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Abstract
Locating relevant source files for a given bug report is an important task in software develop-
ment and maintenance. To make the locating process easier, information retrieval methods
have been widely used to compute the content similarities between bug reports and source
files. In addition to content similarities, various other sources of information such as themeta-
data and the stack-trace in the bug report can be used to enhance the localization accuracy. In
this paper, we propose a supervised topic modeling approach for automatically locating the
relevant source files of a bug report. In our approach, we take into account the following five
key observations. First, supervised modeling can effectively make use of the existing fixing
histories. Second, certain words in bug reports tend to appear multiple times in their rele-
vant source files. Third, longer source files tend to have more bugs. Fourth, metainformation
brings additional guidance on the search space. Fifth, buggy source files could be already
contained in the stack-trace. By integrating the above five observations, we experimentally
show that the proposed method can achieve up to 67.1% improvement in terms of prediction
accuracy over its best competitors and scales linearly with the size of the data.
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1 Introduction

Locating the relevant buggy source files for a given bug report is an important but laborsome
task in software development andmaintenance. Therefore, automatically locating the relevant
source files is crucial, and we refer to this problem as bug localization in this work. In recent
years, information retrieval (IR) methods have been used for the bug localization problem
(see the related work section for a review). The basic idea is to identify the possible buggy
source files based on their content similarities to the bug reports [1]. There are basically two
types of content similarities used in the literature: textual similarities which can be captured
by the vector space, and semantic similarities which can be learned by the topic models.

Despite the success of existing IR methods, they typically suffer from the following
limitations. First, the existing bugfixing histories are either ignored or used in an unsupervised
way (e.g., finding the source files of similar bug reports). From datamining perspective, using
such fixing histories as supervision information can potentially achieve higher localization
accuracy compared to the unsupervised IR methods. Second, the textual similarity and the
semantic similarity are usually considered separately, although these two types of content
similarities are inherently complementary to each other. Third, various sources of information
such as the metadata or the stack-traces in the bug reports are widely ignored by existing
work. However, such information could be potentially helpful for locating the buggy source
files [2].

In this paper, we propose a supervised topic modeling method (STMLocator+) for
automatically locating the relevant buggy source files for a given bug report. In particular,
the proposed STMLocator+ consists of five major components.1 First, to make use of the
historical fixings, we encode them as supervision information in a generative model. Second,
to seamlessly integrate the textual similarity and semantic similarity, we adopt topicmodeling
to capture semantic similarity and further incorporate the textual similarity by modeling the
word co-occurrence phenomenon. Here, word co-occurrence means that some words have
appeared in both the bug reports and the source files, and we provide empirical validation
of this phenomenon. Third, we encode the length of source files (e.g., lines of codes) into
the model as longer source files tend to have more bugs. The empirical validation on this
longer-file phenomenon is also provided. Fourth, we employ the metadata of each bug report
to narrow the search space of potentially relevant buggy source files. Fifth, we use the source
file names in stack-traces and encode them into the model as the stack-trace usually contains
the buggy source files. Finally, we conduct experimental evaluations on three real data sets,
and the results demonstrate the effectiveness and efficiency of the proposed STMLocator+.

In summary, the main contributions of this paper include:

– A generative model STMLocator+ for bug localization based on bug reports. The
proposed STMLocator+ model adopts supervised topic modeling and characterizes
both the textual similarities and the semantic similarities between bug reports and source
files. Additionally, STMLocator+ makes use of the metadata and stack-trace in an
integral manner.

1 This work is an extended version of our previous work [3] which considers the previous three components.
Please refer to the related work section for more details.
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– Experimental evaluations on three real data sets showing that the proposed STMLoca-
tor+ can achieve up to 67.1% improvement in terms of prediction accuracy over its best
competitors. Moreover, each of the five components is helpful in terms of improving the
prediction accuracy.

The rest of the paper is organized as follows. Section 2 provides some background knowl-
edge and states the problem definition. Section 3 discusses the key observations, and Sect. 4
describes the proposed approach. Section 5 presents the experimental results. Section 6 covers
related work, and Sect. 7 concludes the paper.

2 Related work

In this section, we briefly review the related work including IR-based methods (textual anal-
ysis and semantic analysis methods) and deep learning methods. This paper is an extension
of our earlier conference version [3]. Among the five components that matter for accurate
bug localization, the conference version [3] models three of them, i.e., historical fixings,
word co-occurrence phenomenon, and longer-file phenomenon. In this extension, we further
integrate the metadata and the stack-trace into the model.

Textual analysismethods are proposed to locate themost relevant source files by analyzing
the textually similarities between bug reports and source files. Typically, these methods are
built upon the VSM model. For example, based on the VSM model, Zhou et al. [4] propose
a method to incorporate similar bug reports and their related source files for a given bug
report; Saha et al. [5] further consider the code structure information such as variables and
function names; later, Wang et al. [6] propose a method that combines similar bug reports,
code structure, and the version history of source files. Recently, Wang et al. [7] examine a
special type of bug reports, i.e., crash reports where the crash stack-trace is recorded. Similar
studies [8,9] are also proposed to improve the bug localization by stack-trace analysis. Ye et
al. [10] propose to use skip-gram [11] to measure the similarities between bug reports and
their related source files. Other examples in this class include [12–17].

As to semantic analysismethods, their key insight is to learn the latent topics/representations
of bug reports and source files. For example, Lukins et al. [18] directly apply LDA on bug
reports and then computed the topic distribution similarities between source files and bug
reports. Nguyen et al. [19] propose a modified LDA model to detect latent topics from both
bug reports and source files. Kim et al. [20] propose to extract features from both bug descrip-
tions and metadata and use naive Bayes make prediction. Zhang et al. [2] use metadata to
reduce the search space of buggy source files. Other examples in this class include [21–23].

Although usually treated separately, the above two types of methods are actually com-
plementary to each other. Our previous work [3] proposes to combine them together by
using topic modeling to capture semantic similarity and modeling the word co-occurrence
phenomenon to capture textual similarity. The historical fixings are largely ignored by the
existing IRmethods, and we use them as supervision information to further improve localiza-
tion accuracy. In this work, in addition to our conference version [3], we integrate metadata
into our model. Although metadata is used by some existing work, they tend to use it in a
separate manner. Moreover, we also model the stack-trace information into our approach.

Recently, deep learning methods have been used to solve the bug localization problem.
Lam et al. [24] apply deep neural networks on both bug reports and source files and combine
the results with IR methods. Huo et al. [25,26] propose to use convolution neural network
(CNN) to capture the structure of both bug reports and source files. Other deep learning-
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based methods include [27–29]. The main limitation of these deep learning methods lies in
the efficiency aspect. Moreover, although these methods make use of the historical fixings,
they still follow the IRmethods by using the learned representations of bug reports and source
files to locate source files. Instead, we directly propose a supervised model and use it to make
the predictions.

Remotely related to our work, there is a line of work that aims to locate bugs based
on other types of inputs. These methods typically use dynamic execution information or
static program analysis to locate the bugs. Examples of dynamic methods include statistical
debugging [30,31], spectrum analysis [23,32–34], change impacts in dynamic call-graphs
[35,36], machine learning on dynamic properties of execution [37], etc. The combination of
IR-basedmethods and spectrum-basedmethods has also been studied [38,39]. Static analysis
methods are based on program slicing [40], postmortem symbolic evaluation [41], change
impact analysis [42], etc.

3 Background and problem statement

In this section, we first introduce some background knowledge and then present the notations
and problem definition.

3.1 Background

During software andmaintenance, the project team often receives and records a large number
of bug reports describing the details of program defects or failures. For example, as recorded
in the bug tracking system, there are over 145,000 verified bug reports in the Eclipse project.
Based on these bug reports, however, it is time-consuming and labor-intensive for developers
to manually recognize the relevant buggy source files and fix the bugs therein [43]. For
example, among the 9000 bug reports we collected from the Eclipse project, it takes 86
days on average to fix a single bug. Therefore, automatically locating the relevant source
files for a given bug report is crucial to improve the efficiency of software development and
maintenance.

A bug report in the bug tracking system typically contains the descriptions of the bug
(i.e., bug description) and some metadata. An example of metadata is shown in Fig. 1. As we
can see, the metadata includes status, product, component, version, hardware (platform and
operating system), importance (priority and severity), etc. These types of metadata may be
helpful for bug localization. For example, the component metadata may indicate a subset of
source files that are related to the bug; the bug reporter metadata can also play similar roles
as a reporter may be responsible for testing a specific part of the code repository.

3.2 Problem statement

We use D to denote the collection of input bug reports.2 For each bug report d ∈ D, it
contains a list of Nd words and is relevant to a list of source files Λd .3 Similarly, we use S to
denote the collection of input source files. Each source file s ∈ S contains a list of Ts words.
In addition, each bug report also contains a metadata field κd and may contain a list of source

2 In this paper, we interchangeably use ‘document’ and ‘bug report.’
3 A bug report may relate to multiple source files.
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Fig. 1 An example of metadata from a bug report

Table 1 Notations Symbol Description

M # of bug reports

K # of topics/source files

V The vocabulary

D = {d1, d2, . . . , dM } Bug report collection

S = {s1, s2, . . . , sK } Source file collection

d = {w1, w2, . . . , wNd } A bug report d

s = {w1, w2, . . . , wTs } A source file s

Λd Relevant topics/source files for d

R Source files in stack-traces

κ Metadata field

files Rd in stack-trace. All the words in bug reports4 form the vocabulary V . Furthermore,
we use M to indicate the number of bug reports and K to indicate the number of topics. The
main symbols used in this paper are listed in Table 1.

With the above notations, we define the bug localization problem as follows.

Problem 1 Bug Localization Problem

Given: (1) a collection of bug reports D, where each bug report d ∈ D contains a metadata
field κd , a bug description field of Nd words (which may contain a list of stack-trace
Rd ), and is relevant to source files Λd , (2) a collection of source files S, where each
source file s contains Ts words, and (3) a new bug report dnew /∈ D which contains
Ndnew words;

Find: the relevant source files for the new bug report dnew.

4 To simplify the processing of source files, we only keep the words in source flies that have appeared in the
bug reports.
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(a) Word co-occurrence 
phenomenon in JDT

(b) Word co-occurrence
 phenomenon in PDE

(c) Word co-occurrence
 phenomenon in Platform

Fig. 2 Word co-occurrence phenomenon. That is, most of the words in bug reports have appeared in source
files. This phenomenon widely exists in the three data sets

As we can see from the above problem definition, the input data are consisted of the words
from bug reports and source files as well as the historical fixings (i.e., bug reports and their
relevant source files). The bug localization task is to identify the most relevant source files
for a new bug report.

4 Key observations

In this section, we discuss the key intuitions and observations for solving the problem defined
in the previous section.

Observation 1: Supervised topic modeling Since the fixing histories between source
files and bug reports cannot be ignored as well as the rich text content in both bug reports
and source files, we naturally model it as a supervised topic model. Specifically, we treat
each source file as a specific topic. Then, we transfer the goal of identifying the most relevant
source files for a new bug report to predicting the most relevant topics for a new document.
In particular, each source file is a unique topic (i.e., K = |S|), and we leverage the relevant
source files for a bug report to guide its topics. The supervision information is encoded in Λ,
where Λd is a vector of length K with Λd,s ∈ {0, 1} indicating whether the source file s is
relevant to bug report d or not.

Observation 2: Word co-occurrence phenomenon The second key observation is the
word co-occurrence between bug reports and source files, i.e., the certain words in bug reports
tend to appear multiple times in their relevant source files.
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(a) Longer-file phenomenon in JDT
(Spearman coefficient=0.7031 with p-(Spearman coefficient=0.6216 with p-
value<0.001)

(b) Longer-file phenomenon in PDE

value<0.001)

(c) Longer-file phenomenon in Plat-
form (Spearman coefficient=0.5162 with
p-value<0.001)

Fig. 3 Longer-file phenomenon. That is, longer source files tend to have more bugs. This phenomenon holds
for all the three data sets

To verify the word co-occurrence phenomenon, we collect data sets from three Eclipse
projects (i.e., JDT, PDE, and Platform; see Sect. 5 for more details about the data sets). For
each bug report, we study the number of words in each of its relevant source files that have
also appeared in the bug report. The results of JDT, PDE, and Platform data are shown in
Fig. 2a–c, respectively. In the figures, we denote a bug report and its related source files as
‘R–S pairs’; the x-axis indicates the number of common words in a R–S pair, and the y-axis
indicates the percentage of the corresponding R–S pairs. Based on the figure, over 90% R–S
pairs have at least one common word, and there are 20, 11, and 10 common words on average
for R–S pairs in the JDT, PDE, and Platform, respectively. Therefore, we can conclude that
the word co-occurrence phenomenon widely exists in our bug localization data sets. We will
explicitly model this phenomenon in our STMLocator+.

Observation 3: Longer-file phenomenon Intuitively, longer source files tend to contain
more bugs [4]. To verify this phenomenon, we calculate the Spearman’s correlation coeffi-
cients between the length of a source file (i.e., LOC) and the number of bugs in the source
file (i.e., the number of relevant bug reports). The results on JDT, PDE, and Platform data are
shown in Fig. 3a–c, respectively. The x-axis in the figures is the length of source files, and
the y-axis is the number of bugs in the corresponding source files. As we can see from the
figures, there is a significant positive correlation (i.e., the Spearman’s correlation coefficient
is larger than 0.5) between the length of source files and the number of bugs. We will encode
the length of source files as a prior in our model.
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When finding references  Java Search fails with NullPointerExcep�on, I receive the following error when trying to find 
references to anything: An internal error occurred during: ”Java Search”.java.lang.NullPointerExcep�on
I have deleted my workspace created a new one and s�ll am receiving this issue. Here is the stack trace:
java.lang.NullPointerExcep�on:
at org.eclipse.core.run�me.Path.<init>(Path.java:183) 
at org.eclipse.core.internal.resources.WorkspaceRoot.getProject(WorkspaceRoot.java:182) 
at org.eclipse.jdt.internal.core.JavaModel.getJavaProject(JavaModel.java:169)   
at org.eclipse.jdt.internal.core.search.IndexSelector.getJavaProject(IndexSelector.java:304)    
at org.eclipse.jdt.internal.core.search.IndexSelector.ini�alizeIndexLoca�ons(IndexSelector.java:232)  
at org.eclipse.jdt.internal.core.search.IndexSelector.getIndexLoca�ons(IndexSelector.java:294) 
at org.eclipse.jdt.internal.core.search.JavaSearchPar�cipant.selectIndexURLs(JavaSearchPar�cipant.java:148)   
at org.eclipse.jdt.internal.core.search.Pa�ernSearchJob.getIndexes(Pa�ernSearchJob.java:84)   
at org.eclipse.jdt.internal.core.search.Pa�ernSearchJob.ensureReadyToRun(Pa�ernSearchJob.java:52) 
at org.eclipse.jdt.internal.core.search.processing.JobManager.performConcurrentJob(JobManager.java:174) 
at org.eclipse.jdt.internal.core.search.BasicSearchEngine.findMatches(BasicSearchEngine.java:215)   
at org.eclipse.jdt.internal.core.search.BasicSearchEngine.search(BasicSearchEngine.java:516)    
at org.eclipse.jdt.core.search.SearchEngine.search(SearchEngine.java:584)   
at org.eclipse.jdt.internal.ui.search.JavaSearchQuery.run(JavaSearchQuery.java:144) 
at org.eclipse.search2.internal.ui.InternalSearchUI$InternalSearchJob.run(InternalSearchUI.java:91) 
at org.eclipse.core.internal.jobs.Worker.run(Worker.java:54)
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Fig. 4 An example bug report that contains a stack-trace

Observation 4: Metadata matters Once a bug report is reported, the reporter will be
asked to provide metainformation in addition to the descriptions of the bug. Existing studies
have shown that thesemetainformation especially the ‘component’metadata can be helpful to
locate bugs [2,20]. Therefore, in thiswork,wemodel the ‘component’metadata for simplicity,
while the other metadata can be similarly integrated into our model.

Observation 5: Stack-trace matters For some bug reports, the reporters can include the
stack-trace of the bugs in the descriptions. An example of bug reports containing stack-traces
(each stack-trace is a list of method calls that trigger an exception) is shown in Fig. 4, where
the software throws a ‘NullPointerException’ and outputs the sequence of method calls. The
related classes (i.e., source file names) are colored in red. Intuitively, the source files in the
stack-traces are highly related to the bug reports.We filter the source files from the bug reports
with stack-traces, and we find that there are over 58%, 57%, and 70% bug reports containing
relevant buggy source files in their stack-traces on the three data sets of PDE, Platform, and
JDT, respectively.

5 The proposed approach

In this section, we present the proposed STMLocator+. We start with the proposed model
followed by a brief description of the learning algorithm.

5.1 The STMLOCATOR+model

Figure 5 shows the overall graphical representation for STMLocator+. Corresponding to
the above five observations, there are five integral parts in the STMLocator+ model.

– Supervised topic modeling First, STMLocator+ builds upon the LDAmodel [44] and
its generalized version LLDA [45] for supervised topic modeling. For each bug report,
LDA assumes that it has several latent topics (θ ). Words in the bug report are generated
from a specific topic (z) and the topic-word distributions (Φ). Then, we assume that the
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K

K

KN
M

K

: component-topic distribu�on
: observed source files in stack-trace

Supervised topic modeling
Word co-occurrence phenomenon
Longer-file phenomenon
Meta-informa�on constraints
Stack-trace tracking

: observed file length
: topic-word distribu�on
: topic-word distribu�on
: selec�on indicator
: selec�on distribu�on of 
: selec�on indicator
: observed component
: selec�on distribu�on of 

C

K

M: # of bug reports
N: # of words
C: # of components
K: # topics/source files

: observed word
: topic of word 
: topic distribu�on
: observed topics

Fig. 5 Graphical representation of STMLocator+

relevant source files (Λ) of the given bug report determine the latent topics during the
generative process. Here, each source file corresponds to one unique topic.

– Modeling word co-occurrence phenomenon. Next, to characterize the word co-
occurrence phenomenon, when generating a word, we either generate it from the topics
or directly from the co-occurrence words. Specially, we introduce a latent variable x
to indicate the probability that the word w is generated by the co-occurrence words in
both source files and bug reports, or by the topic-word distribution Φ. When the word
is generated by the co-occurrence words, we use the specific topic/source file z and the
topic-word distribution Ω . The latent variable x is sampled from a Bernoulli distribu-
tion Ψ , and it is dependent on the specific topic z (i.e., different topics have different
probabilities).

– Modeling longer-file phenomenon To model the longer-file phenomenon, we introduce
an asymmetric Dirichlet prior (l) to indicate the different probabilities to choose different
topics/source files for each bug report. The intuition is that, if a source file has a longer
length, it is likely to contain more bugs and thus has a higher probability to be chosen as
the specific topic z.

– Modeling metadata For the component metadata, we introduce a component-topic
distribution Σ to indicate the topic distribution in each different component. The
component-topic distributionΣ is related to the historical observed fixings. By observing
the specific component of each bug report, the topic distribution θ is selected from Σ .

– Modeling stack-trace Finally, to make use of the stack-traces, we introduce a latent
variable y to indicate the probability that the source files Rd from the stack-traces can
be encoded into the supervision information Λ for bug report d , where Rd is a vector
of length K with Rd,s ∈ {0, 1} indicating where the source file s in the stack-trace is
a relevant buggy source file of d . The latent variable y is sampled from a Bernoulli
distribution Δ. In practice, we set y as a vector of length five and select top five source
files Rd from stack-traces according to their position and number of occurrence.
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Although the supervised topic modeling only allows predicting the source files with bugs
before, the word co-occurrence phenomenon extends the prediction to nonbuggy source files
with the help of the co-occurrence words.

In practice, there are several design choices to set the length of source files (e.g., linear or
logarithmic) and the range of co-occurrence words (e.g., identifiers or annotations). We will
experimentally evaluate these choices in our experiments.

The generative process of STMLocator+ is shown below.

1. Draw Dirichlet prior

(a) Draw asymmetric prior l ∼ Dir(α′)

2. Draw topic-word distributions

(a) For each topic k ∈ [1, K ]:
i. Draw probability distribution Ψk ∼ Beta(η)

ii. Draw topic-word distribution Φk ∼ Dir(β)

iii. Draw topic-term distribution Ωk ∼ Dir(μ)

3. Draw words for each document d ∈ [1, M]
(a) Draw Y ∼ Bernoulli(Δ)

(b) Draw source files Rd from stack-trace in d
(c) For each topic k ∈ [1, K ]:

i. Draw Λd,k ∈ {0, 1} ∼ Bernoulli(γ )

(d) Draw Dirichlet prior αd = (Λd ∨ Rd) ◦ α · l
(e) Draw component κd ∼ Dir(α)

(f) Draw topic distribution θd ∼ Dir(αd) ◦ Mult(κd)
(g) For each word i ∈ [1, Nd ]:

i. Draw topic zi ∼ Mult(θd)
ii. Draw potential word from Ωzi distribution wi,Ω ∼ Mult(Ωzi )

iii. Draw potential word from Φzi distribution wi,Φ ∼ Mult(Φzi )

iv. Draw xi ∈ {0, 1} ∼ Bernoulli(Ψzi )

v. Draw the final word wi = (wi,Ω)xi · (wi,Φ)1−xi

In the above generative process, Step 1 draws an asymmetric prior l from a Dirichlet prior
α′. l indicates the weight of each source file, and it satisfies

K∑

k=1

α′lk = Kα′. (1)

5.2 Learning algorithm

For the learning algorithm of STMLocator+, we first need the computation of the following
joint likelihood of the observed variables (i.e., L , W , κ , R, and Λ) and unobserved variables
(i.e., Z , X , and Y ).

p(Z , X ,W , κ, R, Y ,Λ, L) = p(Z |αL,Λ, R, κ, τ ) · p(κ|α) · p(L|α′)·
p(Y |η, R,Λ) · p(Λ|γ ) · p(R)·
p(X |η, Z) · p(W |Z , X , β) · p(W |Z , X , μ).

(2)
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Then, we can use the above likelihood to derive update rules for θ , Ψ , Ω , and Φ. In the
model, p(L|α′), p(κ|α), p(Λ|γ ), and p(R) are constants and they can be ignored in the
inference.5

For Eq. (2), we first have

p(Z |αL,Λ, R, κ, τ ) = Σκ ·
M∏

m=1

p(Zm |αL,Λ, R)

= Σκ ·
M∏

m=1

Δ(Nm + αL)

Δ(α)
,

(3)

where Nm indicates the number of words in document m, and L indicates the length of each
source file in Z . Source files in Z are determined by Λ or R. The above equations can be
derived by expanding the probability density expression ofDirichlet distribution and applying
the standard Dirichlet multinomial integral. Σκ indicates the importance of each source file
in Z for component κ . For each source file k, Σκ,k is defined as

Σκ,k =
M∏

m=1

Nκ,k

Nκ

(4)

where Nκ,k indicates the number of source file k appears in component κ and Nκ indicates
the total number of source files appearing in component κ .

Next, for p(X |η, Z), we have

p(X |η, Z) =
K∏

k=1

B(Nk + η)

B(η)
, (5)

where Nk indicates the number of words that belong to topic k, and X is composed of 0s
or 1s to determine where a word is generated from. In the following equations, we divide
Nk into two parts: Nk,1 and Nk,0. B(η) is a normalization constant to ensure that the total

probability integrates to 1. B(η) is defined as B(η) = Γ (η1)Γ (η0)

Γ (η1 + η0)
Then, for p(W |Z , X , β, η), we have

p(W |Z , X , β, μ)

=
∫

p(W |Z , X , Φ)p(Φ|β) dΦ

∫
p(W , |Z , X ,Ω)p(Ω|μ) dΩ

=
K∏

k=1

Δ(Nk,0 + β)

Δ(β)

K∏

k=1

Δ(Nk,1 + μ)

Δ(μ)
,

(6)

where Nk,1 is the number of words generated by topic-word distribution Ωk , and Nk,0 indi-
cates the number of words generated by topic-word distribution Φk . The computation of
p(W |Z , X , Φ) and p(Φ|β) in the above equation is similar to that of the traditional LDA

model. For Eq. (6), when X is set to 1,
∏K

k=1
Δ(Nk,0 + β)

Δ(β)
will be a constant; when X is set to

0,
∏K

k=1
Δ(Nk,1 + μ)

Δ(μ)
will be a constant.

5 We incorporate these four terms in the model for completeness
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Similarly, for p(Y |η, R,Λ), we have

p(Y |η, R,Λ) =
K∏

k=1

B(Nk,R,Λ + η)

B(η)
, (7)

where Nk,R,Λ indicates the number of the source file k both appearing in R and Λ, and Y
is composed of 0s or 1s to determine where a source file is generated from. As we have
mentioned that p(Λ|γ ) and p(R) are constants, Eq. (7) will be used in prediction.

Finally, putting the above equations together, we have

p(Z , X ,W , κ, R, Y ,Λ, L) ∝ Σκ ·
M∏

m=1

Δ(Nm + αL)

Δ(α)

·
K∏

k=1

B(Nk,R,Λ + η)

B(η)
·

K∏

k=1

B(Nk + η)

B(η)

·
K∏

k=1

Δ(Nk,0 + β)

Δ(β)
·

K∏

k=1

Δ(Nk,1 + μ)

Δ(μ)
.

(8)

The purpose of the training stage is to obtain θ , Σ , Δ, Ψ , Ω , and Φ, where θ represents
the topic distribution of each document,Σ represents the distribution to indicate whether the
source file in stack-trace is the correct buggy source file, and Ψ represents the distribution
to indicate whether the word is generated by the topic-word distribution Ω or generated by
the topic-word distribution Φ. The parameter Σ is shown in Eq (4). Based on Eq (8), the
equations for computing these parameters are listed as follows

θm,k = Σκ · nm,k + αklk∑K
k′=1(nm,k′ + αk′)

Δk = nk,Rk ,Λk + η1

nk,Rk + η1

Ψk = nk,1 + η1∑1
x=0(nk,x + ηx )

,

Φk,v = nk,v,0 + βv∑V
v′=1(nk,v′,0 + βv′)

,

Ωk,v = nk,v,1 + μv∑V
v′=1(nk,v′,1 + μv′)

,

(9)

where nm,k indicates the number of words that belong to topic k in document m, nk,Rk ,Λk

indicates the number of occurrences that source file k appears in both stack-trace Rk and
buggy source files Λk , nk,Rk indicates the number of occurrences that source file k appear in
stack-trace R, nk,1 indicates the number of words that belong to topic k and are generated by
topic-word distribution Ω , nk,0 indicates the number of words that belong to topic k and are
generated by topic-word distribution Φ, nk,v,1 indicates the number of word v that belongs
to topic k and is generated by topic-word distribution Ω , nk,v,0 indicates the number of word
v that belongs to topic k and is generated by topic-word distribution Φ.

Algorithm Based on Eq. (9), Gibbs sampling is widely used to train the parameters. The
algorithm is summarized in Alg. 1. The zm,i in the algorithm indicates the topic that word i
in bug report m belongs to, and nk indicates the number of words that belong to topic k. In
the algorithm, Line 1 initializes all the zm,i for each word with a random topic. Lines 2-20
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Algorithm 1 The Learning Algorithm for STMLocator+
Input: Collection of bug reports D and source files S
Output: θ , Ψ , Φ, Ω
1: Initialize topic zm,i for all m and i randomly;
2: while not convergent do
3: for document m ← [1, M] do
4: for word i ← [1, Nm ] do
5: zm,i ← 0;
6: update nm,k , nm , nk,x , nk and nk,i,x ;
7: for topic k ← [1, K ] do
8: if word i ∈ Tk then

9: P(zm,i = k, x = 1) ← nm,k+αlk
nm+Kα

· nk,1+η1
nk+η0+η1

· nk,i,1+μ

nk,1+Vμ
;

10: P(zm,i = k, x = 0) ← nm,k+αlk
nm+Kα

· nk,0+η0
nk+η0+η1

· nk,i,0+β

nk,0+Vβ
;

11: else
12: P(zm,i = k) ← nm,k+αlk

nm+Kα
· nk,i,0+β

nk,0+Vβ
;

13: end if
14: end for
15: sample topic zm,i by P(zm,i );
16: update nm,k , nm , nk,x , nk and nk,i,x ;
17: end for
18: end for
19: update θ,Σ,Δ, Ψ , Φ,Ω via Eq. (4)(9);
20: end while
21: return θ,Σ,Δ, Ψ , Φ,Ω

iteratively estimate the parameters based on Gibbs sampling. Line 6 and Line 16 update the
statistical variables nm,k , nm , nk,x , nk , and nk,i,x which are computed based on zm,i . Line 19
updates the four parameters via Eq (9). The iterative process terminates when the parameters
converge or when the maximum iteration number is reached.

In practice, Gibbs sampling is inherently stochastic and unstable, while the CVB0 learning
algorithm [46] converges faster and is more stable [47]. Therefore, we further build the
learning algorithm based on CVB0 learning, and the details are omitted for brevity.

Time complexity In short, the time cost of the learning algorithm scales linearly w.r.t. the
data size (e.g., the number of topics/source files and the total number of words in the bug
reports). We will experimentally validate the time complexity of the learning algorithm in
the experiments.

5.3 Prediction stage

Here we explain how to use the learned parameters to predict buggy file for a given bug report
dnew. For a new bug report Dnew, the topic/source file distribution is computed as follows,

p(t |dnew) =
∑

w

p(t |w) · p(w|dnew)

=
∑

w

p(w|t)p(t)
p(w)

· p(w|dnew).

(10)

First, we compute the p(w|dnew) as follows,

p(w|dnew) = count(w)

len(dnew)
(11)
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where count(w) is the number of wordw shown in document dnew and len(dnew) is the total
number of words in document dnew.

Then, the probability p(t) can be inferred approximately through the training set by
summarizing all the p(t |d) of each document d:

p(t) =
∑

d

p(t |d) · p(d)

∝
∑

d

θd,t ,
(12)

here, we assume that the appearance chance of each post is the same, and thus we can ignore
the p(d) term in the above equation. For p(t |d), we directly use the parameter θ learned by
our model. In addition, source files in stack-traces will increase the chance to be chosen and
we have

p(t) ∝(1 + Rt )yt ◦
∑

d

θd,t , (13)

where Rt indicates whether source file t appears in stack-traces and yt indicates the chance
if the source file t in stack-trace is the related buggy source file. y is learned by Eq. (7).

Next, since eachword is generated from a certain topic t , the probability p(w) is computed
as,

p(w) =
∑

t

p(w|t) · p(t) (14)

Here, Eq. (12) shows how to compute p(t) and we finally need to compute p(w|t) as follows,

p(w|t) =
⎧
⎨

⎩

p(w|t, x = 0)p(x = 0|w ∈ t)
+p(w|t, x = 1)p(x = 1|w ∈ t), w ∈ t
p(w|t, x = 0)p(x = 0|w /∈ t), w /∈ t

=
{

Φ · (1 − Ψ ) + Ω · Ψ , w ∈ t
Φ, w /∈ t

(15)

where we consider p(w|t) in two circumstances. When the word w ∈ t , w can be generated
from two topic-word distribution Ω and Φ and which should be choose is determined by
distribution Ψ . Otherwise, if word w /∈ t , then it must be generated by Φ.

6 Experimental evaluations

In this section, we present the experimental results. The experiments are mainly designed to
answer the following questions:

– Effectiveness How accurate is the proposed method for bug localization?
– Efficiency How scalable is the proposed method for bug localization?

6.1 Data sets

We collect the data sets from three open-source projects, i.e., PDE, Platform, and JDT. All
the data sets are collected from the official Bug TrackingWebsite of Eclipse6 and the Eclipse
Repository.7 The statistics of the data sets are shown in Table 2.

6 https://bugs.eclipse.org/.
7 http://git.eclipse.org/, https://github.com/eclipse/.
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Table 2 Statistics of the data sets Data set # Reports # Sources Vocabulary size

PDE 3900 2319 2964

Platform 3954 3696 3677

JDT 6267 7153 4304

For each project, we collect the bug reports (each bug report contains bug id, metadata,
title, and description) from the bug tracking Web site. Then, we collect the corresponding
source files from the git repository by bug id. We adopt standard NLP steps including stop-
words removal, low-frequency, and high-frequency words removal to reduce noise. In bug
reports, there are many combined words (e.g., ‘updateView’). We separate these words into
simple words (e.g., ‘update’ and ‘view’) while keeping the combined words at the same time.
For the source files, there are typically two types of words, i.e., annotations and source code.
For annotations, we adopt the same processing steps with bug reports. For source code, we
additionally remove the keywords (e.g., ‘for’ and ‘if’) and extract identifiers (i.e., variable
and function names) before adopting the processing steps. The identifiers are also separated
from combined words to simple words.

6.2 Experimental setup

For the three data sets described above, we follow existing experiment framework [25] of
10-fold cross-validation. For the test set, we sort the source files based on the predicted
probabilities in a descending order and use the ranking list as output.

Evaluation metrics For the evaluation metrics, we first adopt Hit@n for effectiveness
comparison. Hit@n is defined as follows,

Hit@n =
Mtest∑

d=1

hitn,d

Mtest
,

hitn,d =
{
1, hit(n, d) > 0,

0, hit(n, d) = 0,

where hit(n, d) is the hit number of source files that have been successfully recommended
in the top-n ranking list for the d-th bug report, hitn,d indicates whether the top-n ranking
list contains a hit or not, and Mtest is the number of bug reports in the test data. Note that
Hit@n cares about whether there is a hit or not. The reason is that finding one of the buggy
source files will help developers find other relevant buggy source files [4].

We also use the Mean Reciprocal Rank (MRR) to evaluate the quality of the ranking list.
The MRR is defined as

MRR = 1

Mtest

Mtest∑

i

∑

j∈Λi

1

rank( j)
,

where Λi indicates the relevant source files of document i , and rank( j) indicates the rank
position of source file j in the ranking list for bug report i . Larger MRR value is better. Both
Hit@n and MRR are widely used in other studies [4,12,13].

In addition to Hit@n and MRR, developers also care about the position of the buggy
files in the ranking list. The higher the first hit in the ranking list, the fewer source files that
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the developers would need to check. Therefore, we adopt the AFH@n (Average First Hit at
Top-n) for measuring the workload of developers. AFH@n is defined as

AFH@n =
∑Mtest

d=1 δn(posd)

Mtest
,

δn(posd) =
{
posd , posd � n,

n, posd > n,

where posd indicates the first hit in the ranking list for document/bug report d . Smaller AFH
is better.

As to the list size n, we choose n = 5 and n = 10 for Hit@n, and n = 10 for AFH@n
as such choices will not cause many burdens to the developers. For efficiency, we record the
wall-clock time of the proposed algorithm. All the experiments were run on a machine with
Intel(R) Xeon(R) E5 CPU and 64GB memory.

Compared methods To evaluate the effectiveness of the proposed method, we compare
the following methods in our experiments.

– LLDA [45]: LLDA is a supervised generative model proposed for tag recommendation.
It can be seen as a special case of STMLocator+ by ignoring word co-occurrence
phenomenon, longer-file phenomenon, metadata information, and stack-traces.

– tag-LDA [48]: tag-LDA is another generative model for tag recommendation. The basic
idea of tag-LDA is to combine two LDAmodels with the same θ value. It can be similarly
adapted for bug localization by treating source files as tags.

– VSM [49]: VSM model embeds each document (both bug report and source file) into
a vector and then uses the cosine distance between vectors to identify the most similar
source files for a given bug report.

– rVSM [4]: rVSM (which is also known as BugLocator) is built upon VSM. It further
finds similar bug reports and uses their relevant source files as output. The LOC of each
source file is also considered.

– NP-CNN [25]: NP-CNN is a deep learning-based method to locate bugs. It uses a CNN
network to train the features/embeddings of sourcefiles and then calculates the similarities
between embeddings to obtain the ranking list.

– STMLocator+: STMLocator+ is the proposed method in this paper.

For the hyper-parameters of STMLocator+, we fix α = 200/K , η = 0.01, and β = μ =
0.1. As to the hyper-parameters of the baselinemethods, we either use the same parameters as
STMLocator+ (e.g., LLDA and tag-LDA) or use the default parameter settings as reported
in the original papers (e.g., VSM, rVSM, and NP-CNN).

6.3 Effectiveness results

(A) Effectiveness comparisons For effectiveness, we first compare the proposed STMLoca-
tor+with several existing methods. In the comparedmethods, LLDA and tag-LDA use topic
models, VSM and rVSM are textual models, and NP-CNN applies deep convolutional neural
networks. The results are shown in Table 3, where the relative improvements compared to
the best competitors are also shown in the brackets.

We can first observe from Table 3 that STMLocator+ generally outperforms all the
compared methods on all the three data sets. For example, on the PDE data, STMLoca-
tor+ achieves 4.3% and 5.9% relative improvements on Hit@5 and Hit@10 over its best
competitors. On Platform, STMLocator+ improves its best competitors by 6.7% and 8.1%
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Table 3 Effectiveness comparisons of Hit@n, AFH@n and MRR on three data sets

Methods LLDA tag-LDA VSM rVSM NP-CNN STMLocator+

PDE

Hit@5 0.347 0.204 0.276 0.443 0.375 0.462 (4.29%)

Hit@10 0.434 0.284 0.338 0.523 0.516 0.554 (5.93%)

AFH@10 6.569 7.341 7.147 6.507 6.469 6.505 (−0.56%)

MRR 0.288 0.192 0.231 0.329 0.323 0.336 (2.13%)

Platform

Hit@5 0.422 0.364 0.332 0.612 0.489 0.653 (6.69%)

Hit@10 0.527 0.422 0.392 0.689 0.643 0.745 (8.12%)

AFH@10 5.781 6.473 6.224 5.593 5.478 4.778 (12.7%)

MRR 0.335 0.301 0.283 0.443 0.401 0.537 (21.2%)

JDT

Hit@5 0.333 0.152 0.203 0.344 0.337 0.408 (18.6%)

Hit@10 0.425 0.212 0.271 0.442 0.488 0.521 (6.76%)

AFH@10 6.703 7.483 7.372 6.749 6.843 6.078 (9.32%)

MRR 0.218 0.112 0.127 0.241 0.234 0.391 (67.1%)

The proposed STMLocator+ generally outperforms the compared methods. (For Hit@N and MMR, larger
is better. For AFH@n, smaller is better. The relative improvements compared to the best competitors are also
shown in the brackets.)
Bold values indicate the best results among the compared methods

w.r.t. Hit@5 andHit@10, respectively. On JDT data set, the improvement of STMLocator+
over the best competitor is 18.6% and 6.8%w.r.t. Hit@5 and Hit@10, respectively. Similarly,
STMLocator+ achieves the highest MRR values and smallest AFH@10 values compared
to other methods in most cases as shown in Table 3. For example, STMLocator+ achieves
up to 67.1% improvement w.r.t. MRR over its best competitors on the MRR metric. For all
the reported results above, we conduct paired t test on the average rankings, and the results
show that all the positive improvements are statistically significant, with p values less than
0.001.

In the compared methods, VSM and rVSM consider the textual similarity and ignore
the semantic similarity, while tag-LDA and LLDA consider semantic similarity and ignore
textual similarity, and thus they are less effective than STMLocator+. This result indi-
cates the usefulness of combining textual similarity with semantic similarity. LLDA is a
supervised topic model and it can be seen as a special case of STMLocator+by ignoring
word-occurrence, source file length, metainformation, and stack-traces. This result further
indicates the usefulness of modeling the corresponding observations. Our method also out-
performs theNP-CNNmethod. The possible reason is that NP-CNNmay need a large volume
of data to avoid over-fitting.

(B) Performance gain analysis Next, since STMLocator+ has five integral building
blocks, we further study the effectiveness of these blocks. The results are shown in Table 4.
Since our method is built upon the LLDA model, we also show the results for comparison.
In the table, ‘L+W’ and ‘L+S’ mean the methods when the word-occurrence and the source
file length are incorporated, respectively. ‘L+WS’ is the method when both source file length
and word-occurrence are modeled.8 When metadata is further incorporated, we denote the

8 This is exactly the STMLocator method in the previous conference version [3].
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Table 4 Performance gain analysis of different components in STMLocator+

Methods LLDA L+W L+S L+WS L+WSM STMLocator+

PDE

Hit@5 0.347 0.404 0.384 0.457 0.459 0.462

Hit@10 0.434 0.483 0.457 0.543 0.541 0.554

AFH@10 6.569 6.827 6.562 6.328 6.828 6.505

MRR 0.288 0.314 0.291 0.346 0.331 0.336

Platform

Hit@5 0.422 0.525 0.463 0.642 0.650 0.653

Hit@10 0.527 0.612 0.555 0.703 0.722 0.745

AFH@10 5.781 5.676 5.779 5.247 5.007 4.778

MRR 0.335 0.398 0.372 0.494 0.504 0.537

JDT

Hit@5 0.333 0.381 0.364 0.389 0.386 0.408

Hit@10 0.425 0.482 0.435 0.492 0.504 0.521

AFH@10 6.703 6.713 6.686 6.668 6.542 6.078

MRR 0.218 0.274 0.223 0.298 0.357 0.391

All the components are useful to improve the prediction accuracy. (For Hit@N and MMR, larger is better. For
AFH@n, smaller is better.)
Bold values indicate the best results among the compared methods

Table 5 Results on different
design choices of length
functions

Length function Expression MRR

Linear f (x) = x 0.336

Logarithmic f (x) = log(x) 0.335

Exponential f (x) = ex 0.332

Square root f (x) = √
x 0.331

method as ‘L+WSM.’ When the stack-trace is further incorporated, we have the proposed
STMLocator+ that considers all the five components.

As we can first observe from the table, L + W and L + S are generally better than LLDA,
indicating the usefulness of both components. Second, L + WS further improves the perfor-
mance when these two components are combined. For example, on the Hit@10 metric of the
Platform data, L +WS improves L +W and L + S by 14.8% and 26.5%, respectively. Third, L
+ WSM improves L + WS in most cases especially on the Platform and JDT data, indicating
the usefulness of metadata. Finally, STMLocator+ outperforms all its sub-variants in most
cases. For example, on the Hit@10 metric, STMLocator+ improves L +WS and L +WSM
by 5.9% and 3.1%, respectively.

(C) The effect of different design choices Next, as mentioned before, there are several
design choices in terms of how to set the length of source files and how to determine the
range of co-occurrence words. In this part, we consider the following choices.

– Source file lengthTodetermine the source file length,we consider several length functions
as shown in Table 5.

– Co-occurrence words The source file contains several types of information. In this work,
we consider the words from variable/function identifiers and the annotations as shown
in Table 6.
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Table 6 Results on different
design choices of co-occurrence
words

Co-occurrence words Words MRR

(1) Identifiers 0.331

(2) Annotations 0.330

(1) + (2) Identifiers + Annotations 0.336

Table 7 Hit@10 results on the
ST cases and the NST cases

Methods PDE Platform JDT

ST NST ST NST ST NST

LLDA 0.38 0.44 0.32 0.57 0.31 0.46

tag-LDA 0.27 0.28 0.38 0.43 0.21 0.21

VSM 0.26 0.35 0.26 0.42 0.22 0.28

rVSM 0.47 0.53 0.65 0.70 0.38 0.46

NP-CNN 0.45 0.55 0.61 0.65 0.50 0.48

L + WS 0.39 0.57 0.57 0.73 0.42 0.53

STMLocator+ 0.51 0.57 0.67 0.76 0.53 0.51

Bold values indicate the best results among the compared methods

The results are shown in Tables 5 and 6, respectively. Here we only report theMRR results
on PDE data set for brevity. Similar results are observed on JDT and Platform as well as on
other metrics.

As we can see from Table 5, we experiment with four length functions including linear,
logarithmic, exponential, and square root. These functions weight source file length to dif-
ferent scales. The results show that most functions have close performance. This indicates
that the proposed method is robust w.r.t. the difference choices source file length function.
In our experiments, we use linear function.

In Table 6, we change the range of co-occurrence words. We consider three cases: using
identifiers only, using annotations only, and using both identifiers and annotations. As we
can see from the table, combining both identifiers and annotations can produce the best MRR
result. In other words, this result indicates that both identifiers and annotations are useful for
our bug localization problem.

(D) The effect of stack-traces As mentioned above, a bug report may contain program
stack-traces. Intuitively, textual similarity may be more suitable for such bug reports, as the
buggy file names may have already been included in the stack-traces. Here, we split the bug
reports into two parts: with stack-traces (denoted as ‘ST’) and without stack-traces (denoted
as ‘NST’), and then compare the Hit@10 results on these two parts. Based on our split, there
are 18.6%, 20.5%, and 26.2% ST bug reports in PDE, Platform, and JDT, respectively. The
results are shown in Table 7. As we can see, rVSM performs relative well in the compared
methods as it is based on textual similarity.Moreover, L+WS and STMLocator+ (especially
STMLocator+) perform better than the compared methods on both the NST and ST cases.
This result indicates that the modeling of stack-trace of STMLocator+ helps to identify
relevant buggy source files from the stack-traces.

6.4 Efficiency results

(F) Scalability Finally, we study the scalability of the proposed method in the training stage.
We vary the size of training data and report the results on the three data sets in Fig. 6. As we
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Fig. 6 Scalability of STMLocator+. It scales linearly w.r.t. the data size

can see, STMLocator+ scales linearly with the size of the data, which is consistent with
our algorithm analysis. As for the response time, it takes around 800ms to return the ranking
list for a bug report on the largest JDT data.

7 Conclusions

In this paper, we have proposed STMLocator+ for finding relevant buggy source files based
on bug reports. STMLocator+ seamlessly combines textual analysis and semantic analysis,
uses historical fixings as supervised information, characterizes the word co-occurrence phe-
nomenon and the long-file phenomenon, and models metadata and stack-trace information.
Experimental evaluations on three real projects show that the proposed method significantly
outperforms existing methods in terms of accurately locating the relevant source files for bug
reports. For future directions, it will be interesting to further improve the accuracy of bug
reports with typical type of bug report such as crash bugs. It will be also interesting to make
use of the more metainformation in addition to the component metadata in the bug reports.
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