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Abstract. Let M (u), H(u) be the maximal operator and Hilbert trans-
form along the parabola (t, ut2). For U ⊂ (0,∞) we consider Lp esti-

mates for the maximal functions supu∈U |M (u)f | and supu∈U |H(u)f |,
when 1 < p ≤ 2. The parabolae can be replaced by more general non-
flat homogeneous curves.

1. Introduction and statement of results

Let b > 1, u > 0, and γb : R → R homogeneous of degree b, i.e. γb(st) =
sbγb(t) for s > 0. Also suppose γb(±1) 6= 0. For a Schwartz function f on
R2 we let

M (u)f(x) = sup
R>0

1

R

∫ R

0
|f(x− (t, uγb(t)))| dt,

H(u)f(x) = p.v.

∫
R
f(x− (t, uγb(t)))

dt

t
,

denote the maximal function and Hilbert transform of f along the curve
(t, uγb(t)). For an arbitrary nonempty U ⊂ (0,∞) we consider the maximal
functions

(1.1) MUf(x) = sup
u∈U

M (u)f(x), HUf(x) = sup
u∈U
|H(u)f(x)|.

For 2 < p <∞ the operators MU are bounded on Lp(R2) for all U ; this
was shown by Marletta and Ricci [8]. For the operators HU a corresponding
satisfactory theorem was proved in a previous paper [6] of the authors. To
describe the result let

N(U) = 1 + #{n ∈ Z : [2n, 2n+1] ∩ U 6= ∅}.
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Then, for 2 < p <∞, HU is bounded on Lp(R2) if and only if N(U) is finite,
and we have the equivalence

cp ≤
‖HU‖Lp→Lp

(logN(U))1/2
≤ Cp, 2 < p <∞,

with nonzero constants cp, Cp. Moreover, for all p > 1 we have the lower

bound ‖HU‖Lp→Lp &
√

logN(U). The consideration of such results in [6]
and in this paper has multiple motivations. First, there is an analogy (al-
though not a close relation) with similar results on maximal operators and
Hilbert transforms for families of straight lines; here we mention the lower
bounds by Karagulyan [7], and the currently best upper bounds for p > 2
by Demeter and Di Plinio [3]. The second motivation comes from the above
mentioned work by Marletta and Ricci [8] on the maximal function for p > 2,
and the third motivation comes from a curved version of the Stein-Zygmund
vector-field problem concerning the Lp boundedness of M (u(·)) and H(u(·))

where x 7→ u(x) is a Lipschitz function. In this case the Lp boundedness of

M (u(·)) for the full range 1 < p <∞ was proved by Guo, Hickman, Lie and
Roos [5], and the analogous result for H(u(·)) by Di Plinio, Guo, Thiele and
Zorin-Kranich [4]. We refer to the bibliography of [6] for a list of related
works.

Regarding the operators MU , HU most satisfactory results (except for
certain lacunary sequences) were so far obtained in the range p > 2. In this
paper we seek to find efficient upper bounds for the Lp operator norms of
MU and HU in the case 1 < p ≤ 2. It turns out that there is a striking
dichotomy between the cases 2 < p < ∞ and 1 < p ≤ 2. In the latter
case, the operator norms of MU and HU depend on an additional quantity
that involves the local behavior of the set U on each dyadic interval. The
formulation of the results, using some variant of Minkowski dimension, is
in part motivated by considerations for spherical maximal functions in the
work of Seeger, Wainger, and Wright [11] (see also [12], [10]).

As pointed out in [6], with reference to [10], Lp boundedness for p ≤ 2
fails, for both MU and HU , when U = [1, 2]; therefore some additional
sparseness condition needs to be imposed. To formulate such results let, for
each r > 0

U r = r−1U ∩ [1, 2] = {ρ ∈ [1, 2] : rρ ∈ U}.
For 0 < δ < 1 we let N(U r, δ) the δ–covering number of U r, i.e. the
minimal number of intervals of length δ needed to cover U r. It is obvious
that supr>0N(U r, δ) . δ−1. Define

(1.2) Kp(U, δ) = δ
1− 1

p sup
r>0

N(U r, δ)
1
p .

Define

(1.3) pcr(U) = 1 + lim sup
δ→0+

supr>0 logN(U r, δ)

log(δ−1)
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Notice that always 1 ≤ pcr(U) ≤ 2. If pcr(U) < p < 2 there exists
an ε = ε(p, U) > 0 such that sup0<δ<1 δ

−εKp(U, δ) < ∞. If 1 < p <
pcr(U) then there is ε′ = ε′(p, U) > 0 and a sequence δn → 0 such that

lim supn δ
ε′
nKp(U, δn) > 0.

Theorem 1.1. Let 1 < p ≤ 2.

(i) If pcr(U) < p ≤ 2 thenMU is bounded on Lp(R2).

(ii) If 1 < p < pcr(U) thenMU is not bounded on Lp(R2).

(iii) For every ε > 0 we have

cp sup
δ>0
Kp(U, δ) ≤ ‖MU‖Lp→Lp ≤ Cε,p sup

δ>0
δ−εKp(U, δ) .

Here cp, Cp,ε are constants only depending on p or p, ε, respectively.

Theorem 1.2. Let 1 < p ≤ 2 and pcr(U) as in (1.3).

(i) If pcr(U) < p ≤ 2 then HU is bounded on Lp(R2) if and only if
N(U) <∞.

(ii) If 1 < p < pcr(U) then HU is not bounded on Lp(R2).

(iii) For every ε > 0 we have

‖HU‖Lp→Lp ≤ Cp
√

log(N(U)) + Cε,p sup
δ>0

δ−εKp(U, δ).

and

cp
(√

log(N(U)) + sup
δ>0
Kp(U, δ)

)
≤ ‖HU‖Lp→Lp .

Here cp, Cp, Cp,ε are constants only depending on p or p, ε, respectively.

We note that part (i), (ii) of the theorems follow immediately from part
(iii) of the respective theorem.

We discuss some examples. We have pcr(U) = 1 for lacunary U and we
have pcr(U) = 2 if U contains any intervals. There are many interesting
intermediate examples with 1 < pcr(U) < 2, see [11]. One may take for U a
self similar Cantor set Cβ of Minkowski dimension β, contained in [1, 2]; then

pcr(Cβ) = 1 + β. This remains true if for U we take ∪k∈Z2kCβ in Theorem

1.1, or, with finite F ⊂ Z, we take U = ∪k∈F 2kCβ in Theorem 1.2.

Another set of examples comes from considering convex sequences. One
may take Sa = {1 + n−a : n ∈ N} then pcr(Sa) = 2+a

1+a . Again we may also

take suitable unions of dilates of Sa, i.e. for U we can take ∪k∈Z2kSa in
Theorem 1.1, or, U = ∪k∈F 2kSa in Theorem 1.2, provided that F ⊂ Z is
finite.

We shall in fact prove sharper but more technical versions of Theorems 1.1
and 1.2. The term Cε,pδ

−εKp(U, δ) can be replaced with one with logarithmic
dependence, namely

Cp[log(2/δ)]AKp(U, δ)
for A > 14/p− 6. More precisely, we have the following
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Theorem 1.3. Let 1 < p ≤ 2. Then there is C independent of p and U so
that

(1.4) ‖MU‖Lp→Lp ≤ C
∑
`≥1

ϑp,`Kp(U, 2−`),

where ϑp,` = (p− 1)
3− 10

p if ` ≤ (p− 1)−1 and ϑp,` = `
7( 2

p
−1)

if ` > (p− 1)−1.

Moreover,

(1.5) ‖HU‖Lp→Lp ≤ C(p−1)−7
√

log(N(U))+C(p−1)−2
∑
`≥1

ϑp,`Kp(U, 2−`).

Structure of the paper. In §2 we decompose the operators MU , HU in
the spirit of [6] in order to prepare for the proof of Theorem 1.3. The proof
of Theorem 1.3 is then completed in §3 and §4. Finally, the lower bounds
claimed in Theorem 1.1 and Theorem 1.2 are addressed in §5.

2. Basic reductions

We recall some notation and basic reductions from [6]. By the assumption
of homogeneity and γb(±1) 6= 0 there are c± 6= 0 such that γb(t) = c+t

b for
t > 0, and γb(t) = c−(−t)b for t < 0, and finally γb(0) = 0. We note that by
scaling we may always assume that c− = 1. Let χ+ ∈ C∞c be supported in
(1/2, 2) such that ∑

j∈Z
χ+(2jt) = 1 for t > 0.

Let χ−(t) = χ+(−t) and χ = χ+ + χ− . We define measures τ0, σ0, σ± by

〈τ0, f〉 =

∫
f(t, γb(t))χ+(t)dt,

〈σ± , f〉 =

∫
f(t, γb(t))χ±(t)

dt

t
,

σ0 = σ+ + σ−.

Let, for j ∈ Z, the measures τuj , σ
u
j be defined by

〈τuj , f〉 =

∫
f(t, uγb(t))2

jχ+(2jt)dt,

〈σuj , f〉 =

∫
f(t, uγb(t))χ(2jt)

dt

t
.

By homogeneity of γb we have τuj = 2j(1+b)τu0 (δb
2j
·) with δbtx = (tx1, t

bx2),
as well as the analogous relation between σuj and σu0 . We note that the τuj
are positive measures and the σuj have cancellation.
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For Schwartz functions f the Hilbert transform along Γub can be written
as

H(u)f =
∑
j∈Z

σuj ∗ f.

For the maximal function it is easy to see that there is the pointwise estimate

(2.1) M (u)f(x) ≤ C sup
j∈Z

τuj ∗ |f |.

Following [6, §2] we further decompose σ0 and τ0. Choose Schwartz func-
tion η0, supported in {|ξ| ≤ 100} and equal with η0(ξ) = 1 for |ξ| ≤ 50.
Let ς+ ∈ C∞c (R) be supported in (b(1/4)b−1, b4b−1) and equal to 1 on
[b(2/7)b−1, b(7/2)b−1]. Let ς− ∈ C∞c (R) be supported on (−b4b−1,−b(1/4)b−1)
and equal to 1 on [−b(7/2)b−1,−b(2/7)b−1].

One then decomposes

σ0 = φ0 + µ0,+ + µ0,−

τ0 = ϕ0 + ρ0

where φ0, ϕ0 are given by

φ̂0(ξ) = η0(ξ)σ̂0(ξ) + (1− η0(ξ))
(
1− ς−( ξ1

c+ξ2
)
)
σ̂+(ξ)

+ (1− η0(ξ))
(
1− ς+( ξ1

c−ξ2
)
)
σ̂−(ξ)

and
ϕ̂0(ξ) = η0(ξ)τ̂0(ξ) + (1− η0(ξ))

(
1− ς−( ξ1

c+ξ2
)
)
τ̂(ξ).

The measures and µ
0,± and ρ0 are given via the Fourier transform by

µ̂0,+(ξ) = (1− η0(ξ))ς−( ξ1
c+ξ2

)σ̂+(ξ),

µ̂0,−(ξ) = (1− η0(ξ))ς+( ξ1
c−ξ2

)σ̂−(ξ)

and

(2.2) ρ̂0(ξ) = (1− η0(ξ))ς−( ξ1
c+ξ2

)τ̂0(ξ).

As in Lemma 2.1 of [6], the functions ϕ0, φ0 are Schwartz functions. In

addition we have φ̂0(0) = 0.

Define, for j ∈ Z, ϕj and φj by scaling via ϕ̂j(ξ) = ϕ̂0(2
−jξ1, 2

−jbξ2)f̂(ξ)

and φ̂j(ξ) = φ̂0(2
−jξ1, 2

−jbξ2)f̂(ξ). Define Auj,0f by

Âuj,0f(ξ) = ϕ̂j(ξ1, uξ2)f̂(ξ)

and let M0f(x) = supj∈Z supu∈R |Auj,0f(x)|. Let

Ŝ(u)f(ξ) =
∑
j∈Z

φ̂j(ξ1, uξ2)f̂(ξ).

Let M strf denote the strong maximal function of f . For p ∈ (1, 2] we have

(2.3) ‖M str‖Lp→Lp ≤ C(p− 1)−2.
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This follows from the pointwise bound M str ≤ M (1) ◦ M (2), where M (k)

denotes the Hardy–Littlewood maximal operator taken in the kth variable.
Indeed, M (k) is of weak type (1, 1) so Marcinkiewicz interpolation gives

‖M (k)‖Lp→Lp ≤ C(p − 1)−1 for some constant C > 0 and all p ∈ (1, 2],
which implies (2.3).

Lemma 2.1. There exists a constant C such that for all p ∈ (1, 2],
(i)

‖M0f‖p ≤ C(p− 1)−2‖f‖p.
(ii)

‖ sup
u∈U
|S(u)f |‖p ≤ C(p− 1)−7

√
logN(U)‖f‖p.

Proof. Part (i) follows from the estimate

(2.4) |Auj,0f(x)| ≤ CM strf(x).

Part (ii) is more substantial and relies on the Chang–Wilson–Wolff bounds
for martingales, [2]. This is the subject of Theorem 2.2 in [6]. The depen-
dence on p was not specified there, but can be obtained by a literal reading
of the proof provided in [6, §4]. We remark that the exponent 7 can likely
be improved, but it is satisfactory for our purposes here. �

We also decompose ρ̂0 and µ̂0,± further by making an isotropic decompo-
sition for large frequencies. Let ζ0 ∈ C∞c (R2) supported in {ξ : |ξ| < 2} and
such that ζ0(ξ) = 1 for |ξ| ≤ 5/4. For ` = 1, 2, 3, . . . let

ζ`(ξ) = ζ0(2
−`ξ)− ζ0(21−`ξ).

Then for ` > 0, ζ` is supported in the annulus {ξ : 2`−1 < |ξ| < 2`+1} and
we have 1 =

∑
`>0 ζ`(ξ) for ξ in the support of ρ̂0, µ̂0,±.

Define operators Auj,` and T uj,`,± by

Âuj,`f(ξ) = ζ`(2
−jξ1, 2

−jbuξ2)ρ̂0(2
−jξ1, 2

−jbuξ2)f̂(ξ),(2.5)

T̂ uj,`,±f(ξ) = ζ`(2
−jξ1, 2

−jbuξ2)µ̂0,±(2−jξ1, 2
−jbuξ2)f̂(ξ).(2.6)

We shall show

Proposition 2.2. There is C > 0 such that for each ` > 0, p ∈ (1, 2] we
have

(2.7)
∥∥ sup
u∈U

sup
j∈Z
|Auj,`f |

∥∥
p
≤ Cϑp,`Kp(U, 2−`)‖f‖p,

where ϑp,` = (p− 1)
3− 10

p 1`≤(p−1)−1 + `
7( 2

p
−1)

1`>(p−1)−1 and

(2.8)
∥∥∥ sup
u∈U

∣∣∣∑
j∈Z

T uj,`,±f
∣∣∣ ∥∥∥

p
≤ C(p− 1)−2ϑp,`Kp(U, 2−`)‖f‖p.
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We claim that Proposition 2.2 implies Theorem 1.3. Indeed, we have for
non–negative f ,

MUf .M0f +
∑
`>0

sup
u∈U

sup
j∈Z
|Auj,`f |

and thus (1.4) follows from part (i) of Lemma 2.1 and (2.7). It remains to
show (1.5). But in view of the decomposition,

H(u) = S(u) +
∑
±

∑
`>0

∑
j∈Z

T uj,`,±,

this follows from part (ii) of Lemma 2.1 and (2.8). This finishes the proof
of Theorem 1.3.

We conclude this section with some estimates that will be used in the
proof of Proposition 2.2. We will harvest the required decay in ` from the
following simple estimate. For p ∈ [1, 2], ` > 0, j ∈ Z, u ∈ (0,∞) we have

(2.9) ‖Auj,`f‖p ≤ C2−`(1−1/p)‖f‖p.

Indeed, the endpoint p = 2 is a consequence of Plancherel’s theorem and
van der Corput’s lemma, while p = 1 follows because the convolution kernel
of Auj,`f is L1–normalized. Another key ingredient will be the following

pointwise estimate. From the definition of Auj,` in (2.5) we have for ` > 0,

j ∈ Z, u ∈ (0,∞) that

(2.10) |Auj,`f | ≤ CM str(τuj ∗ |f |).

This follows because we have

Auj,`f = (f ∗ τuj ) ∗ κuj,`,

with κuj,` certain Schwartz functions that can be read off from the definitions

(2.2), (2.5) and satisfy |f ∗ κuj,`| ≤ CM strf with C > 0 not depending on
j, `, u.

We also need to introduce appropriate Littlewood–Paley decompositions.
Let χ(1) be an even C∞ function supported on

{ξ1 : |c+|b2−3b−1 ≤ |ξ1| ≤ |c+|b23b+1}

and equal to 1 for |c+|b2−3b ≤ |ξ1| ≤ |c+|b23b. Let χ(2) be an even C∞

function supported on

{ξ2 : 2−2b−1 ≤ |ξ2| ≤ 22b+1}

and equal to 1 for 2−2b ≤ |ξ2| ≤ 22b. Define P
(1)
k1,`

, P
(2)
k2,`,b

by

P̂
(1)
k1,`

f(ξ) = χ(1)(2−k1−`ξ1)f̂(ξ)

P̂
(2)
k2,`,b

f(ξ) = χ(2)(2−k2b−`ξ2)f̂(ξ)
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Then for s ∈ [1, 2b],

(2.11) A2bns
j,` = A2bns

j,` P
(2)
j−n,`,bP

(1)
j,` = P

(1)
j,` P

(2)
j−n,`,bA

2bns
j,` .

For p ∈ (1, 2] we have the Littlewood–Paley inequalities

(2.12)
∥∥∥( ∑

k1∈Z

∑
k2∈Z

∣∣P (1)
k1,`

P
(2)
k2,`,b

f
∣∣2)1/2∥∥∥

p
≤ C(p− 1)−2‖f‖p

and
(2.13)∥∥∥ ∑

k1∈Z

∑
k2∈Z

P
(1)
k1,`

P
(2)
k2,`,b

fk1,k2

∥∥∥
p
≤ C(p− 1)−2

∥∥∥( ∑
k1∈Z

∑
k2∈Z
|fk1,k2 |2

)1/2∥∥∥
p
,

which also hold for Hilbert space valued functions. Similarly as in (2.3),
each of these two inequalities follows from two applications of appropriate
one-dimensional Littlewood–Paley inequalities and the fact that these come
with a constant of (p−1)−1 each, owing to Marcinkiewicz interpolation with
the weak (1, 1) endpoint.

3. A positive bilinear operator

In this section we are given for every n ∈ Z an at most countable set

S(n) = {sn(i) : i = 1, 2, . . . } ⊂ [1, 2b].

Proposition 3.1. There is a constant C independent of the choice of the
sets S(n) = {sn(i)}, n ∈ N, such that for 1 < p ≤ 2 and ` > 0,∥∥∥( ∑

j,n∈Z

∑
i∈N

∣∣wn(i)A2bnsn(i)
j,` f

∣∣2)1/2∥∥∥
p

≤ C(p− 1)
3− 10

p 2−`(p−1)/2 sup
n∈Z
‖wn‖`p‖f‖p

for all functions f and wn : N → C. This holds for A2bnsn(i)
j,` being any one

of the following:

A
2bnsn(i)
j,` , 2−`

d

ds
A2bns
j,` |s=sn(i), T

2bnsn(i)
j,`,± , 2−`

d

ds
T 2bns
j,`,±

∣∣
s=sn(i)

.

We will only detail the proof in the case A2bnsn(i)
j,` = A

2bnsn(i)
j,` . The other

cases follow mutatis mutandis. To this end note that the corresponding
variants of the main ingredients (2.9), (2.10), (2.11) also hold for each of the
other cases, the underlying reasoning being identical in each case.

In the proof of the proposition we use a bootstrapping argument by Nagel,
Stein and Wainger [9] in a simplified and improved form given in unpublished
work by Christ (see [1] for an exposition).



MAXIMAL FUNCTIONS FOR FAMILIES OF HOMOGENEOUS CURVES 9

We first introduce an auxiliary maximal operator. For R ∈ N let

MR[f, w](x) = sup
−R≤j,n≤R

sup
i∈N

∣∣wn(i) τ
2bnsn(i)
j ∗f(x)

∣∣.
We let Bp(R) be the best constant C in the inequality

‖MR[f, w]‖p ≤ C sup
n∈Z
‖wn‖`p‖f‖p,

that is,

(3.1) Bp(R) = sup{‖MR[f, w]‖p : ‖f‖p ≤ 1, sup
n∈Z
‖wn‖`p ≤ 1}.

The positive number Bp(R) is finite, as from the uniform Lp-boundedness of

the operator f 7→ τuj ∗ f we have Bp(R) ≤ C(2R+ 1)2/p. It is our objective

to show that Bp(R) is independent of R. More precisely, we claim that there
is a constant C independent of the choice of the sets S(n), such that for
1 < p ≤ 2,

(3.2) Bp(R) ≤ C(p− 1)2−10/p.

We begin with an estimate for a vector–valued operator.

Lemma 3.2. Let 1 < p ≤ 2, p ≤ q ≤ ∞. Then

(3.3)
∥∥∥( ∑
−R≤j,n≤R

∑
i∈N
|wn(i)A

2bnsn(i)
j,` gj,n|q

)1/q∥∥∥
p

≤ C(p− 1)
−2(1− p

q
)
Bp(R)

1− p
q 2
−`(1− 1

p
) p
q sup
n∈Z
‖wn‖`p

∥∥∥( ∑
j,n∈Z

|gj,n|q
)1/q∥∥∥

p

Proof. The case q = p of (3.3) follows from (2.9). For q =∞ we use (2.10)
to estimate∥∥ sup

−R≤j,n≤R
sup
i∈N
|wn(i)A

2bnsn(i)
j,` gj,n|

∥∥
p

≤ C
∥∥ sup
−R≤j,n≤R

sup
i∈N
|wn(i)|M str[τ

2bnsn(i)
j ∗|gj,n|]

∥∥
p

≤ C
∥∥M str

[
sup

−R≤j,n≤R
sup
i∈N
|wn(i)| τ2

bnsn(i)
j ∗( sup

j′,n′∈Z
|gj′,n′ |)

]∥∥
p

where we have used the positivity of the operators f 7→ τuj ∗ f . By (2.3) we
can dominate the last displayed expression by

C ′(p− 1)−2
∥∥ sup
−R≤j,n≤R

sup
i∈N
|wn(i)| τ2

bnsn(i)
j ∗[ sup

j′,n′∈Z
|gj′,n′ |]

∥∥
p

. (p− 1)−2Bp(R) sup
n∈Z
‖wn‖`p

∥∥ sup
j′,n′∈Z

|gj′,n′ |
∥∥
p

which establishes the case q = ∞. The case p < q < ∞ follows by interpo-
lation. �
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Proof of Proposition 3.1. We use the decomposition τuj ∗ f =
∑∞

`=0A
u
j,`f .

By (2.4) we get∥∥∥ sup
j,n∈Z

sup
i∈N

∣∣wn(i)A
2bnsn(i)
j,0 f

∣∣∥∥∥
p
. (p− 1)−2 sup

n∈Z
‖wn‖`∞‖f‖p.

For ` > 0 we have,∥∥∥ sup
−R≤j,n≤R

sup
i∈N

∣∣wn(i)A
2bnsn(i)
j,` f

∣∣∥∥∥
p
≤
∥∥∥( ∑
−R≤j,n≤R

∑
i∈N

∣∣wn(i)A
2bnsn(i)
j,` f

∣∣2)1/2∥∥∥
p

and, by (2.11) and Lemma 3.2 for q = 2, and (2.12),

∥∥∥( ∑
−R≤j,n≤R

∑
i∈N

∣∣wn(i)A
2bnsn(i)
j,` f

∣∣2)1/2∥∥∥
p

(3.4)

. (p− 1)−2(1−
p
2
)Bp(R)1−

p
2 2
−`(1− 1

p
) p
2 sup
n∈Z
‖wn‖`p

∥∥∥( ∑
j,n∈Z

∣∣P (2)
j−n,`,bP

(1)
j,` f

∣∣2)1/2∥∥∥
p

. (p− 1)p−42−`(p−1)/2Bp(R)1−p/2 sup
n∈Z
‖wn‖`p‖f‖p.

This implies, for 1 < p ≤ 2

Bp(R) .
[
(p− 1)−2 +

∑
`>0

(p− 1)p−42−`(p−1)/2Bp(R)1−p/2
]

. (p− 1)−2 + (p− 1)p−5Bp(R)1−p/2

which leads to

Bp(R) . (p− 1)2−10/p.

If we use this inequality in (3.4) and observe

p− 4 + (2− 10/p)(1− p/2) = 3− 10/p,

then the claimed inequality in Proposition 3.1 follows by the monotone con-
vergence theorem. �

4. Proof of Proposition 2.2

For n ∈ Z let Un ⊂ [1, 2b] be defined by

Un = {2−bnu : u ∈ [2bn, 2b(n+1)] ∩ U}

and let

Nn,`(U) = #
{
k : [2−`k, 2−`(k + 1)) ∩ Un 6= ∅

}
.

Then we have

2
−`(1− 1

p
)
sup
n∈Z
Nn,`(U) ≈ Kp(U, 2−`)

We cover each set Un with dyadic intervals of the form

Ik,` = [k2−`, (k + 1)2−`)



MAXIMAL FUNCTIONS FOR FAMILIES OF HOMOGENEOUS CURVES 11

where k ∈ N. Denote by Sn,` the left endpoints of these intervals and note

Nn,`(U) = #Sn,`. We label the set of points in Sn,`, by {sn,`(i)}
Nn,`(U)
i=1 and

write

sup
j∈Z

sup
u∈U
|Auj,`f(x)| = sup

j∈Z
sup
n∈Z

sup
s∈Un

|A2nbs
j,` f(x)|

≤ sup
j,n∈Z

sup
i=1,...Nn,`(U)

|A2nbsn,`(i)
j,` f(x)|

+ sup
j,n∈Z

sup
i=1,...Nn,`(U)

∫ 2−`

0

∣∣∣ d
dα
A

2nb(sn,`(i)+α)
j,` f(x)

∣∣∣dα.
Hence

∥∥∥ sup
j∈Z

sup
u∈U
|Auj,`f |

∥∥∥
p
≤
∥∥∥( ∑

j,n∈Z

Nn,`(U)∑
i=1

|A2nbsn,`(i)
j,` f |2

)1/2∥∥∥
p

+

∫ 2−`

0

∥∥∥( ∑
j,n∈Z

Nn,`(U)∑
i=1

∣∣∣ d
dα
A

2nb(sn,`(i)+α)
j,` f |2

)1/2∥∥∥
p
dα

and by part (ii) of Proposition 3.1 both expressions on the right hand side
can be estimated by

(4.1) C(p− 1)3−10/p2−`(p−1)/2 sup
n∈Z
Nn,`(U)1/p‖f‖p.

This estimate is efficient for 1 < p < 1 + `−1. Note that in this range
2−C`(1−1/p) ≈ 1 and Nn,`(U)1/p ≈ Kp(U, 2−`). For p = 2 we have the
inequality

∥∥∥( ∑
j,n∈Z

Nn,`(U)∑
i=1

|A2nbsn,`(i)
j,` f |2

)1/2∥∥∥
2

(4.2)

+

∫ 2−`

0

∥∥∥( ∑
j,n∈Z

Nn,`(U)∑
i=1

∣∣∣ d
dα
A

2nb(sn,`(i)+α)
j,` f |2

)1/2∥∥∥
2
dα

. 2−`/2 sup
n∈Z
Nn,`(U)1/2‖f‖2.

For p` := 1 + `−1 < p < 2 we use the Riesz–Thorin interpolation theorem
(together with the fact that (p`−1)C/` ≈C 1 and (p`−1)−A = `A). We then
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obtain for p` < p < 2

∥∥∥( ∑
j,n∈Z

Nn,`(U)∑
i=1

|A2nbsn,`(i)
j,` f |2

)1/2∥∥∥
p

+

∫ 2−`

0

∥∥∥( ∑
j,n∈Z

Nn,`(U)∑
i=1

∣∣∣ d
dα
A

2nb(sn,`(i)+α)
j,` f |2

)1/2∥∥∥
p
dα

. 2
−`(1− 1

p
)
sup
n∈Z
Nn,`(U)1/p`

7( 2
p
−1)‖f‖p.(4.3)

Thus we have established (2.7). The proof of (2.8) is similar but the reduc-
tion to a square–function estimate requires one more use of a Littlewood–

Paley estimate. We have, using the analogue of (2.11) for T 2bns
j,`,+∥∥∥ sup

n∈Z
sup

u∈U∩[2nb,2(n+1)b]

∣∣∣∑
j∈Z

T uj,`,+f
∣∣∣∥∥∥
p

≤
∥∥∥(∑

n∈Z

Nn,`∑
i=1

∣∣∣∑
j∈Z

P
(1)
j,` P

(2)
j−n,`,bT

2nbsn,`(i)
j,`,+ f

∣∣∣2)1/2∥∥∥
p

+

∫ 2−`

0

∥∥∥(∑
n∈Z

Nn,`(U)∑
i=1

∣∣∣∑
j∈Z

P
(1)
j,` P

(2)
j−n,`,b

d

dα
T
2nb(sn,`(i)+α)
j,`,+ f

∣∣∣2)1/2∥∥∥
p
dα

which by (2.13) is bounded by

C(p− 1)−2
[∥∥∥(∑

n∈Z

Nn,`(U)∑
i=1

∑
j∈Z
|T 2nbsn,`(i)
j,`,+ f |2

)1/2∥∥∥
p

+

∫ 2−`

0

∥∥∥(∑
n∈Z

Nn,`(U)∑
i=1

∑
j∈Z
| d
dα
T
2nb(sn,`(i)+α)
j,`,+ f |2

)1/2∥∥∥
p
dα

]
.

From here on the estimation is exactly analogous to the previous square
function – just replace Auj,` with T uj,`,+. The arguments for the corresponding

terms with T uj,`,− are similar (or could be reduced to the previous case by a

change of variable, and curve). This concludes the proof of Theorem 2.2.

5. Lower bounds for p ≤ 2

As mentioned before the lower bound (logN(U))1/2 for ‖HU‖Lp→Lp ,
based on ideas of Karagulyan [7], was established in [6]. We now show
the easier lower bound in terms of the quantity supδ>0Kp(U, δ) (where we
only have to consider the cases δ < 1). The same calculation gives the same
type of lower bound for ‖MU‖Lp→Lp .
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By rescaling in the second variable and reflection we may assume that
c+ = 1. For u ∈ U and δ ∈ (0, 1) we define

Vδ(u) = {(x1, x2) : 1 ≤ x1 ≤ 2, |x2 − uxb1| ≤ δ/4}
and let fδ be the characteristic function of the ball of radius δ centered at the
origin. Observe that for 1 ≤ x1, u ≤ 2 , ε < 1 and x1 ≤ t ≤ x1 + εδ we have
u(tb−xb1) ≤ 2b·3b−1εδ. Thus for εb = (8b·3b−1)−1 we get fδ(x1−t, x2−utb) =
1 and thus

H(u)fδ(x) ≥ 1

3

∫ x1+εbδ

x1

fδ(x1 − t, x2 − utb)dt ≥
εb
3
δ, x ∈ Vδ(u).

By rescaling in the second variable we have for every r > 0 that

‖HU‖Lp→Lp ≥ ‖HUr‖Lp→Lp ,

where U r = r−1U ∩ [1, 2]. Let U r(δ) be a maximal 2bδ–separated subset of
U r, then #U r(δ) & N(U r, δ). This implies

HUr(δ)fδ(x) & δ for x ∈ Vr,δ :=
⋃

u∈Ur(δ)

Vδ(u).

For different u1, u2 ∈ U r(δ) the sets Vδ(u1) and Vδ(u2) are disjoint and
therefore we have meas(Vr,δ) & δ#(Ur(δ)). Hence we get

‖HUr(δ)fδ‖p ≥ cδ1+1/p#(Ur(δ))
1/p.

Since also ‖fδ‖p . δ2/p we obtain

‖HU‖Lp→Lp ≥ ‖HUr(δ)‖Lp→Lp & δ1−
1
p #(U r(δ))

1
p & δ1−

1
pN(U r, δ)

1
p

which gives the uniform lower bound

(5.1) ‖HU‖Lp→Lp & Kp(U, δ)
for sufficiently small δ.
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