorems, simulations and data
analysis results are in the supplementarymaterials, alongwith anRpackage.
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