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RIESZ MEANS OF FOURIER SERIES AND INTEGRALS:
STRONG SUMMABILITY AT THE CRITICAL INDEX

JONGCHON KIM AND ANDREAS SEEGER

ABSTRACT. We consider spherical Riesz means of multiple Fourier series and
some generalizations. While almost everywhere convergence of Riesz means at
the critical index (d — 1)/2 may fail for functions in the Hardy space h'(T9),
we prove sharp positive results for strong summability almost everywhere. For
functions in LP (']l'd)7 1 < p < 2, we consider Riesz means at the critical index
d(1/p—1/2) —1/2 and prove an almost sharp theorem on strong summability.
The results follow via transference from corresponding results for Fourier in-
tegrals. We include an endpoint bound on maximal operators associated with
generalized Riesz means on Hardy spaces HP(R?) for 0 < p < 1.

1. INTRODUCTION

We consider multiple Fourier series of functions on T¢ = R?/Z4. For ¢ € 74,
let e(x) = €20 and define the Fourier coefficients of f € L'(T%) by (f,e;) =
de f(y)e= 2740 dy. We shall examine the pointwise behavior of (generalized) Riesz
means of the Fourier series. Fix a homogeneous distance function p, continuous on
R9, positive and C> on R?\ {0}, and satisfying, for some b > 0, p(t*¢) = tp(¢) for
all ¢ € R For f € L'(T?), define the Riesz means of index A with respect to p, by

(1.1) RN =3 (1= pt/) (f.er)ee.
JISAS
p(£/t)<1
The classical Riesz means are recovered for p(§) = |¢], and when in addition A =1
we obtain the Fejér means. The Bochner—Riesz means are covered with b = 1/2 by
taking p(§) = [¢[*.

It is well known via classical results for Fourier integrals [34], [40], [31] and
transference [25], [20], [1] that, for A > 951 and f € L*(T?), we have lim;_,o R} f =
f, both with respect to the L' norm and almost everywhere. For the critical index
A= %, it is known that the Riesz means are of weak type (1,1), and one has
convergence in measure [§], [I0] but Stein [35] showed early that a.e. convergence
may fail (see also [40]). Indeed, extending the ideas of Bochner, he proved the
existence of an L'(T¢) function for which the Bochner—Riesz means at index %
diverge almost everywhere as t — 0o. Stein’s theorem can be seen as an analogue of

the theorem by Kolmogorov [23] on the failure of a.e. convergence for Fourier series
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in L1(T); see [48, Ch. VIII-4]. Later, Stein [37] proved a stronger result showing
that, even for some functions in the subspace h'(T?) (the local Hardy space), the
Bochner—Riesz means at the critical index may diverge almost everywhere. It is then
natural to ask what happens if we replace almost everywhere convergence with the
weaker notion of strong convergence a.e. (also known as strong summability a.e.),
which goes back to Hardy and Littlewood [18].

Definition 1.1. Let 0 < ¢ < oo. Given a measurable function g : (0,00) — C, we
say that g(t) converges g-strongly to a, as t — oo, if

e 1/q
1 N
i (7 [t - arar) ™ <o

If g(t) refers to the partial sum of a series, then one also says that the series is
strongly H, summable. Clearly if lim, ., g(t) = a, then g(t) converges g-strongly
to a for all ¢ < oco. Conversely, if g(t) converges g-strongly to a for some ¢ > 0,
then g(t) is almost convergent to a as t — oo. That is, there is a (density 1) subset
E C [0,00) satistying
(1.2) lim Z00T]]

A =1 and tl_lg)lo g(t) = a.

teE
See [48, Ch. XIII, (7.2)] and also Corollary [[3]

For the classical case of a Fourier series of an L!(T) function, Zygmund [47]
proved that the partial sum 3, ., (f, e¢)e¢(2) converges g-strongly to f(z) ast — oo
a.e. for all ¢ < oo, extending an earlier result by Marcinkiewicz [28] for ¢ = 2.
Zygmund used complex methods, but in more recent papers one can find alternative
approaches with stronger results and some weaker extensions to rectangular partial
sums of multiple Fourier series; see, e.g., [30], [46] and the references therein. See
also [24] for an overview of recent developments on topics related to the convergence
of Fourier series.

Regarding spherical partial sums of multiple Fourier series, ¢-strong convergence
results have been available for LP(T?) functions for the Bochner—Riesz means of
index A > A(p) when p < 2, ¢ = 2, where A(p) = d(% — 3) — & is the critical index
(cf. [34], [42]). The question of strong convergence a.e. for the Bochner-Riesz means
at the critical index A(1) = 41, for either f € L*(T?) or f € h!(T%), had been left
open and was posed by Lu in the survey article [27]. We answer this question in the
affirmative for f € h!(T9) for generalized Riesz means with any distance function
p under consideration.

Theorem 1.2. Let ¢ < oo, and let A(1) = dQ;l, Then, for all f € h'(T?), the
following statements hold.

(i) There is a constant C' such that, for all a > 0,

meas({x : sup (% /OT |Rt’\(1)f(x)|th) e > a}) < Ca Y| flln-

T>0
(if)

I 1/
Tlim (T/ |R?(1)f(x) — f(m)|th) "—0 for almost every x € T?.
hde el 0
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We remark that for the classical Riesz means (or generalized Riesz means as-
suming finite type conditions on the cosphere ¥, = {£ : p(§) = 1}), Theorem
for the range ¢ < 2 could have been extracted from [32], although that result is
not explicitly stated there. The full range ¢ < oo obtained here seems to be new.
Regarding the question posed for f € L*(T%), in Section [ we derive some weaker
results including ¢-strong convergence up to passing to a subsequence.

We now address the question of strong convergence of Riesz means for LP(T%)
functions at the critical index A = A(p). In this case, g-strong convergence results
may fail for large q. Our next result identifies a nearly sharp range of ¢ for which
’Ri‘(p )f (x) converges g-strongly to f(x) almost everywhere for any f € LP(T%). We
denote by p’ = ﬁ the exponent dual to p.

Theorem 1.3. Let 1 <p < 2, let ¢ < p’, and let \(p) = d(% — 3y =1 Then, for
all f € LP(T9), the following statements hold.
(i) There is a constant C such that, for all o > 0,

1 (T 1/q
d . - A(p) q < —p
meas({x eT*: ;1;% (T/o RV f ()] dt) > oz}) < Ca™ || f[l Lo (re)-
(ii)

e 1/
lim (T/ |R?(p)f(x) - f(:c)|th) ‘o 0 for almost every x € T,
0

T—o0
(iii) For suitable f € LP(T%), statements (i) and (i) fail when ¢ > p'.

Part (ii)’s in both theorems follow by a standard argument from the respec-
tive part (i), using the fact that pointwise (in fact uniform) convergence holds for
Schwartz functions. We note that Theorem is sharp in view of the above men-
tioned example by Stein. Moreover, part (iii) of Theorem [[.3] shows that the result
is essentially sharp for all p € (1,2), but the case ¢ = p’ remains open.

We state a special case of Theorem [[3]for A(p) = 0, i.e., for the case of general-
ized spherical partial sums of Fourier series, as a corollary.

Corollary 1.4. Letd > 2, let g < %, and let [ € L%(Td). Then

1 [T a \1/a
lim (—/ ‘ Z (f,eeyep(x) — f(x)‘ dt) =0 for almost every x € T
T—oo - T 0

p(£/t)<1
In particular, for almost every x € T?, the partial sums Zp(f/t)<1<f’ eo)ee(x) are
almost convergent to f(x) as t — oo, in the sense of (2.

We remark that there are analogues of the above results for generalized Riesz
means of Fourier integral in R?:

(1) R = [ (et fe e

See Section @l Indeed, we derive Theorems and from corresponding the-
orems for Fourier integrals in R? using transference arguments. Our proof uses
somewhat technical arguments on atomic decomposition and Calderén-Zygmund
theory. Unlike the proofs of the LP boundedness of Bochner-Riesz means (such as
in [38], [5] and the references therein), our proof does not rely on Fourier restriction
theory thanks to the averaging over the dilation parameter ¢. In particular, the
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2962 JONGCHON KIM AND ANDREAS SEEGER

curvature of the cosphere ¥, = {£: p(§) = 1} does not play a role in the argument
(cf. [I0], [I1]), which allows us to work with generalized Riesz means with respect
to any smooth homogeneous distance function.

Notation. Given two quantities A, B, we use the notation A < B to mean that
there is a constant C' such that A < CB. Weuse A~ Bif A S Band B S A

This paper. In Section 2] we formulate Theorems 2] and on strong conver-
gence for Riesz means of critical index in RY and reduce their proof to the main
weak type inequality stated in Theorem 2.3l Some preliminary estimates are con-
tained in SectionBl The proof of the main result, Theorem 2.3} is given in Section @l
In Section [l we use transference arguments to prove the positive results in The-
orems and [[3l In Section [7] we discuss a weaker result for L' functions. In
Section [G] we show the essential sharpness of our LP results—mnamely, that Theo-
rems [[.3] and require the condition ¢ < p’ (the failure of the maximal theorems
for h! already follows from Stein’s example [37]). In Section B we include the
proof of an extension of a theorem by Stein, Taibleson, and Weiss [39]—mamely, an
HP — LP**° estimate for the maximal function sup,. |R?(p)f(ac)\ associated with
generalized Riesz means in Hardy spaces HP with p < 1. Finally, we discuss some
open problems in Section

2. THE MAIN WEAK TYPE ESTIMATE

We state results on R? which are analogous to Theorems and [[33] and reduce
them to a crucial inequality for a vector-valued operator stated in Theorem 2.3

Let p be as in the introduction. Recall the definition of Riesz means R} for Fourier
integrals from (L3]).

Theorem 2.1. Let ¢ < oo, and let A(1) = %. Then, for all f € HY(R?) and for
all a > 0,

1 /7 1/q
d . _ )‘(1) q < —1
meas({x eR%: ;};]% (T/o |R.:f (2)] dt) > a}) < Ca || fll g (ray-
Theorem 2.2. Let 1 <p <2, let ¢ < p', and let \(p) = d(% — 3y~ 1. Then, for
all f € LP(R?) and for all a > 0,

meas({:c e R?: sup (% /OT |R?(p)f(x)|th) i > a}) < Ca™P|| fll Lr(ray-

>0
As a consequence of these estimates, we obtain

1/q
=0
T—0

jim (7 [ RS @) - fo)lat)

for almost every z € RY, for every f € LP(RY) when 1 < p < 2 and f € h'(R%) or
H'(R?) when p = 1.

We start the reduction of Theorems 21] and 22 to Theorem [23] by replacing the
multipliers for the Riesz means R} with similar multipliers supported away from

the origin; see (2.2)).
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2.1. Contribution near the origin. Let vy € C*(R) so that vg(p) = 1 for
p <4/5 and vg(p) = 0 for p > 9/10. Tt is then standard that the maximal function
sup;so |[FHoo(p(-/8))(1 — p(/t))iﬂ defines an operator of weak type (1,1) and
bounded on LP for all p > 1. A small complication occurs if p is not sufficiently
smooth at the origin. We address this complication as follows.

Define, for N > 0, the functions u, uy with domain (0,00) by u(r) = vo(7)
(1 —7)* and un(s) = u(s*/N). Tt is then straightforward to check that, for all M,

/ sM|u§\I,V[+1)(s)|ds < 00,
0

and we have the subordination formula [45]

(_1)M+1

9] N
21 ulpl©) = un(r*(©) = i [ 1= P s

which is proved by integration by parts. Given any m > 0, one has |F~1[(1 —
pM) M (z)| Sm (14 |z[)~™ provided that M and N are large enough. This is

~

used to show that sup,.q|F{u o p(-/t)f] is dominated by a constant times the
Hardy-Littlewood maximal function of f (see also Lemma [8.2]).
We can now replace the operator R} in Theorems 2.1] and by S} defined by

(2.2) SMF(E) = (1= vo(p(&/D)) (1 — p(¢/E)LF(E).

2.2. Further decompositions. We first recall standard dyadic decompositions on
the frequency side. Let n € C2°(R?\ {0}) be such that 1 is nonnegative,

(2.3) ) =1 on{€:p(e/t) e [1/44] 1/2<t<2).

Define Ly, f by L.f(€) = n(27€) F(£).

We use the nontangential version of the Peetre maximal operators

M f(z) = sup  [Lpf(z+h)|

|h|<2-k+104

and the associated square function

1/2
(2.4) /() = (D Imf@)?) .
kEZ
Then
(2.5a) 16 £ < Cllf ]l
and
(2.5D) 16l < Cyllflle,  1<p< oo;

see Peetre [29)].
The inequalities in Theorems 2.1] and follow from

e 1/q
s (5 [ 1s2@s10ae) ™| <181,

T>0
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2964 JONGCHON KIM AND ANDREAS SEEGER

for 1 <p <2, q<p'. Here LP*> is the weak type Lorentz space and the expression
gl = sup,-qa(meas({z : |g(x)] > a}))}/? is the standard quasi norm on
LP*°, We may, by Holder’s inequality, assume that 2 < g < p’. We can then use

(2.6) sup (% /T|St>‘(p)f(:1c)|th> ! 21/‘1(22_ /2k+1 \S;‘(p)f(xﬂth)l/q.
0

>0 =
We now use the standard idea to decompose the multiplier (1 — vg o p)(1 — p)}
into pieces supported where p(§) € [1 —277,1 — 27772]. Generalizing slightly, we
assume that we are given C* functions ¢; supported in [1 —277,1 — 27772] and
satisfying
10" pjllec < CR2™™

forn=0,1,2,.... Let I :=[1,2]. For t € I, k € Z, define

(27) TFI(6:1) = 95 (p(2 7M1 F(9).
We may decompose S, ktf Y1 27T f (2, 1), with T/ of the form in (277). The

asserted estimates for St ®) follow now from weak type bounds for the expression on
the right-hand side of (Z6). By ([2.3)), we have n(27%¢) = 1 whenever p(27%¢/t) €
supp(p;) for any ¢ € I. Thus after changing variables, the desired estimate can be
restated as

I( %/\22 pogseeola)”|<ief,.

Since ¢2 C (9 for ¢ > 2, this follows from the following stronger statement, our
main estimate.

Theorem 2.3. For 1 <p<2, A(p)=d(1/p—1/2)—1/2, ¢ <P/,

Z (/I ’ iQ*j)\(p)jygﬁkf(.’t) th)z/q)l/z‘
j=1

The theorem will be proved in Sectiondl Some preparatory material is contained
in Section [Bl

SIS fll e way-

Ly (R)

3. PRELIMINARY ESTIMATES
We gather elementary estimates for the operators T]k defined in (27).

Lemma 3.1. For 2 < g < oo,
1/q )
([ mscopa)™], < 2

Proof. Use the convexity 1nequahty, 7]l < ||7H2/q||7||1 29 for 4 € L1([1,2]), and
for v € C* we have ||7Hoo 712" (vl + ||7 l2)*/2, and hence

2
/ (0)[7de) / (1))
) 33-b
W(t)l d W )|? dt :
1

(3.1)
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We obtain after some standard estimations

2 1/2 1/2 .
([ mescopa)], 2 ([ ransseora) ), < 2
1

and then the assertion of the lemma follows from 1) applied to y(t) = T} f(, t),
followed by Hélder’s inequality in x. O

To prove the L' estimate, we rely on a spherical decomposition introduced in [12].
For each fixed j > 1, we use a C*° partition of unity {x;.,},ez, for an index
set Z; with #2; = 0(27(4=1/2) " which has the following properties: each Xj,v
is homogeneous of degree 0, the restriction of the support of x;, to the sphere
{€ : |¢| = 1} is supported in a set of diameter 277/2, and each unit vector is
contained in the supports of x;, for O(1) indices v. We may choose the index
set Zj such that, for every v, there is a unit vector §;,, € supp(x;,») such that
dist(&,,, &) > 279/2 for v # V. We assume that the y;, satisfy the natural
differential estimates, i.e., 8§Xj,y(§) = O(23(Prt+Ba)) Define Ty, by

(3.2) T, F(€,t) = X (©)ps(p(27Ft71€)) F.
Let K; = F'g(p(1)], and let K;, = F'p;(p()xjn]- Let @9 € CZ(R?)
supported in {z : |z| < 1} be such that ®g(z) =1 for |x\ < /2, and, for n > 1, let
D, (z) = ®o(27"x) — ®o(2!"x). Define, for n = 0,1,2,.

K} (z) = Kj(2)®n (277 ),

K}, (z) = Kj,r/(x)q)n@ijx)

s

and
T fa,t) = (%) K7 (25) # f,
T f,t) = 2%)TK7, (25) * f.

Then

(3.3) THf= Y TF, ZT”kf Z > T
VEZ; n=0vEZ;

Lemma 3.2. Let ¥, = {{: p(§) =1}. Then
K (O] < Cary 1,270 (14 20dlist (€, 3,))
Sketch of proof. Let U(x) = ®o(x/2) — ®o(x). Then, for n > 1, we may use the

fact that ¥ has vanishing moments and write

K5O = [ wilole — )2 ar )y

(3.4) L(1—s)N-1 , ~ .
— [ S 9 oo alte - sz e )y ds
o (N-=1)!
by Taylor’s formula. The estimate is now straightforward. When n = 0, we just
use the first line in (34), with ¥ replaced by ®y. O

For each v, choose ¢;, such that p(§;,) =1 and &; , € supp(x;.). Take e;, =

Vp(&j.w) _ — 1
\Vp(éj',u)l’ and let P;, be the orthogonal projection to ej,, i.e.,

(3.5) Pjyh=h—(h,eju)eju.
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Lemma 3.3. For every M >0,
9—j(d+1)/2
(1+ 279 |2)M(1 4 279/2| Py, () )M

(3.6) Stlellé) |tdKj7,,(tJU)| < C(M)

Proof. This is standard (and follows after integration by parts); see, e.g., [12], [11],
or [3]. O
Lemma 3.4.

(i) For k € Z,

lsup 77 £ )], < On2 27N 1.

(ii) For1<p<2,¢q<p andk €Z,

1 1

1/q . 1
(it seooima) | < oxpes=paNy g,

(iii) For 2 < ¢ < o0,
2 n 1/q .
|([ e scnpma) ™|, s 2

Proof. Lemma [3.3] easily implies || sup,¢; |T;f;/kf(~,t)| 1 < ON27"N||f]l1, and part
(i) follows after summing in v. Using Lemma[3.2] we see that the proof of Lemma[31]
also gives

2 5 1/2 .
|(f imspa) ™|, sv ez .
1

Part (ii) now follows by complex interpolation.

Part (iii) for ¢ = 2 is just the previous displayed inequality. For ¢ > 2, it
follows by the argument in Lemma B] (cf. (81)) applied to T;“k in place of Tf, in
conjunction with Lemma O

4. PROOF OF THEOREM [2.3]

The proof combines ideas that were used in the proof of weak type inequalities
for Bochner—Riesz means and other radial multipliers, and elsewhere [15], []], [,
[10], [32]. Tt combines atomic decompositions with Calderén—Zygmund estimates
using L" bounds for 7 > p in the complement of suitable exceptional sets together
with analytic interpolation arguments inspired by [9].

In this section, we fix a Schwartz function f whose Fourier transform has compact
support in R%\ {0}. Observe that then £;f = 0 for all but a finite number of
indices k (depending on f). This assumption together with the Schwartz bounds
can be used to justify the a priori finiteness of various expressions showing up in
the arguments below, but they do not enter quantitatively in the estimates.

We need to prove the inequality
(4.1)

meas{x eR?: (Z [/1 ’ iQijA(”)Y}kﬁkf(x,t)‘th} 2/q)1/2 > a} Sa P& fp
& j=1

for arbitrary but fixed a > 0. The implicit constant does not depend on « or the
choice of f.
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4.1. Preliminaries on atomic decompositions. Let Ry be the set of dyadic
cubes of side length 27* so that each R € Ry, is of the form Hle[nﬂ’k, (ni+1)27F)
for some n € Z¢. For pu € Z, let

Q= {z:|6f(x)| > 2"},
and let R be the set of dyadic cubes of length 2~% with the property that
[RNQy| > |R|/2
and
B OQ] < |RI/2.

Clearly if §f € LP, then every dyadic cube in Ry belongs to exactly one of the sets
RY. We then have [7]

(4.2) D / |y f2dx < 22 meas(9,,).
keZ ReRl B
For completeness, we give the argument. Observe that
|Lkf(z)] < Mif(2) for z,z € R, R € RE.
Let
Q, = {z: Mur1g, > 1079},

where My, denotes the Hardy—Littlewood maximal operator. Then

meas({2,) S meas(£y,),

and we have (J, Ugers R C SNIM. Now

SN IRLAIZ <D D 2/R My f () |2 da

kE€Z RERY keZ Rery ¥\
< 2/~ Z |9 f () |Pde < 22”+1meas(ﬁu) < 02*'meas(Q,),
Qur\Qu+l keZ

which yields (Z2).
Next we work with a Whitney decomposition of the open set €2,, which is a
disjoint union of dyadic cubes W, such that

diam(W) < dist(W, Q5) < 4 diam(W).

See [30, Ch. VI.1]. We denote by 20* the collection of these Whitney cubes. Each
R € R}, is contained in a unique W (R) € 20*. For each W, define

(4.3) RIW)={ReRl': RC W}

and

= (g X [ 1euswra)

k RERL(W)
Define

(4.4) U)=Y > Y lwl).

p WedgH
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2968 JONGCHON KIM AND ANDREAS SEEGER

Observe that

W= > Whin,=>_ > IWIP2(W[ 2y,mw)?

pn WewH n WegH
1—p/2 p/2
SO W) (Y wWhew)
no Weuk W enk
(4.5) o N
DI (> X Iacsp)
k. Weik ReRI(W)
S Z QPR 2MQ,)P S Y 210
h H
by ([@2)), and thus
(4.6) Yo D Whi, = UL S IS8,
n Wen
For a > 0, let
(47) O, = {LE s My, U > Olp}
and
(4.8) Oy = {z : Mup 1o, (z) > (10d)~%}
so that O, C 6@ and
(4.9) meas(Oy) < meas(Og) < a P& f|P.

Let 9, = {Q} be the collection of Whitney cubes for the set O, (see [36, Ch. VI])
such that

diam(Q) < dist(Q, O%) < 4 diam(Q).
In analogy to the usual terminology of “good” and “bad” functions in Calderén—

Zygmund theory we split, for fixed «, the collection 20* into two subcollections
W oa = Whooa(a) and Wy, = Qﬁqu( «) by setting

good —
wr = W e W+ > oy,
(4.10) Mbad { YW, O‘}
Qﬁgood = {W e W yw, < a}.

We relate the collection 20}, ; with the collection of Whitney cubes Q,, for the
set 6a.

Lemma 4.1. Let W € 200 . Then W C O,. Moreover, there is a unique cube
Q=Q(W) e Q, containing W.

Proof. For the first statement, assume otherwise that there is 2 € W NS for some
W e Qﬁﬁad. Then U(z) < o and therefore 'y%jV,M < P, which is a contradiction.

For the second statement, we first claim that W* C 6(1, where W* is the 10d/2-
dilate of W (with the same center). The claim follows because, for all y € W*, we
have My, 1o, (y) > |W|/|W*| = (10v/d)~¢ by the first statement. Let xy be the
center of W. Then, by the claim,

diam(W™*)

dist(zw, (04)C) > dist(zw, (W*)C) = ]

= 5 diam(W).
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Let @ € Q4 be such that zy € Q. Then the last displayed inequality implies
that

5diam (W) < dist(zy, (04)°) < diam(Q) + dist(Q, (0n)%) < 5 diam(Q),
and hence diam(Q) > diam(W). Since both W, @ are dyadic cubes containing
xw, this implies that W C @. Uniqueness of @) follows since the cubes in £, have
disjoint interior. (Il
In light of Lemma 1] we also set, for a dyadic cube Q € 9.,
(4.11) WHQ)={W e ,: WcCQ}.
Lemma 4.2. Let Q € Q. Then
Yo > Whiy, <10%7(Q).

n Wewh(Q)

Proof. Since @ is a Whitney cube for the set 5(1, there is an x € (53 - (95 such
that dist(Z, Q) < 4diam(Q). If Q. denotes the cube centered at ¥ with diameter
equal to 10diam(Q), then Q C Q.. Since T € Og, we have My, U(Z) < oP. Hence
fQ U< fQ* U < a?|Q.| = 10%aP|Q)|, and the assertion follows. O

4.2. Outline of the proof of the weak type inequalities. For R € Ry, let
(4.12) er(z) = 1r(2)Lif(z),
and, as in ([@I0), split L f = ¢g* + b*, where

(4.13) gkzz Z Z €R,

v Wet | ReERL(W)

good

(4.14) =>" Y > er

H Wewlh  RERL (W)

In view of (3], it suffices to show that, for 2 < ¢ < oo,

(4.15)
. c- —jx(p)k K a 2/ay1/2 < AP P
meas{x.(zk:(/I‘EQ T7g"(x,t) dt) ) >oz/2}Na IS£I5
and
(4.16)

meas{x S (53 : (Z (/1 ‘ iQ—j/\(p)Tkak(x’t)‘th)z/q)lm - a/2} < O(_pHGng-
k j=1

Since A(p) > 1/p —1 > —1/q, we can use Lemma [31] to bound

IO (I ormral'a)™) ),
> . /a\ 1/
s (8([imara)™) ],

>© 1 1/2 1/2
32O (SN I3) s (Do eM3)
j k

j=1 k
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Hence, by Tshebyshev’s inequality, the left-hand side of ([@I%) is bounded by

1072 (2 / 122 nozhg)|'ar) )| S I

Now
2ot ||2—ZHZ > Y XX X X el
n Wewl 4 RERL (W) n Wewd 4 RER (W)
=D > Whina Sa¥PY . D> (Whik, So™ PISfp,
nw Wet p Wet

good

where we have used yw,, < o for W € 20} ;. Equation (£I3) follows.

We turn to (I0). We write L(Q) = m if the side length of @ is 2. Define, for
m > —k,

(4.17) Bh= > > > > er

QEN. K WeWH(Q) RERL (W)
L(Q)=m

so that b = dom>—k BE .
Note that, for R € RE (W), we have L(W) > —k. Then

D, Bu= 2> Buo

m>—k m>—k o>0

where

(4.18) = > > > > er

QENa K WeWH(Q) ReRL (W)
L(Q)=m L(W)=—k+o
We handle the case of the contributions TfB,’fM, with m < j —k differently from
those with m > j — k. Moreover, we distinguish the cases in which |j —k —m]| > o
and |j —k —m| < 0. If we use Tshebyshev’s inequality and take into account ([€9),
we see that, in order to establish (LI, it suffices to show the following three
inequalities, assuming that 2 < ¢ < p’ (and hence p < ¢’ < 2):

(4.19)

oo ) // // ’
> {/I‘ZIQ—JA@ ¥ TJkB;;p(.,t)’th]q q)l q‘q
p=

La' (R9)
(m,o)m<j—k,
0<o<j—m—k

S o PGS F,

~

(4.20)
> —ix(p) ok q qp/a\1/p|p
S|S0 > el e < Isflz,
= . ? LP(]Rd\O
j=1 (m,o):m>j—k,
0<o<m+k—j
and
(421)
2/q\ 1/2)|p
9=IA®) TFBE (¢ th} ) P
[oyi)> > B " g SIS
o> |m th—j]
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The proofs will be given in Sections 4l L5 and We shall handle the cases
p=12<¢g<ococand 1 <p<2 2<q<p in a unified way, but we will need an
additional analytic families interpolation argument for 1 < p < 2.

4.3. Analytic families. Fix p, «, and consider for 0 < Re(z) < 1 the family of
functions

(4.22) bk ? Z Z ’}/W’M,z Z €ER,

v WewH(Q) ReR} (W)
L(W)=—k+o

where for W € 20},

1 2)—1
’VW;LZ*’Y[I;[S#Z/) )

and @ belongs to Q. Observe that bg’zg is supported in Q. Notice that z — yw,, .
is an entire function for W e 20 ,. We also set

k,z __ k,z
(4.23) Bio= 2. b
QEN
L(Q)=m
and, for 0 < Re(z) <1, define p, and A(p.) by
1 z dl—2)-1
4.24 —=1- = Apy) = ————.
(424 Loiatd A= 5
If 1 < p <2, then we set ¥ =2 — 2/p so that
1 1 1
= )\ d ————— Bk’ﬁ :Bk
Do b, (pﬁ) (p 2) 9’ m,o m,o

For Re (z) = 1, we have the following.
Lemma 4.3. For fized k, m > —k, let Ny, C Z. Then

>3 X B

k€EZm>—k o€Nk m

Proof. The left-hand side is equal to

SYT YOS A Y e

E m>—k Q€Qa H 0ENKm WeWH(Q) RERK (W)
L(Q)=m L(W)=—kto
Let, for each W, Q(W) be the unique cube in 9, such that W C Q. We use
the fact that, for fixed k, the supports of the functions er, R € Ry, have disjoint
interior and dominate for Re (z) = 1 the last display by

)OI DD DED DD DI M S 1

k m>—k QeQ, Hn WeWH(Q RER(W)
L(Q)=m L(W)+/ce/\/km

S0 W 2o > llerlB<)] Y WIS ISR

o Wwet | k:L(W)+ke RERY (W) p Wek
k,L(Q(W))

2
SIS Re(s)=1

O

For Re (z) = 0, we have the following.
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Lemma 4.4. There exists a universal constant C' dependent only on the dimension
such that, for every Q € Q, and every N C NU {0},

/(Z‘ Z bkz ‘2>1/2dx§CaP‘Q| if Re(z) =
k

Proof. For each W € 20, let W, be its double. By Minkowski’s inequality, the
left-hand side is dominated by

Z Z VWu/ Z eR(x)‘Q)l/de

: Vt‘jvecﬂcfzu k+L(W)eN RGRQ(W)
1/2
23DY m/ Y Y @)
©w WemH k ReRE(W)
wcae

which by the Cauchy—-Schwarz inequality can be estimated by

SOX k(XX ) WY S W, <070l
no Wewt k ReRL (W) no Wewh
wcQ wce
Here we have used Lemma O
4.4. Proof of @IJ). Let 1 <p < 2, and let 2 < g < p’. The asserted inequality
follows from

(4 25a H / Z Z 9= j)\(p)TkBk . Sg(jt)‘th)ql/q)l/ql

j>250<0<s

’

q
—2 —s(d-1)(: -2 i1 ,
< (149 Ta TG e e

and

) q \d'/a\1/d
(4.25b) /1 ‘J’\(p)TfBj’-tk,s,g(~,t)’ dt) )

0<0o<s

q’

S+ i TGP e, S <s <,

[\)

If in addition p > 1, we use a complex interpolation argument, embedding Bf,w
in an analytic family of functions; see (L.23)).
Define r by

29 - (-3)/6¢-)

so that 1 < r < 2 and for ¥ = 2—2/p we have (1-9)(1, 2)+9(3, 5) = (1, %) Then,
by complex interpolation (i.e., the three line lemma and duality), we deduce (E25a))

and (£25D)) from

(4.27a)

H Z/‘ Z Z 2- JA(pz)Tk B - 50(7 )’2dt)1/2H2§”6f“5/2’ Re(z) = 1,

7225 0<0<s
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- 2 \1/2
o) (] Z rrearspla (| a) | les,

and
r’ 1/7
aza) (X[ 3 2reomisl, o @)
Y1 j>260<0<s "
< (14 8)F 127 @D 0p(=D)| G f[P/7, Re (2) =0,
r’ 1/7“/
) (3 f| 2 aremms ol @)
0<o<s "
S+ )i O N D S| S <5<, Re(z) = 0.

We note that, for the special case p = 1, inequalities ([£28a)), (£.28D]) with r = ¢/
and z = 0 imply inequalities (£:25a)), (£25D) with p = 1.

The proof of ([E2Tal), ([E27h) is straightforward, using orthogonality, i.e., the
fact that, for each k, ¢, &, there are at most five j for which ¢;(p(27%¢71¢)) # 0.
Therefore, we get for Re (z) =1 (and thus Re (A(p,)) = —1/2)

I Z/ S Y o AGarkghs SU(,t)’th)l/sz

j>250<0<s
<Z/Z2ﬂ/|¢j r P 3 B dear
j>2s 0<0o<s
2
<ZZH > B, =X ¥ | > B sies

k€Z j>2s 0<o<s m>—k+s 0<o0<s

by Lemma 3l Similarly, for fixed j,

I( Z/\ S o PearEpEa (L |dt)1/2H2

0<o<s
k,
<ZH > B s les
0<o<s

This concludes the proof of ([{27al) and (£27h).

We now come to the main part of the proof—mnamely, the inequalities (£28al),
(428D) when 1 < p < 2 and Re(z) = 0. We fix z with Re(z) = 0 and then use
another interpolation inequality based on

7 2
[LH(EH(L>)), L2(C3(L%)]p = L7(¢"(L7))  for@=2—",
r

where Calderén’s complex interpolation method is applied to vector-valued LP
spaces (see [2, Theorem 5.1.2]. As a consequence, we have

|| : ”LT(ZT(LT ) ~ H ||L1(51(Loo))|| ||L2 (£2(L2))"
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Assuming that 1 < p < 2, (£.28a)), (£.28D)) follow from

(4.292) ||( Z/ TS 2 eIkl SU(,t)rdt)l/QHz

j>250<0<s

S275F o ?||Sf|1E/%, Re(z) =0,

1/2
iX(pz)k Rk,z 2
(4.29b) Z/‘0<o’<s2 B BJ k— 90(’t)| dt) H2
SRS, § <8< Re(:) =0
and
(4.30a)
[Sow| = 5 et Gof], sosslesp R =
tel ! j>250<0<s
_ kz
wam Sl 5 2t ol 20neng

%gsgj, Re(z) = 0.

This proof of ([@29al), [£29h) is inspired by the work of Christ and Sogge [10],
[11]. We use the decomposition (3.3) and orthogonality, first in the j sum and then,
for each j, also in the v sums, where v € Z;. We then see that

(4.31)
B - 2 \1/2)2
(/1L X evoma, cofa) ]
7>250<0<s
2
—j(d—1 k pk,
SEY Y e [ 3 mhe ,t)Hth
k j>2sveZ; 0<o<s
=3 Y o tms 1>/H S T B LG H
m k>2s—mvEZy iy, 0<o<s
We use
Jitatar = [ [[@ ;.2 = sty daas,
where hj, () = F|x;j.9;(p(-)|*](z). The kernel h;, satisfies kernel estimates

which are analogous to the right-hand side of [B.4), i.e.,

d
9745

sup [th; , (tz)] < j -
e 1 O SN W (L 2 721, ()

Using j = k + m, we can then estimate, for ¢t € I,
2 _
S DR o Ny P S
0<o<s
2-md 1
(1 + 27m‘x - y|)N (1 + 2—m+@ ‘Pk‘er,I/(x - y)|)N

|Bis ()| dy | B (@) da,
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with

(4.32) V= Y Bulo

0<0o<s

Consider a maximal set Z° of c27° separated unit vectors 7, and let P’ be
the orthogonal projection to the orthogonal complement of Vp(n.). Notice that,

for each ¢, there are = 2(d=1(5=9) of the vectors & with v € Z; which are of
distance < C27° to .. For those v, we then have Mgﬁg"g\ ‘gz(z*)ﬂ = 0(27%).
Consequently, for those v and j = k +m > 2s,

27md 1
(1427 —yDN (1 4 2-m+55" Py (2 — y) )Y
9—md 1
N )
(1+2-m|z —y)N (1 + 2™+ Ps(z — y)[)V

k+m
2

and there are O(2(¢~1)(
equality. Then, setting
(4.33)

2—md 1
A _ 2fs(d71) k,z d ,
k,m,((z) / (1+2_m|$—y‘)N (1+2_m+S|P§S($—y)|)N| m,s(y)‘ Y

_S)) indices v € Zj,, for which we may use this in-

we get by the above considerations

EDSY Y X [ @bl @l

SEZS m k>2s—m

ZZ/ > Akl )1/2(?2;;@)2)”%.

SEZS m k>2s—m

(4.34)

We first establish that

(4.35) sup Z H( Z | Ak m ] ) 2”00 < P28l

sezs k>2s—m

For each dyadic cube @, let yo be the center of Q. Using ({33]), we estimate for
fixed x € R?

1/2
Z |Ak,m,€($)|2> S 27°(@=D)

k>2s—m
2~ md 1
g %: (L+27mfe —yo)V (T +27 [P (x — yo) )V
L(Q)=m—s
/2
(2] 3 )

0<0o<s
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and using Lemma [£.4] we bound this expression by

2—md 1

9—s(d—1) oP
2 T Tr e E =g
L(Q)=m—s
2—md 1
< p2—5(d—1)/ d
~ (27w —w)N (T+ 27 [P —w))¥

SJ ap272s(d71).

We sum over ¢ € Z° and use #2° = O(25(?~1) to obtain ([@35).
Combining ([A35) and [@34), we obtain

@m s ey 3 (X X

m QENL: 0<o<s
L(Q)=m—s

Finally, by Lemma [£.4] again,

DV 03D > [V < X le < 0v10u < 851

0<o<s Qe,
L(Q) ms

by (£9). This finishes the proof of (d.29al).
The proof of (A29D) uses the same idea. We estimate, for fixed j € [s/2,s],

Re(z) =0,

(4.36)
I( Z/‘ 9-A)ThBhE SU(,t)\th)l/sz
0<0o<s ! ?
$2700Y [Imas ol 520 $ 8 [l
I veZ; k
=1 $ Z/A’W” )87 ()] da,
VEZ;

where again 57 is as in ([@32) an

2k:d2 je= d+1

/ (1+283]z —y )N (14 2575 Py (@ — y) )V

A () = B35« (w)] dy.

Now A j . (x) S

de2 ]d+1
J— = do s o f | X
(1425 |z — w)N (1425~ 2| Py, (2 — w) )N SR, [FAr-3

e
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which is bounded by Ca?. Consequently,

—i(d— k,
@ 27 Yy Y| X
vEZ; k QEN,, 0<o<s
L(Q)=j—k—s

<o it apZHZbJsL(QL

QeN, 0<o<s

sote 3 |(x]

Qe k  0<o<s

1

ks 2\ 1/2 J » »
6 )|, sz el s

by Lemma .41
We now turn to the proof of (£30al), (£.30D), here still Re (2) = 0. We estimate
the left-hand side of ([A30a) using Lemma B4 by

222_j% Z Hsup’TkBjkzk sa E H|1NZZ Z H k sa”l’
& j>2s 0<o<s €1 k j>250<0<s
and the right-hand side of the last display is dominated by

) IDID DN DENEED DN 7 D DT §

0<o<s k j>2s p Q€EQq: WewH(Q) RERY (W)
L(Q)=j—k—s L(W)=—k+o

YYYY Y Y (X fenlt)”

0<0<s k j>2s p  QEQ.:  WewH(Q) ReR} (W)
L(Q)=j—k—s L(W)=—k+o

S dhwisa+slss

0<o<s pu Wegr

The left-hand side of (£30D) is estimated for fixed j € [s,2s] by

27N 3 sw B LGl £ X MBS Ll

k 0<o<s 0<o<s k

and the subsequent estimation is as for ([@30a)). This concludes the proof of

@I9). O

4.5. Proof of (&20). It suffices to show, assuming that 1 < p < 2, ¢ = p/, that,
for some a(p,q) > 0 and s > 0,

/‘22 ) Z Tk k+80(7 )‘th}l’/qy/p‘

S 270 & ] .

Lr(R\O.)

When p > 1, we use the analytic family of functions in ([@23]). It suffices to prove
the inequalities

(S 2wt )

S ||6f||§/2, Re (Z) =1,

(4.37) L?(RN\Oa)
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and

S| Sr ) 5 min o

(4.38) H tel
52‘”||6f||p, Re(Z)ZO,

L1(RI\D,)

for some ¢ > 0. B

To show ([37), we replace the L?(R?\ O,) norm with the L?(R%) norm and
argue exactly as in the proof of ([@27al), using Lemma

To show (E38), it suffices to prove, after Minkowski’s inequality for the o-
summation (involving O(1 + s) terms),

[l et
j=1

(4.39) tel L1(RN\Dy)

S 276G b, Re(2)=0,0<0 <s.

For the proof, observe that, for t € I, T B k+s » (5 t) is supported in O, when

n < s and thus does not contribute to the Ll(Rd \ Oy) norm. We then use the
simple L! estimate in Lemma[B.4(i) for n > s and Re (A(p,)) = (d—1)/2 to estimate
the left-hand side of ([@39) by a constant times

N S B el
<25sz )RS DI I 7 I S

J QEN, o WeWH(Q) RERL (W)
L(Q)=j—k+s L(W)=—k+o

We interchange the sums and note that each W is contained in a unique cube
Q € 9., and thus, because of the disjointness of the cubes in 9, the (j,Q) sums

corresponding to a fixed W collapse to a single term. Hence we can bound the
previous expression by Cy times

DD IEDY W W2 (2 llerl3)

no Wear RERM(W)
LW)=—k+to

S22 D0 w2V

p WegH

1/2

This completes the proof of ([20). O

4.6. Proof of (LZI)). The estimate follows from the inequalities

(440)
) kpk (o opl? 2/q 1/2‘
(I X wetatofa] ™), <161
o>|m+k—j|,
o>j
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and
(4. 41)

/’22 D) Z TkaS@,o("t)

§>1 m,o:
o>|m+k—j|

o<j
4.6.1. Proof of (A0). We use the decomposition Tjk = > 0 Tf’k and use
Minkowski’s inequality for the j and n sums. When j 4+ n < o, the support of
Tk mBE _(.,t) is contained in O, for all ¢ € I. Thus in (A0) we need to consider
only the terms with Im+k—jl<oand j <o <j+mn. Since A(p) +1/g >0, it
suffices to show, for fixed j7 > 1, that

q qp/a\1/p
<
At )7y S 1650

(4.42)
n.k ok @ 12/a\1/2 no—j/q
SIS mshaco ] ) 7, 222 e,
o>|m4-k—j]
j<o<jt+n
This follows from
2/q\ 1/2
SIS msscofa]™)")
I mo: ’ L2(R4)
(443) o>|m+k—j|
j<o<jtn
<272 |G FIE2, Re(z) =1,
and
q 12/q\1/2
(Sl 5wl
A I o ’ L1(R?)
(4.44) o> |m+k—j|

j<o<jtn
S22, Re(z) =0.
By Lemma [B4iii), the left-hand side of ({43 is

(SI[] 2 mseofa) )"

o>|m+k—j|
j<o<itn
) 24 1/2
—n—3/q k,z
sern(] > B,
k m,o:
o>|m+k—j|

j<o<j+n
Recall that
supp( Bk z U Q.

Qe
L(Q)=m

Therefore, for Re (z) = 1, we have

Sl 5 b (T ¥ o

cr>|m+k jl o>|m+k—jl|
j<o<j+n j<o<j+n

by Lemma 3 Hence [@43]) follows.

2\ 1/2
< p
) sles
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We now turn to the proof of ([44), where Re (z) = 0. For W € 20}, let Q(W)
be the unique cube in 9, containing W. We can split

k,z _E § : Hk,z
Bm,a’ BmouW’

HEZ Wewl

L(W)=—k+o
where
Tk,z _ )Wz ZRGRZ(W) er if L(Q(W)) =m and L(W) = -k + o,
maowW =\ if either L(Q(W)) # m or L(W) # —k + 0.

Observe that, for j < o, L(W) = —k + o, the function 7" kBSTZU w18 supported

in a 2"™3-dilate of W (with respect to its center). Hence by the Minkowski and
Cauchyfschwarz inequalities, we estimate for fixed j,n

SIf| £ mmeeoa])”]

o> mt kil
o<j+n

S Z Z 2nd/2|W|1/2

B Wewtp

>

k| L(Q(W))+k—j|
<L(W)+k<j+n

L1(R4)

n,k ok,z
T3 By awy),wy o (1)

)",

which by an application of Lemma [3.4]is bounded by
Cn2 (N=d/2)9— J/qz Z \W|1/2

b Wewth
2\ 1/2

( 2 [ 32 enlf,)

k: RER’;(W)

|[L(QW))+k—j|<L(W)+k
L(W)+k<j+n
1/2

SIS S W (X X lenl)

n Wepk E ReRi(W)
<en YT S W, S 2 IS f,

pn WeoH

4.6.2. Proof of (@ZI). By Minkowski’s inequality, (@41 follows if we can prove,
for fixed o > 0,

H(Z {/’ZTJ‘,\(,)) Z @k3ﬁ70(~,t)‘th}p/q)l/p‘

' poos L (R%)
(4.45) k j>o o>|m+k—j|
< (L o)r2 G 8 £
When p > 1, we use complex interpolation to deduce this from
, 2 \1/2
9=IA(p-) T?“B’“’Za(~,t)‘ dt) ‘
([l T mmeofa) ],

(4.46) o>|mtk—j|
SA+o)2|SfI2, Re(z) =1,
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and, with l = (% - &)/(% - 1),

[S(fISzre 8 st

90 dt) 1/q0
(4.47) k

L' (RY)
o> |mtk—j|

S (L+0)27 0 &f2,  Re(z) =0,

Note that 1/go = 1 — 1/r, where r is as in (20, and we have (1 — 9)(1, qio) +
9(5.3) = (5, 3) for ¥ =2/p'.
We first consider the inequality for Re (z) = 1. We can use the orthogonality of

the functions ¢;(p(-/t)) to estimate

(z) . 2 1/2H
I( Z/\Z?’”’ Z Bk ol ) |

0>\m+k Jl
2 \1/2
Z / ZQJH T B )| i)
’ 2
a>|m+k 7l
- 2\ 1/2
(ZZH Bia,)
> o> mtk—j]

We use the disjointness of the cubes in £, and then interchange the m,j sum-
mations. Using the fact that, for fixed m,k, there are O(1 + o) terms in the j
summation, we bound the last expression by

(X sl “sas02 (X X 18"

k >0 m>—k: k m>—k
o>|m+k—j|

S L+o) e f|p?,

where in the last line we have applied Lemma 3] to conclude ([f.4G]).
We now turn to @ZT). We split T = > Tj"’k, set

bl{i{/,u,z = VW, u,z Z €R,
RERM(W)
and estimate the left-hand side of ([@.471) by

(448) Y S S 2

k n>0j5>0

S OY Y X (fmtshcara)

QEN B WeWH (Q
0>\m+l~c le( )O;n L(W) 7k+g

We bound for fixed W, with L(W) = —k + o,

n, /QO
(1ot coorma) ™|
/|T"kbwuz ’ ‘qo )1/qo

< 9(—k+jt+n)d/qoo’ TG % ~h- 2_nNHbW“ z

1

< 9(=k+j+n)d/qo

’

0
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by Lemma [B:4{(ii). Hence, after summing in n,

A PHIED RS VD DD D

k j>o €N B WelwH(Q
U>|m+k le( Q) o L(W)——k+0'

Observe that, for L(W) + k = o,

2Ry, < 27E W o
1/2 o
s (X leal) T <27 0 Wg,

RERY(W)
We interchange summations and use, for fixed W € 20}, ,,
#1j 2 0 [LQW)) + 0 = L(W) = j| <o} = O(1 +0).
We then obtain
EW) <2770 (1+0) )y Y Wiy, $27Y°(1+0)|Sf]5.

p Wen
This completes the proof of (£41), then ([@21]), and finally the proof of Theorem 2.3

5. PROOFS OF THEOREMS AND [I.3]

In this section, we use Theorems 2.1l and proved in R¢ and transference argu-
ment to establish the corresponding versions for periodic functions. Such transfer-
ence arguments go back to de Leeuw [25]. See also [20] for transference of maximal
operators and [26], [14] inequalities in Hardy spaces on T¢. In our presentation, we
rely on the method in [14].

5.1. The h'(T9) — L'*°(T?) bound. We identify functions f on T¢ with func-
tions on RY satisfying f(z +n) = f(x) for all n € Z%. Let Q° = [-3, 1]<.

22
Let
ha(s) = (1 —vo(s))(1 - 5)2
and S} f = 3,50 h(p(L/1))(f, ec)er. Let AM(1) = 5L, After a reduction analogous
to the one in Section 2] we need to prove the bound

/q
> / sait pjoar) | < W llaces.

By normalizing, we may assume that [ f|[,1(pa) = 1.
By the atomic decomposition for periodic functions [I7], [14], we may assume

that
f = fO + Z €QRaQ,
QeQ
where fo € L?, || foll2 < 1, where Q is a collection of cubes of side length at most 1/4
which intersect the fundamental cube QY and where ag is periodic and supported
in Q + Z4, satisfying [lag|r2(goy < |Q|~1/? and

Ll,ac(']l‘d)

(5.1) / ag(z)P(z)dz =0
Q
for all polynomials of degree at most 2d. Moreover,
(5.2) £l =~ llfolla + > legl = 1.
QeEQ
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The contribution acting on fy is taken care of by standard L? estimates.

Now let v = (y1,...,7a) € {—3,0,2} =T, and let Q7 = v + Q. We can then
split the family of cubes Q into 3¢ disjoint families Q. so that each cube Q € Q,
has the property that its double is contained in the cube Q7. By periodicity and
the monotone convergence theorem, it suffices to prove for each finite subset N of
N, and for each v € I,

(5.3) supa meas({a: eqQ: Z / |82kt cQaQqut) e > a}) < 1.

a>0 keN QeQv
It suffices to show for every finite subset F7 of Q7
(5.4)

sup « meas({a: €eqQ7: Z / |S;\,f:) cQaQqut)l/q > a}) S Z lcql,

a>0 QeF~

where the implicit constant is mdependent of F7. To see the reduction, we split
Q, =U,—o I, where 37" is finite and Y- ¢ g-.n [cq| < 27" By using the result
of Stein and Weiss on adding L functions [41, Lemma 2.3], the left-hand side
in (5.3) is bounded by C'>" ((1+n)27™ <1, as claimed.

In order to prove (G.), we can renormalize again, replacing cg with
c@(X e leqr) ™ and a with a(3X 5 g+ |cqr]) ™! Tt therefore remains to prove
for every finite subset F7 of Q7, and for 3" 4, |cg| = 1, that

(5.5)  supa meas({x €eQ: Z / |S£\,S) cQaQqut) e > a}) <1,

>0 ke/\/ QeF

where the implicit constant is independent of F7.

Now fix & > 0. Let ¢ € C™ be supported in {z : |z| < 1} such that [ ¢(z)dz = 1,
and let ¢. = e 9¢(¢71-). Choose e¢ to be small, less than one tenth of the side
length of @, so that in addition ||¢.(q) * ag — agll2 < al’?. Let ag = Pe(Q) * aQ-
Then, by Tshebyshev’s inequality and standard L? estimates (such as in Section B),

meas({x eQ: Z / ’S;‘k(tl) CQ(aQ —aq)] ’th> e > a})
Sl [0S o5t
$a (Y leallag —aQ||z)2 <o (X leel) 2ot

QeTF QeI

here we have used the normalization 3~ [cq| < 1.
It suffices to show that

(5.6) meas({x €eqQ: Z / ‘S;(tl) cQZiQ] ‘th) Y > a}) <ol

We shall now follow the argument in [14] and set

d

(5.7) V(o) = [[0-a2/4)s,  Ti(e) = BN (@ - 7).

i=1
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As in [I4] we use the following formula, which is valid at least for g in the Schwartz
space of T?, for all z € R%:
(5 8)
U (2)S5e,9() = Spi e[V 9] ()
14 0+ N_l - Ti(r— -t
= S tgenen(o) [ [alolgey) — halol 5] Bl g

2kt 2kt
Lezd

As the Fourier coefficients (g, e,) decay rapidly, T e L', and h) is Holder continuous
for A > 0, this implies that
(5.9) lim sup sup |\Iﬂ )S;(tl)g(;v) Sz)‘,ftl) (TR g)(x )‘ =0
N—=00 te] peRrd
for ke N.
Next we observe that W), (z) > (3/4)¢, for all x € m + Q7, when —N <m; < N
for i =1,...,d. Using periodicity, we see that the left-hand side of (&.6]) is equal to

(2N 4+ 1)~
JZV_?WEN meas({x em+Q": Ig// ‘32,% 2 CQﬁQ] (z) th>1/q - a})

< (2N + 1) %meas

({xERd Z/“Iﬂ S cqig)()

q \1/q a, 1)
> dt) > (3/4) })

Consider the periodic C* function g = 34, cQaq, and apply (5.9). Hence there
is an Ny = Ny(g, @, N') such that, for every 2 € R? and N > Np,
q \1/aq
)

Z/“Iﬂ SV ST cqag)(e) — S50 0% D eqag] ()

keN Qe Qe
< (3/4)%/2.
Assuming that N > Ny, in what follows, we see that it suffices to bound

(2N +1)~ meas({x €R?: Z/‘Sé\k(tl) K28 Z cQag] (x)’th)l/q

QeFY

(5.10)
> (3/4) a/z}).
Define, for Q € 77, m € Z4,
aQ.m(y) = L+ (9) Vi (¥)aq(y)-

Then the support of ag ,, is in the interior of m + Q7 and ¥}, coincides on the

support of ag,, with a bounded polynomial of degree 2d. Hence ag,, is an L?

function supported on the double of @ such that [ agm(y)dy = 0 and such that

lagmllz < 1Q|7*/2. Moreover, agq.,, is nontrivial only when |m;| < 2N for i =
.,d. This implies that

[o3 3 cotaf = X X leallagumlinen S (4N + 1)

QeF —2N<m;<2N QeF~
i=1,....d
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We now apply Theorem [2.1] to see that the left-hand side of (5.10) is bounded by
Ca~l(2N + 1)~ H\Iﬂ a H ON 4N + 1)t <ol
o (2N + Y cqig P SEN+1)UN+1)% " S
QeT™
which finishes the proof of the theorem. O

5.2. The LP — LP**° bound. The proof is similar (but more straightforward);
therefore, we will be brief. Now A(p) can be negative, but we have A > —1/q. The
limiting relation (B.9]) is now replaced by

1/
(5.11) hm sup /’\Iﬂ ;‘k(f) (x) — 5/\(?)[\1;7 )}th) q:O, keN.

2kt
N—oo IERd

Here we consider g € S(T¢). We sketch a proof of (E.I1]) based on (E.8).
We start by observing that

(5.12) / Iha(p(¢/8)]9dt < C,

uniformly in ¢ € R?. To see this, note that p(¢/t) = p(¢)t~1/?, and we may assume
that p(¢) ~ 1 due to the support of hy. Therefore, (5I2) follows by a change of
variable. From this observation, we may reduce (B.11)) to

1 1/q
a3 i ([ I - me ) <o

for fixed [, k, £ using (5.8)), Minkowski’s inequality, and the dominated convergence
theorem.

For (513), we argue as follows. Let h € LI(J) for a compact subinterval J of
(0,00). Then, for any a > 0,

1/q
lim /\h as) — h((a+d)s )|qu> =0,
5%0

and the limit is uniform if a is taken from a compact subset of (0, c0). This is easily
seen for smooth h and follows for general h € L?(J) by an approximation argument.

Changing variables s = t~'/?, we obtain that, for any compact subinterval I C
(0, 00),
1/
(5.14) lim ( / Ih(at=) — h((a + a)fl/b)wdt) oo
6—0 I

Then (E13) follows from ([EI4), with h = hy, § = p((£+ N~1E)/2%) — p(£/2F), and
= p(¢/2F), using the homogeneity and continuity of p.
Finally, using (&.11)), we get, for sufﬁciently large N

meas({x eQ": Z/|82kt g‘ dt > a})
<N+ 1) “meas({z e Bt (3 / ys;§f>[w9vg](x)yth)l/q > (3/4)'a/2} ).
ken 71

and by Theorem we bound the right-hand side by
CEN + 1)~ a9l ey S @ PglE e

Remark 5.1. It is also possible to build a proof of Theorem [[.3] from Theorem
using modifications of a duality argument by de Leeuw [25]; see also [40], [20].
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6. SHARPNESS

In this section, we show that Theorems [[L3] and fail for ¢ > p’. We shall
first reduce the argument for Fourier series to the one for Fourier integrals by
a familiar transplantation method and then modify an argument that was used
by Tao to obtain necessary conditions for the Bochner—Riesz maximal operator
(see [43l Sect. 5]), and also the work by Carbery and Soria [6] where a related
argument appears in the context of localization results for Fourier series. Note that
the almost everywhere convergence assertion in part (ii) of Theorem [[3 also fails
for ¢ > p’, by Stein—Nikishin theory [35].

6.1. Fourier series. We have for f € LP(T?)

1 /T 1/q 1 [T 1/q
6.1 Hsu —/ R fladt ’ > su H —/ R fledt ‘
61) [ sup (5 [ RAgpae) Tz s |[(5 [ 1R} 10)

and our necessary condition will follow from Proposition and the following
result.

Lp.oo(Td)

Lemma 6.1. Let 1 < p < 2. Suppose that, for some C' > 0,

r 1/q
(6.2) sup H( / |Ri\f|th) ‘ <c
Hf”Lp(']]-d)zl T>0 0 Lp.oo(T4)
Then also
T 1/q
(6.3) sup H ( / ‘Ri\ﬂth) ‘ <c
Hf”Lp(]Rd)—l T>0 0 Lp:oo (Rd)

Proof. By scaling, density of C2° functions in LP, and the monotone convergence
theorem it suffices to show, for all f € C°(R%), all compact sets K, all § € (0, 1),
alle € (0,1), and all & > 0,

! 1/q
. A _
meas({a: e K: (/5 |Rtf(a:)|th> > a}) < CP(1—¢e) Pa®| fIB.
Fix such f, a, 4, €, and K. For large L € N, define
VLtf Z I~ df 16 1— (t71L71€))162mL*1<z,£)_
ezl

Then V,—f"t f(z) is a Riemann sum for the integral representing R} f(z). Hence we
have

lim V2 f(x) = RN ()
—00 ’
with the limit uniform in ¢ € [,1], x € K. We may therefore choose L such that
supp(f(L-)) C {z: |z| <1/4}
and
K c LQ"
with Q0 = [—1,2,1/2]%, and

sup sup |R;\f(a:) - VL’\tf(a:)| < ae.
5<t<1z€K

It remains to show that

(6.4) meas({x eK: (/51 |VL’\7tf(x)|th> e >a(l— 5)}) < CP(1—¢) Pa?| fID.
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Observe that, for w € Q°,

1
([ uswwpa) = (1 [ S 1 4Fao0-pespieneo|'as) "

J teza
Let fP™(w) = 3, cza f(L(w + k)). Then from the Poisson summation formula
the Fourler coefficients of the periodic function fP* are given by (fF”, e/) =

_d]?( - ) Hence the expression on the right-hand side of the last display is

equal to (L1 f&L IR} fP7|9dt)' /9. Replacing K with the larger set LQo and then
changing Varlables x = Lw, we see that the expression on the left-hand side of (6.4])
is dominated by

Ldmeas<{w cQ": (Z/ IR 2 (w )\th) i > ol — 5)})
<ricra - [ 17w,
Qo

where the last inequality follows from assumption ([6.2]). Since the support of f(L-)
is contained in @y, one immediately gets

1212 oy = I Ly = L1 g

This shows (64]) and concludes the proof. O

6.2. Fourier integrals. Using the R? analogue of (6.I]), we reduce the sharpness
claim in Theorem to the following proposition.

Proposition 6.2. Let 1 < p < 2, and let A > —1/2. Assume that there is a
constant C' > 0 such that

1 [T X flg 1/q
(6.5) swp| (5 [ R rae) < Ol
for all Schwartz functions f. Then

1/1 1
A> A ===
= Ap) + 3 (p/ q)
In particular, if (63) holds for A = A(p), then q < p'.

Proof. We note that the inequality with a given p is equivalent to the inequality
with po A, where A is any rotation.

Let £&° € 3, be such that [£°| is maximal. Then the Gaussian curvature does not
vanish at £°. Choose small neighborhoods Uy, Uy of £° in ¥, such that U; C U,
the Gauss map is injective in a neighborhood of Uy, and the curvature is bounded
below on Uy. Let v be homogeneous of degree 0, and let v(&) # 0 for £ € Uy, with

~ supported on the closure of the cone generated by Uy. Let n(&y) = |§pggo;| the
outer normal at &, and let I'. = {z € R?: |— — n(fo)} < 2¢}, with ¢ so small that

xT
I'. is contained in the cone generated by tl‘lel normal vectors Vp(§) with & € U;.
Let, for R > 1, . p = {z € I'. : || > R}. By the choice of ¢ there is, for each
xz € I'., a unique Z(z) € X, such that v(2(z)) # 0 and such that z is normal to
¥, at Z(z). Clearly  — =(x) is homogeneous of degree 0 on I', smooth away from

the origin. By a rotation, we may assume that

(6.6) n(€°) = (0,...,0,1).
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By Section Bl inequality (6.5) also implies the similar inequality where R} f is
replaced with S f and S} is as in (Z2). Let hx(s) = (1 — vo(s))(1 — s)} and

Ky () = t"F iy hyopl(te).

Observe that Ky 1 * f = S,{\fv with J/‘; = ’yf. By the Hérmander multiplier theorem,
~ is a Fourier multiplier of LP, and we see that (G.5]) implies that

I RN _
(6.7) supH<f/O [+ fl1dt ) HLPYOO(Rd)fc||f||Lp(Rd).

T>0
We now derive an asymptotic expansion for K 1(z) when = € I'c g. Recall
that p is homogeneous of degree 1/b; i.e., p(t°¢) = tp(¢). We use generalized
polar coordinates ¢ = p’¢(w) where w — &£(w) is a parametrization of ¥, in a
neighborhood of Uy. Then

0
e = bp™ A (E(w), n(€(@) (det(o)T9o) M du
= p" 7 dp [Vp(€)|THdo (), € = 5( )-
Here we have used Euler’s homogeneity relation b(&, Vp(§)) = p(&) for vectors on
>,. Then

(68) K)\,l(fE) = /OOO hk(p)pbdfl/z ’Y(ﬁ )6271'1;7 |é‘;((€ ))| dp

We use the method of stationary phase and get, for x € I'¢ g,

9

P

(6.9) Kl )+ Z IT;(z) 4 ITI(z),

where

I(ﬂ?) _ C/Ooo h)\(p)pbd 1—— 27rzp<E(x),w>dp ’7(5(1’))|vp(5(1}))|_1

= 1 - ,
((E(z), 2)) "= |eurv(E(x))['/2
where curv(E(z)) is the Gaussian curvature at Z(z) and ¢ # 0, and

> (=
II(x) = ¢; / ha(p)ptd= 15— 2min(E@).2) g ]fl(“.(x)) |
0 ((E(z), z)) "= Hleurv(E(x))[/?
where ; is smooth. For the remainder term, we get
[11I(z)] Sw [l 2 €Tep.

In the resulting p integrals, we use asymptotics for the one-dimensional Fourier
transform of hy (see [I3, Section 2.8]) and see that, for x € ' g,

o _dt1 mip({Z(x),x —_ e x),x —_ —A—
/0 ha(p)pti= 5 2T ED ) 4y = Oy (E(x), 2) P12 E@) LO((E(x), 1) 2,

with similar asymptotics for the p-integrals in the terms I1;.
Now set, for x € T'e, H(z) = (Z(z), ), and use Euler’s homogeneity relation to
write

|VP ( I b|VP(E( NI bIVp(E(2))]
If ¢ is small, we then have, for t|z| > R,
K)\,t(x) = A)\(.’L',t) + B,\((E7t), |£17/| S 52|$d|,
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where
A, 1) = OO T A Ga)em ),
(6.10) _apy y(E@) | Vp(E()|
where G(z) = H(z)™ 2 curv(Z(@)12
and

d+3
7= —A

Bu(x.t) St 5 A H(2) "
Recall [6.6]) and split y = (v, yq). We now let
P(T.e)={y: [y'| ST 'e, |yal <T %}

and define

fr(y) = ]1P(T7a)(y)62msTyd-
Then
(6.11) Ifrlly S T

We examine the integrals K ; * fr(z) for || = 1 and R < ¢t = ¢T. We may obtain
a lower bound for the absolute value of this integral if we can choose ¢ for a given
2 such that

(6.12)  2m(eTyq+ tH(z —y) — tH(z)) € (—%, g)
As the Gauss map is invertible near £°, we observe that H is smooth and homo-
geneous of degree 1. We have VH(z) = £° + O(¢), and thus 0,,H(z) > ¢ > 0.

Now

for all y € supp(fr).

eTyq +tH(x —y) — tH(z)

-1
=— 10, H(x —t0y, H(z
(613) t;y H(x) + ya(eT — 0., H(x))

d 1
+t Z Yilj /0 (1- s)@ixjH(a: — sy)ds.
ij=1
The first and the third term on the right-hand side are O(e) when y € supp(fr).
We choose t in the interval

el el
6.14 Ip=|——— —eTY2 == T2,
(6.14) o [(%dH(x) s 0 H () Te

We assume that ¢ is chosen so small that I, C [0,T]. If t € I, 1, the second term
on the right-hand side of ([€I3]) will be O(e) as well so that ([612)) is satisfied.
We now split

Ky * fr(z) = J1(x,t) + Ja(z, t) + Is(z, t)
with
31($,t) — C(A)G(z)BZﬂitH(z)t%fk/627ri(Tsyd+tH(zfy)7tH(az))]]_P(Tys)(y) dy,

Ja(z,t) = C(N)E T / Tt @) (G — ) — G(a))Lperey(4) dy,

Bl 1) = / By(z — y.t) fr(y) dy.
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We estimate these terms for
(6.15) v €Q:={x: 2| <3|agl, 1/2 < |zg| < 13, tel,r.

Then, by (612)), the real part of the integrand in the definition of J; (x, t) is bounded
below by 27121 p(7 ) (y), and therefore, for z € Q,

e8] = OO [ L) dy
> ot AT,
Moreover,
|2z, 1) S 77 AT 2T,
d

|d3(, 1)]

Hence, for small € and t|z| > R, ¢ € I, r, the term |J1(z, t)| is significantly larger
than the terms |Ja(z,t)| and |J3(x, t)|. Consequently, by |I, 7| > eT*/? and assum-

ing (613), we get

(& /OT Ko fre)piar) " = (%/I

@,

-3 _

S
ST

1/q
Ko fo ()|t
T

> et/ =120 () T AT 2d = o 5 A
and thus
e /4 _d_y_ 1 _d_ 1
|G [ 1nex galrae) ™|zt E T E
which for T — oo implies that A > A(p) + (1 — % - %) 0

7. AN L' RESULT

We currently do not have an analogue of Theorem for general functions
in L}(T4). We formulate a weaker result which is essentially a consequence of
Theorem [[L2
Theorem 7.1.

(i) Let f € L*(T%). Then, for all ¢ < oo and for A(1) = 452,
e 1/q
Tim H(—/ \Rj(l)f—fwdt) ‘
T Jo

T—o0

=0.
L1,00(Td)

(ii) The analogous statement holds on L'(R?) with R?(l)f in place of Ri‘(l)f.

Proof. Since the convergence holds for Schwartz functions, one can by a standard
approximation argument reduce the proof of (ii) to the inequality

1T 1/q
(7.1) SUPH(T/O |R?(1)f|th> ‘

T>0

<

Lt () £l 2t (ra)-
Similarly, the proof of (i) is reduced to a corresponding inequality on T¢, with the
supremum in T’ extended over T' > 1. The weak type (1,1) inequality in the T¢ case
follows from the R? case by the transference arguments of Section [l Therefore, it
suffices to show ([T]).
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By the maximal estimate in Section 211 it remains to prove that

(7.2) H (% /OT \Sﬁ”fﬁdt)”q}

where St)‘(l) is as in (Z2]). We may assume that ¢ > 2. Now

T To—l+1
(3 [ 0o e ol [ st o)

and we claim the inequality
1 2A 1/q
(7.3) sup H(Z/ \St)‘(l)ﬂth) }
A>0 A

Assuming that (3) is verified, we can deduce that the left-hand side of (7.2)
is bounded by Cqézbo(l + 0279 flli <q IIfll1, by the theorem of Stein and
Weiss [41, Lemma 2.3] on summing L'*° functions.

Let  be as in (Z3]). Then our main result, Theorem 23] yields for all A > 0

1 A 1/q
G/, iserea) ™,
Since n is C'*° and is compactly supported away from the origin, we have
[F (AT * flle ey S 1 llor gy,
uniformly in A. This yields (Z3)) and concludes the proof of ([T2]). O

<
Lt () £l L2 ey,

< Collflls-

Ll,ac

q”]: [ (A_l')] * f||H1(Rd).

(Rd)

As an immediate consequence of Theorem [Tl we get the following corollary.

Corollary 7.2. Let f € L*(T?). There is a subsequence T; — oo such that
1 1/q
(7.4) lim (—/ IR Vf (z) — f(x)|th) =0 ae.
Jj—o0 Tj 0
Arguing as in [48, Ch. XIIL.7] or [46], Section 4], we get the following corollary.

Corollary 7.3. Let f € L'(T%). For almost every x € T%, there is a measurable
set E = E(f,x) of upper density 1, i.e., satisfying

(7.5) lim sup £ 7]

= 1,
T—o0 T

such that
lim RYVf (@) = f(2).

teE
For the convenience of the reader, we give a proof.
Proof. Fix x such that (Z4) in Corollary [[22 holds, and let g(t) = |Ri‘(1)f(x) —f(2)|.

We may assume that T is increasing in j. For m =1,2,..., let E,, = {t : g(t) <
1/m}. By Tshebyshev’s inequality, we have

C
|Ey, N0, T} 1 / yadt,
T;
which by assumption tends to 0 as j — oco. Hence lim;_, o, Tj_1|Em N[0, 7;]| = 1.

Thus we may choose a strictly increasing sequence j,,, of positive integers such that
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T, EnN[0,Ty]| > 1=m~" for j > jm. Let E = [0,T},]JUUp_1 (EmN[T},,, T, ]).
Since the sets E,, are decreasing, we have

‘Eﬂ[ ]m+1H > |E N [0 T]m+1H > (1 - mil)ij+17
and hence limsupy_, .. 7T 'EN[0,T]| = 1. Now EN [T}, ,] C E,, and thus
g(t) <m~! on this set. It follows that g(t) — 0 as t — co within E. O

It would be desirable to replace the limsup in ([T5) with the liminf. The proof
of the corollary shows that this would require the existence a.e. of the limit in (7.4)
for all sequences T; — oo. We can currently prove this only for functions in hl.

8. MAXIMAL FUNCTIONS ON HP(R?) FOR p < 1

We now consider the maximal operator associated with the generalized Riesz
means when they act on functions or distributions in the Hardy space HP(R?) for
p < 1. The following result generalizes one by Stein, Taibleson, and Weiss [39] for
the standard Bochner—Riesz means. Other generalizations for specific rough p were
considered in [19] and the references therein.

Let R} be as in (L3).

Theorem 8.1. For 0 < p < 1, A(p) = d(1/p — 1/2) — 1/2, we have for all f €
HP(RY)
A
H Sllp ‘R (pf‘HLp,oo(]Rd) 5 HfHHP(Rd)

We use the same reductions as in Section 2l Write, for ¢ > 0,

R} () = F M u(p(-/1) f] +22”fo7§)
j=1
where u is as in Section 2 Iland 1/}7”(5, t) = goj(p(f/t))f(f), with ¢; as in Section 2.2
This is similar to (271 (except that now t ranges over (0,00)). The functions u,
¢; depend on A but satisfy uniform estimates, as A is taken over a compact subset
of R. Let

Mﬁm:gyFWmummm

and for j > 1,
M;f (@) = sup |T; f(z, )]

‘We then have
(8.1) sup [R: f ()] < Mof(2) + Y 272D M; f(x),
t>0

i>1
and we shall derive a weak type inequality on HP for the right-hand side in (8I).
The ingredients are H? — L? bounds for the maximal operators Mg and M;.

Let M be a nonnegative integer. We recall that a function a supported on a ball
Bisa (p, M) atom if ||a]|o < vol(B)™*/? and [ a(z)P(x)dx = 0 for all polynomials
of degree at most M. By the atomic decomposition, it suffices to check the H? — LP
bounds on (p, M) atoms for every nonnegative integer M > d(p~! — 1) — 1. The
bound for Mya is straightforward.

Lemma 8.2. Let M +1>d(p~! —1), and let a be a (p, M)-atom. For 0 <p <1,
we have

[Moall, $1
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Proof. This follows by a variant of the argument in Section 21l Define
Mz f = sup |7 = pl/7)M)2 )l

Let Ny, Ny be large so that 9y, n, maps H? to LP. By the subordination for-
mula (1), we have

- e 1 [ >
(82)  sup|F [ulp(-/0)d](@)] < M, va(x) N'/ 2 ) () s,
t>0 2:Jo

and the integral is finite. Hence we get the desired L? bound for Mya. |

8.1. The main H? — LP bound.

Proposition 8.3. Let 0 <p<1,letj>1, andletv € Z;. Let M+1 > d(p~'—1),
and let a be a (p, M)-atom. Then

We further decompose T} f(z,t) = >, ¢z, Tj.w f (2, ), where we use the homoge-

neous partition of unity as in 3.2). Let, for v € Z;,
M f(@) = sup [Ty, f (2, )]
>

Then M;f(z) < > ez, Mjuf(x). Since #Z; = O(27(4=1/2) " we can use the
triangle inequality in LP, p < 1, to see that the proposition follows from

(8.3) My, 246G,

We proceed with the proof of (B3).

By translation and scaling, we may assume that a is supported in the ball B of
radius 1 centered at the origin, that |aljsc < 1, and that [a(z)P(z)dz = 0 for all
polynomials of degree < M. By a rotation, we may also assume that Vp(¢;,) is
parallel to (1,0,...,0), and thus, writing = (21, 2’), we have

2—j(d+1)/2

[+ 27l ™ (1 + 272 Ve

(84) |aaK]}V("E)| < CNl,NQ,Oé

for all multi-indices o € N¢ and all Ny, No > 0; cf. [I1] or [31]. Let
D={(z1,2") e R : |z1| <5-27,|2'| <5272},

In the following subsections, we estimate the LP quasi norm of M, ,a(z) over D
and DC, respectively, using the cancellation condition for the atom when = € e,

8.1.1. Estimation over D. Let
@0 = {(xl,x/) e Rd : ‘.’[1| < 5, ‘.’El| < 5},

Dy = {(x1,2') e R : |21 < 5-29/2 |2/| < 5},

(8.5) E={(z1,2") e R : 2’| > 279/2|z,}.
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We derive the following pointwise estimates:

1 if x € Dy,
269/2 |31 |49 if x € Dy \ Do,
277/2| 5! |4 it e (D\Dy1)NE,
2% 21|~ if 2z € (D\ Dy) N EL.

(86) Ma(z)

If we use this for 0 < € < % — 1, then straightforward integrations give the desired
bound,

ZESRENN
(®.7) IM;all oy S 2777 G7Y.

To verify (8.8), first observe the pointwise bound M; ,a(z) < sup,~ [[t4K;,, (t-)
lillallec S 1. This gives BG) for 2 € Dy. Secondly, for any x € Dy \ Dy and
y € B1(0), we have |x1 —y1| 2 |z1|. Using 84) with Ny = 1+eand No =d—1—¢,
we have
[0, (1) * a(w)| S 9279 HD2 (27, [) =0+ / (2772t —y') = dy

ly’ <1
5 26j/2‘.’[1|_(1+6)

for all x € Dy \ Dy.
Assume that € (D\ D1)NE. Then |2’| > 5, and thus |2’ — /| > c|2’| for some
¢ > 0 for all |¢| < 1. Using (84) with N; = 0 and Ny = d, we have

41 (1) = af)| S 19273 D/2(273/24 |3/ =4 = 9=3/2]7|~d,
Finally, when 2 € (D \ D1) N EC, we have |z — 41| > c|z1|, and necessarily
|21 > 279/2. If we put Ny = d, No = 0 in (84), we get
|95, () * a(w)| S 192792 (27 gy )~ = 2D gy |74
This concludes the proof of the pointwise estimate (8], which implies (81).

8.1.2. Estimation over D°. When z € DG, we use the cancellation of the atom and
Taylor’s formula to write
M

) ale) =10 [ (Kutea—1g) = Yo EENE R 0 g,

n:

n=1

(ph+ 1

= Ttd+M+1/ (1—s)M /(y,V>M+1Kj,,,(ta: — sty)a(y)dy ds.
: 0

We now use [B4) for the derivatives of order M + 1. Also notice that if F is as
in (85), we have |2/| >5-27/2 for z € DC N E, and |z4| > 5- 27 for 2 € DL N EL.
We obtain

2IM/2| gt | =d=1=M ifzeDPNE,

21 (M+550) |y |=d=M=1if o € DO EL,

Mja(z) < {

where for z € DN E we took Ny = 0, Ny = d+ M +1 in 84), and for z € DCNEL
we took Ny =d+ M + 1 and Ny = 0. Hence

. 1/p
IMvallpogosne $2202( [ s [ dna)

|z'1227/2 lz1| <2972 27
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and

1/p
||MJ7Va||LP(DUﬁEU)<2J( Ll)( / |$1|7(d+1+M)p / dm’dml) )

|1 |229 2’| $279/2 2|

Both integrals are < 97 5 1) provided that p > "= +1 77> Which is the hypothesis
on p and M. This concludes the proof of (83). O

8.2. Proof of Theorem [B.Ik Conclusion. As a crucial ingredient, we shall use
the generalized triangle inequality for LP>*°—namely,

(8:8) H Zle (Z T

which holds with 4, = O((1 — p)~1/P) for 0 < p < 1. See either the paper by
Kalton [2I] or the paper by Stein, Taibleson, and Weiss [39]. By Lemma B2 it
suffices to prove that

(8.9) (DR YTy Y Vi 9
§>1

and by (B8) and the atomic decomposition, we may assume that f is a (p, M)-
atom a, with M + 1 > d(p~! — 1). By dilation and translation invariance, we may
assume that a is a function supported in {z : |z| < 1} such that ||aljw < 1 and
J a(z)P(z)dx = 0 for all polynomials of degree < M. Because of this normalization,
we notice that (up to a harmless constant) the function « is also a (p1, M)- and a
(po, M )-atom where p; < p < pg < 1, and we pick p; sufficiently close to p that
M+1>d(p;t—1).
We need to verify, for all a > 0, that
(8.10) meas ({z : ZQ‘j)‘(p)Mja >a}) Sa?
j>1
By Proposition B3] we have for every j > 1
(8.11) HQ—mmMjaH < 9i(A@)-AP))
pi
We employ a variant of an interpolation argument in [4] to estimate
meas({x : ZQ*j)‘(p)Mja > a}) < I+11,
Jj21
where I is the measure of the set on which ZQjSQ_p/d 272 P Ma > /2, and IT

is the measure of the set on which 22j>a,p/d 279AP) M;a > o /2. By Tshebyshev’s
inequality,

p1

Z 2P /\/la
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Apply (BII) to obtain
T+I[<aq™ Z 2I(A(P1)=AlP)P1 4 (,—Po Z 93 (A(po)=A(p))po

2]‘§a*:0/d 27> q~P/d
—a Z 9Iid(1=54) 4 —po Z 0id(1-52) < (-~
27d< P 20d5 7P
This yields (8I0) and concludes the proof. O

Remark 8.4. Versions of the Fan-Wu transference argument in Section [B1] for
maximal functions and h? for p < 1 can be used to prove a theorem for Riesz
means of Fourier series analogous to Theorem R} i.e., the maximal function
SUP;~ |Rf(1/p71/2)71/2f\ defines an operator that maps h?(T?) to LP*>°(T%) when
p <1l

9. OPEN PROBLEMS

9.1. Spaces near L'. For f € L}(T¢), it remains open whether the Riesz means
’Ri‘ (p )f (z) converge g-strongly a.e. for any ¢ < oo. In particular, can one upgrade
in Corollary [73] the conclusion of upper density 1 of E(f,x) to density 17

It may also be interesting to investigate strong convergence a.e. for spaces inter-
mediate between L' and L log L.

9.2. The case ¢ = p'. For f € LP(T%), 1 < p < 2, prove or disprove that R;\(p)f(x)
converges g-strongly a.e. when ¢ = p’. For f € h'(T?), is there a version of Rodin’s
theorem [30], in one dimension, that applies to Riesz means at the critical index
A(l) = % where the L?-average norm in t-variable is replaced by a BM O-average?

9.3. Problems involving nonisotropic dilations. One can ask the same ques-
tions for quasi-radial Riesz means when the isotropic dilation group is replaced by a
nonisotropic dilation group ¢, where P is a matrix with positive eigenvalues and p
satisfies p(t£¢) = tp(&). Tt turns out that the results depend on the geometry of the
surface in relation to the eigenvectors of P. In the case in which ¥, = {£ : p(§) = 1}
has nonvanishing curvature everywhere, one has almost everywhere convergence for
A > %, but there are other examples where a.e. convergence fails for A < d/2;
see [22] for details. Even in the case of nonvanishing curvature, we have currently
no endpoint results for strong convergence of R} f for the critical A = A(p) when
the dilations are nonisotropic.

9.4. Almost everywhere convergence. For 1 < p < 2, the problem of a.e.
convergence, and the critical ¢ for strong summability for A > A(p), is wide open.
Optimal results for the maximal operators are currently known only for the subspace
L? . of radial L functions; see [16]. For general L? functions, results that improve
on Stein’s classical theorem for a.e. convergence of Riesz means of index > (d — 1)

(1/p — 1/2) are currently known only in two dimensions; see Tao’s paper [44].
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