

1 **TITLE:**

2 **Biaxial Basal Tone and Passive Testing of the Murine Reproductive System Using a Pressure
3 Myograph**

4 **AUTHORS AND AFFILIATIONS:**

5 Shelby E. White¹, Cassandra K. Conway¹, Gabrielle L. Clark¹, Dylan J. Lawrence¹, Carolyn L. Bayer¹
6 Kristin S. Miller¹

7 ¹Department of Biomedical Engineering, Tulane University, New Orleans, LA, USA

8 **Corresponding Author:**

9 Kristin S. Miller (Kmille11@tulane.edu)

10 **Email Addresses of Co-authors:**

11 Shelby White (Swhite18@tulane.edu)
12 Cassandra K. Conway (cconway2@tulane.edu)
13 Gabrielle L. Clark (gclark2@tulane.edu)
14 Dylan J. Lawrence (dlawren@tulane.edu)
15 Carolyn L. Bayer (Carolynb@tulane.edu)

16 **KEYWORDS:**

17 cervix, vagina, extension-inflation testing, mechanical properties, women's health, pelvic floor
18 disorders

19 **SUMMARY:**

20 This protocol utilized a commercially available pressure myograph system to perform pressure
21 myograph testing on the murine vagina and cervix. Utilizing media with and without calcium, the
22 contributions of the smooth muscle cells (SMC) basal tone and passive extracellular matrix (ECM)
23 were isolated for the organs under estimated physiological conditions.

24 **ABSTRACT:**

25 The female reproductive organs, specifically the vagina and cervix, are composed of various
26 cellular components and a unique extracellular matrix (ECM). Smooth muscle cells exhibit a
27 contractile function within the vaginal and cervical walls. Depending on the biochemical
28 environment and the mechanical distension of the organ walls, the smooth muscle cells alter the
29 contractile conditions. The contribution of the smooth muscle cells under baseline physiological
30 conditions is classified as a basal tone. More specifically, a basal tone is the baseline partial
31 constriction of smooth muscle cells in the absence of hormonal and neural stimulation.
32 Furthermore, the ECM provides structural support for the organ walls and functions as a reservoir
33 for biochemical cues. These biochemical cues are vital to various organ functions, such as inciting
34 growth and maintaining homeostasis. The ECM of each organ is composed primarily of collagen
35 fibers (mostly collagen types I, III, and V), elastic fibers, and glycosaminoglycans/proteoglycans.
36 The composition and organization of the ECM dictate the mechanical properties of each organ.
37 A change in ECM composition may lead to the development of reproductive pathologies, such as
38 pelvic organ prolapse or premature cervical remodeling. Furthermore, changes in ECM
39

45 microstructure and stiffness may alter smooth muscle cell activity and phenotype, thus resulting
46 in the loss of the contractile force.

47

48 In this work, the reported protocols are used to assess the basal tone and passive mechanical
49 properties of the nonpregnant murine vagina and cervix at 4-6 months of age in estrus. The
50 organs were mounted in a commercially available pressure myograph and both pressure-
51 diameter and force-length tests were performed. Sample data and data analysis techniques for
52 the mechanical characterization of the reproductive organs are included. Such information may
53 be useful for constructing mathematical models and rationally designing therapeutic
54 interventions for women's health pathologies.

55

56 **INTRODUCTION:**

57 The vaginal wall is composed of four layers, the epithelium, lamina propria, muscularis, and
58 adventitia. The epithelium is primarily composed of epithelial cells. The lamina propria has a large
59 amount of elastic and fibrillar collagen fibers. The muscularis is also composed of elastin and
60 collagen fibers but has an increased amount of smooth muscle cells. The adventitia is comprised
61 of elastin, collagen, and fibroblasts, albeit in reduced concentrations compared to the previous
62 layers. The smooth muscle cells are of interest to biomechanically motivated research groups as
63 they play a role in the contractile nature of the organs. As such, quantifying the smooth muscle
64 cell area fraction and organization is key to understanding the mechanical function. Previous
65 investigations suggest that the smooth muscle content within the vaginal wall is primarily
66 organized in the circumferential and longitudinal axis. Histological analysis suggests that the
67 smooth muscle area fraction is approximately 35% for both the proximal and distal sections of
68 the wall¹.

69

70 The cervix is a highly collagenous structure, that until recently, was thought to have minimal
71 smooth muscle cell content^{2,3}. Recent studies, however, have suggested that smooth muscle cells
72 may have a greater abundance and role in the cervix^{4,5}. The cervix exhibits a gradient of smooth
73 muscle cells. The internal os contains 50-60% smooth muscle cells where the external os only
74 contains 10%. Mouse studies, however, report the cervix to be composed of 10-15% smooth
75 muscle cells and 85-90% fibrous connective tissue with no mention of regional differences⁶⁻⁸.
76 Given that the mouse model differs from the frequently reported human model, further
77 investigations concerning the mouse cervix are needed.

78

79 The purpose of this protocol was to elucidate the mechanical properties of the murine vagina
80 and cervix. This was accomplished by using a pressure myograph device that enables assessment
81 of mechanical properties in the circumferential and axial directions simultaneously while
82 maintaining native cell-matrix interactions and organ geometry. The organs were mounted on
83 two custom cannulas and secured with silk 6-0 sutures. Pressure-diameter tests were performed
84 around the estimated physiological axial stretch to determine the compliance and tangent
85 moduli⁹. Force-length tests were conducted to confirm the estimated axial stretch and to ensure
86 that mechanical properties were quantified in the physiological range. The experimental protocol
87 was performed on the nonpregnant murine vagina and cervix at 4-6 months of age in estrus.

88

89 The protocol is divided into two main mechanical testing sections: basal tone and passive testing.
90 A basal tone is defined as the baseline partial constriction of smooth muscle cells, even in the
91 absences of external local, hormonal, and neural stimulation¹⁰. This baseline contractile nature
92 of the vagina and cervix yields characteristic mechanical behaviors which are then measured by
93 the pressure myograph system. The passive properties are assessed by removing the intercellular
94 calcium that maintains the baseline state of contraction, resulting in relaxation of the smooth
95 muscle cells. In the passive state, collagen and elastin fibers provide the dominant contributions
96 for the mechanical characteristics of the organs.

97
98 The murine model is used extensively to study pathologies in women's reproductive health. The
99 mouse offers several advantages for quantifying the evolving relationships between ECM and
100 mechanical properties within the reproductive system¹¹⁻¹⁴. These advantages include short and
101 well-characterized estrous cycles, relatively low cost, ease of handling, and a relatively short
102 gestational time¹⁵. Additionally, the genome of laboratory mice is well-mapped and genetically-
103 modified mice are valuable tools to test mechanistic hypotheses¹⁶⁻¹⁸.

104
105 Commercially available pressure myograph systems are used extensively to quantify the
106 mechanical responses of various tissues and organs. Some notable structures analyzed on the
107 pressure myograph system include elastic arteries¹⁹⁻²², veins and tissue engineered vascular
108 grafts^{23,24}, the esophagus²⁵, and the large intestines²⁶. The pressure myograph technology
109 permits simultaneous assessment of properties in the axial and circumferential directions while
110 maintaining the native cell-ECM interactions and in vivo geometry. Despite the extensive use of
111 myograph systems in soft tissue and organ mechanics, a protocol utilizing the pressure myograph
112 technology had not previously been developed for the vagina and cervix. Prior investigations into
113 the mechanical properties of the vagina and cervix were assessed uniaxially^{27,28}. These organs,
114 however, experience multiaxial loading within the body^{29,30}, thus quantifying their biaxial
115 mechanical response is important.

116
117 Moreover, recent work suggests smooth muscle cells may play a potential role in soft tissue
118 pathologies^{5,28,31,32}. This provides another attraction of utilizing the pressure myograph
119 technology, as it preserves the native cell-matrix interactions, thus permitting delineation of the
120 contribution that smooth muscle cells play in physiological and pathophysiological conditions.
121 Herein, we propose a protocol to quantify the multiaxial mechanical properties of the vagina and
122 cervix under both basal tone and passive conditions.

123
124 **PROTOCOL:**

125
126 Nulliparous 4-6 months female C57BL6J mice (29.4 ± 6.8 grams) at estrus were used for this
127 study. All procedures were approved by the Institute Animal Care and Use Committee at Tulane
128 University. After delivery, the mice acclimated for one week before euthanasia and were housed
129 under standard conditions (12-hour light/dark cycles).

130
131 **1. Mouse sacrifice at estrus**
132

133 1.1. Determine the estrous cycle: The estrous cycle was monitored by visual assessment in
134 accordance to previous studies^{15,33,34}. The estrous cycle consists of four stages: proestrus, estrus,
135 metestrus, and diestrus. During the proestrus phase the genitals are swollen, pink, moist, and
136 wrinkled. The estrus phase is wrinkly but less swollen, pink, and moist. Metestrus and diestrus
137 are both reported as exhibiting no swelling and wrinkling, lacking in a pink hue, and dry^{34,35}.

138

139 1.2. Perform experiment at estrus: All mechanical tests were performed while the mice were at
140 estrus, as this is the easiest to visualize and provides a consistent and repeatable timepoint.

141

142 1.3. For mice undergoing basal tone testing, euthanize via guillotine. For mice tested only under
143 the passive conditions, euthanize using carbon dioxide (CO₂) inhalation. The guillotine serves to
144 preserve the function of smooth muscle cells of the reproductive tract, as the CO₂ gas alters the
145 contractile properties of the smooth muscle cells³⁶⁻⁴². It is imperative to perform the dissection
146 within 30 minutes to minimize the chance of cell apoptosis.

147

148 **2. Reproductive system dissection**

149

150 2.1. Set up: Place an absorbent pad on the workstation and fill a Petri dish and syringe with 4 °C
151 Hank's Balanced Salt Solution (HBSS) solution. Use a wipe for adipose tissue disposal. Place the
152 mouse ventral side up and tape the paws and tail. Turn the microscope lights on and set out
153 micro-scissors, scissors, two pairs of straight tweezers, and two pairs of curved tweezers.

154

155 2.2. Using angled tweezers and scissors, lift the skin around the abdomen and make an incision
156 at the base of the abdomen, above the pubic bone. The incision should be shallow enough to not
157 puncture the abdominal muscle wall. Continue using the scissors to cut superiorly towards the
158 rib cage and deep through the abdominal muscles.

159

160 2.3. Remove superficial fat by pulling lightly on the fat with the curved tweezers and micro-
161 scissors. Adipose tissue will reflect light heterogeneously with a glitter-like appearance. Place all
162 the removed fat and tissue on the wipe. Identify both uterine horns and the pubic bone.

163

164 2.4. Place closed scissors between the vaginal wall and the pubic bone. Carefully cut the middle
165 of the pubic bone (pubic symphysis). Place curved tweezers on both ends of the cut pubic bone.
166 Pull both cut ends laterally to allow for better access to the reproductive organs.

167

168 2.5. Remove the bladder and the urethra from the vaginal wall. This can be done by using straight
169 tweezers and micro-scissors. Hold the bladder with straight tweezers to create tension and use
170 blunt dissection techniques to separate the surrounding tissue from the vagina. Once the bladder
171 and urethra are dissected away, cut the base and remove from the body cavity.

172

173 2.6. Identify the reproductive system: The uterine horns bifurcate from the cervix. The cervix can
174 be identified from the vagina due to differences in geometry and stiffness. The outer diameter of
175 the cervix is smaller than the vagina. The cervix is stiffer than the vagina and feels similar to that
176 of a bead (**Figure 1**).

177
178 2.7. Use ink and calipers to mark 3 mm dots along the organs. Start below the ovaries on the
179 uterine tubes and mark dots inferiorly to reach the cervix. Use the center cervix dot to start a dot
180 path down to the vagina introitus.
181
182 2.8. Allow the ink to dry and separate the reproductive organs from surrounding adipose tissue,
183 connective tissue, and the colon. Clean the vagina as close to the vaginal introitus as possible.
184 Using scissors, cut around the vaginal introitus.
185
186 NOTE: It is possible for organs to dry out during this process. If this is a concern, a syringe filled
187 with 4 °C HBSS may be used to add moisture to the organs.
188
189 2.9. Cut the uterine horns immediately inferior to the ovaries. Note that the organs will retract
190 from the post explant length as the connective tissue is removed and the organ recoils. Place the
191 dissected reproductive organs in a Petri dish filled with 4 °C HBSS. This change in length can be
192 used in for calculating the estimated in vivo length (section 5).
193
194 NOTE: We have identified that using HBSS at this temperature during the dissection and
195 cannulation does not affect the smooth muscle cell viability. Maintaining a pH of 7.4, however, is
196 imperative for maintaining the viability of the smooth muscle cells. At this temperature, the HBSS
197 has a pH level of 7.4.
198
199 2.10. After a 15-minute equilibration period in 4 °C HBSS, measure the space between dots using
200 calipers. Record the measurements for each distance into a spreadsheet. These values will be
201 used to calculate the in vivo stretch ratio (original length/explanted length).
202
203 2.11. Set the wipe that contains the discarded tissue on the abdominal region with the excess
204 tissue facing the inside of the mouse and soak the wipe in 4 °C HBSS. Wrap the mouse and excess
205 tissue in foil and place in a freezer safe bag to be stored at -20 °C. Passive mechanical behavior
206 on the vagina was not found to be significantly different after one freeze-thaw cycle⁴³. All organs
207 tested were used immediately after euthanasia or after one freeze-thaw cycle.
208
209 **3. Cannulating**
210
211 3.1. Determine the proper cannula size for the organ type. In a typical C57BL6J mouse, the vagina
212 uses cannulas that are both 3.75 mm in diameter and riveted. The cervix uses one cannula that
213 is 3.75 mm for the vaginal end and a cannula 0.75 mm in diameter for the uterine end (**Figure 2**).
214 The 0.75 mm cannula is smooth.
215
216 NOTE: The diameter sizes denoted above are used for typical nulliparous 4-6 months C57-BL/6
217 mice, C57BL/6 x 129SvEv, and nonparous mice aged 4-6 months. However, certain circumstances,
218 such as prolapse or pregnancy, may require a larger size cannula.
219

220 3.2. With each organ, mount the cervical side on the force transducer portion of the cannulation
221 device. Mount the opposite end of the organ (vaginal or uterine) on the micrometer portion of
222 the device. Tighten both ends with sutures.

223
224 3.3. Due to the difference in thickness and degree of contractility among the vagina and cervix,
225 varying techniques may be utilized to perform the most effective cannulation. For the vagina,
226 place 2 sutures in between the 2nd and 3rd rivets of the cannula in a "X" fashion. When cannulating
227 the cervix, the cannula is not riveted so the organ is best placed at the back of the cannula with
228 3 horizontal sutures on the uterine end and 4 sutures on the external os. For both organs,
229 maximum length should be no more than 7 mm between the sutures (**Figure 3**).

230

231 **4. Pressure myograph set up**

232

233 4.1. In order to set up the pressure myograph system, power on the testing system and fill the
234 reservoir bottle with 200 mL of HBSS (**Figure 4**). Turn the heat to "on" and allow the HBSS in the
235 reservoir bottle to heat up. Next, turn on the microscope and open the computer program.
236 Ensure that the image of the cannulated organ, pressure interface, flow meter readings, and the
237 sequencer function tool are all visible (**Figure 5**).

238

239 **5. Basal tone mechanical testing**

240

241 NOTE: The cervix exhibited a phasic nature during the beginning stages of testing. However, this
242 diminished after preconditioning. Basal tone testing is done utilizing Krebs Ringer Buffer (KRB) in
243 the basin of the DMT device. The buffer is aerated with 95% O₂ and 5% CO₂. After the basal tone
244 portion is complete, calcium free KRB is utilized.

245

246 5.1. Finding the unloaded geometry: Stretch the organ so that the wall is not in tension. For the
247 vagina, observe the grooves on the vaginal wall. For the cervix, cut immediately below the ink
248 dots that located above and below the central cervix mark. This devises a repeatable method for
249 a cervical *in situ* length of 6 mm⁴⁴. Measure the length from suture to suture with calipers

250

251 5.2. Finding the unloaded pressure (UP): Increase the pressure from 0 to 10 mmHg in increments
252 of 1 mmHg. Determine the pressure in which the organ is no longer collapsed. This can be
253 determined as the largest jump in the outer diameter at a given pressure, as exhibited on the
254 program monitor. After recording the pressure and outer diameter, note this as the first point
255 wherein the organ is not collapsed and zero the force.

256

257 5.3. Estimated *in vivo* stretch: Calculate the estimated *in vivo* stretch by dividing the length
258 measured *in vivo* by the length measured post explant:

259

260
$$\lambda_{iv} = l_{in\ vivo} / l_{post-explant}$$

261

262 5.4. Pressure-diameter pre-conditioning: Set the pressure to 0 mmHg, the length to the
263 estimated in vivo length and the gradient to 1.5 mmHg/s. Run a sequence that takes the pressure
264 from 0 mmHg to the in vivo pressure + unloaded (**Table 1**), hold for 30 seconds, and take the
265 pressure to 0 mmHg with a 30 second hold period. After repeating for a total of 5 cycles, press
266 **Stop** in the computer program and save the file.

267

268 5.5. Finding the experimental in vivo stretch: Adjust the organ to be at the estimated in vivo
269 length while at the unloaded pressure and press **Start**. Assess pressure vs force values for
270 pressure values ranging from the unloaded pressure to the maximum pressure (**Table 1**). Press
271 the **Stop** button in the computer program and save the file.

272

273 NOTE: The measured stretch value is calculated in situ. This is accompanied by the limitation that
274 it can only be measured after disarticulating the pubic symphysis. As a result, the natural
275 tethering is lost, which may modify the length. The theoretical stretch, however, is based on the
276 previously introduced theory that the organ will experience minimal changes in force when
277 exposed to physiological pressures to conserve energy⁴⁵. In the protocol, the measured in vivo
278 stretch will be the stretch value calculated using the experimentally identified length wherein
279 there is minimal change in force when exposed to a physiological range of pressures.

280

281 5.6. Pressure-diameter pre-conditioning: Set the pressure to 0 mmHg, the length to the
282 experimental in vivo length, and the gradient of 1.5 mmHg/s. Run a sequence that takes the
283 pressure from 0 mmHg to the maximum pressure + UP, hold for 30 seconds, and back to 0 mmHg
284 with an additional 30 second hold period. After repeating this for a total of 5 cycles, press the
285 **Stop** button in the program interface and save the file.

286

287 NOTE: 5.4 is imperative for achieving a more consistent axial force reading with increasing
288 pressure. This step aids in finding the correct in vivo stretch, which is often underestimated based
289 on visual cues. 5.6 serves as a precautionary step to minimize hysteresis and to achieve a
290 consistent, repeatable, mathematically interpretable response of the organ.

291

292 5.7. Force-length pre-conditioning: Enter 1/3 max pressure + UP for both the inlet and outlet
293 pressure. Adjust the organ to -2% of the in vivo length and press **Start**. Adjust the length to +2%
294 in vivo length then back down to -2% at 10 $\mu\text{m}/\text{s}$. Repeat axial extension for a total of 5 cycles.
295 Press **Stop** in the computer program and save the file.

296

297 5.8. Equilibration: With the organ at the determined in vivo length, set both the inlet and outlet
298 pressure at 1/3 of the maximum pressure + UP. Equilibrate the organ for 10 minutes. Slowly bring
299 both pressures back down to 0 mmHg with the gradient set as 1.5 mmHg/s.

300

301 5.9. Re-evaluate the unloaded geometry: Set the organ to the in vivo length and the pressure to
302 the unloaded pressure. Decrease the axial length towards the estimated unloaded length at a
303 rate of 10 $\mu\text{m}/\text{s}$ until there is minimal change in the force. This corresponding length is known as
304 the unloaded length, or where the organ is not in tension nor compression. Before zeroing the
305 force, record the unloaded length, outer diameter, and the force value.

306
307 NOTE: The prior unloaded geometry was determined by visual cues, which is purely qualitative.
308 A re-evaluation is necessary for a quantitative method and to account for possible changes in
309 length that may occur during the preconditioning. This geometry will be used in section 8.
310
311 5.10. Ultrasound Setup: Use the general imaging abdominal package to visualize the organs in
312 the testing device. (Figure 6). Before testing, minimize artifacts from the bottom of the pressure
313 myograph metal basin. Adjust the cannula to a height that is the maximum distance from the
314 bottom with the tissue still being fully submerged in the testing solution. A custom holder is 3D
315 printed to stabilize the transducer in a vertical position during imaging.
316
317 5.11. Ultrasound Imaging: Identify the cannula near the force transducer and adjust the stage of
318 the microscope to image along the length of the tissue. Throughout the testing process, the
319 middle region along the length is tracked (Figure 6A,C). Following imaging, review the image
320 "Cine store" loop that consists of a series of B-mode frames and identify the frame with the
321 largest outer diameter. The thickness calculations made will be used in section 8.
322
323 5.12. Pressure diameter testing (-2% in vivo length): Press **Start** and adjust the organ so that it is
324 -2% of the in vivo length, set the pressure to 0 mmHg and gradient to 1.5 mmHg/s. Increase the
325 pressure from 0 mmHg to the maximum pressure. Bring the pressure back down to 0 mmHg with
326 a 20 second hold period. Repeat this for 5 cycles.
327
328 5.13. Pressure diameter testing (in vivo length): Press **Start** and adjust the organ so that it is at
329 the vivo length, set the pressure to 0 mmHg, and gradient to 1.5 mmHg/s. Increase the pressure
330 from 0 mmHg to the maximum pressure. Bring the pressure back down to 0 mmHg with a 20
331 second hold period. Repeat this for 5 cycles.
332
333 5.14. Pressure diameter testing (+2% in vivo length): Adjust the organ so that it is +2% in vivo
334 length, set the pressure to 0 mmHg, and gradient to 1.5 mmHg/s. Increase the pressure from 0
335 mmHg to the maximum pressure and then back down to 0 mmHg with a 20 second hold period.
336 Repeat this for 5 cycles. The pressure data from all three lengths will be used in section 8.
337
338 5.15. Force-length testing (Nominal pressure): Set the pressure to the unloaded pressure and the
339 organ to -2% of the in vivo length. Stretch the organ to +2% of the in vivo length and return to -
340 2% the in vivo length at rate of 10 $\mu\text{m}/\text{s}$. Repeat for a total of 3 cycles.
341
342 5.16. Force-length testing (1/3 maximum pressure + UP): Set the pressure to 1/3 of the maximum
343 pressure + UP and adjust the organ to -2% the in vivo length. After pressing **Start**, stretch the
344 organ to +2% the in vivo length and back to -2% the in vivo length at a rate of 10 $\mu\text{m}/\text{s}$. After
345 repeating for a total of 3 cycles, press **Stop** and save the data.
346
347 5.17. Force-length testing (2/3 maximum pressure + UP): Set the pressure to 2/3 of the maximum
348 pressure + UP and adjust the organ to -2% the in vivo length. Press **Start** and stretch the organ to

349 +2% the in vivo length and back to -2% the in vivo length at a rate of 10 $\mu\text{m/s}$. After repeating for
350 a total of 3 cycles, press **Stop** and save the data.

351

352 5.18. Force-length testing (maximum pressure + UP): Set the pressure to the maximum pressure
353 + UP and adjust the organ to -2% the in vivo length. At a rate of 10 $\mu\text{m/s}$, stretch the organ to
354 +2% of the in vivo length and back to -2% the in vivo length. After repeating for a total of 3 cycles,
355 save the data. All force data will be used in section 8.

356

357 5.19. Remove KRB testing media and wash with calcium-free KRB. Replace the media with
358 calcium free KRB solution supplemented with 2 mM EGTA. Incubate the tissue for 30 minutes.
359 Remove the solution and replace the media with fresh calcium-free KRB.

360

361 **6. Passive mechanical testing**

362

363 NOTE: If starting with passive testing start at step 1. If basal tone testing was performed prior to
364 passive start at step 6. If starting with frozen tissue, allow a 30-minute equilibration period at
365 room temperature before cannulating the organ.

366

367 6.1. Finding the unloaded geometry: Stretch the organ so the wall of the organ is not in tension.
368 Measure the cannulated organ from suture to suture and record this as the unloaded length.

369

370 6.2. Finding the unloaded pressure: After pressing **Start**, increase the pressure from 0 to 10
371 mmHg in increments of 1 mmHg. While going through this process, determine the pressure in
372 which the organ is not in tension. Using the computer program monitor, this can be determined
373 from the largest jump in the outer diameter. After zeroing the force, record this pressure as well
374 as the outer diameter and note this as the first point in which the organ is not collapsed.

375

376 6.3. Estimated in vivo stretch: Calculate the estimated in vivo stretch by dividing the length
377 measured in vivo by the length measured post-explant.

378

379 6.4. Pressure diameter pre-conditioning: After pressing **Start**, set the pressure set to 0 mmHg,
380 the length as the estimated in vivo length, and gradient to 1.5 mmHg/s. Begin running a sequence
381 that takes the pressure from 0 mmHg to the maximum pressure and back to 0 mmHg. Repeat
382 this process through 5 cycles with a 30 second hold time.

383

384 6.5. Force-length preconditioning: Adjust the organ to the in vivo length and manually enter the
385 unloaded pressure in the computer program for both pressures. After pressing **Start**, set the
386 gradient to 2 mmHg and the pressure to 1/3 of the maximum. Stretch the organ up to +4% and
387 back down to -4% stretch at 10 $\mu\text{m/s}$. Repeat this cycle for a total of 5 times and press **Stop**.

388

389 6.6. Finding the experimental in vivo length: Find and plot force values at -4% of the in vivo
390 length, the in vivo length, and +4% of the in vivo length. Take forces at evenly spaced pressures
391 ranging from 0 mmHg to the maximum pressure. The experimental in vivo stretch will be the
392 stretch value that exhibits a relatively flat line over a range of pressures.

393
394 6.7. Repeat the pressure diameter and axial pre-conditioning steps at the new in vivo length.
395
396 6.8. Equilibration: With the organ at the determined in vivo length, set the inlet and outlet
397 pressure to the unloaded pressure. Let the organ re-equilibrate for 15 minutes. After 15 minutes,
398 slowly bring the inlet and outlet pressure back down to 0 mmHg.
399
400 6.9. Re-evaluate unloaded configuration: Bring the organ to the unloaded length and re-estimate
401 the unloaded length. Record the unloaded length and the outer diameter while the pressure is 0
402 mmHg, the unloaded pressure, and 1/3 the maximum pressure. Zero the force at the unloaded
403 pressure. The diameter at the unloaded pressure is the in vivo diameter.
404
405 NOTE: Re-estimating the unloaded length is necessary as small plastic deformations were
406 observed previously in soft biological tissues following preconditioning. This unloaded
407 configuration will be the one utilized in section 8.
408
409 6.10. Ultrasound: Perform ultrasound B-mode imaging at the unloaded length and pressure.
410
411 6.11. Pressure-diameter testing: With the organ at -2% of the experimentally determined in vivo
412 length and the pressure at 0 mmHg, press **Start**. Increase the pressure from 0 mmHg to the
413 maximum pressure and back to 0 mmHg. Hold the 2-0 mmHg step for 20 seconds. After repeating
414 for a total of 5 times, press the **Stop** button in the interface and save the file.
415
416 NOTE: Repeat at the experimental in vivo length, +2% of the experimental in vivo length.
417
418 6.12. Force-length testing: Set the pressure to nominal pressure and adjust the organ to -2% of
419 the in vivo length. Stretch the organ up to +2% of the in vivo length and back to -2% of the in vivo
420 length at a rate of 10 $\mu\text{m/s}$. After repeating for a total of 3 times, save the data. Repeat this for
421 1/3 max pressure, 2/3 max pressure, and at the max pressure.
422
423 6.13. Calculate the unloaded thickness from ultrasound images B-mode image. Using imaging
424 software, draw a line to denote the penetration depth. Set the scale to the length of the line (i.e.,
425 2000 μm as shown in **Figure 6B and 6D**).
426
427 6.14. Wall thickness calculations: Using a computer software, trace and measure the inner and
428 outer diameter of the organ. Then, draw and measure a line between the diameters. Draw a total
429 of 25 transmural lines. Average all data points and repeat for a total of 3 times.
430
431 **7. Clean up**
432
433 7.1. Ensure that the pressure is 0 mmHg and turned off. Close the main inlet and outlet off for
434 both three-way valves. Aspirate the remaining fluid from the basin of the cannulation device.
435

436 7.2. Remove the organ from the stage and fill the reservoir bottle with deionized water. Using a
437 syringe, rinse the cannula with water. Connect the tubing to bypass the cannula.

438

439 7.3. Turn the pressure and flow on, set the inlet pressure to 200 mmHg, the outlet pressure to 0
440 mmHg, gradient to 10 mmHg/s, and let the flow run for 5 minutes. Allow the system to run while
441 the reservoir bottle is empty and let the air run for 5 minutes or until the lines are dry.

442

443 8. Data analysis

444

445 8.1. For pressure diameter testing, collect data from where the pressure begins to decrease from
446 the maximum value until the end point. For force-length testing, collect data from just below the
447 maximum peak in force until the force stopped decreasing.

448

449 8.2. Open the data file for each pressure-diameter test and select the mean pressure tab.
450 Navigate to the loading region of the last curve, 0 mmHg to the maximum pressure, and drop the
451 data into a spreadsheet. Select the same region on the outer diameter, inlet pressure, outlet
452 pressure, force, temperature, pH, and flow tab placing each item in the same document.

453

454 8.3. Open the data for each Force-length test. Navigate to the loading region of the curve, -2% to
455 +2%, and drag and drop the data into a spreadsheet. Select the same region for the other
456 measured variables and place each item in the same spreadsheet.

457

458 8.4. For the pressure diameter and force length test subtract the UP from all pressure values.

459

460 8.5. Average the pressure-diameter data every 1 mmHg (i.e., 0+/- 0.5, 1+/-0.5, 2+/- 0.5).

461

462 8.6. Find the unloaded volume of the organ (V). Equation 1 can be utilized to find V , given that
463 R_0^2 is the unloaded outer radius measured by the microscope, L is the unloaded length, and H is
464 the unloaded thickness as detected by the ultrasound. The assumption of incompressibility is
465 leveraged, meaning that the organ conserves volume while subjected to deformations.

466

467 NOTE: The unloaded length is measured with calipers from suture to suture. The unloaded
468 diameter is measured via the microscope, camera, and software followed by calculation of the
469 radius (**Figure 5**) The unloaded thickness is calculated from the ultrasound images (**Figure 6**).

470

$$471 V = \pi(R_0^2 - (R_0 - H)^2)L \quad \text{Equation 1}$$

472

473 8.7. Using the assumption of incompressibility, use the unloaded volume, deformed outer radius
474 (r_0), and length (l) to determine the deformed inner radius (r_i).

475

$$476 r_i = \sqrt{r_0^2 - \frac{V}{\pi l}} \quad \text{Equation 2}$$

477

478 8.8. Use Equations 3, 4, and 5 to calculate each stress, respectively. In equations 3-5, P is defined
479 as the intraluminal pressure and F_t is the force measured by the transducer.

480

481
$$\sigma_\theta = \frac{Pr_i}{r_o - r_i} \quad \text{Equation 3}$$

482
$$\sigma_z = \frac{F_t + \pi Pr_i^2}{\pi(r_o^2 - r_i^2)} \quad \text{Equation 4}$$

483
$$\sigma_r = \frac{Pr_i}{r_o + r_i} \quad \text{Equation 5}$$

484

485 8.9. Plot the pressure-diameter relationship, force-pressure relationship, circumferential stress-
486 circumferential stretch relationship, and the axial stress and circumferential stretch values
487 (**Figure 7**, **Figure 8**). The stretch values can be calculated using the midwall radius. Calculations
488 of the circumferential and axial stresses can be found in Equations 6 and 7, respectively.

489

490
$$\lambda_\theta = \frac{r_i + r_o/2}{R_1 + R_0/2} \quad \text{Equation 6}$$

491
$$\lambda_z = \frac{l}{L} \quad \text{Equation 7}$$

492

493 8.10. Calculate compliance near the physiological pressure range and at the in vivo stretch. The
494 lower pressure bound (LPB) is 1 standard deviation below the mean measured pressure. The
495 upper pressure bound (UPB) is 1 standard deviation above the mean measured pressure⁹.

496

497
$$\frac{r_o^{UPB} - r_o^{LPB}}{P^{UPB} - P^{LPB}}$$

498

499 8.11. Calculate the tangent moduli to quantify the material stiffness. Identify the calculated
500 circumferential stress that corresponds to the lower pressure bound and upper bound pressure.
501 Fit a linear line to the circumferential stress- circumferential stretch curve within the identified
502 stress range at the in vivo length. Calculate the slope of the line⁹.

503

504 **REPRESENTATIVE RESULTS:**

505 Successful analysis of the mechanical properties of the female reproductive organs is contingent
506 on appropriate organ dissection, cannulation, and testing. It is imperative to explant the uterine
507 horns to the vagina without any defects (**Figure 1**). Depending on the organ type, the cannula
508 size will vary (**Figure 2**). Cannulation must be done so that the organ cannot move during the
509 experiment but also not damage the wall of the organ during the procedure (**Figure 3**). Failure of
510 either step will result in inability of the vessel to hold pressure. Testing procedure standardization
511 is vital to the success of the protocol in order to yield consistent and repeatable results.

512

513 Once the organ is dissected and cannulated properly, power on the pressure myograph system.
514 The setup of the pressure myograph systems involves a controller unit, flow meter, and stage
515 (**Figure 4**). The pressure myograph system is used to monitor various aspects of the organ as it
516 undergoes mechanical testing (**Figure 5**). An ultrasound system, or equivalent, is used to measure
517 the thickness of the organs in the unloaded state with and without basal tone (**Figure 6**). After

518 mechanical testing, the tangent moduli may be calculated for the circumferential and axial
519 directions (**Table 2**).

520
521 Both basal tone testing and passive testing yield key mechanical properties of the reproductive
522 tract, with and without the contractile contribution of smooth muscle cells (**Figure 7, Figure 8**).
523 Scaling between the organs requires a few adjustments to the protocols (**Table 1**), as the cervix
524 and vagina experience different loads *in vivo*⁴⁶⁻⁴⁸. Such variations may be monitored through
525 techniques such as pressure catherization. Pressure catherization is a method used previously to
526 monitor the *in vivo* conditions within the vagina and uterus⁴⁹⁻⁵³. Models in the previous studies
527 range from mice, rabbits, and humans. The same principles would apply similarly to the cervical
528 and vaginal pressure specific for the murine model. Though, regardless which organ is being
529 tested, the same materials are needed for the protocols (**Table 3**).
530

531 **FIGURE AND TABLE LEGENDS:**

532 **Figure 1: Murine dissection diagram.** The mouse dissection for the reproductive organs: both
533 uterine horns, cervix, and the vagina. In the figure, the bladder and urethra are removed from
534 the anterior of the vagina. The intestines and abdominal muscles were reflected superiorly.
535

536 **Figure 2: Size comparison of the two cannula.** Size comparison of the two cannulas used for
537 cannulation of the reproductive organs. The larger cannula (D = 3.75 mm) is used for the vaginal
538 tissue (**A**). The smaller cannula (D = 0.75 mm) is used for cannulating cervical tissue (**B**). The
539 cervical cannula is smooth while the vaginal cannula has two grooves.
540

541 **Figure 3: Cannulation method for vagina and cervix.** Due to the varying geometry and thickness
542 of the reproductive organs, they are most effectively cannulated in distinct manners. For the
543 vagina, place two sutures in an "X" fashion. When cannulating the cervix, place 3 horizontal
544 sutures on the uterine end and 4 sutures on the external os.
545

546 **Figure 4: Setup for pressure myograph device.** The setup of the DMT device utilized for both
547 basal and passive testing. The DMT is composed of three main hubs: the stage (**A**), controller unit
548 (**B**), and flow meter (**C**). Within the controller unit, there is a reservoir bottle and a waste bottle.
549 The reservoir bottle is initially filled with fluid that empties as the experiment is carried out. The
550 waste bottle, which is initially empty, collects the fluid that runs through the experiment. The
551 controller unit interfaces with the DMT software on the computer and controls the pressure,
552 temperature, and flow. The controller unit reads the outputs from the force and pressure
553 transducers within the stage through a VGA interface cable. The stage component of the system
554 contains an inlet and outlet flow of the system. The inlet and outlet flow have corresponding inlet
555 and outlet pressures measured by the system.
556

557 **Figure 5: File setup on the pressure myograph program.** Display of computer software set-up. A
558 box is drawn around the region of interest and outer diameter of the tissue is optically tracked in
559 real-time (**A**). Data obtained during mechanical testing is recorded and displayed real-time in the
560 outer diameter, inlet pressure, outlet pressure, mean pressure, force, temperature, pH, and flow
561 tab (**B**). Within the pressure interface pressure (mmHg), gradient (mmHg/g), and flow is

562 controlled. Further, the axial force (mN) measured by the in-line force transducer is displayed.
563 Flow rate ($\mu\text{L}/\text{min}$) is reported in the flow meter tab (C). Pressure sequencing is shown and
564 controlled in the sequencer tab (D). Data recorded during mechanical testing is recorded and
565 displayed real-time in the outer diameter, inlet pressure, outlet pressure, mean pressure, force,
566 temperature, pH, and flow tab (E). A representative Pressure Diameter test of the vagina is
567 displayed showing outer diameter as a function of time on the outer diameter tab.

568

569 **Figure 6: Ultrasound Imaging.** Ultrasound imaging of the murine reproductive organs. All images
570 were taken using the ultrasound system on the short-axis-B mode. A representative image of the
571 vagina at the unloaded length and pressure (A). Vaginal wall thickness was calculated in ImageJ.
572 A vertical line was drawn along the depth scale (mm) to calibrate the number of pixels per μm .
573 The polygon tool was used to trace the inner and outer diameter. Then transmural lines were
574 drawn to calculate the thickness and averaged (B). This was performed 3 times. A representative
575 image of the cervix at the unloaded length and pressure (C). Wall thickness was then calculated
576 using Image J and the polygon tool in a similar manner to that of the vagina (D). Within the
577 reproductive complex, the outer diameter is tracked at two different locations (E). Throughout
578 the imaging process, the transducer is stabilized by a 3-D printed holder (F).

579

580 **Figure 7: Representative results for vaginal testing.** The representative mechanical testing
581 results of the vaginal basal and passive protocols. With the data obtained by the DMT system,
582 several mechanical relationships can be derived. A) Basal Pressure-Diameter, B) Passive Pressure-
583 Diameter, C) Basal Force-Pressure, D) Passive Force-Pressure, E) Basal circumferential stress-
584 circumferential stretch, F) Passive circumferential stress-circumferential stretch, G) Basal axial
585 stress-circumferential stretch, H) Passive axial stress-circumferential stretch.

586

587 **Figure 8: Representative results for cervical testing.** The representative mechanical testing
588 results of the cervical basal and passive protocols. With the data obtained by the DMT system,
589 several mechanical relationships can be derived. A) Basal Pressure-Diameter, B) Passive Pressure-
590 Diameter, C) Basal Force-Pressure, D) Passive Force-Pressure, E) Basal circumferential stress-
591 circumferential stretch, F) Passive circumferential stress-circumferential stretch, G) Basal axial
592 stress-circumferential stretch, H) Passive axial stress-circumferential stretch.

593

594 **Table 1: Summary of information for scaling the mechanical testing methods for each organ.**
595 The unloaded pressure values were measured using catheterization techniques under anesthesia
596 (4% isoflurane in 100% oxygen). A balloon catheter was utilized for the vaginal measurements
597 and a 2F catheter for the cervix.

598

599 **Table 2: The representative results for the physiological pressure measured within the vagina**
600 **and cervix.** Pressure was taken during both basal and passive conditions as well as for both
601 circumferential and axial directions. All measurements provided are in units of kPa.

602

603 **DISCUSSION:**

604 The protocol provided in this article presents a method for determining the mechanical
605 properties of the murine vagina and cervix. The mechanical properties analyzed in this protocol

606 include both the passive and basal tone conditions of the organs. Passive and basal tone
607 conditions are induced by altering the biochemical environment in which the organ is submerged.
608 For this protocol, the media involved in basal testing contains calcium. Testing the basal tone
609 condition permits isolation of the smooth muscle cell mechanical contribution within the female
610 reproductive organs^{54,55}. When performing passive mechanical testing, the media does not
611 contain calcium. The lack of calcium inhibits the smooth muscle cells from contracting. This
612 permits elucidation of other ECM components, such as collagen and elastic fibers, which largely
613 dictate the passive mechanical properties. When combined with biochemical and histological
614 analysis, these results permit elucidation of relationships between ECM microstructural
615 composition and mechanical function. This then allows for delineation of the structural and
616 mechanical mechanisms of pathologies relevant to women's reproductive health.

617

618 Previously, the vagina and cervix were tested uniaxially^{27,28}. The vagina and cervix, however,
619 demonstrate anisotropic properties and experience multiaxial loading *in vivo*^{29,30}. Hence,
620 pressure myograph systems used herein provide quantitative information on multiaxial loading
621 that may aid in understanding the etiologies of reproductive pathologies, as well as the
622 subsequent design of potential treatments. Further, pressure myography permits assessment of
623 multiaxial properties while preserving the *in vivo* organ geometry and the native cell-matrix
624 interaction⁵⁶. In *in vivo*, the cells actively remodel the surrounding ECM in response to changes in
625 biomechanical and biochemical cues⁵⁷⁻⁵⁹. The protocol used herein is advantageous as it permits
626 monitoring of subsequent changes in bulk organ properties under physiologically relevant
627 conditions. This aids in providing a platform to generate systematic datasets of multiaxial active
628 and passive mechanical properties. Further, the data collected in these experiments may be
629 leveraged to formulate and validate microstructurally-motivated nonlinear constitutive models
630 to describe and predict the mechanical response of the female reproductive organs in healthy
631 and pathological states^{16,60}.

632

633 An additional system component that was advantageous to the protocol was the use of
634 ultrasound imaging to measure the thickness of the organ walls. The thickness is crucial
635 information for calculating stress experienced while undergoing testing.

636

637 With any experimental set up, there are some limitations to this procedure. This protocol
638 currently only considers the elastic response of the vagina and cervix and not the viscoelastic
639 response. A potential method to mitigate this limitation in the future is to modify the existing
640 protocol to include creep and stress relaxation assays⁶¹. A second limitation is assuming the
641 organs are incompressible. Within this study, thickness was solely measured at the unloaded
642 configuration, as motivated by prior studies that demonstrate nonpregnant murine tissue
643 exhibits minimal changes in volume during osmotic loading⁶². Furthermore, additional studies
644 have operated under the same assumption of incompressibility^{44,60,63}. Ideally, an ultrasound
645 would be performed for the entirety of the experiment in order to remove the need for the
646 incompressibility assumption and to better inform finite element models. A final limitation is the
647 lack of quantified *in vivo* cervical pressure to inform the loading protocols. Literature suggests
648 that cervical pressure in human women is 37 mmHg⁵³. Mice, however, may exhibit different
649 cervical pressure from that of humans. A difference in vaginal pressure was demonstrated

650 between rodent models and human samples^{64,65}. Further studies are needed to quantify pressure
651 in the non-pregnant murine cervix. Towards this end, intra-uterine pressure was recently
652 reported throughout pregnancy⁴⁹.

653
654 The commercially available pressure myograph system utilized in this procedure measures the
655 force properties of elastic, hollow organs. This protocol is easily adaptable to other various organs
656 and tissues by modifying the chemical additives in the bath, cannula size, and suture thickness.
657

658 **ACKNOWLEDGMENTS:**

659 The work was funded by NSF CAREER award grant #1751050.
660

661 **DISCLOSURES:**

662 None.
663

664 **REFERENCES**

- 665 1 Capone, D. et al. Evaluating Residual Strain Throughout the Murine Female Reproductive
666 System. *Journal of Biomechanics*. **82**, 299-306, doi:10.1016/j.jbiomech.2018.11.001
667 (2019).
- 668 2 Danforth, D. The fibrous nature of the human cervix, and its relation to the isthmic
669 segment in gravid and nongravid uteri. *American Journal of Obstetrics and Gynecology*.
670 **53** (4), 541-560 (1947).
- 671 3 Hughesdon, P. The fibromuscular structure of the cervix and its changes during pregnancy
672 and labour. *Journal of Obstetrics and Gynecology of the British Commonwealth*. **59**, 763-
673 776 (1952).
- 674 4 Bryman, I., Norstrom, A., Lindblom, B. Influence of neurohypophyseal hormones on human
675 cervical smooth muscle cell contractility in vitro. *Obstetrics and Gynecology*. **75** (2), 240-
676 243 (1990).
- 677 5 Joy, V. et al. A New Paradigm for the Role of Smooth Muscle Cells in the Human Cervix.
678 *Obstetrics*. **215** (4), 478.e471-478.e411 (2016).
- 679 6 Xu, X., Akgul, Y., Mahendroo, M., Jerschow, A. Ex vivo assessment of mouse cervical
680 remodeling through pregnancy via Na (23) MRS. *NMR Biomedical*. **23** (8), 907-912 (2014).
- 681 7 Leppert, P. Anatomy and Physiology of cervical ripening. *Clinical Obstetrics and
682 Gynecology*. **2000** (43), 433-439 (1995).
- 683 8 Schlembach, D. et al. Cervical ripening and insufficiency: from biochemical and molecular
684 studies to in vivo clinical examination. *European Journal of Obstetrics, Gynecology, and
685 Reproductive Biology*. **144**, S70-S79 (2000).
- 686 9 Stoka, K. et al. Effects of Increased Arterial Stiffness on Atherosclerotic Plaque Amounts.
687 *Journal of Biomechanical Engineering*. **140** (5) (2018).
- 688 10 Mohram, D., Heller, L. in *Cardiovascular Physiology* Ch. 7, (The McGraw-Hill Companies,
689 2006).
- 690 11 Yoshida, K. et al. Quantitative Evaluation of Collagen Crosslinks and Corresponding Tensile
691 Mechanical Properties in Mouse Cervical Tissue during Normal Pregnancy. *PLoS One*. **9**,
692 e112391 (2014).
- 693 12 Mahendroo, M. Cervical remodeling in term and preterm birth: insight from an animal

694 model. *Society for Reproduction and Fertility*. **143** (4), 429-438 (2012).

695 13 Elovitz, M., Miranlini, C. Can medroxyprogesterone acetate alter Toll-like receptor
696 expression in a mouse model of intrauterine inflammation? *American Journal of
697 Obstetrics and Gynecology*. **193** (3), 1149-1155 (2005).

698 14 Ripperda, C. et al. Vaginal estrogen: a dual-edged sword in postoperative healing of the
699 vaginal wall. *North American Menopause Society*. **24** (7), 838-849 (2017).

700 15 Nelson, J., Felicio, P., Randall, K., Sims, C., Finch, E. A Longitudinal Study of Estrous Cyclicity
701 in Aging C57/6J Mice: Cycle, Frequency, Length, and Vaginal Cytology. *Biology of
702 Reproduction*. **27** (2), 327-339 (1982).

703 16 Ferruzzi, J., Collins, M., Yeh, A., Humphrey, J. Mechanical assessment of elastin integrity
704 in fibrillin-1-deficient carotid arteries: implications for Marfan Syndrome. *Cardiovascular
705 Research*. **92** (2), 287-295 (2011).

706 17 Mariko, B. et al. Fibrillin-1 genetic deficiency leads to pathological ageing of arteries in
707 mice. *The Journal of Pathology*. **224** (1), 33-44 (2011).

708 18 Rahn, D., Ruff, M., Brown, S., Tibbals, H., Word, R. Biomechanical Properties of The Vaginal
709 Wall: Effect of Pregnancy, Elastic Fiber Deficiency, and Pelvic Organ Prolapse. *American
710 Urogynecological Society*. **198** (5), 590.e1-590.e6 (2009).

711 19 Caulk, A., Nepiyushchikh, Z., Shaw, R., Dixon, B., Gleason, R. Quantification of the passive
712 and active biaxial mechanical behavior and microstructural organization of rat thoracic
713 ducts. *Royal Society Interface*. **12** (108), 20150280 (2015).

714 20 Amin, M., Le, V., Wagenseil, J. Mechanical Testing of Mouse Carotid Arteries: from
715 Newborn to Adult. *Journal of Visualized Experiments*. (60), e3733 (2012).

716 21 Sokolis, D., Sassani, S., Kritharis, E., Tsangaris, S. Differential histomechanical response of
717 carotid artery in relation to species and region: mathematical description accounting for
718 elastin and collagen anisotropy. *Medical and Biological Engineering and Computing*. **49**
719 (8), 867-879 (2011).

720 22 Kim, J., Baek, S. Circumferential variations of the mechanical behavior of the porcine
721 thoracic aorta during the inflation test. *Journal of Biomechanics*. **44** (10), 1941-1947
722 (2011).

723 23 Faury, G. et al. Developmental adaptation of the mouse cardiovascular system to elastin
724 haploinsufficiency. *Journal of Clinical Investigation*. **11** (9), 1419-1428 (2003).

725 24 Naito, Y. et al. Beyond Burst Pressure: Initial Evaluation of the Natural History of the
726 Biaxial Mechanical Properties of Tissue-Engineered Vascular Grafts in the Venous
727 Circulation Using a Murine Model. *Tissue Engineering*. **20**, 346-355 (2014).

728 25 Sommer, G. et al. Multiaxial mechanical response and constitutive modeling of esophageal
729 tissues: Impact on esophageal tissue engineering. *Acta Biomaterialia*. **9** (12), 9379-9391
730 (2013).

731 26 Sokolis, D., Orfanidis, I., Peroulis, M. Biomechanical testing and material characterization
732 for the rat large intestine: regional dependence of material parameters. *Physiological
733 Measurement*. **32** (12) 1969-1982 (2011).

734 27 Martins, P. et al. Prediction of Nonlinear Elastic Behavior of Vaginal Tissue: Experimental
735 Results and Model Formation. *Computational Methods of Biomechanics and Biomedical
736 Engineering*. **13** (3), 317-337 (2010).

737 28 Feola, A. et al. Deterioration in Biomechanical Properties of the Vagina Following

738 Implantation of a High-stiffness Prolapse Mesh. *BJOG: An International Journal of*
739 *Obstetrics and Gynaecology*. **120** (2), 224-232 (2012).

740 29 Huntington, A., Rizzuto, E., Abramowitch, S., Prete, Z., De Vita, R. Anisotropy of the Passive
741 and Active Rat Vagina Under Biaxial Loading. *Annals of Biomedical Engineering*. **47**, 272-
742 281 (2018).

743 30 Tokar, S., Feola, A., Moalli, P., Abramowitch, S. Characterizing the Biaxial Mechanical
744 Properties of Vaginal Maternal Adaptations During Pregnancy. *ASME 2010 Summer*
745 *Bioengineering Conference, Parts A and B*. 689-690 (2010).

746 31 Feloa, A. et al. Impact of Pregnancy and Vaginal Delivery on the Passive and Active
747 Mechanics of the Rat Vagina. *Annals of Biomedical Engineering*. **39** (1), 549-558 (2010).

748 32 Baah-Dwomoh, A., Alperin, M., Cook, M., De Vita, R. Mechanical Analysis of the
749 Uterosacral Ligament: Swine vs Human. *Annual Biomedical Engineering*. **46** (12), 2036-
750 2047 (2018).

751 33 Champlin, A. Determining the Stage of the Estrous Cycle in the Mouse by the Appearance.
752 *Biology of Reproduction*. **8** (4), 491-494 (1973).

753 34 Byers, S., Wiles, M., Dunn, S., Taft, R. Mouse Estrous Cycle Identification Tool and Images.
754 *PLoS One*. **7** (4), e35538 (2012).

755 35 McLean, A. Performing Vaginal Lavage, Crystal Violet Staining and Vaginal Cytological
756 Evaluation for Mouse Estrous Cycle Staging Identification. *Journal of Visualized*
757 *Experiments*. **67**, e4389 (2012).

758 36 Bugg, G., Riley, M., Johnston, T., Baker, P., Taggart, M. Hypoxic inhibition of human
759 myometrial contractions in vitro: implications for the regulation of parturition. *European*
760 *Journal of Clinical Investigation*. **36** (2), 133-140 (2006).

761 37 Taggart, M., Wray, S. Hypoxia and smooth muscle function: key regulatory events during
762 metabolic stress. *Journal of Physiology*. **509**, 315-325 (1998).

763 38 Yoo, K. et al. The effects of volatile anesthetics on spontaneous contractility of isolated
764 human pregnant uterine muscle: a comparison among sevoflurane, desflurane,
765 isoflurane, and halothane. *Anesthesia and Analgesia*. **103** (2), 443-447 (2006).

766 39 de Souza, L. et al. Effects of redox disturbances on intentional contractile reactivity in rats
767 fed with a hypercaloric diet. *Oxidative Medicine and Cellular Longevity*. **2018**, 6364821
768 (2018).

769 40 Jae, D., Ma, Z., Lee, S. Cardiac muscarinic receptor function in rats with cirrhotic
770 cardiomyopathy. *Hepatology*. **25**, 1361-1365 (1997).

771 41 Xu, Q., Shaffer, E. The potential site of impaired gallbladder contractility in an animal
772 mode of cholesterol gallstone disease. *Gastroenterology*. **110** (1), 251-257 (1996).

773 42 Rodriguez, U. et al. Effects of blast induced Neurotrauma on pressurized rodent middle
774 cerebral arteries. *Journal of Visualized Experiments*. (146), e58792 (2019).

775 43 Rubod, C., Boukerrou, M., Brieu, M., Dubois, P., Cosson, M. Biomechanical Properties of
776 Vaginal Tissue Part 1: New Experimental Protocol. *Journal of Urology*. **178**, 320-325
777 (2007).

778 44 Robison, K., Conway, C., Desrosiers, L., Knoepp, L., Miller, K. Biaxial Mechanical
779 Assessment of the Murine Vaginal Wall Using Extension-Inflation Testing. *Journal of*
780 *Biomechanical Engineering*. **139** (10), 104504 (2017).

781 45 Van loon, P. Length-Force and Volume-Pressure Relationships of Arteries. *Biorheology*. **14**

782 (4), 181-201 (1977).

783 46 Fernandez, M. et al. Investigating the Mechanical Function of the Cervix During Pregnancy
784 using Finite Element Models Derived from High Resolution 3D MRI. *Computational*
785 *Methods Biomechanical and Biomedical Engineering*. **19** (4), 404-417 (2015).

786 47 House, M., Socrate, S. The Cervix as a Biomechanical Structure. *Ultrasound Obstetric*
787 *Gynecology*. **28** (6), 745-749 (2006).

788 48 Martins, P. et al. Biomechanical Properties of Vaginal Tissue in Women with Pelvic Organ
789 Prolapse. *Gynecologic and Obstetrics Investigation*. **75**, 85-92 (2013).

790 49 Rada, C., Pierce, S., Grotegut, C., England, S. Intrauterine Telemetry to Measure Mouse
791 Contractile Pressure In vivo *Journal of Visualized Experiments*. (98), e52541 (2015).

792 50 Lumsden, M. A., Baird, D. T. Intra-uterine pressure in dysmenorrhea. *Acta Obstetricia at*
793 *Gynecologica Scandinavica*. **64** (2), 183-186 (1985).

794 51 Milsom, I., Andersch, B., Sundell, G. The Effect of Flurbiprofen and Naproxen Sodium On
795 Intra-Uterine Pressure and Menstrual Pain in Patients With Primary Dysmenorrhea. *Acta*
796 *Obstetricia et Gynecologica Scandinavica*. **67** (8), 711-716 (1988).

797 52 Park, K. et al. Vasculogenic female sexual dysfunction: the hemodynamic basis for vaginal
798 engorgement insufficiency and clitoral erectile insufficiency. *International Journal of*
799 *Impotence Journal*. **9** (1), 27-37 (1997).

800 53 Bulletti, C. et al. Uterine Contractility During Menstrual Cycle. *Human Reproduction*. **15**,
801 81-89 (2000).

802 54 Kim, N. N. et al. Effects of Ovariectomy and Steroid Hormones on Vaginal Smooth Muscle
803 Contractility. *International Journal of Impotence Research*. **16**, 43-50 (2004).

804 55 Giraldi, A. et al. Morphological and Functional Characterization of a Rat Vaginal Smooth
805 Muscle Sphincter. *International Journal of Impotence Research*. **14**, 271-282 (2002).

806 56 Gleason, R., Gray, S. P., Wilson, E., Humphrey, J. A Multiaxial Computer-Controlled Organ
807 Culture and Biomechanical Device for Mouse Carotid Arteries. *Journal of Biomechanical*
808 *Engineering*. **126** (6), 787-795 (2005).

809 57 Swartz, M., Tscumperlin, D., Kamm, R., Drazen, J. Mechanical Stress is Communicated
810 Between Different Cell Types to Elicit Matrix Remodeling. *Proceedings of the National*
811 *Academy of Sciences of the United States of America*. **98** (11) 6180-6185 (2001).

812 58 Rachev, A. Remodeling of Arteries in Response to Changes in their Mechanical
813 Environment. *Biomechanics of Soft Tissue in Cardiovascular Systems*. **441**, 221-271 (2003).

814 59 Lee, E. J., Holmes, J., Costa, K. Remodeling of Engineered Tissue Anisotropy in Response
815 to Altered Loading Conditions. *Annals of Biomedical Engineering*. **36** (8), 1322-1334
816 (2008).

817 60 Akintunde, A. et al. Effects of Elastase Digestion on the Murine Vaginal Wall Biaxial
818 Mechanical Response. *Journal of Biomechanical Engineering*. **141** (2), 021011 (2018).

819 61 Griffin, M., Premakumar, Y., Seifalian, A., Butler, P., Szarko, M. Biomechanical
820 Characterization of Human Soft Tissues Using Indentation and Tensile Testing. *Journal of*
821 *Visualized Experiments*. (118), e54872 (2016).

822 62 Myers, K., Socrate, S., Paskaleva, A., House, M. A Study of the Anisotropy and
823 Tension/Compression Behavior of Human Cervical Tissue. *Journal of Biomechanical*
824 *Engineering*. **132** (2), 021003 (2010).

825 63 Murtada, S., Ferruzzi, J., Yanagisawa, H., Humphrey, J. Reduced Biaxial Contractility in the

826 Descending Thoracic Aorta of Fibulin-5 Deficient Mice. *Journal of Biomechanical*
827 *Engineering*. **138** (5), 051008 (2016).

828 64 Berkley, K., McAllister, S., Accius, B., Winnard, K. Endometriosis-induced vaginal
829 hyperalgesia in the rat: effect of estropause, ovariectomy, and estradiol replacement.
830 *Pain*. **132**, s150-s159 (2007).

831 65 van der Walt, L., Bo, K., Hanerkom., Rienhardt, G. Ethnic Differences in pelvic floor muscle
832 strength and endurance in South African women. *International Urogynecology Journal*.
833 **25** (6), 799-805 (2014).

834

835

836