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SUMMARY:

This protocol utilized a commercially available pressure myograph system to perform pressure
myograph testing on the murine vagina and cervix. Utilizing media with and without calcium, the
contributions of the smooth muscle cells (SMC) basal tone and passive extracellular matrix (ECM)
were isolated for the organs under estimated physiological conditions.

ABSTRACT:

The female reproductive organs, specifically the vagina and cervix, are composed of various
cellular components and a unique extracellular matrix (ECM). Smooth muscle cells exhibit a
contractile function within the vaginal and cervical walls. Depending on the biochemical
environment and the mechanical distension of the organ walls, the smooth muscle cells alter the
contractile conditions. The contribution of the smooth muscle cells under baseline physiological
conditions is classified as a basal tone. More specifically, a basal tone is the baseline partial
constriction of smooth muscle cells in the absence of hormonal and neural stimulation.
Furthermore, the ECM provides structural support for the organ walls and functions as a reservoir
for biochemical cues. These biochemical cues are vital to various organ functions, such as inciting
growth and maintaining homeostasis. The ECM of each organ is composed primarily of collagen
fibers (mostly collagen types |, Ill, and V), elastic fibers, and glycosaminoglycans/proteoglycans.
The composition and organization of the ECM dictate the mechanical properties of each organ.
A change in ECM composition may lead to the development of reproductive pathologies, such as
pelvic organ prolapse or premature cervical remodeling. Furthermore, changes in ECM
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microstructure and stiffness may alter smooth muscle cell activity and phenotype, thus resulting
in the loss of the contractile force.

In this work, the reported protocols are used to assess the basal tone and passive mechanical
properties of the nonpregnant murine vagina and cervix at 4-6 months of age in estrus. The
organs were mounted in a commercially available pressure myograph and both pressure-
diameter and force-length tests were performed. Sample data and data analysis techniques for
the mechanical characterization of the reproductive organs are included. Such information may
be useful for constructing mathematical models and rationally designing therapeutic
interventions for women’s health pathologies.

INTRODUCTION:

The vaginal wall is composed of four layers, the epithelium, lamina propria, muscularis, and
adventitia. The epithelium is primarily composed of epithelial cells. The lamina propria has a large
amount of elastic and fibrillar collagen fibers. The muscularis is also composed of elastin and
collagen fibers but has an increased amount of smooth muscle cells. The adventitia is comprised
of elastin, collagen, and fibroblasts, albeit in reduced concentrations compared to the previous
layers. The smooth muscle cells are of interest to biomechanically motivated research groups as
they play a role in the contractile nature of the organs. As such, quantifying the smooth muscle
cell area fraction and organization is key to understanding the mechanical function. Previous
investigations suggest that the smooth muscle content within the vaginal wall is primarily
organized in the circumferential and longitudinal axis. Histological analysis suggests that the
smooth muscle area fraction is approximately 35% for both the proximal and distal sections of
the wall.

The cervix is a highly collagenous structure, that until recently, was thought to have minimal
smooth muscle cell content?3. Recent studies, however, have suggested that smooth muscle cells
may have a greater abundance and role in the cervix*°. The cervix exhibits a gradient of smooth
muscle cells. The internal os contains 50-60% smooth muscle cells where the external os only
contains 10%. Mouse studies, however, report the cervix to be composed of 10-15% smooth
muscle cells and 85-90% fibrous connective tissue with no mention of regional differences®®.
Given that the mouse model differs from the frequently reported human model, further
investigations concerning the mouse cervix are needed.

The purpose of this protocol was to elucidate the mechanical properties of the murine vagina
and cervix. This was accomplished by using a pressure myograph device that enables assessment
of mechanical properties in the circumferential and axial directions simultaneously while
maintaining native cell-matrix interactions and organ geometry. The organs were mounted on
two custom cannulas and secured with silk 6-0 sutures. Pressure-diameter tests were performed
around the estimated physiological axial stretch to determine the compliance and tangent
moduli®. Force-length tests were conducted to confirm the estimated axial stretch and to ensure
that mechanical properties were quantified in the physiological range. The experimental protocol
was performed on the nonpregnant murine vagina and cervix at 4-6 months of age in estrus.
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The protocol is divided into two main mechanical testing sections: basal tone and passive testing.
A basal tone is defined as the baseline partial constriction of smooth muscle cells, even in the
absences of external local, hormonal, and neural stimulation®. This baseline contractile nature
of the vagina and cervix yields characteristic mechanical behaviors which are then measured by
the pressure myograph system. The passive properties are assessed by removing the intercellular
calcium that maintains the baseline state of contraction, resulting in relaxation of the smooth
muscle cells. In the passive state, collagen and elastin fibers provide the dominant contributions
for the mechanical characteristics of the organs.

The murine model is used extensively to study pathologies in women’s reproductive health. The
mouse offers several advantages for quantifying the evolving relationships between ECM and
mechanical properties within the reproductive system*4, These advantages include short and
well-characterized estrous cycles, relatively low cost, ease of handling, and a relatively short
gestational time®®. Additionally, the genome of laboratory mice is well-mapped and genetically-
modified mice are valuable tools to test mechanistic hypotheses!®-18,

Commercially available pressure myograph systems are used extensively to quantify the
mechanical responses of various tissues and organs. Some notable structures analyzed on the
pressure myograph system include elastic arteries!®??, veins and tissue engineered vascular
grafts?>?4 the esophagus?®, and the large intestines?®. The pressure myograph technology
permits simultaneous assessment of properties in the axial and circumferential directions while
maintaining the native cell-ECM interactions and in vivo geometry. Despite the extensive use of
myograph systems in soft tissue and organ mechanics, a protocol utilizing the pressure myograph
technology had not previously been developed for the vagina and cervix. Prior investigations into
the mechanical properties of the vagina and cervix were assessed uniaxially?”-?%. These organs,
however, experience multiaxial loading within the body?>3%, thus quantifying their biaxial
mechanical response is important.

Moreover, recent work suggests smooth muscle cells may play a potential role in soft tissue
pathologies>?®3132 This provides another attraction of utilizing the pressure myograph
technology, as it preserves the native cell-matrix interactions, thus permitting delineation of the
contribution that smooth muscle cells play in physiological and pathophysiological conditions.
Herein, we propose a protocol to quantify the multiaxial mechanical properties of the vagina and
cervix under both basal tone and passive conditions.

PROTOCOL:

Nulliparous 4-6 months female C57BL6J mice (29.4 + 6.8 grams) at estrus were used for this
study. All procedures were approved by the Institute Animal Care and Use Committee at Tulane
University. After delivery, the mice acclimated for one week before euthanasia and were housed
under standard conditions (12-hour light/dark cycles).

1. Mouse sacrifice at estrus
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1.1. Determine the estrous cycle: The estrous cycle was monitored by visual assessment in
accordance to previous studies>3334, The estrous cycle consists of four stages: proestrus, estrus,
metestrus, and diestrus. During the proestrus phase the genitals are swollen, pink, moist, and
wrinkled. The estrus phase is wrinkly but less swollen, pink, and moist. Metestrus and diestrus
are both reported as exhibiting no swelling and wrinkling, lacking in a pink hue, and dry343>.

1.2. Perform experiment at estrus: All mechanical tests were performed while the mice were at
estrus, as this is the easiest to visualize and provides a consistent and repeatable timepoint.

1.3. For mice undergoing basal tone testing, euthanize via guillotine. For mice tested only under
the passive conditions, euthanize using carbon dioxide (CO;) inhalation. The guillotine serves to
preserve the function of smooth muscle cells of the reproductive tract, as the CO, gas alters the
contractile properties of the smooth muscle cells3¢42, It is imperative to perform the dissection
within 30 minutes to minimize the chance of cell apoptosis.

2. Reproductive system dissection

2.1. Set up: Place an absorbent pad on the workstation and fill a Petri dish and syringe with 4 °C
Hank’s Balanced Salt Solution (HBSS) solution. Use a wipe for adipose tissue disposal. Place the
mouse ventral side up and tape the paws and tail. Turn the microscope lights on and set out
micro-scissors, scissors, two pairs of straight tweezers, and two pairs of curved tweezers.

2.2. Using angled tweezers and scissors, lift the skin around the abdomen and make an incision
at the base of the abdomen, above the pubic bone. The incision should be shallow enough to not
puncture the abdominal muscle wall. Continue using the scissors to cut superiorly towards the
rib cage and deep through the abdominal muscles.

2.3. Remove superficial fat by pulling lightly on the fat with the curved tweezers and micro-
scissors. Adipose tissue will reflect light heterogeneously with a glitter-like appearance. Place all
the removed fat and tissue on the wipe. Identify both uterine horns and the pubic bone.

2.4. Place closed scissors between the vaginal wall and the pubic bone. Carefully cut the middle
of the pubic bone (pubic symphysis). Place curved tweezers on both ends of the cut pubic bone.
Pull both cut ends laterally to allow for better access to the reproductive organs.

2.5. Remove the bladder and the urethra from the vaginal wall. This can be done by using straight
tweezers and micro-scissors. Hold the bladder with straight tweezers to create tension and use
blunt dissection techniques to separate the surrounding tissue from the vagina. Once the bladder
and urethra are dissected away, cut the base and remove from the body cavity.

2.6. ldentify the reproductive system: The uterine horns bifurcate from the cervix. The cervix can
be identified from the vagina due to differences in geometry and stiffness. The outer diameter of
the cervix is smaller than the vagina. The cervix is stiffer than the vagina and feels similar to that
of a bead (Figure 1).
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2.7. Use ink and calipers to mark 3 mm dots along the organs. Start below the ovaries on the
uterine tubes and mark dots inferiorly to reach the cervix. Use the center cervix dot to start a dot
path down to the vagina introitus.

2.8. Allow the ink to dry and separate the reproductive organs from surrounding adipose tissue,
connective tissue, and the colon. Clean the vagina as close to the vaginal introitus as possible.
Using scissors, cut around the vaginal introitus.

NOTE: It is possible for organs to dry out during this process. If this is a concern, a syringe filled
with 4 °C HBSS may be used to add moisture to the organs.

2.9. Cut the uterine horns immediately inferior to the ovaries. Note that the organs will retract
from the post explant length as the connective tissue is removed and the organ recoils. Place the
dissected reproductive organs in a Petri dish filled with 4 °C HBSS. This change in length can be
used in for calculating the estimated in vivo length (section 5).

NOTE: We have identified that using HBSS at this temperature during the dissection and
cannulation does not affect the smooth muscle cell viability. Maintaining a pH of 7.4, however, is
imperative for maintaining the viability of the smooth muscle cells. At this temperature, the HBSS
has a pH level of 7.4.

2.10. After a 15-minute equilibration period in 4 °C HBSS, measure the space between dots using
calipers. Record the measurements for each distance into a spreadsheet. These values will be
used to calculate the in vivo stretch ratio (original length/explanted length).

2.11. Set the wipe that contains the discarded tissue on the abdominal region with the excess
tissue facing the inside of the mouse and soak the wipe in 4 °C HBSS. Wrap the mouse and excess
tissue in foil and place in a freezer safe bag to be stored at -20 °C. Passive mechanical behavior
on the vagina was not found to be significantly different after one freeze-thaw cycle®. All organs
tested were used immediately after euthanasia or after one freeze-thaw cycle.

3. Cannulating

3.1. Determine the proper cannula size for the organ type. In a typical C57BL6J mouse, the vagina
uses cannulas that are both 3.75 mm in diameter and riveted. The cervix uses one cannula that
is 3.75 mm for the vaginal end and a cannula 0.75 mm in diameter for the uterine end (Figure 2)
The 0.75 mm cannula is smooth.

NOTE: The diameter sizes denoted above are used for typical nulliparous 4-6 months C57-BL/6
mice, C57BL/6 x 129SvEv, and nonparous mice aged 4-6 months. However, certain circumstances,
such as prolapse or pregnancy, may require a larger size cannula.
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3.2. With each organ, mount the cervical side on the force transducer portion of the cannulation
device. Mount the opposite end of the organ (vaginal or uterine) on the micrometer portion of
the device. Tighten both ends with sutures.

3.3. Due to the difference in thickness and degree of contractility among the vagina and cervix,
varying techniques may be utilized to perform the most effective cannulation. For the vagina,
place 2 sutures in between the 2" and 3™ rivets of the cannula in a “X” fashion. When cannulating
the cervix, the cannula is not riveted so the organ is best placed at the back of the cannula with
3 horizontal sutures on the uterine end and 4 sutures on the external os. For both organs,
maximum length should be no more than 7 mm between the sutures (Figure 3).

4. Pressure myograph set up

4.1. In order to set up the pressure myograph system, power on the testing system and fill the
reservoir bottle with 200 mL of HBSS (Figure 4). Turn the heat to “on” and allow the HBSS in the
reservoir bottle to heat up. Next, turn on the microscope and open the computer program.
Ensure that the image of the cannulated organ, pressure interface, flow meter readings, and the
sequencer function tool are all visible (Figure 5).

5. Basal tone mechanical testing

NOTE: The cervix exhibited a phasic nature during the beginning stages of testing. However, this
diminished after preconditioning. Basal tone testing is done utilizing Krebs Ringer Buffer (KRB) in
the basin of the DMT device. The buffer is aerated with 95% O, and 5% CO.. After the basal tone
portion is complete, calcium free KRB is utilized.

5.1. Finding the unloaded geometry: Stretch the organ so that the wall is not in tension. For the
vagina, observe the grooves on the vaginal wall. For the cervix, cut immediately below the ink
dots that located above and below the central cervix mark. This devises a repeatable method for
a cervical in situ length of 6 mm?*. Measure the length from suture to suture with calipers

5.2. Finding the unloaded pressure (UP): Increase the pressure from 0 to 10 mmHg in increments
of 1 mmHg. Determine the pressure in which the organ is no longer collapsed. This can be
determined as the largest jump in the outer diameter at a given pressure, as exhibited on the
program monitor. After recording the pressure and outer diameter, note this as the first point
wherein the organ is not collapsed and zero the force.

5.3. Estimated in vivo stretch: Calculate the estimated in vivo stretch by dividing the length
measured in vivo by the length measured post explant:

Yy lin vivo/
v l
post—explant



262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305

5.4. Pressure-diameter pre-conditioning: Set the pressure to 0 mmHg, the length to the
estimated in vivo length and the gradient to 1.5 mmHg/s. Run a sequence that takes the pressure
from 0 mmHg to the in vivo pressure + unloaded (Table 1), hold for 30 seconds, and take the
pressure to 0 mmHg with a 30 second hold period. After repeating for a total of 5 cycles, press
Stop in the computer program and save the file.

5.5. Finding the experimental in vivo stretch: Adjust the organ to be at the estimated in vivo
length while at the unloaded pressure and press Start. Assess pressure vs force values for
pressure values ranging from the unloaded pressure to the maximum pressure (Table 1). Press
the Stop button in the computer program and save the file.

NOTE: The measured stretch value is calculated in situ. This is accompanied by the limitation that
it can only be measured after disarticulating the pubic symphysis. As a result, the natural
tethering is lost, which may modify the length. The theoretical stretch, however, is based on the
previously introduced theory that the organ will experience minimal changes in force when
exposed to physiological pressures to conserve energy®. In the protocol, the measured in vivo
stretch will be the stretch value calculated using the experimentally identified length wherein
there is minimal change in force when exposed to a physiological range of pressures.

5.6. Pressure-diameter pre-conditioning: Set the pressure to 0 mmHg, the length to the
experimental in vivo length, and the gradient of 1.5 mmHg/s. Run a sequence that takes the
pressure from 0 mmHg to the maximum pressure + UP, hold for 30 seconds, and back to 0 mmHg
with an additional 30 second hold period. After repeating this for a total of 5 cycles, press the
Stop button in the program interface and save the file.

NOTE: 5.4 is imperative for achieving a more consistent axial force reading with increasing
pressure. This step aids in finding the correct in vivo stretch, which is often underestimated based
on visual cues. 5.6 serves as a precautionary step to minimize hysteresis and to achieve a
consistent, repeatable, mathematically interpretable response of the organ.

5.7. Force-length pre-conditioning: Enter 1/3 max pressure + UP for both the inlet and outlet
pressure. Adjust the organ to -2% of the in vivo length and press Start. Adjust the length to +2%
in vivo length then back down to -2% at 10 um/s. Repeat axial extension for a total of 5 cycles.
Press Stop in the computer program and save the file.

5.8. Equilibration: With the organ at the determined in vivo length, set both the inlet and outlet
pressure at 1/3 of the maximum pressure + UP. Equilibrate the organ for 10 minutes. Slowly bring
both pressures back down to 0 mmHg with the gradient set as 1.5 mmHg/s.

5.9. Re-evaluate the unloaded geometry: Set the organ to the in vivo length and the pressure to
the unloaded pressure. Decrease the axial length towards the estimated unloaded length at a
rate of 10 um/s until there is minimal change in the force. This corresponding length is known as
the unloaded length, or where the organ is not in tension nor compression. Before zeroing the
force, record the unloaded length, outer diameter, and the force value.
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NOTE: The prior unloaded geometry was determined by visual cues, which is purely qualitative.
A re-evaluation is necessary for a quantitative method and to account for possible changes in
length that may occur during the preconditioning. This geometry will be used in section 8.

5.10. Ultrasound Setup: Use the general imaging abdominal package to visualize the organs in
the testing device. (Figure 6). Before testing, minimize artifacts from the bottom of the pressure
myograph metal basin. Adjust the cannula to a height that is the maximum distance from the
bottom with the tissue still being fully submerged in the testing solution. A custom holder is 3D
printed to stabilize the transducer in a vertical position during imaging.

5.11. Ultrasound Imaging: Identify the cannula near the force transducer and adjust the stage of
the microscope to image along the length of the tissue. Throughout the testing process, the
middle region along the length is tracked (Figure 6A,C). Following imaging, review the image
“Cine store” loop that consists of a series of B-mode frames and identify the frame with the
largest outer diameter. The thickness calculations made will be used in section 8.

5.12. Pressure diameter testing (-2% in vivo length): Press Start and adjust the organ so that it is
-2% of the in vivo length, set the pressure to 0 mmHg and gradient to 1.5 mmHg/s. Increase the
pressure from 0 mmHg to the maximum pressure. Bring the pressure back down to 0 mmHg with
a 20 second hold period. Repeat this for 5 cycles.

5.13. Pressure diameter testing (in vivo length): Press Start and adjust the organ so that it is at
the vivo length, set the pressure to 0 mmHg, and gradient to 1.5 mmHg/s. Increase the pressure
from 0 mmHg to the maximum pressure. Bring the pressure back down to 0 mmHg with a 20
second hold period. Repeat this for 5 cycles.

5.14. Pressure diameter testing (+2% in vivo length): Adjust the organ so that it is +2% in vivo
length, set the pressure to 0 mmHg, and gradient to 1.5 mmHg/s. Increase the pressure from 0
mmHg to the maximum pressure and then back down to 0 mmHg with a 20 second hold period.
Repeat this for 5 cycles. The pressure data from all three lengths will be used in section 8.

5.15. Force-length testing (Nominal pressure): Set the pressure to the unloaded pressure and the
organ to -2% of the in vivo length. Stretch the organ to +2% of the in vivo length and return to -
2% the in vivo length at rate of 10 um/s. Repeat for a total of 3 cycles.

5.16. Force-length testing (1/3 maximum pressure + UP): Set the pressure to 1/3 of the maximum
pressure + UP and adjust the organ to -2% the in vivo length. After pressing Start, stretch the
organ to +2% the in vivo length and back to -2% the in vivo length at a rate of 10 um/s. After
repeating for a total of 3 cycles, press Stop and save the data.

5.17. Force-length testing (2/3 maximum pressure + UP): Set the pressure to 2/3 of the maximum
pressure + UP and adjust the organ to -2% the in vivo length. Press Start and stretch the organ to
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+2% the in vivo length and back to -2 the in vivo length at a rate of 10 um/s. After repeating for
a total of 3 cycles, press Stop and save the data.

5.18. Force-length testing (maximum pressure + UP): Set the pressure to the maximum pressure
+ UP and adjust the organ to -2% the in vivo length. At a rate of 10 um/s, stretch the organ to
+2% of the in vivo length and back to -2% the in vivo length. After repeating for a total of 3 cycles,
save the data. All force data will be used in section 8.

5.19. Remove KRB testing media and wash with calcium-free KRB. Replace the media with
calcium free KRB solution supplemented with 2 mM EGTA. Incubate the tissue for 30 minutes.
Remove the solution and replace the media with fresh calcium-free KRB.

6. Passive mechanical testing

NOTE: If starting with passive testing start at step 1. If basal tone testing was performed prior to
passive start at step 6. If starting with frozen tissue, allow a 30-minute equilibration period at
room temperature before cannulating the organ.

6.1. Finding the unloaded geometry: Stretch the organ so the wall of the organ is not in tension.
Measure the cannulated organ from suture to suture and record this as the unloaded length.

6.2. Finding the unloaded pressure: After pressing Start, increase the pressure from 0 to 10
mmHg in increments of 1 mmHg. While going through this process, determine the pressure in
which the organ is not in tension. Using the computer program monitor, this can be determined
from the largest jump in the outer diameter. After zeroing the force, record this pressure as well
as the outer diameter and note this as the first point in which the organ is not collapsed.

6.3. Estimated in vivo stretch: Calculate the estimated in vivo stretch by dividing the length
measured in vivo by the length measured post-explant.

6.4. Pressure diameter pre-conditioning: After pressing Start, set the pressure set to 0 mmHg,
the length as the estimated in vivo length, and gradient to 1.5 mmHg/s. Begin running a sequence
that takes the pressure from 0 mmHg to the maximum pressure and back to 0 mmHg. Repeat
this process through 5 cycles with a 30 second hold time.

6.5. Force-length preconditioning: Adjust the organ to the in vivo length and manually enter the
unloaded pressure in the computer program for both pressures. After pressing Start, set the
gradient to 2 mmHg and the pressure to 1/3 of the maximum. Stretch the organ up to +4% and
back down to -4% stretch at 10 um/s. Repeat this cycle for a total of 5 times and press Stop.

6.6. Finding the experimental in vivo length: Find and plot force values at -4% of the in vivo
length, the in vivo length, and +4% of the in vivo length. Take forces at evenly spaced pressures
ranging from 0 mmHg to the maximum pressure. The experimental in vivo stretch will be the
stretch value that exhibits a relatively flat line over a range of pressures.
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6.7. Repeat the pressure diameter and axial pre-conditioning steps at the new in vivo length.

6.8. Equilibration: With the organ at the determined in vivo length, set the inlet and outlet
pressure to the unloaded pressure. Let the organ re-equilibrate for 15 minutes. After 15 minutes,
slowly bring the inlet and outlet pressure back down to 0 mmHg.

6.9. Re-evaluate unloaded configuration: Bring the organ to the unloaded length and re-estimate
the unloaded length. Record the unloaded length and the outer diameter while the pressure is 0
mmHg, the unloaded pressure, and 1/3 the maximum pressure. Zero the force at the unloaded
pressure. The diameter at the unloaded pressure is the in vivo diameter.

NOTE: Re-estimating the unloaded length is necessary as small plastic deformations were
observed previously in soft biological tissues following preconditioning. This unloaded
configuration will be the one utilized in section 8.

6.10. Ultrasound: Perform ultrasound B-mode imaging at the unloaded length and pressure.

6.11. Pressure-diameter testing: With the organ at -2% of the experimentally determined in vivo
length and the pressure at 0 mmHg, press Start. Increase the pressure from 0 mmHg to the
maximum pressure and back to 0 mmHg. Hold the 2-0 mmHg step for 20 seconds. After repeating
for a total of 5 times, press the Stop button in the interface and save the file.

NOTE: Repeat at the experimental in vivo length, +2% of the experimental in vivo length.

6.12. Force-length testing: Set the pressure to nominal pressure and adjust the organ to -2% of
the in vivo length. Stretch the organ up to +2% of the in vivo length and back to -2% of the in vivo
length at a rate of 10 um/s. After repeating for a total of 3 times, save the data. Repeat this for
1/3 max pressure, 2/3 max pressure, and at the max pressure.

6.13. Calculate the unloaded thickness from ultrasound images B-mode image. Using imaging
software, draw a line to denote the penetration depth. Set the scale to the length of the line (i.e.,
2000 um as shown in Figure 6B and 6D).

6.14. Wall thickness calculations: Using a computer software, trace and measure the inner and
outer diameter of the organ. Then, draw and measure a line between the diameters. Draw a total
of 25 transmural lines. Average all data points and repeat for a total of 3 times.

7. Clean up

7.1. Ensure that the pressure is 0 mmHg and turned off. Close the main inlet and outlet off for
both three-way valves. Aspirate the remaining fluid from the basin of the cannulation device.
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7.2. Remove the organ from the stage and fill the reservoir bottle with deionized water. Using a
syringe, rinse the cannula with water. Connect the tubing to bypass the cannula.

7.3. Turn the pressure and flow on, set the inlet pressure to 200 mmHg, the outlet pressure to 0
mmHg, gradient to 10 mmHg/s, and let the flow run for 5 minutes. Allow the system to run while
the reservoir bottle is empty and let the air run for 5 minutes or until the lines are dry.

8. Data analysis

8.1. For pressure diameter testing, collect data from where the pressure begins to decrease from
the maximum value until the end point. For force-length testing, collect data from just below the
maximum peak in force until the force stopped decreasing.

8.2. Open the data file for each pressure-diameter test and select the mean pressure tab.
Navigate to the loading region of the last curve, 0 mmHg to the maximum pressure, and drop the
data into a spreadsheet. Select the same region on the outer diameter, inlet pressure, outlet
pressure, force, temperature, pH, and flow tab placing each item in the same document.

8.3. Open the data for each Force-length test. Navigate to the loading region of the curve, -2% to
+2%, and drag and drop the data into a spreadsheet. Select the same region for the other
measured variables and place each item in the same spreadsheet.

8.4. For the pressure diameter and force length test subtract the UP from all pressure values.
8.5. Average the pressure-diameter data every 1 mmHg (i.e., 0+/- 0.5, 1+/-0.5, 2+/- 0.5).

8.6. Find the unloaded volume of the organ (V). Equation 1 can be utilized to find V, given that
Ro? is the unloaded outer radius measured by the microscope, L is the unloaded length, and H is
the unloaded thickness as detected by the ultrasound. The assumption of incompressibility is
leveraged, meaning that the organ conserves volume while subjected to deformations.

NOTE: The unloaded length is measured with calipers from suture to suture. The unloaded
diameter is measured via the microscope, camera, and software followed by calculation of the
radius (Figure 5) The unloaded thickness is calculated from the ultrasound images (Figure 6).

V=n(R3— (R, —H)?)L Equation1

8.7. Using the assumption of incompressibility, use the unloaded volume, deformed outer radius
(r9), and length () to determine the deformed inner radius (7;).

= |1y —= Equation 2
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8.8. Use Equations 3, 4, and 5 to calculate each stress, respectively. In equations 3-5, P is defined
as the intraluminal pressure and F; is the force measured by the transducer.

Pr; .
Og = —— Equation 3
To—Tq
Fe+mPr? .
, = ———t Equation 4
n(rg-rf)
Pr; .
0, = —— Equation 5
T0+T'i

8.9. Plot the pressure-diameter relationship, force-pressure relationship, circumferential stress-
circumferential stretch relationship, and the axial stress and circumferential stretch values
(Figure 7, Figure 8). The stretch values can be calculated using the midwall radius. Calculations
of the circumferential and axial stresses can be found in Equations 6 and 7, respectively.

A _ T‘l'+1"0/2 E ) 6
0 = m quatlon
Az = % Equation 7

8.10. Calculate compliance near the physiological pressure range and at the in vivo stretch. The
lower pressure bound (LPB) is 1 standard deviation below the mean measured pressure. The
upper pressure bound (UPB) is 1 standard deviation above the mean measured pressure®.

TOUPB _ OLPB

PUPB _ PLPB

8.11. Calculate the tangent moduli to quantify the material stiffness. Identify the calculated
circumferential stress that corresponds to the lower pressure bound and upper bound pressure.
Fit a linear line to the circumferential stress- circumferential stretch curve within the identified
stress range at the in vivo length. Calculate the slope of the line®.

REPRESENTATIVE RESULTS:

Successful analysis of the mechanical properties of the female reproductive organs is contingent
on appropriate organ dissection, cannulation, and testing. It is imperative to explant the uterine
horns to the vagina without any defects (Figure 1). Depending on the organ type, the cannula
size will vary (Figure 2). Cannulation must be done so that the organ cannot move during the
experiment but also not damage the wall of the organ during the procedure (Figure 3). Failure of
either step will result in inability of the vessel to hold pressure. Testing procedure standardization
is vital to the success of the protocol in order to yield consistent and repeatable results.

Once the organ is dissected and cannulated properly, power on the pressure myograph system.
The setup of the pressure myograph systems involves a controller unit, flow meter, and stage
(Figure 4). The pressure myograph system is used to monitor various aspects of the organ as it
undergoes mechanical testing (Figure 5). An ultrasound system, or equivalent, is used to measure
the thickness of the organs in the unloaded state with and without basal tone (Figure 6). After
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mechanical testing, the tangent moduli may be calculated for the circumferential and axial
directions (Table 2).

Both basal tone testing and passive testing yield key mechanical properties of the reproductive
tract, with and without the contractile contribution of smooth muscle cells (Figure 7, Figure 8).
Scaling between the organs requires a few adjustments to the protocols (Table 1), as the cervix
and vagina experience different loads in vivo*8, Such variations may be monitored through
techniques such as pressure catherization. Pressure catherization is a method used previously to
monitor the in vivo conditions within the vagina and uterus**->3. Models in the previous studies
range from mice, rabbits, and humans. The same principles would apply similarly to the cervical
and vaginal pressure specific for the murine model. Though, regardless which organ is being
tested, the same materials are needed for the protocols (Table 3).

FIGURE AND TABLE LEGENDS:

Figure 1: Murine dissection diagram. The mouse dissection for the reproductive organs: both
uterine horns, cervix, and the vagina. In the figure, the bladder and urethra are removed from
the anterior of the vagina. The intestines and abdominal muscles were reflected superiorly.

Figure 2: Size comparison of the two cannula. Size comparison of the two cannulas used for
cannulation of the reproductive organs. The larger cannula (D = 3.75 mm) is used for the vaginal
tissue (A). The smaller cannula (D = 0.75 mm) is used for cannulating cervical tissue (B). The
cervical cannula is smooth while the vaginal cannula has two grooves.

Figure 3: Cannulation method for vagina and cervix. Due to the varying geometry and thickness
of the reproductive organs, they are most effectively cannulated in distinct manners. For the
vagina, place two sutures in an “X” fashion. When cannulating the cervix, place 3 horizontal
sutures on the uterine end and 4 sutures on the external os.

Figure 4: Setup for pressure myograph device. The setup of the DMT device utilized for both
basal and passive testing. The DMT is composed of three main hubs: the stage (A), controller unit
(B), and flow meter (C). Within the controller unit, there is a reservoir bottle and a waste bottle.
The reservoir bottle is initially filled with fluid that empties as the experiment is carried out. The
waste bottle, which is initially empty, collects the fluid that runs through the experiment. The
controller unit interfaces with the DMT software on the computer and controls the pressure,
temperature, and flow. The controller unit reads the outputs from the force and pressure
transducers within the stage through a VGA interface cable. The stage component of the system
contains an inlet and outlet flow of the system. The inlet and outlet flow have corresponding inlet
and outlet pressures measured by the system.

Figure 5: File setup on the pressure myograph program. Display of computer software set-up. A
box is drawn around the region of interest and outer diameter of the tissue is optically tracked in
real-time (A). Data obtained during mechanical testing is recorded and displayed real-time in the
outer diameter, inlet pressure, outlet pressure, mean pressure, force, temperature, pH, and flow
tab (B). Within the pressure interface pressure (mmHg), gradient (mmHg/g), and flow is
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controlled. Further, the axial force (mN) measured by the in-line force transducer is displayed.
Flow rate (uL/min) is reported in the flow meter tab (C). Pressure sequencing is shown and
controlled in the sequencer tab (D). Data recorded during mechanical testing is recorded and
displayed real-time in the outer diameter, inlet pressure, outlet pressure, mean pressure, force,
temperature, pH, and flow tab (E). A representative Pressure Diameter test of the vagina is
displayed showing outer diameter as a function of time on the outer diameter tab.

Figure 6: Ultrasound Imaging. Ultrasound imaging of the murine reproductive organs. All images
were taken using the ultrasound system on the short-axis-B mode. A representative image of the
vagina at the unloaded length and pressure (A). Vaginal wall thickness was calculated in Image).
A vertical line was drawn along the depth scale (mm) to calibrate the number of pixels per um.
The polygon tool was used to trace the inner and outer diameter. Then transmural lines were
drawn to calculate the thickness and averaged (B). This was performed 3 times. A representative
image of the cervix at the unloaded length and pressure (C). Wall thickness was then calculated
using Image J and the polygon tool in a similar manner to that of the vagina (D). Within the
reproductive complex, the outer diameter is tracked at two different locations (E). Throughout
the imaging process, the transducer is stabilized by a 3-D printed holder (F).

Figure 7: Representative results for vaginal testing. The representative mechanical testing
results of the vaginal basal and passive protocols. With the data obtained by the DMT system,
several mechanical relationships can be derived. A) Basal Pressure-Diameter, B) Passive Pressure-
Diameter, C) Basal Force-Pressure, D) Passive Force-Pressure, E) Basal circumferential stress-
circumferential stretch, F) Passive circumferential stress-circumferential stretch, G) Basal axial
stress-circumferential stretch, H) Passive axial stress-circumferential stretch.

Figure 8: Representative results for cervical testing. The representative mechanical testing
results of the cervical basal and passive protocols. With the data obtained by the DMT system,
several mechanical relationships can be derived. A) Basal Pressure-Diameter, B) Passive Pressure-
Diameter, C) Basal Force-Pressure, D) Passive Force-Pressure, E) Basal circumferential stress-
circumferential stretch, F) Passive circumferential stress-circumferential stretch, G) Basal axial
stress-circumferential stretch, H) Passive axial stress-circumferential stretch.

Table 1: Summary of information for scaling the mechanical testing methods for each organ.
The unloaded pressure values were measured using catherization techniques under anesthesia
(4% isoflurane in 100% oxygen). A balloon catheter was utilized for the vaginal measurements
and a 2F catheter for the cervix.

Table 2: The representative results for the physiological pressure measured within the vagina
and cervix. Pressure was taken during both basal and passive conditions as well as for both
circumferential and axial directions. All measurements provided are in units of kPa.

DISCUSSION:
The protocol provided in this article presents a method for determining the mechanical
properties of the murine vagina and cervix. The mechanical properties analyzed in this protocol
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include both the passive and basal tone conditions of the organs. Passive and basal tone
conditions are induced by altering the biochemical environment in which the organ is submerged.
For this protocol, the media involved in basal testing contains calcium. Testing the basal tone
condition permits isolation of the smooth muscle cell mechanical contribution within the female
reproductive organs®*>>. When performing passive mechanical testing, the media does not
contain calcium. The lack of calcium inhibits the smooth muscle cells from contracting. This
permits elucidation of other ECM components, such as collagen and elastic fibers, which largely
dictate the passive mechanical properties. When combined with biochemical and histological
analysis, these results permit elucidation of relationships between ECM microstructural
composition and mechanical function. This then allows for delineation of the structural and
mechanical mechanisms of pathologies relevant to women’s reproductive health.

Previously, the vagina and cervix were tested uniaxially?”-2%. The vagina and cervix, however,
demonstrate anisotropic properties and experience multiaxial loading in vivo*3° . Hence,
pressure myograph systems used herein provide quantitative information on multiaxial loading
that may aid in understanding the etiologies of reproductive pathologies, as well as the
subsequent design of potential treatments. Further, pressure myography permits assessment of
multiaxial properties while preserving the in vivo organ geometry and the native cell-matrix
interaction®® . In vivo, the cells actively remodel the surrounding ECM in response to changes in
biomechanical and biochemical cues®’°. The protocol used herein is advantageous as it permits
monitoring of subsequent changes in bulk organ properties under physiologically relevant
conditions. This aids in providing a platform to generate systematic datasets of multiaxial active
and passive mechanical properties. Further, the data collected in these experiments may be
leveraged to formulate and validate microstructurally-motivated nonlinear constitutive models
to describe and predict the mechanical response of the female reproductive organs in healthy
and pathological states®0,

An additional system component that was advantageous to the protocol was the use of
ultrasound imaging to measure the thickness of the organ walls. The thickness is crucial
information for calculating stress experienced while undergoing testing.

With any experimental set up, there are some limitations to this procedure. This protocol
currently only considers the elastic response of the vagina and cervix and not the viscoelastic
response. A potential method to mitigate this limitation in the future is to modify the existing
protocol to include creep and stress relaxation assays®l. A second limitation is assuming the
organs are incompressible. Within this study, thickness was solely measured at the unloaded
configuration, as motivated by prior studies that demonstrate nonpregnant murine tissue
exhibits minimal changes in volume during osmotic loading®?. Furthermore, additional studies
have operated under the same assumption of incompressibility**69%3, |deally, an ultrasound
would be performed for the entirety of the experiment in order to remove the need for the
incompressibility assumption and to better inform finite element models. A final limitation is the
lack of quantified in vivo cervical pressure to inform the loading protocols. Literature suggests
that cervical pressure in human women is 37 mmHg®3. Mice, however, may exhibit different
cervical pressure from that of humans. A difference in vaginal pressure was demonstrated
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between rodent models and human samples®%>, Further studies are needed to quantify pressure
in the non-pregnant murine cervix. Towards this end, intra-uterine pressure was recently
reported throughout pregnancy®.

The commercially available pressure myograph system utilized in this procedure measures the
force properties of elastic, hollow organs. This protocol is easily adaptable to other various organs
and tissues by modifying the chemical additives in the bath, cannula size, and suture thickness.
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