MAXIMAL FUNCTIONS ASSOCIATED WITH FAMILIES
OF HOMOGENEOUS CURVES: L BOUNDS FOR p <2

SHAOMING GUO JORIS ROOS ANDREAS SEEGER PO-LAM YUNG

ABSTRACT. Let M, H®™ be the maximal operator and Hilbert trans-
form along the parabola (¢,ut?). For U C (0,00) we consider L? esti-
mates for the maximal functions sup, . |M™ f| and sup, e, |[H™ f),
when 1 < p < 2. The parabolae can be replaced by more general non-
flat homogeneous curves.

1. INTRODUCTION AND STATEMENT OF RESULTS

Let b > 1, u > 0, and 75 : R — R homogeneous of degree b, i.e. v,(st) =
sy (t) for s > 0. Also suppose v,(+1) # 0. For a Schwartz function f on
R? we let

1 R

M“f (z) = sup & | 1@ = Eup®))ldt,
R>0 0

dt
(@) = po. [ Sl = (tun®) T
denote the maximal function and Hilbert transform of f along the curve
(t,uyp(t)). For an arbitrary nonempty U C (0, 00) we consider the maximal
functions

(1.1) MUf(x) = sup MWf(z), HYf(z) = sup [HWf ()],

uelU uelU

For 2 < p < oo the operators MY are bounded on LP(R?) for all U; this
was shown by Marletta and Ricci [8]. For the operators HY a corresponding
satisfactory theorem was proved in a previous paper [6] of the authors. To
describe the result let

NU)=1+#{neZ: 22" NU # 0}
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Then, for 2 < p < 0o, HY is bounded on LP(R?) if and only if (V) is finite,
and we have the equivalence

c m <’ 2 < p < 00
P (logMU))IZ = |

with nonzero constants c,, C,. Moreover, for all p > 1 we have the lower
bound ||HY||zr—rr = 1/logM(U). The consideration of such results in [6]
and in this paper has multiple motivations. First, there is an analogy (al-
though not a close relation) with similar results on maximal operators and
Hilbert transforms for families of straight lines; here we mention the lower
bounds by Karagulyan [7], and the currently best upper bounds for p > 2
by Demeter and Di Plinio [3]. The second motivation comes from the above
mentioned work by Marletta and Ricci [§] on the maximal function for p > 2,
and the third motivation comes from a curved version of the Stein-Zygmund
vector-field problem concerning the L boundedness of M®() and H ()
where x +— u(z) is a Lipschitz function. In this case the LP boundedness of
M®0) for the full range 1 < p < oo was proved by Guo, Hickman, Lie and
Roos [5], and the analogous result for H (u() by Di Plinio, Guo, Thiele and
Zorin-Kranich [4]. We refer to the bibliography of [6] for a list of related
works.

Regarding the operators MY, HY most satisfactory results (except for
certain lacunary sequences) were so far obtained in the range p > 2. In this
paper we seek to find efficient upper bounds for the LP operator norms of
MY and HY in the case 1 < p < 2. It turns out that there is a striking
dichotomy between the cases 2 < p < oo and 1 < p < 2. In the latter
case, the operator norms of MY and #V depend on an additional quantity
that involves the local behavior of the set U on each dyadic interval. The
formulation of the results, using some variant of Minkowski dimension, is
in part motivated by considerations for spherical maximal functions in the
work of Seeger, Wainger, and Wright [I1] (see also [12], [10]).

As pointed out in [6], with reference to [10], LP boundedness for p < 2
fails, for both MY and HY, when U = [1,2]; therefore some additional
sparseness condition needs to be imposed. To formulate such results let, for
each r > 0

U'=r'Un[1,2l={pec1,2] :rpc U}
For 0 < § < 1 we let N(U",d) the d—covering number of U", i.e. the

minimal number of intervals of length § needed to cover U". It is obvious
that sup,-q N(U",8) < 6L, Define

1.2 K, (U, 8) = 6" v sup N(U”,5)7.
P
r>0
Define
log N(U"
(1.3) per(U) = 1+ limsup SUp.»q log N(U”, 9)

50+ log(0—1)
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Notice that always 1 < p(U) < 2. If p(U) < p < 2 there exists
an ¢ = £(p,U) > 0 such that supg_s.1 0 °Kp(U,0) < o0. If 1 < p <
per(U) then there is ¢/ = &/(p,U) > 0 and a sequence 6, — 0 such that
lim sup,, 65 K (U, 6,,) > 0.

Theorem 1.1. Let 1 <p < 2.
(i) If per(U) < p < 2 then MY is bounded on LP(R?).
(i4) If 1 < p < per(U) then MY is not bounded on LP(R?).
(iii) For every e > 0 we have

epsup Kp(U, 9) < ||/\/lUHLpHLp < C.psupd K, (U,0).
6>0 6>0

Here ¢, C)c are constants only depending on p or p, e, respectively.

Theorem 1.2. Let 1 < p <2 and pe;(U) as in (L.3).

(i) If p(U) < p < 2 then HY is bounded on LP(R?) if and only if
NU) < 0.

(ii) If 1 < p < per(U) then HY is not bounded on LP(R?).

(i1i) For every € > 0 we have

|HY | Lo 1r < Cpr/log(M(U)) + Ce sup 5K, (U, 6).
>0

and

e (V1og(M(D)) + sup K (U, 8)) < IHY | Lo r-
>0
Here ¢, Cp, Cp e are constants only depending on p or p,e, respectively.

We note that part (i), (ii) of the theorems follow immediately from part
(iii) of the respective theorem.

We discuss some examples. We have p.,(U) = 1 for lacunary U and we
have p.;(U) = 2 if U contains any intervals. There are many interesting
intermediate examples with 1 < pe(U) < 2, see [I1]. One may take for U a
self similar Cantor set Cg of Minkowski dimension /3, contained in [1, 2]; then
per(Cg) = 14 B. This remains true if for U we take UkeZZkCg in Theorem
or, with finite F' C Z, we take U = Ukep2kcﬁ in Theorem

Another set of examples comes from considering convex sequences. One
may take S, = {14+ n~%:n € N} then p¢(S,) = %_‘t—g Again we may also
take suitable unions of dilates of Sy, i.e. for U we can take Upcz2*S, in
Theorem or, U = Upep2*S, in Theorem provided that F' C Z is
finite.

We shall in fact prove sharper but more technical versions of Theorems
and The term C. ,0~°K,,(U, §) can be replaced with one with logarithmic
dependence, namely

Cpllog(2/8)]4K,(U, 0)
for A > 14/p — 6. More precisely, we have the following
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Theorem 1.3. Let 1 < p < 2. Then there is C independent of p and U so

that
(1.4) MYl < CY 0K, (U, 277,
>1
where Vp ¢ = (p — 1)3_% if 6 < (p—1)"1 and ¥,y = 0" Voife> (p—1)71
Moreover,
(1.5) |HY |l p—rr < Cp—1)""y/log(N(U))+C(p—1) QZﬁpﬂC (U,279).

>1

Structure of the paper. In §2| we decompose the operators MY, HY in

the spirit of [6] in order to prepare for the proof of Theorem The proof
of Theorem is then completed in §3land §4 Finally, the lower bounds
claimed in Theorem and Theorem are addressed in

2. BASIC REDUCTIONS

We recall some notation and basic reductions from [6]. By the assumption
of homogeneity and v,(41) # 0 there are cy # 0 such that 4, (t) = ct® for
t >0, and v,(t) = c_(—t)® for t < 0, and finally 4,(0) = 0. We note that by
scaling we may always assume that c_ = 1. Let x4 € C2° be supported in
(1/2,2) such that

ZX+(2jt) =1fort>0.
JEZ

Let x_(t) = x+(—t) and x = x, + x_. We define measures 79, 09, o+ by

Let, for j € Z, the measures 7,0 be defined by
(12 ) = / (b, ()20 (),
dt
/f (t, uvyp(t 2775)

By homogeneity of v, we have 7}' = 2j(1+b)75(5gj-) with 60z = (tz1,t°xs),

as well as the analogous relation between o7 and og. We note that the 7'

are positive measures and the 0;‘ have cancellation.
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For Schwartz functions f the Hilbert transform along I'} can be written

as
HWf=> olxf.
JEZL
For the maximal function it is easy to see that there is the pointwise estimate
(2.1) M® f(z) < CSEIZ)T; «|f].
J

Following [6], §2] we further decompose oy and 75. Choose Schwartz func-
tion 79, supported in {|¢{| < 100} and equal with n9(¢) = 1 for || < 50.
Let ¢, € CX(R) be supported in (b(1/4)*~1,04*~!) and equal to 1 on
[b(2/7)°71,6(7/2)°71]. Let s_ € C°(R) be supported on (—b4°~1, —b(1/4)"~1)
and equal to 1 on [—b(7/2)°~1, —b(2/7)"71].

One then decomposes

00 = ¢o + Ho+ + Ho,—
T0 = Yo+ po
where ¢q, g are given by

$0(&) = m(€)50(&) + (1 —mo(€)) (1 — o-(2£))54 (&)

and

Z0(8) = mo(&)7(&) + (1= m(€) (1 = - (55))7(&).
The measures and Ho 4 and pg are given via the Fourier transform by
Hio+(€) = (1= m0(€))s-(:55)7+(6),
fo,— (&) = (1 = mo(€))s4 (5557 (€)

and
(2.2) po(&) = (1= m0(§)s—(F25)70(€)-

As in Lemma 2/.\1 of [6], the functions ¢g, ¢¢ are Schwartz functions. In
addition we have ¢o(0) = 0.

Define, for j € Z, ¢; and ¢; by scaling via @;(&) = $o(277¢1, 279b¢,) A(f)
and ¢;(€) = ¢o(27761,277°6) f(€). Define AYyf by

~

A F(€) = Bi(61,u&) F(€)
and let Mo f(z) = supjcz sup,er |47 f(z)]. Let

~

SWEE) =" 661, u)f(&).
JEZ
Let M3 f denote the strong maximal function of f. For p € (1,2] we have
(2.3) | M5 || osre < C(p—1)72
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This follows from the pointwise bound Ms" < M® o M®) where M®*)
denotes the Hardy—Littlewood maximal operator taken in the kth variable.
Indeed M®) is of weak type (1,1) so Marcinkiewicz interpolation gives
IM®)|| o < C(p —1)~! for some constant C' > 0 and all p € (1,2],

which implies (2
Lemma 2.1. There ezists a constant C such that for all p € (1,2],
(1)
IMoflly < Clo = 1) 2 fllp-
(ii)
[ sup S 1, < Clp = 17"V iog DI -

Proof. Part (i) follows from the estimate
(2.4) |Afof ()] < CM™ f(x).

Part (ii) is more substantial and relies on the Chang—Wilson-Wolff bounds
for martingales, [2]. This is the subject of Theorem 2.2 in [6]. The depen-
dence on p was not specified there, but can be obtained by a literal reading
of the proof provided in [0, §4]. We remark that the exponent 7 can likely
be improved, but it is satisfactory for our purposes here. O

We also decompose pg and fi9 1 further by making an isotropic decompo-
sition for large frequencies. Let ¢y € C2°(R?) supported in {¢ : |¢| < 2} and
such that (o(§) =1 for [§] < 5/4. For £=1,2,3,... let

(&) = Go(27°) — ¢o(2' ).

Then for £ > 0, {; is supported in the annulus {¢ : 21 < |¢] < 2F1} and
we have 1 =3, ((&) for £ in the support of po, fig +.
Define operators A}fz and T}, by

(25)  ALF(E) = G276, 27k i (276, 27T FE),
(26) TP (&) = G296, 27 ug) i (27961, 277 F(€).
We shall show

Proposition 2.2. There is C > 0 such that for each ¢ > 0, p € (1,2] we
have

(2.7) || supsup | A7 f| ||, < COpkCp(U, 27| f s
uelU jeZ

_ 3-4 7(2-1)
where ¥y = (p—1)" » Lycpory1 + €77 1y (p_1y-1 and

sup | T Vel ||| < OO =020, K027 11

uelU

(2.8)
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We claim that Proposition implies Theorem Indeed, we have for
non—negative f,

MY F S Mof +> supsup|AY,f|

>0 uelU jeZ

and thus (|1.4) follows from part (i) of Lemma and (2.7)). It remains to
show ([1.5). But in view of the decomposition,

HO =504 TS 1

+ £>0 jez
this follows from part (ii) of Lemma and ([2.8]). This finishes the proof
of Theorem [L.3]

We conclude this section with some estimates that will be used in the
proof of Proposition We will harvest the required decay in £ from the
following simple estimate. For p € [1,2], £ >0, j € Z, u € (0,00) we have

(2.9) 1A%, £l < C2 1P £

Indeed, the endpoint p = 2 is a consequence of Plancherel’s theorem and
van der Corput’s lemma, while p = 1 follows because the convolution kernel
of A;'L,Z f is L'-normalized. Another key ingredient will be the following
pointwise estimate. From the definition of A}‘,e in we have for ¢ > 0,
JjE€Z,ue€ (0,00) that

(2.10) |AY  f| < CMP (73 x| f]).
This follows because we have

Afof = (f *7}') % Ky,
with /ﬁ;}{ , certain Schwartz functions that can be read off from the definitions
2-2), and satisfy |f k¥, < CM3™ f with C' > 0 not depending on
7,4, u.
We also need to introduce appropriate Littlewood—Paley decompositions.
Let ) be an even C™ function supported on

{€1: es 2727 < | < ey 0271

and equal to 1 for |cy[b273 < |&] < |eq|b2%0. Let x® be an even C™
function supported on

{&5: 2771 < |gy| < 22T

and equal to 1 for 272° < |&| < 220, Define r p?

k160 Thot b by

P F(©) = xRt fe)

—
~

P2, () = xR e) fle)
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Then for s € [1,2],

(2.11) AZps = aZ0sp®) | PY) = PP AT

For p € (1,2] we have the Littlewood—Paley inequalities

e (X SRR < co- 0,

k1€Z ko €Z

and
(2.13)

|3 3 BPS fn] <0o-07(X X il ) ‘p

k1E€EZ ko €7 k1E€EZ ko€Z

which also hold for Hilbert space valued functions. Similarly as in ,
each of these two inequalities follows from two applications of appropriate
one-dimensional Littlewood—Paley inequalities and the fact that these come
with a constant of (p—1)~! each, owing to Marcinkiewicz interpolation with
the weak (1,1) endpoint.

I

3. A POSITIVE BILINEAR OPERATOR

In this section we are given for every n € Z an at most countable set
S(n) = {sn(i):i=1,2,...} C [1,2%.

Proposition 3.1. There is a constant C' independent of the choice of the
sets S(n) = {sn(i)}, n € N, such that for 1 <p <2 and { >0,

|3 w2700

JmEZ ieN

<C(p—1)* 72 “”‘“/%ugHwnHeprHp
ne

for all functions f and w, : N — C. This holds for .A Z bemg any one
of the following:

nanli) gt 4 AZVS| oy TR gt 4 paims

A] 4 ds g, £ ’ ds JAEls=sp, (i)

bn :
We will only detail the proof in the case A2 ron() Aj ‘ " The other
cases follow mutatis mutandis. To this end note that the correspondmg
variants of the main ingredients (2.9 , -, also hold for each of the

other cases, the underlying reasoning being identical in each case.

In the proof of the proposition we use a bootstrapping argument by Nagel,
Stein and Wainger [9] in a simplified and improved form given in unpublished
work by Christ (see [I] for an exposition).
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We first introduce an auxiliary maximal operator. For R € N let

bnsnl’
Melf,w)(x) =  sup  suplwa(i)7; " Dsf(z)].
—R<jn<R ieN

We let B,(R) be the best constant C' in the inequality
1M R[f, wlllp < Csup [lwalle | flp,
nez

that is,
(3.1)  Bp(R) = sup{||Ma[f w]lp: [fll, <1, sup [[wnller < 1}.

The positive number By, (R) is finite, as from the uniform LP-boundedness of
the operator f — 7' x f we have By(R) < C(2R + 1)%/P. Tt is our objective
to show that By,(R) is independent of R. More precisely, we claim that there
is a constant C' independent of the choice of the sets &(n), such that for
1<p<2,

(3.2) By(R) < C(p—1)>1077.
We begin with an estimate for a vector—valued operator.

Lemma 3.2. Let 1 <p <2, p<q<oo. Then

(3.3) H( 3 Z\wn(i)Ai”e"sn(i)gm‘q)l/qup

—R<jn<R €N

p

_ _P _p _ _1\p
<Cp—-1) "B, (R) a2 p’qsgz)uwnrup

(3 o)

JMEZL

Proof. The case ¢ = p of (3.3) follows from (2.9). For ¢ = oo we use (2.10)

to estimate

N 2bms, (i
H sup Sup]wn(z)AMS”(Z)gj,n’Hp
_R<jn<RicN

. 2bn (i
<O _sup_sup fun (@) M xlgsal],
. 2bn (3
< C||m| sup  sup |wp(8)| 7; 3 (Z)*(‘sup |gj/,n/\)]Hp
—R<jn<RieN i’ eZ

where we have used the positivity of the operators f +— T f. By (2.3)) we

can dominate the last displayed expression by
_ i 2bn " .
C'p=172| sup_suplwa (i) 7Ok sup |gyl]
—R<j,;n<R ieN j' ' €L

< (p—1)"°By(R) sup [[walew|| sup |gjrml|
nez 3’ n' €L

»

p

which establishes the case ¢ = co. The case p < ¢ < oo follows by interpo-
lation. (|
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Proof of Proposition[3.1. We use the decomposition T} * =3 hf.

By (2.4] . we get

For ¢ > 0 we have,

| o sl a0 <[ X S pei 50r)

—R<j,n<R ieN —R<j,n<RieN

and, by (2.11)) and Lemma for ¢ = 2, and ([2.12)),
(3.4)

[ SlwaaZ =)™

—R<jn<RieN

2 n
sup sup [uwn (i) A7 ™ O f| < (0= 172 sup a7
JmEZ ieN nez

1
< 0= 1) B(R) 520 E sup o
ne

(3 1P2PPr?) |

JMEZL
S (p—1p 2wl p (R) P/ sup [[waller [|.f1]p-
ne

This implies, for 1 < p <2
By(R) < [ +Z 1)p—42~t-1)/2p (R)l—p/ﬂ

>0
S(p=1)"+ (-1 By(R) P
which leads to
By(R) S (p—1)>710/7.
If we use this inequality in and observe
p—4+(2-10/p)(1 —p/2) =3 —10/p,

then the claimed inequality in Proposition [3.1]|follows by the monotone con-
vergence theorem. ([

4. PROOF OF PROPOSITION

For n € Z let U, C [1,2°] be defined by
= {27"uu e 2, 2D N U}
and let
Noo(U) = #{k : 27k, 27 (k + 1)) N U, # 0}.

Then we have

9—t1-3) sup N, o(U) =~ K, (U, 24)
nez

We cover each set U, with dyadic intervals of the form

Ino = k275 (K +1)27%
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where k£ € N. Denote by &,, ¢ the left endpoints of these intervals and note
Nos(U) = #6,, 0. We label the set of points in &, ¢, by {sp ¢(i )}N" (W) and

write

sup sup |A%, f(z)| = supsup sup |A2}* f(x)|
JEZ uelU JEZ neZ s€Uy

<sup osup AT pa)]
j)neZi:lvnNn,Z(U

(Sn 1’( +a)
+ sup sup / ‘ f( )
FINELi=1,.. Ny o(U) do M

Hence

Jsmpspizes], < (3 S )|

JEZ uelU jneZ =1
2— n,Z
d 2 (sne(i)+a) p 2\ /2
s X o g )
0 jnez  i=1 P

and by part (ii) of Proposition both expressions on the right hand side
can be estimated by

(4.1) Clp— 170200 sup N (U) 7 ]
ne

This estimate is efficient for 1 < p < 1+ £~!. Note that in this range
2-CHI=1/P) ~ 1 and N, (U)YP ~ K,(U,27%). For p = 2 we have the
inequality

oI e,

_ N o (U) '
[T )

<27 ¢/2 sup/\/ng( )1/2Hf’|2-

nez

For p; :=1+¢~! < p < 2 we use the Riesz-Thorin interpolation theorem
(together with the fact that (p, —1)¢/* ~¢ 1 and (p;—1)~4 = £4). We then
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obtain for p; < p < 2

(575 o)),

Jn€Z =1
2*2 Nn,l(U)
d omb(s,e(i)ta) o2 WH
w0 X [l ) e
Jn€Z =1
@3 S2 O s N 0) I
ne

Thus we have established (2.7). The proof of (2.8)) is similar but the reduc-
tion to a square—function estimate requires one more use of a Littlewood—
Paley estimate. We have, using the analogue of (2.11)) for T]%Z:f

ZTJ%»J)HP

sup sup
nez uEUﬂ[Q”b 2(n+1)b]

<H<ZZ\ZP“>P s

neZ =1 ]6

/ H(Z Z ‘Z P nébdaj.fz:(_sne(i)+04)f)2)1/2dea

which by (2.13) is bounded by

nZ(U

2f|(S % S,

nez i=1 ]eZ

/ H(Z Z ;|da fzsnz(i)+a)f|2)1/2dea].
J

nezZ 1=1

From here on the estimation is exactly analogous to the previous square
function — just replace AY 7o with T%, . The arguments for the corresponding
terms with T]“ _ are Slmllar (or could be reduced to the previous case by a

change of varlable and curve). This concludes the proof of Theorem [2.2] .

5. LOWER BOUNDS FOR p < 2

As mentioned before the lower bound (logM(U))'/? for |HY||Lr—s1e »
based on ideas of Karagulyan [7], was established in [6]. We now show
the easier lower bound in terms of the quantity sups-o (U, d) (where we
only have to consider the cases § < 1). The same calculation gives the same
type of lower bound for | MY 1s_s1».
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By rescaling in the second variable and reflection we may assume that

¢y =1. Foru € U and § € (0,1) we define
Vs(u) = {(z1,22) : 1 < 21 < 2, |20 — ual| < §/4}
and let f5 be the characteristic function of the ball of radius § centered at the
origin. Observe that for 1 <z, u <2 ,e <1 and z; <t < z1 +ed we have
u(t?—x%) < 20-3*"1es. Thus for g, = (8b-3*~1) "1 we get fs(x1—t, xo—ut®) =
1 and thus
1
3
By rescaling in the second variable we have for every r > 0 that
IHY || Losre > [HY || Lo Lo,
where U™ = r~1U N [1,2]. Let U"(5) be a maximal 2°¢-separated subset of
U", then #U7(6) 2 N(U", ). This implies
HU O fs(z) > 6 for z € Vis = U Vs(u).
ueUr(6)
For different uj,ugs € U"(0) the sets Vs(ui) and Vs(ugz) are disjoint and
therefore we have meas(V,.5) 2 0#(U,(6)). Hence we get
17 fsll > ot P4 (U (6)) 1.

Since also || fs]|, < 6%/7 we obtain

T1+ep0 &b
H®™ f5(z) > / fs(x1 —t,x0 — ut®)dt > 55, x € Vs(u).

x1

B =

r _1 1 _1
1H o e = - Ol 2 8 2 #(UT(9)7 26 N(U,9)

~

which gives the uniform lower bound
(5.1) 11 Lo 2 Ky(U, 8)

for sufficiently small 6.
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