

1 **A New Theoretical Framework for Understanding Multiscale Atmospheric Predictability**

2

3

4 Y. Qiang Sun^{1*} and Fuqing Zhang²

5

6

7 ¹*The Program in Atmospheric and Oceanic Sciences, Princeton University, Princeton, New Jersey*

8 ²*Department of Meteorology and Atmospheric Science, and Center for Advanced Data
9 Assimilation and Predictability Techniques, The Pennsylvania State University, University Park,
10 Pennsylvania.*

11

12

13 *Correspondence to ys5@princeton.edu

14

15 **Keywords:** Numeric Weather Prediction; Predictability Limit; Error Growth Model

16

17

ABSTRACT

18

19 Here we present a new theoretical framework that connects the error growth behavior in
20 numerical weather prediction (NWP) with the atmospheric kinetic energy spectrum. Building on
21 previous studies, our newly proposed framework applies to the canonical observed atmospheric
22 spectrum that has a -3 slope at synoptic scales and a -5/3 slope at smaller scales. Based on this
23 realistic hybrid energy spectrum, our new experiment using hybrid numerical models provides
24 reasonable estimations for the finite predictable ranges at different scales. We further derive an
25 analytical equation that helps understand the error growth behavior. Despite its simplicity, this
26 new analytical error growth equation is capable of capturing the results of previous comprehensive
27 theoretical and observational studies of atmospheric predictability. The success of this new
28 theoretical framework highlights the combined effects of quasi-two-dimensional dynamics at
29 synoptic-scales (-3 slope) and three-dimensional turbulence-like small-scale chaotic flows (-5/3
30 slope) in dictating the error growth. It is proposed that this new framework could serve as a guide
31 for understanding and estimating the predictability limit in the real world.

32 \body

33 **1. Introduction**

34 In his pioneering work (Lorenz 1969, hereafter L69), Lorenz first showed that a flow with
35 many length scales, like the atmosphere, might have an intrinsic finite range of predictability.
36 Although Lorenz studied the simple 2D vorticity turbulence model in his paper, the conclusion of
37 his study is profound and intriguing. Follow-up studies using more sophisticated models (e.g.,
38 Leith and Kraichnan 1972; Daley 1981; Foude et al. 2013; Sun and Zhang 2016; Judt 2018; Zhang
39 et al. 2019) further supported Lorenz' results and the concept of “butterfly effect” has been widely
40 accepted since then. Butterfly effect depicts that even the smallest unresolved errors by numerical
41 models will propagate upscale and ruin our practical weather prediction at the synoptic-scale after
42 a *finite* length of time (Palmer et al. 2014). Inspired by L69, estimations of this finite range of
43 predictability has since been done extensively (e.g., Smagorinsky 1969; Lorenz 1982; Foude et al.
44 2013). For the synoptic weather system in mid-latitudes, more recent studies agree with Lorenz
45 that this finite number should be around two weeks (L69; Reeves 2014; Zhang et al. 2019; Judt
46 2020). With this intrinsic predictability limit, current operational forecasts still have quite some
47 room for improvement. In general, our operational weather forecast is skillful for less than 10
48 days in the mid-latitudes despite decades of “quiet revolution” (Bauer et al. 2015; Alley et al.
49 2019). To push our numerical weather prediction (NWP) skill closer to its intrinsic limit, we must
50 understand further the error growth dynamics that limit NWP.

51 Over the years, conceptually and numerically simple turbulence frameworks, as used in
52 L69, have contributed a lot to our understanding. In a turbulent fluid, the inverse cascade rate of
53 the errors from small to large scales, which is the essence of the “butterfly effect,” is noted to be
54 intimately connected with the eddy turnover timescales that are determined by the slope of the

55 background energy spectrum of the fluid. For a flow with energy spectra of power-law behavior
56 (k^p), previous studies find that if the slope $p < 3$, the eddy doubling time decreases with scale and
57 the upscale spreading of initially small-scale error provides an intrinsical limit to the predictability
58 of such flows; if $p \geq 3$, it is concluded that there is no such a limit (L69; Rotunno and Snyder 2008,
59 hereafter RS2008).

60 Most of these studies mentioned above generally assume one single slope for the
61 atmosphere. However, our real world is more complicated. Instead of one constant p ,
62 observational studies (e.g., Nastrom and Gage 1985) indicate that the energy spectra in the
63 atmosphere show a distinct transition from a slope of around -3 at synoptic scales (~ 1000 s km) to
64 a shallower $-5/3$ slope at mesoscales (~ 100 s km) in the mid-latitudes. Numerous realistic
65 simulations, using both regional (Skamarock 2004; Waite and Snyder 2013; Sun and Zhang 2016)
66 and global high-resolution model (Skamarock et al. 2014), also successfully reproduce the
67 transition of the slope, consistent with the observational estimates. The mechanism(s) that
68 determine the slopes of the kinetic energy spectra are still under debate (Charney 1971; Tulloch
69 and Smith 2006; Callies et al. 2014). Nevertheless, according to L69 and RS2008, we would expect
70 an intrinsic predictability limit for our atmosphere due to this shallower slope at the small-scale
71 end of the kinetic energy spectra.

72 Based on the observed kinetic energy spectra, we here propose a novel and simple
73 theoretical framework for understanding error growth from minute perturbations in the real
74 atmosphere. This framework features a “two-stage” error growth process, which connects to the
75 two different slopes of the observed kinetic energy spectra. Figure 1 shows a conceptual schematic
76 for the canonical atmospheric kinetic energy spectrum and the proposed error growth behavior
77 linked to this spectrum. An initially minute error will, in the first stage, grow much faster at small

78 scales due to decreasing eddy turnover time within the -5/3 slope range. Within an inherently finite
79 time, these small-scale errors within the -5/3 slope wavelength range will start to saturate while
80 projecting to larger and eventually synoptic scales. In the second stage, the errors at synoptic scales
81 (corresponding to wavelength range within the -3 slope) will grow quasi-exponentially until
82 saturation due to near-constant eddy turnover time in this wavelength range.

83 With this conceptual picture, the next step is to quantify the growth of the errors under a
84 simple analytical framework. As a tool to help our understanding of complex and chaotic nonlinear
85 interaction, simple analytic equations have been used along with the earlier numeric studies on
86 error growth dynamics. Lorenz (1982) showed that the growth of error variance E could be
87 reasonably well parameterized by a simple exponential growth equation. Dalcher and Kalnay
88 (1987) proposed a modified version based on Lorenz (1982) to describe the evolution of the error
89 variance E

$$90 \quad \frac{d}{dt}(E) = (\alpha E + S) \left(1 - \frac{E}{E_\infty}\right) \quad (1)$$

91 by introducing an external error source S . This equation is adopted and widely used in studies of
92 forecast uncertainty of operational weather prediction (e.g., Magnusson and Kallen 2013; Herrera
93 et al. 2016; Žagar et al. 2017). However, very limited analytical work focused on the *intrinsic*
94 *predictability limit* of weather systems where the external error source is eliminated.

95 Selz and Craig (2015) fitted the errors in their “identical twin experiments” to an analytical
96 equation they constructed. The reasonable agreement in their study between the full-physics model
97 and simple analytical equations implies that we may also use analytical equations to investigate
98 the *intrinsic predictability limit*. More recently, Zhang et al. (2019) found that Eq. (1) well captured
99 the evolution of the intrinsic error dynamics in the full-physics model. However, both studies
100 mentioned here did not provide detailed explanations behind this consistency between the results

101 of complex full-physics atmospheric models and simple analytical equations considered. This
102 paper serves as an extension of RS2008 and Zhang et al. (2019) and aims to provide a framework
103 that helps us further understand the connection of error growth behavior, the background kinetic
104 energy spectrum of the real atmosphere, and the detailed analytical equation proposed. In section
105 2, we first revisit L69's earlier model on error growth for different kinetic energy spectrum slopes.
106 Based on the results of the L69 model, we then propose our hybrid framework for the real
107 atmosphere with hybrid kinetic energy spectra in section 3. A simple analytical equation is also
108 derived in section 3 to further our understanding of the atmospheric predictability limit in the real
109 atmosphere. A brief discussion is given in section 4.

110

111 **2. Revisiting the Lorenz (1969) model**

112 The original model of L69 was devised to study the error growth and predictability of an
113 atmospheric-like fluid system with homogeneous isotropic turbulence using a two-dimensional
114 vorticity (2DV) equation. In this model, Lorenz assumed power-law behavior (k^{-p}) for the basic-
115 state kinetic energy with specific considerations dedicated to the scenarios with $p = 5/3, 7/3$, and
116 3, respectively. While these calculations are robust, it is found that the downscale energy spectral
117 slope of a large-scale forcing for the 2DV equation is -3 (Kraichnan 1967). Given that synoptic-
118 scale forcing is the main driver for weather systems in the mid-latitudes, the physically consistent
119 choice for the L69 model, therefore, is $p=3$, which raises concerns about his results for other
120 scenarios. The model in L69 is elegantly generalized in RS2008 to include a surface quasi-
121 geostrophic (SQG) equation, which is known to have a $-5/3$ energy spectrum analogous to 3-
122 dimensional turbulence. Our study will adopt this generalized model in RS2008 and further
123 illustrate different error growth scenarios in 2DV (-3 slope) and SQG (-5/3 slope).

124 The evolutions of the errors for the 2DV and SQG systems are detailed in L69 and RS2008.
 125 We here briefly summarize their equations as a set of second-order initial-value problems:

126

$$\begin{aligned} \frac{d^2}{dt^2}(Z_K^{2DV}) &= \sum_{L=1}^N C_{K,L}^{2DV} Z_L^{2DV} \\ \frac{d^2}{dt^2}(Z_K^{SQG}) &= \sum_{L=1}^N C_{K,L}^{SQG} Z_L^{SQG} \end{aligned} \quad (2)$$

127 where $C_{K,L}$ is a constant coefficient matrix derived to reflect the interactions between different
 128 length scales (K and L represent different spectral bands in the wavenumber space), N is the total
 129 number of spectral bands considered in the model¹. The structure and amplitude of $C_{K,L}$ is
 130 determined by the dynamic model and, more importantly, by the background kinetic energy
 131 spectrum of the fluids (refer to L69 and RS2008). Z_K^{2DV} and Z_K^{SQG} are the ensemble means of the
 132 perturbation kinetic energy (error fields) for the 2DV and SQG equations, respectively, integrated
 133 over any given spectral band K . For each spectral band K , errors with different length scales
 134 (spectral bands) also contribute to the evolution of Z_K^{2DV} and Z_K^{SQG} . In addition, both L69 and
 135 RS2008 also introduce nonlinear saturation treatment to their equations by directly letting Z_K
 136 fixed at its corresponding background kinetic energy X_K if $Z_K(t) \geq X_K$ in the course of the
 137 integration. This treatment makes no change to the growth rate of Z_K until it reaches saturation.
 138 To better describe the gradual decrease in the growth rate of Z_K as it approaches saturation, Durran
 139 and Gingrich (2014) introduces one additional term $(1 - Z_K/X_K)$ to force the time tendencies of
 140 the Z_K smoothly asymptote to zero as Z_K approaches X_K . The same nonlinear treatment as Durran
 141 and Gingrich (2014) is applied to our numerical model (Appendix A) to make it more realistic.

¹ Adjacent spectral bands are differed by a constant resolution factor ρ ($\rho = \sqrt{2}$ in this study). Assuming the length scales for all N spectral bands are D_0, D_1, \dots, D_{N-1} , then we have $D_0 = \rho^K D_K$ for each spectral band K .

142 Despite similar forms in Eq. (2), very different error evolutions are found between the 2DV
143 (-3 slope) case versus the SQG (-5/3 slope) case, which are rooted in their striking differences in
144 $C_{K,L}$ (see Table 1 and Table 3 in RS2008) and the corresponding basic-state spectra. Through
145 directly comparing their results with L69, RS2008 concluded that the basic-state energy spectrum
146 was the determining factor in the error-energy evolution. They showed that a -5/3 spectrum would
147 lead to limited predictability under varying dynamical models, while a -3 spectrum may have
148 unlimited predictability when the initial perturbation becomes infinitesimally small.

149

150 **2.a Error growth for the 2DV case (-3 slope)**

151 Figure 2 depicts the error growth in different experiments using the 2DV equation under
152 different initial condition errors. For each experiment, the initial error distribution is set so that the
153 error field is limited to the small scales only. No initial error is added to the spectral bands that
154 have larger length scales than the cutoff spectral band K (cutoff K in Fig. 2a)². For length scales
155 equal to or smaller than spectral band K , their initial error amplitudes are set to their saturation
156 values. Increased K means that the initial error is pushed to smaller scales, and thus its amplitude
157 is exponentially reduced. We can find that, as the cutoff K increases (initial error reduces
158 exponentially), the time needed for the error to saturate at large scales increases linearly (Fig. 2b).
159 Therefore, if we could keep reducing the initial error to smaller and smaller scales, we could keep
160 increasing the error saturation time at large scales without any limitation.

161 This linearity in Fig. 2b also implies that a similar amount of additional predictable time
162 can be gained each time we increase K and therefore limit the initial condition errors to a smaller
163 scale. In other words, error growth at different length scales can be characterized by a single growth

² Given the power-law distribution of the base spectrum, the total initial error will decrease exponentially when we linearly increase K .

164 rate in the 2DV case. Indeed, this uniform error growth rate agrees well with the turbulence
 165 assumption for a flow with a -3 spectrum. More specifically, if A is a measure of the amplitude of
 166 the total error energy, then the evolution of $A(t)$ could be written as

167
$$\frac{d}{dt}A = \alpha A$$

168 assuming α is the error growth rate. The error doubling time τ_D can be then calculated to be $\tau_D =$
 169 $\frac{\ln(2)}{\alpha}$, inversely proportional to the error growth rate α . From the turbulence perspective, the scale-
 170 dependent error doubling time $\tau_D(k)$ is comparable to the eddy turnover time τ_k . τ_k is a
 171 characteristic timescale that is defined as the time taken for a parcel with velocity v_k to move a
 172 distance $1/k$, v_k being the velocity associated with the (inverse) scale k . τ_k can be estimated from
 173 the spectral energy density $E(k)$ (e.g., see Vallis 2006 page 349),

174
$$\tau_k \sim \sqrt{\frac{k^{-3}}{E(k)}}, \quad \tau_D(k) = O(1) \tau_k = D \sqrt{\frac{k^{-3}}{E(k)}} \quad (3)$$

175 where D is a constant on the order of unity. Therefore, we have,

176
$$\alpha = \frac{\ln 2}{\tau_D(k)} = \frac{\ln 2}{D} \sqrt{\frac{E(k)}{k^{-3}}} \quad (4)$$

177 which means that the error growth rate is constant for the 2DV case since $E(k) \propto k^{-3}$. Given this
 178 constant α , the evolution of the total error energy in the 2DV case Z_{total}^{2DV} can be simplified as

179
$$\frac{d}{dt}(Z_{total}^{2DV}) = \alpha Z_{total}^{2DV} \quad (5)$$

180 To include the error saturation effect at later times, we could also add an additional term
 181 as in Durran and Gingrich (2014) to force the time tendency of Z_{total}^{2DV} to decrease smoothly to 0 as
 182 Z_{total}^{2DV} approaches its saturation threshold Z_{sat}^{2DV} . With this adjustment, Eq. (5) becomes

183
$$\frac{d}{dt}(Z_{total}^{2DV}) = \alpha Z_{total}^{2DV} \left(1 - \frac{Z_{total}^{2DV}}{Z_{sat}^{2DV}}\right) \quad (6)$$

184 While this additional term is ad hoc, Eq. 6) captures the error growth behavior reasonably well
 185 (Fig. 2c).

186

187 **2.b Error growth for the SQG case (-5/3 slope)**

188 For the SQG scenario, with a -5/3 slope, the eddy turnover time in Eq. (3) will decrease
 189 exponentially with decreasing length scales. Hence, the gain in extra forecast lead time through
 190 further limiting the initial error to smaller scales will also become exponentially smaller. More
 191 specifically, by increasing cutoff K in the experiments (e.g., for experiments of K=12 and K=13
 192 in Fig.3a), the additional time we gain is simply the time it takes for the initial errors to propagate
 193 back and saturate larger scales (e.g., upscale growth from K=13 to K=12), which is on the order
 194 of the eddy turnover time at that scale ($\tau_{K=12}$). Given exponentially decreasing eddy turnover time
 195 under a -5/3 slope, Fig. 3b shows that the error saturation time at large scales can be extended at
 196 most by a few turnover cycles of the current smallest resolved scale, and it will eventually approach
 197 a near-constant value when the initial condition error approaches zero.

198 This limited predictability for the SQG (-5/3 slope) case could also be explained according
 199 to the turbulence energy cascade theory. After a finite time (on the order of eddy turnover time of
 200 the large-scale end if estimated using the turbulence assumption, more on this in Appendix B),
 201 errors will saturate no matter how small the initial error is. What we care about the most here is
 202 the characteristic finite timescale needed for the errors to saturate. For simplicity, we could write
 203 the error growth equation to be

204
$$\frac{d}{dt}(Z_{total}^{SQG}) = \gamma \quad (7)$$

205 where Z_{total}^{SQG} is the total error for the SQG scenario. Assuming the saturation value of the total
 206 error for the SQG case is Z_{sat}^{SQG} , then the time needed for the error to saturate, according to Eq. (7),
 207 is simply Z_{sat}^{SQG}/γ . γ is the linear error growth rate that may vary with different base-state kinetic
 208 energy spectra and different initial condition errors. We acknowledge this linear error growth is
 209 not very realistic or physical. Yet, it is very simple and provides an estimation for the error
 210 saturation time if we know the value of γ . Similar to Eq. (6), we need to add a saturation term
 211 $\left(1 - \frac{Z_{total}^{SQG}}{Z_{sat}^{SQG}}\right)$ to represent the saturation effect when Z_{total}^{SQG} approaches its saturation value Z_{sat}^{SQG} .
 212 Eq. (7) then becomes

$$213 \quad \frac{d}{dt}(Z_{total}^{SQG}) = \gamma \left(1 - \frac{Z_{total}^{SQG}}{Z_{sat}^{SQG}}\right) \quad (8)$$

214 Figure 3c further verifies that Eq. (8), which simply provides an estimation for the error saturation
 215 time, might not be a bad approximation for the original numerical solution of SQG-like error
 216 dynamics in Eq. (2).

217 Compared to Eqs. (2), Eq. (6) and Eq. (8) are more simplified with known analytical
 218 solutions that are much easier to understand. Moreover, we can estimate the parameters in both
 219 analytical error growth models from their respective basic-state spectrum. For example, α can be
 220 estimated from Eq. (4), whereas γ is related to the eddy turnover time at the large-scale end of the
 221 -5/3 spectrum (more details will be discussed later). Next, we will combine and extend these simple
 222 analytical formulas to further explain the complex multiscale predictability of the real atmosphere.

223

224 **3. The hybrid framework**

225 **3.a The hybrid L69 model**

226 In the real atmosphere, different from either 2DV or SQG, the observed kinetic energy
227 spectra in the upper troposphere in the mid-latitudes usually consist of a -3 spectrum at the synoptic
228 scales and a -5/3 spectrum at meso- and smaller scales (Nastrom and Gage 1985). Therefore, the
229 error growth representative of the observed atmospheric energy spectra would have simultaneous
230 contributions from both the 2DV-like spectrum at synoptic scales and the SQG-like spectrum at
231 smaller scales. The ensemble means of the total error for any spectral bank K can then be written
232 as

233
$$\frac{d^2}{dt^2}(Z_K^{total}) = \frac{d^2}{dt^2}(Z_K^{SQG} + Z_K^{2DV}) \quad (9)$$

234 which is a combination of the two ODEs in Eq. (2) and could be solved numerically as before. We
235 should note here that the nonlinear saturation adjustment, as in Durran and Gingrich (2014), is also
236 added to Eq. 9) when solving this equation. More details on this can be found in Appendix A. Due
237 to this additional *nonlinear* saturation effect, the hybrid model of Eq. (9) cannot be linearly
238 decoupled as the summation of a solution to the SQG-like system and a solution to the 2DV-like
239 system.

240 Figure 4 shows an example of the error evolution solved from Eq. (9), with the saturation
241 terms included. To solve this hybrid model, we first construct a hybrid basic-state energy spectrum
242 similar to the observed spectrum³ and the $C_{K,L}^{2DV}$ and $C_{K,L}^{SQG}$ are then computed based on the
243 respective -3 and -5/3 parts of the kinetic energy spectrum (see Appendix A for more details).
244 Consistent with our schematic shown in Fig. 1, we can find that the errors first grow at small scales
245 that are dominated by the -5/3 slope. These errors at the small scales then start to saturate at
246 increasingly larger scales, and the total error growth will come predominantly from the -3 slope

³ The observed spectrum transition happens at ~400km in the mid-latitudes, corresponding to zonal wavenumber ~70.

247 part of the kinetic energy spectrum after the smaller-scale errors saturate. Moreover, given that
248 the evolution of small-scale errors is dominated by the SQG-like spectra, further reducing initial
249 errors to infinitesimal scales does not help extend the predictability limit.

250

251 **3.3 The analytical equation**

252 To derive an analytical expression for error growth under the observed hybrid spectra, we
253 first separate the total errors \mathcal{E}_t into two parts according to different length scales. The total errors
254 $\mathcal{E}_t = \mathcal{E}_{-5/3} + \mathcal{E}_{-3}$. Here $\mathcal{E}_{-5/3}$ represents the meso-small scales errors in the $-5/3$ slope regime, \mathcal{E}_{-3}
255 represents the synoptic-scale errors in the -3 slope regime,

256 Given the decreasing eddy turnover time within the $-5/3$ slope regime, the meso-small
257 scales errors $\mathcal{E}_{-5/3}$ feature SQG-like upscale growth. At the same time, this upscale growth process
258 would transfer a small portion of these smaller-scale errors into the synoptic scales due to cross-
259 scale nonlinear interaction. While the physical mechanisms of the upscale error propagation in the
260 real atmosphere are still under investigation (Zhang et al. 2007; Bierdel et al. 2018), this effect is
261 included in $C_{K,L}$ terms in the numerical solution. In light of Eq. (7), the evolution of small-scale
262 errors $\mathcal{E}_{-5/3}$ could then be simplified as

263
$$\frac{d}{dt}(\mathcal{E}_{-5/3}) = \gamma' - \Gamma(\mathcal{E}_{-5/3}, \mathcal{E}_{-3}) \quad (10)$$

264 where γ' represents the SQG-like upscale error growth as in Eq. (7) and $\Gamma(\mathcal{E}_{-5/3}, \mathcal{E}_{-3})$ here
265 represents the energy that is transited to the synoptic scales through interactions between the -3
266 slope and the $-5/3$ slope. An additional nonlinear saturation treatment as in Eq. (8) will be
267 introduced later. Given that the -3 slope regime has much weaker cross-scale interaction compared
268 to the $-5/3$ slope regime, it is reasonable that the small-scale errors are dominated by the SQG-like

269 error growth associated with the $-5/3$ slope only, which implies that the γ' term shall dominate the
 270 $\Gamma\left(\mathcal{E}_{-\frac{5}{3}}, \mathcal{E}_{-3}\right)$ term in Eq. (10). The numerical solution in Fig. 4 also suggests that the initial growth
 271 of the errors under a hybrid spectrum is mostly on the small-scale end. Therefore, assuming $\mathcal{E}_{-\frac{5}{3}}^{sat}$
 272 is the saturation error for the $-5/3$ slope regime, we can neglect the $\Gamma\left(\mathcal{E}_{-\frac{5}{3}}, \mathcal{E}_{-3}\right)$ term here and use
 273 $\mathcal{E}_{-\frac{5}{3}}^{sat}/\gamma'$ as a simple estimate of the characteristic time needed for the small scale errors $\mathcal{E}_{-\frac{5}{3}}$ to
 274 saturate.

275 On the other hand, the errors at the synoptic scales will have both the 2DV-like exponential
 276 growth and the contributions from smaller scales. In light of Eq. (5) and the subtraction of the
 277 $\Gamma\left(\mathcal{E}_{-\frac{5}{3}}, \mathcal{E}_{-3}\right)$ term in Eq. (10), the evolution of \mathcal{E}_{-3} could also be approximately written as:

$$279 \quad \frac{d}{dt}(\mathcal{E}_{-3}) = \alpha \mathcal{E}_{-3} + \Gamma\left(\mathcal{E}_{-\frac{5}{3}}, \mathcal{E}_{-3}\right) \quad (11)$$

278 where α is the corresponding error growth rate for the synoptic scales.

280 Combining Eq. (10) and Eq. (11), we can write the evolution for the total errors \mathcal{E}_t ,

$$281 \quad \frac{d}{dt}(\mathcal{E}_t) = \frac{d}{dt}\left(\mathcal{E}_{-\frac{5}{3}} + \mathcal{E}_{-3}\right) = \alpha \mathcal{E}_{-3} + \gamma' \quad (12)$$

282 Again, we can add $\left(1 - \frac{\mathcal{E}_t}{\mathcal{E}_t^{sat}}\right)$ term to describe the saturation of \mathcal{E}_t , similar to Eq. (6) and Eq. (8).

283 The equation then becomes

$$284 \quad \frac{d}{dt}(\mathcal{E}_t) = \left(\alpha \mathcal{E}_{-3} + \gamma'\right) \left(1 - \frac{\mathcal{E}_t}{\mathcal{E}_t^{sat}}\right) \quad (13)$$

285 Note that this equation is very similar to Eq. (1) that is used in Zhang et al. (2019) and
 286 earlier studies (e.g., Dalcher and Kalnay 1987; Magnusson and Källén 2013). The only difference

287 between Eq. (13) and Eq. (1) is that \mathcal{E}_{-3} in Eq. (13) is replaced with total error variance \mathcal{E}_t (E in
 288 Eq. (1)), which allows us to provide an analytical solution to the total error \mathcal{E}_t . Moreover, this
 289 change is a valid approximation of Eq. (13). When \mathcal{E}_t is small, the growth of the errors is
 290 dominated by SQG-like upscale process (the γ' term in Eq. (13) is much larger than $\alpha\mathcal{E}_t$ or $\alpha\mathcal{E}_{-3}$).
 291 Changing \mathcal{E}_{-3} to \mathcal{E}_t only has minor impacts on the results. When \mathcal{E}_t becomes larger, then the
 292 2DV-like growth dominates, \mathcal{E}_{-3} approximates to the value of \mathcal{E}_t due to the relatively small
 293 saturation value of \mathcal{E}_{-3}^{sat} . Therefore, we could approximately replace \mathcal{E}_{-3} with \mathcal{E}_t and define $\varepsilon =$
 294 $\mathcal{E}_t/\mathcal{E}_t^{sat}$, then Eq. (13) becomes

$$295 \frac{d\varepsilon(t)}{dt} = (\alpha\varepsilon(t) + \beta)(1 - \varepsilon(t)) \quad (14)$$

296 where $\varepsilon(t)$ is the normalized error. $\varepsilon=1$ means error reaches a maximum or becomes saturated. α
 297 is the error growth rate and $\beta = \gamma' / \mathcal{E}_t^{sat}$. Figure 4b shows the evolution of normalized total
 298 errors derived by numerically solving saturation adjusted Eq. (9) versus the fitted curve using the
 299 analytical solution derived from Eq. (14). Both solutions agree with each other well. As mentioned
 300 earlier, Eq. (14) was also proposed in earlier studies and shown to be useful. Through simple
 301 derivation and approximation, our contribution here focuses on directly linking β with the intrinsic
 302 upscale error growth (associated with the shallower -5/3 spectrum) under a nearly perfect model
 303 and nearly perfect initial condition scenario.

304 Indeed, similar to α , the parameter β could also be estimated directly from the kinetic
 305 energy spectrum $E(k)$ under our framework. We use β to represent upscale error growth processes
 306 from small convective scales to mesoscales within the -5/3 slope range (stage 1 of Fig. 1). After
 307 some time t_{kt} , the mesoscale error will start to saturate, and the large-scale quasi-exponential error
 308 growth starts to dominate. In Eq. (14), the transition happens when $\alpha\varepsilon(t_{kt}) = \beta$, which implies

309 $\varepsilon(t_{kt}) = \frac{\beta}{\alpha}$ (15)

310 Before t_{kt} , we have

311 $\beta \sim \beta(1 - \varepsilon(t)) < \frac{d\varepsilon(t)}{dt} < \alpha\varepsilon(t) + \beta < 2\beta \quad (\text{when } t < t_{kt}, \varepsilon(t) \text{ is small})$ (16)

312 or,

313 $\frac{d\varepsilon(t)}{dt} \sim \beta, \quad (\text{when } t < t_{kt})$ (17)

314 Combining Eqs. (15) and (17), we have,

315 $t_{kt} = \frac{\varepsilon(t_{kt})}{\frac{d\varepsilon(t)}{dt}} \sim \left(\frac{\left(\frac{\beta}{\alpha} \right)}{\beta} \right) = \frac{1}{\alpha}$ (18)

316 Recall Eqs. (7) and (10), the characteristic time needed for the smaller-scale errors $\mathcal{E}_{\frac{-5}{3}}$ to saturate

317 could also be estimated to be

318 $t_{kt} \sim \frac{\mathcal{E}_{\frac{-5}{3}}^{sat}}{\gamma'} = \frac{\mathcal{E}_{\frac{-5}{3}}^{sat}}{\beta \mathcal{E}_t^{sat}}$ (19)

319 Combining Eq. (18) and Eq. (19), we get

320 $\frac{1}{\alpha} \sim \frac{\mathcal{E}_{\frac{-5}{3}}^{sat}}{\beta \mathcal{E}_t^{sat}}, \quad \text{or} \quad \frac{\beta}{\alpha} \sim \frac{\mathcal{E}_{\frac{-5}{3}}^{sat}}{\mathcal{E}_t^{sat}}$ (20)

321 where

322 $\frac{\mathcal{E}_{\frac{-5}{3}}^{sat}}{\mathcal{E}_t^{sat}} = \frac{\text{saturated kinetic energy of } k^{\frac{-5}{3}} \text{ regime}}{\text{total kinetic energy}}$

323 If the kinetic energy spectrum $E(k)$ is known and fits the canonical atmospheric kinetic energy
 324 spectrum in Fig. 1, then we could define k_t as the wavenumber of the transition scale of the kinetic
 325 energy spectrum. For any wavenumber k that is greater than k_t but smaller than k_s (the

326 wavenumber at the smallest scale resolved), $E(k)$ lies in the $-5/3$ regime. The kinetic energy in the
 327 $-5/3$ slope regime can then be written as $\int_{k_t}^{k_s} E(k) dk$. Similarly, we can also write the total kinetic
 328 energy as the sum of the kinetic energy in the -3 slope regime and the kinetic energy in the $-5/3$
 329 slope regime, hence

$$330 \quad \mathcal{E}_t^{sat} = \int_{k_l}^{k_t} E(k) dk + \int_{k_t}^{k_s} E(k) dk = \int_{k_l}^{k_s} E(k) dk \quad (21)$$

331 where k_l is the wavenumber at the largest scale that a -3 slope might hold. Therefore, we have

$$332 \quad \frac{\beta}{\alpha} \sim \frac{\mathcal{E}_t^{\frac{5}{3}}}{\mathcal{E}_t^{sat}} = \frac{\int_{k_t}^{k_s} E(k) dk}{\int_{k_l}^{k_s} E(k) dk} \quad (22)$$

333 Another easy way to estimate the value of β is by utilizing the schematic shown in Fig. 1. At
 334 transition time t_{kt} , the small-scale errors in the $-5/3$ regime start to saturate, and the large-scale
 335 errors in the -3 regime are still negligible. Therefore the normalized error could be estimated to be

336 $\frac{\mathcal{E}_t^{\frac{5}{3}}}{\mathcal{E}_t^{sat}}$. Combining this with Eq. (15), once again, we have Eq. (22).

337 In light of Eq. (4) and Eq. (22), if the canonical atmospheric kinetic energy spectrum $E(k)$
 338 is known to us, then we can directly estimate the error growth behavior of the system using the
 339 analytical Eq. (14) proposed above, the parameter of this analytical equation can be calculated as
 340 follows:

$$341 \quad \alpha = \frac{\ln 2}{D} \sqrt{\frac{E(k)_{synoptic scale}}{k^{-3}}} , \text{ and } \frac{\beta}{\alpha} = \frac{\int_{k_t}^{k_s} E(k) dk}{\int_{k_l}^{k_s} E(k) dk} \quad (23)$$

342 To sum up, this simple analytical framework that we show is consistent with the error
 343 growth scenario described in Fig. 1. This framework is also well connected to the background

344 kinetic energy spectrum. All parameters in the analytical error growth model can be directly
345 estimated from the energy spectrum of the background flow (Eq. 23).

346

347 **3.3 Verification and predictability limits**

348 It is natural to ask how well our proposed hybrid framework applies to the real atmosphere.
349 For a more direct comparison, simple dimensional results are used here. The largest length scale
350 L_0 (corresponding to wavenumber 1) is chosen to be the circumference of a latitudinal cycle at the
351 mid-latitude (~ 30000 km). The total kinetic energy of the background flow E is estimated to be
352 $150 \text{ m}^2 \text{ s}^{-2}$, as in L69⁴. The units of distance and time are then $L^* = L_0 / 2\pi$ and $T^* =$
353 $L^* / \sqrt{E} \sim 4.25 \text{ day}$, respectively. Therefore $t = 1$ in the equation represents 4.25 days in the real
354 atmosphere.

355 Table 1 shows the predictability limit derived from Eq. (9) of our hybrid framework and
356 the results from L69. For L69, the predictability limit is simply the time when $Z_K(t) = X_K$. We
357 use a 99% threshold for the calculation of the saturation time in our hybrid model under the Durran
358 and Gingrich (2014) adjustment. Clearly, the predictability limits in our hybrid framework are
359 much longer than L69. The reasons for this are twofold. On the one hand, L69 used a -5/3 slope
360 across all the scales. By switching to the -3 slope at the synoptic scales as in the real atmosphere,
361 our hybrid framework has less energy at smaller scales (consistent with observations), which leads
362 to longer eddy turnover time, lower error growth rate, and hence longer predictability limit. On the
363 other hand, the saturation approach we adopted from Durran and Gingrich (2014) will slow down

⁴ L69 use $148 \text{ m}^2 \text{ s}^{-2}$ for total energy. Density weighted total energy from reanalysis data give a strong seasonal variation, ranging from less than $100 \text{ m}^2 \text{ s}^{-2}$ in the summer and more than $200 \text{ m}^2 \text{ s}^{-2}$ in the winter.

364 the error growth rate as the errors approach their saturation threshold, which also will extend the
365 predictability limit.

366 What is more intriguing is that the proposed hybrid framework shows an approximate two-
367 week limit for the synoptic scales at ~ 5000 km. This limit agrees with our current understanding.
368 The same two-week limit for day-to-day weather predictability was first proposed by Lorenz in
369 his early studies by analyzing the operational model products (Lorenz 1973, 1984; Reeves 2014).
370 This limit is also found in today's most sophisticated numerical models (Foude et al. 2013; Judt
371 2018; Zhang et al. 2019). Moreover, the fitted α and β in Fig. 4b also agree well with the number
372 estimated using full-physics convection-permitting global simulation (Fig. 3 in Zhang et al. 2019).
373 While all the predicted limits will vary proportionally with slightly different dimensional analysis
374 (due to uncertainty in total kinetic energy E , for example), the ratio between the saturation times
375 for different length scales will hold under dimensional process. Assuming this 2-week limit for the
376 synoptic weather, then we learn from table 1 that the predictability limit for motions at ~ 1000 km
377 is ~ 7 days, the predictability limit for ~ 500 km is ~ 5 days, and ~ 2 days for 100 km. All these
378 numbers are generally consistent with the findings derived from complex, state-of-the-science
379 modeling experiments in Zhang et al. (2019).

380 As we have mentioned before, we could also estimate the value of α and β from the kinetic
381 energy spectrum directly. Utilizing the airplane data (Marenco et al. 2018), the observed
382 atmospheric spectrum was fitted to a functional form in Lindborg (1999),

383
$$E(k) = d_1 k^{-\frac{5}{3}} + d_2 k^{-3} \quad (24)$$

384 where $d_1 = 9.1 \times 10^{-4}$, $d_2 = 3 \times 10^{-10}$. Note $E(k)$ has units of $\text{m}^3 \cdot \text{s}^{-2}$, k has units of m^{-1} .
385 Therefore d_1 has units of $\text{m}^{4/3} \cdot \text{s}^{-2}$, d_2 has units of s^{-2} . The first term of Eq. (24) describes the
386 shallower -5/3 wavelength range of the observed kinetic energy spectrum, while the second term

387 of Eq. (24) fits the synoptic -3 slope wavelength range. Figure 7 of Lindborg (1999) shows that
 388 this functional form of Eq. (24) works well for horizontal scales smaller than 1000 km when
 389 compared with the airplane observation data. Substituting Eq. (24) into Eq. (3) and assuming D
 390 equals 1.0, we find that the eddy turnover time for the synoptic-scale regime is around 16 hours
 391 that is independent of the wavenumber k . The value of α is then estimated to be around $\frac{1}{1\ day}$
 392 according to Eq. (23). Moreover, from Eq. (24) we can also tell the transition scale $k_t \sim$
 393 $2\pi/400\ km$ (considering $d_1 k_t^{-\frac{5}{3}} = d_2 k_t^{-3}$). Assuming $k_l \sim 2\pi/10000\ km$, $k_s \sim 2\pi/1\ km$, then $\frac{\beta}{\alpha}$
 394 can also be estimated to be on the order of 1/100 using Eq. (23). Hence, for the midlatitudes, an
 395 estimate of α and β from the energy spectrum can be given here,

$$396 \quad \alpha \sim \frac{1}{1\ day}, \quad \frac{\beta}{\alpha} \sim \frac{1}{100}, \quad \beta \sim \frac{\alpha}{100} \sim \frac{1}{15\ min} \quad (25)$$

397 These numbers, again, approximately match what we found in Fig. 4b and in earlier works done
 398 using full-physics models (Zhang et al. 2007, 2019).

399

400 **4. Discussion**

401 This proposed hybrid framework extends and complements earlier studies done by L69
 402 and RS2008. By considering both the synoptic-scale 2DV-like dynamics (-3 slope) and the SQG-
 403 like motions (-5/3 slope) at smaller scales, our framework provides an improved understanding of
 404 the real atmosphere. The dimensional results also confirm that this hybrid framework gives more
 405 realistic estimations of the predictability limit compared to L69. To better understand the error
 406 growth process, we further derive a simple analytical equation for the evolution of the total error
 407 fields, which seems to work well with the idealized and full-physics simulation (Zhang et al. 2019).

408 We note here the canonical atmospheric kinetic energy spectra shown in Fig. 1 is really an
409 idealization of the aircraft observations, which mainly reflect the upper levels in the mid-latitudes.
410 This canonical structure, however, is not always observed in the real atmosphere, which varies
411 with different seasons, latitudes, and height levels. While the -3 slope and -5/3 slope are strictly
412 assumed when building our new hybrid framework, it is easy to find that both numbers are likely
413 not strictly required. On the smaller-scale end, the predictability limit, according to L69, will be
414 limited as long as the slope is shallower than -3. L69 also showed that a -7/3 slope produced very
415 close estimates of the predictability limit to the -5/3 scenario. Switching the slope of the small-
416 scale spectrum from -5/3 to -7/3 or -2 in our hybrid model also has minor effects on the results and
417 the predictability limits at large synoptic scales (not shown). The -3 slope for the synoptic scales
418 plays a more significant role in determining the predictability limits in the sense that a steeper
419 slope (e.g., -4 slope) will lead to longer predictability limits at the largest synoptic scales. As the
420 2DV and SQG dynamics do not support slopes other than -3 and -5/3, the experimental results of
421 changing the slopes to different numbers based on the 2DV/SQG system are therefore less
422 convincing. Yet, based on the eddy turnover time argument, a slightly different slope shall not
423 change the general picture (“two-stage” error growth process) shown in Fig. 1.

424 We shall acknowledge the fact that this newly proposed framework is based on L69.
425 Therefore all the assumptions made in L69 are still used in our current framework, which may
426 pose limitations to the application of the framework. First, the statistical assumptions made in L69,
427 such as homogeneity and isotropy, are not strictly valid for the real atmosphere. These assumptions
428 do not allow any climatological mean motions and properties. It is also well known that systems
429 like mountains and clouds are not randomly distributed. This heterogeneity could also be found in
430 the kinetic energy spectrum of the real atmosphere. A recent global high-resolution simulation

431 shows that the kinetic energy spectrum of the tropical region is different from the canonical
432 spectrum shown in Fig. 1 (Judt 2020), indicating that the tropics may have very different error
433 growth behavior than the mid-latitudes. Second, the specific dynamical equations adopted are also
434 not strictly accurate for the real atmosphere. The two-dimensional vorticity equation is, at best, a
435 very crude approximation for the large-scale dynamics. There is also no evidence showing that the
436 small-scale dynamics could be described using surface quasi-geostrophic equations. Nonetheless,
437 RS2008 has shown that, from the perspective of error growth, the kinetic energy spectrum slope
438 might be more important compared to the dynamical equations used. The reason we choose these
439 equations is also that their spectra are defensible on physical grounds so that we can combine them
440 to construct a hybrid spectrum that is consistent with observational and full-physics modeling
441 studies. With a realistic transition of the kinetic energy spectrum slope, we expect that our hybrid
442 framework would capture the key components of the error growth behavior.

443 We also note here that we were not able to prove the causality between the kinetic energy
444 spectrum and the error growth behavior in our framework. There are distinct differences between
445 correlation and causation. It is also possible that the same physical processes/mechanisms lead to
446 both the transition of the slopes and the error growth behavior simultaneously. For example, it has
447 been hypothesized that moist convection and gravity waves generated by that might be responsible
448 for the $-5/3$ slope at the small-scale end (Sun et al. 2017; Durran and Weyn 2016). Moist physics
449 have also been shown to be the key for the upscale error propagation (Zhang et al. 2003, 2007;
450 Selz and Craig 2015). Hence, moist convection might be the actual source for both the shallower
451 kinetic energy spectrum and the intrinsic predictability limit. If that is the case, slightly perturbing
452 the moist physics scheme or the location of the convective grid will also lead to similar intrinsic
453 predictability limit and error growth processes even in a coarse resolution model that is unable to

454 resolve the transition of the slope (e.g., Tribbia and Baumhefner 2004). Ongoing research is being
455 done to study the underlying physical processes for error growth behavior and will be reported
456 separately in the future.

457 Another limitation of this hybrid framework is the lack of vertical structure in the model.
458 Studies have shown that there is some degree of height dependence in the observed and simulated
459 atmospheric spectra (Judt 2018). More critical differences may be found between the troposphere
460 and the stratosphere (Skamarock et al. 2014). Given the connection between the background
461 kinetic energy spectrum and the error growth behavior, it is very likely that differences in the
462 spectrum could be associated with different predictability limits in the stratosphere and the
463 troposphere. Their coupling will add another layer of complexity to the study (Butler et al. 2019).

464 With all these inadequacies aside, the most promising and encouraging finding of this study
465 is that this simple new theoretical framework, which is built and based on the hybrid kinetic energy
466 spectrum, could capture the error growth behavior found in the complex full-physics simulation.
467 This strong connection between the kinetic energy spectrum and the error growth process might
468 also apply to other turbulent fluids, like the ocean, which is less understood now. Our simple model
469 may provide a new perspective for the predictability of these turbulent fluids and beyond, as will
470 be further examined in future studies.

471 **Appendix A**472 **Hybrid Model details**

473 The derivation of Eq. (2) can be found in detail in L69 and RS2008 and hence will not be repeated
 474 here. It is assumed that all motions may adequately be represented by a relatively short sequence
 475 of spectral bands ($1, 2, \dots, n$), with corresponding nondimensional wavenumber N_1, N_2, \dots, N_n .
 476 Adjacent spectral bands are differed by a resolution factor ρ , so that $N_K = \rho N_{K-1}$. Following L69
 477 and RS2008, $C_{K,L}$ in Eq. (2) is shown to be

$$478 \quad C_{K,L} = \sum_{m=1}^n B_{K-m, L-m} N_m^2 X_m \quad (A1)$$

479 where $B_{K,L}$ is derived to represent the triads interaction between the spectral bands (K, L). X_m is
 480 basic-state kinetic energy integrated over the m th spectral band. If the kinetic energy spectrum
 481 $E(k) \sim k^{-p}$, then it is easy to show that $X_m \sim \rho^{-m(p-1)}$, following the definition of L69. Hence
 482 the impact of basic-state kinetic energy spectrum on error growth is primarily through X_m ,
 483 whereas different dynamical formulation (SQG or 2DV) would lead to different $B_{K,L}$. The results
 484 of RS2008 have shown that X_m is the dominant factor in determining $C_{K,L}$ and error growth
 485 behavior.

486 In L69 and RS2008, the derivation and calculation of $C_{K,L}$ in Eq. (A1) are both based on a
 487 kinetic energy spectrum that processes one constant slope only (-3 or -5/3). To form our consistent
 488 hybrid framework, we assume the observed hybrid spectrum can be represented by two separate
 489 segments,

$$490 \quad X_m = X_m^{2DV} + X_m^{SQG} \quad (A2)$$

491 therefore $C_{K,L}^{2DV}$ and $C_{K,L}^{SQG}$ can be calculated according to X_m^{2DV} and X_m^{SQG} , respectively. The
 492 amplitude of X_m^{2DV} and X_m^{SQG} is set so that $X_m^{2DV} = X_m^{SQG}$ at transitional spectral band m . Moreover,

493 for the convenience of dimensional analysis, the total energy $\sum_{m=1}^n X_m$ is set to be 1. As is shown
494 in RS2008, computation of $B_{K,L}$ get increasingly difficult when $K = L$ and they are both large,
495 due to rapidly decreasing integration area. In this study, a total of 24 spectral bands are used
496 whereas resolution factor ρ is set to $\sqrt{2}$, which means the smallest scale is $\sim 10\text{km}$ after
497 dimensional results.

498 Note we could also compute a single matrix C and hence form an L69-type system of ODEs
499 based on the hybrid spectrum in (A2) under 2DV dynamics (as done in Durran and Gingrich 2014),
500 utilizing the fact that $-5/3$ is also an admissible spectral slope for 2DV if we add small-scale
501 forcing. However, we believe this single matrix assumption is as unphysical as our current
502 approach, if not more. If we examine the derivation process for matrix C in L69, the “inertial
503 range” idea is implicitly adopted, where no energy source/sink is considered during the derivation.
504 Under this “inertial range” idea, it is unlikely for the 2DV system itself to present a hybrid spectrum
505 automatically. It is also unphysical to assume the small-scale motions still obey the 2DV dynamics.
506 Therefore, we choose our current approach in the manuscript, which keeps the consistency
507 between the “inertial range” assumption and the derivation of $C_{K,L}$ terms for different systems.
508 Nonetheless, this should have a minor effect on our results given the results shown in earlier studies
509 (RS2008; Durran and Gingrich 2014)

510 The nonlinearity saturation effect introduced by Durran and Gingrich (2014) is also
511 included in our study. The original set of n second-order differential equations in Eq. (2) can be
512 rewritten to a set of $2n$ first-order differential equations.

513

$$\frac{dZ_K}{dt} = Y_K, \quad \frac{dY_K}{dt} = \sum_{L=1}^n C_{K,L} Z_L \quad (A3)$$

514 An additional saturation term is added to the first equation in (A3) to force the error growth rate
515 smoothly approaches to zero. Hence the system in (A3) becomes

516
$$\frac{dZ_K}{dt} = \left(1 - \frac{Z_K}{X_K}\right) Y_K, \quad \frac{dY_K}{dt} = \sum_{L=1}^n C_{K,L} Z_L \quad (A4)$$

517 These first-order differential equations are the final system we solve numerically. Also, since the
518 solution will asymptotically approach its saturation value under Durran and Gingrich (2014)
519 adjustment, we define the saturation time as the time when Z_K/X_K equal 99% in the numerical
520 solution.

521

522 **Appendix B**

523 **Upscale error cascade in a turbulent fluid**

524 Following the classical homogeneous turbulence approach, an estimate of the time needed
525 for the small-scale error to contaminate the entire system can be derived as follows. Assume errors
526 on a small scale will most contaminate the motion at the next larger scale (e.g., adjacent spectral
527 waveband in our study) in a time scale comparable to the eddy turnover time at that scale $\tau(k)$,
528 defined by

529
$$\tau(k) \sim [v(k)k]^{-1} = [E(k)k^3]^{-\frac{1}{2}} \quad (B1)$$

530 Where k is the horizontal wavenumber, $v(k)$ is the velocity at this horizontal scale, and $E(k)$ is
531 the background kinetic energy spectrum. More generally, errors initially confined to a relatively
532 small scale (wavenumber $2k$) will contaminate a larger scale (wavenumber k) after time $\tau(k)$ in
533 Eq. B1. In other words, the time needed for the error to propagate per unit wavenumber is $\frac{\tau(k)}{k}$.
534 Thus, the total time needed for errors to propagate from the small scale k_s to the large scale k_l
535 could then be estimated as

536
$$T \sim \int_{k_l}^{k_s} \frac{\tau(k)}{k} dk = \int_{k_l}^{k_s} \frac{[E(k)k^3]^{-\frac{1}{2}}}{k} dk \quad (B2)$$

537 Assume the kinetic energy spectrum of the background flow satisfy the power-law form $E \sim Ak^{-p}$,

538 We have,

539
$$T \sim \begin{cases} A^{-\frac{1}{2}} \ln \left(\frac{k_s}{k_l} \right), & p = 3 \\ \frac{2}{A^{\frac{1}{2}}(p-3)} \left(k_s^{\frac{(p-3)}{2}} - k_l^{\frac{(p-3)}{2}} \right), & p \neq 3 \end{cases} \quad (B3)$$

540 If we can reduce our initial error to smaller and smaller scales, then in the limit of $k_s \rightarrow \infty$,

541
$$T \sim \begin{cases} \infty, & p \geq 3 \\ \frac{2}{(3-p)} [Ak_l^{(-p+3)}]^{-\frac{1}{2}} \sim \tau(k_l), & p < 3 \end{cases} \quad (B4)$$

542 Thus T (the predictability limit), the time needed for errors at the smallest scales propagate to the
 543 largest scale, will grow larger and larger for a turbulent system with a steep slope $p \geq 3$. However,
 544 for $p < 3$, predictability time remains finite no matter how we confine the initial error. And this
 545 finite predictability time has the same order of magnitude as the eddy turnover time at the largest
 546 scale k_l .

547

548 **Acknowledgment:**

549 Y. Qiang Sun is funded under award NA18OAR4320123 from the National Oceanic and
550 Atmospheric Administration, U. S. Department of Commerce. Fuqing Zhang is supported by NSF
551 Grants AGS-1305798 and 1712290, and ONR Grant N000140910526. Computing is performed at
552 ECMWF and the Texas Advanced Computer Center. The authors thank Richard Rotunno for
553 providing original code for their model. Discussions with Linus Magnusson and many other
554 researchers on related subjects are beneficial.

555

556 **References**

557 Alley, R. B., K. Emanuel, and F. Zhang, 2019: Advances in Weather Prediction. *Science*, **363**,
558 342-344.

559 Bauer, P., A. Thorpe, and G. Brunet, 2015: The quiet revolution of numerical weather
560 prediction. *Nature*, **525**, 47–55.

561 Bierdel, L., Selz, T. and Craig, G.C., 2018: Theoretical aspects of upscale error growth on the
562 mesoscales: Idealised numerical simulations. *Q. J. Roy. Meteor. Soc.*, **144**, 682-694,
563 doi:10.1002/qj.3236

564 Butler, A., Charlton- Perez, A., Domeisen, D. I. V., Garfinkel, C., Gerber, E. P., Hitchcock, P.,
565 Karpechko, A. Y., Maycock, A. C., Sigmond, M., Simpson, I., & Son, S.- W. (2019). Sub-
566 seasonal predictability and the stratosphere. In *Sub- seasonal to seasonal prediction* (pp. 223–
567 241). B.V.: Elsevier.

568 Callies, J., R. Ferrari, and O. Bühler, 2014: Transition from geostrophic turbulence to inertia–
569 gravity waves in the atmospheric energy spectrum. *Proc. Natl. Acad. Sci. USA*, **111**, 17 033–
570 17 038, doi:<https://doi.org/10.1073/pnas.1410772111>.

571 Charney, J. G., 1971: Geostrophic turbulence. *J. Atmos. Sci.*, **28**, 1087–1095,
572 doi:[https://doi.org/10.1175/1520-0469\(1971\)028<1087:GT>2.0.CO;2](https://doi.org/10.1175/1520-0469(1971)028<1087:GT>2.0.CO;2).

573 Dalcher, A. and E. Kalnay, 1987: Error growth and predictability in operational ECMWF
574 forecasts. *Tellus*, **39**, 474-491.

575 Daley, R., 1981: Predictability experiments with a baroclinic model. *Atmos.–Ocean*, **19**, 77–89.

576 Durran, D.R. and M.A. Gingrich, 2014: Atmospheric Predictability: Why Butterflies Are Not of
577 Practical Importance. *J. Atmos. Sci.*, **71**, 2476-2488

578 Durran, D.R., and J.A. Weyn, 2016: Thunderstorms don't get butterflies. *Bull. Amer. Meteor. Soc.*,
579 **97**, 237–243

580 Froude, L. S. R., L. Bengtsson, and K. I. Hodges, 2013: Atmospheric predictability revisited.
581 *Tellus*, **65**, 19022, <https://doi.org/10.3402/tellusa.v65i0.19022>.

582 Held, I. M., R. T. Pierrehumbert, S. T. Garner, and K. L. Swanson, 1995: Surface quasi-geostrophic
583 dynamics. *J. Fluid Mech.*, **282**, 1–20.

584 Herrera, M. A., I. Szunyogh, and J. Tribbia, 2016: Forecast uncertainty dynamics in the
585 THORPEX Interactive Grand Global Ensemble (TIGGE). *Mon. Wea. Rev.*, **144**, 2739–2766.

586 Judt, F., 2018: Insights into atmospheric predictability through global convection-permitting
587 model simulations. *J. Atmos. Sci.*, **75**, 1477–1497.

588 Judt, F., 2020: Atmospheric Predictability of the Tropics, Middle Latitudes, and Polar Regions
589 Explored through Global Storm-Resolving Simulations. *J. Atmos. Sci.*, **77**, 257–276.

590 Kraichnan, R. H., 1967: Inertial ranges in two-dimensional turbulence. *Phys. Fluids*, **10**, 1417–
591 1423.

592 Leith, C. E., and R. H. Kraichnan, 1972: Predictability of turbulent flows. *J. Atmos. Sci.*, **29**, 1041–
593 1052.

594 Lindborg, E., 1999: Can the atmospheric kinetic energy spectrum be explained by two-
595 dimensional turbulence? *J. Fluid Mech.*, **388**, 259–288.

596 Lorenz, E. N., 1969: Predictability of a flow which possesses many scales of motion. *Tellus*, **21**,
597 289–307.

598 Lorenz, E. N., 1973: On the existence of extended range predictability. *J. Appl. Meteor.*, **12**, 543–
599 546

600 Lorenz, E. N., 1982: Atmospheric predictability experiments with a large numerical model. *Tellus*,
601 **34**, 505–513, <https://doi.org/10.3402/tellusa.v34i6.10836>.

602 Lorenz, E. N., 1984: Estimates of atmospheric predictability in the medium range. *Predictability*
603 *of Fluid Motions: A.I.P. Conference Proceedings*, No. **106**, American Institute of Physics, La
604 Jolla Institute, 133–140.

605 Magnusson, L., and E. Källén, 2013: Factors influencing skill improvements in the ECMWF
606 forecasting system. *Mon. Wea. Rev.*, **141**, 3142–3153.

607 Marenco, A., and Coauthors, 1998: Measurement of ozone and water vapor by Airbus in-service
608 aircraft: The MOZAIC airborne program, an overview. *J. Geophys. Res.*, **103**, 25631–25642.

609 Nastrom, G., and K. Gage, 1985: A climatology of atmospheric wavenumber spectra of wind and
610 temperature observed by commercial aircraft. *J. Atmos. Sci.*, **42**, 950–960.

611 Palmer, T., A. Döring, and G. Seregin, 2014: The real butterfly effect. *Nonlinearity*, **27**, R123–
612 R141.

613 Reeves, R. W, 2014: Edward Lorenz revisiting the limits of predictability and their implications:
614 an interview from 2007. *Bull. Am. Meteor. Soc.* **95**, 681–687.

615 Rossby, C.-G., 1939: Relation between variations in the intensity of the zonal circulation of the
616 atmosphere and the displacements of the semi-permanent centers of action. *J. Mar. Res.*, **2**,
617 38-55.

618 Rotunno, R., and C. Snyder, 2008: A generalization of Lorenz’s model for the predictability of
619 flows with many scales of motion. *J. Atmos. Sci.*, **65**, 1063–1076.

620 Selz, T., and G. C. Craig, 2015: Upscale error growth in a high-resolution simulation of a
621 summertime weather event over Europe. *Mon. Wea. Rev.*, **143**, 813–827,
622 doi:<https://doi.org/10.1175/MWR-D-14-00140.1>.

623 Skamarock, W. C., 2004: Evaluating mesoscale NWP models using kinetic energy spectra. *Mon.*
624 *Wea. Rev.*, **132**, 3019–3032, doi:<https://doi.org/10.1175/MWR2830.1>.

625 Skamarock, W. C., S.-H. Park, J. B. Klemp, and C. Snyder, 2014: Atmospheric kinetic energy
626 spectra from global high-resolution nonhydrostatic simulations. *J. Atmos. Sci.*, **71**, 4369–
627 4381, doi:<https://doi.org/10.1175/JAS-D-14-0114.1>.

628 Smagorinsky, J., 1969: Problems and promises of deterministic extended range forecasting. *Bull.*
629 *Amer. Meteor. Soc.*, **50**, 286–311.

630 Sun, Y. and F. Zhang, 2016: Intrinsic versus practical limits of atmospheric predictability and the
631 significance of the butterfly effect. *J. Atmos. Sci.*, **73**, 1419–1438.

632 Sun, Y. Q., R. Rotunno, and F. Zhang, 2017: Contributions of moist convection and internal
633 gravity waves to building the atmospheric $-5/3$ kinetic energy spectra. *J. Atmos. Sci.*, **74**, 185–
634 201, doi:<https://doi.org/10.1175/JAS-D-16-0097.1>.

635 Tribbia, J. J., and D. P. Baumhefner, 2004: Scale interactions and atmospheric predictability: An
636 updated perspective. *Mon. Wea. Rev.*, **132**, 703–713

637 Tulloch R, Smith KS, 2006: A theory for the atmospheric energy spectrum: Depth-limited
638 temperature anomalies at the tropopause. *Proc Natl Acad Sci USA*. **103**(40), 14690–14694.

639 Vallis, G. K., 2006: *Atmospheric and Oceanic Fluid Dynamics*. Cambridge University Press, 745
640 pp.

641 Waite, M. L., and C. Snyder, 2013: Mesoscale energy spectra of moist baroclinic waves. *J. Atmos.*
642 *Sci.*, **70**, 1242–1256

643 Žagar, N., M. Horvat, Ž. Zaplotnik, and L. Magnusson, 2017: Scale-dependent estimates of the
644 growth of forecast uncertainties in a global prediction system. *Tellus*, **69A**, 1287492,
645 <https://doi.org/10.1080/16000870.2017.1287492>.

646 Zhang, F., C. Snyder, and R. Rotunno, 2003: Effects of moist convection on mesoscale
647 predictability. *J. Atmos. Sci.* **60**, 1173-1185.

648 Zhang F., N. Bei, R. Rotunno, C. Snyder, C. C. Epifanio, 2007: Mesoscale predictability of moist
649 baroclinic waves: Convection-permitting experiments and multistage error growth dynamics.
650 *J. Atmos. Sci.* **64**, 3579–3594.

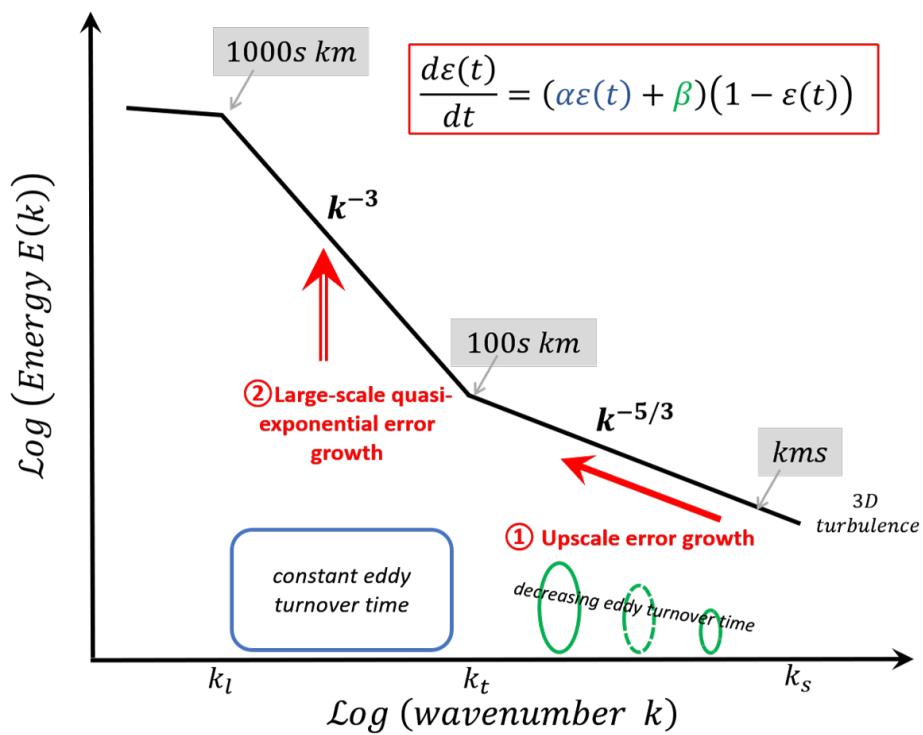
651 Zhang, F., Y.Q. Sun, L. Magnusson, R. Buizza, S.-J. Lin, J.-H. Chen and K. Emanuel, 2019: What
652 is the Predictability Limit of Midlatitude Weather? *J. Atmos. Sci.* **76**, 1077-1091.
653 doi:10.1175/JAS-D-18-0269.1

654

655

656 **Figure Legends**

657

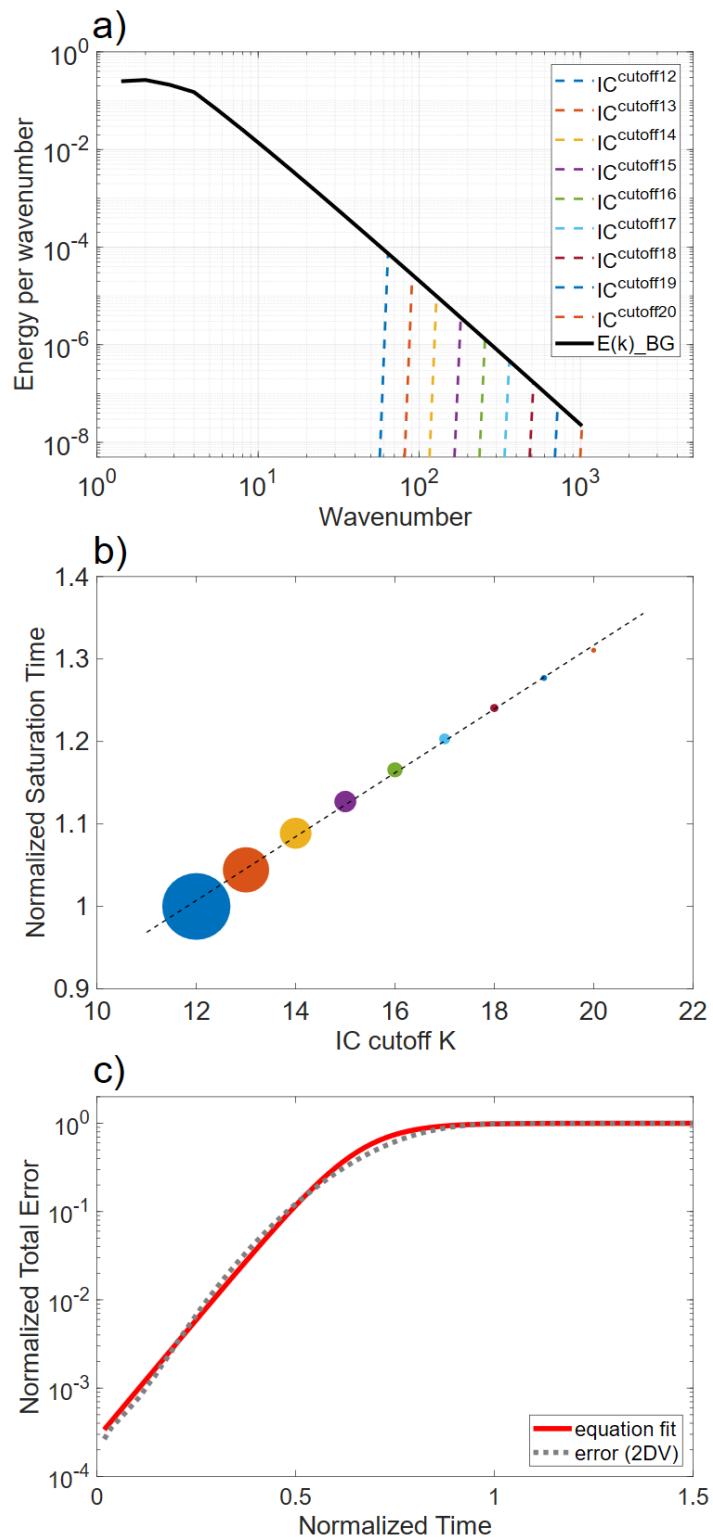


658

659

660 **Figure 1. A schematic diagram for the canonical atmospheric kinetic energy spectrum (adopted**
 661 **from Skamarock et al. 2014) and illustration of our proposed two-stage error growth**
 662 **hypothesis:** ① the initial small-amplitude error triggers error growth which saturates first at the
 663 smallest scales and subsequently propagates upscale at the wavelength range with a shallower -
 664 5/3 slope; and ② quasi-exponential error growth until saturation at synoptic scales in the
 665 wavelength range with a -3 slope. See details on the scales and equations in the text.

666

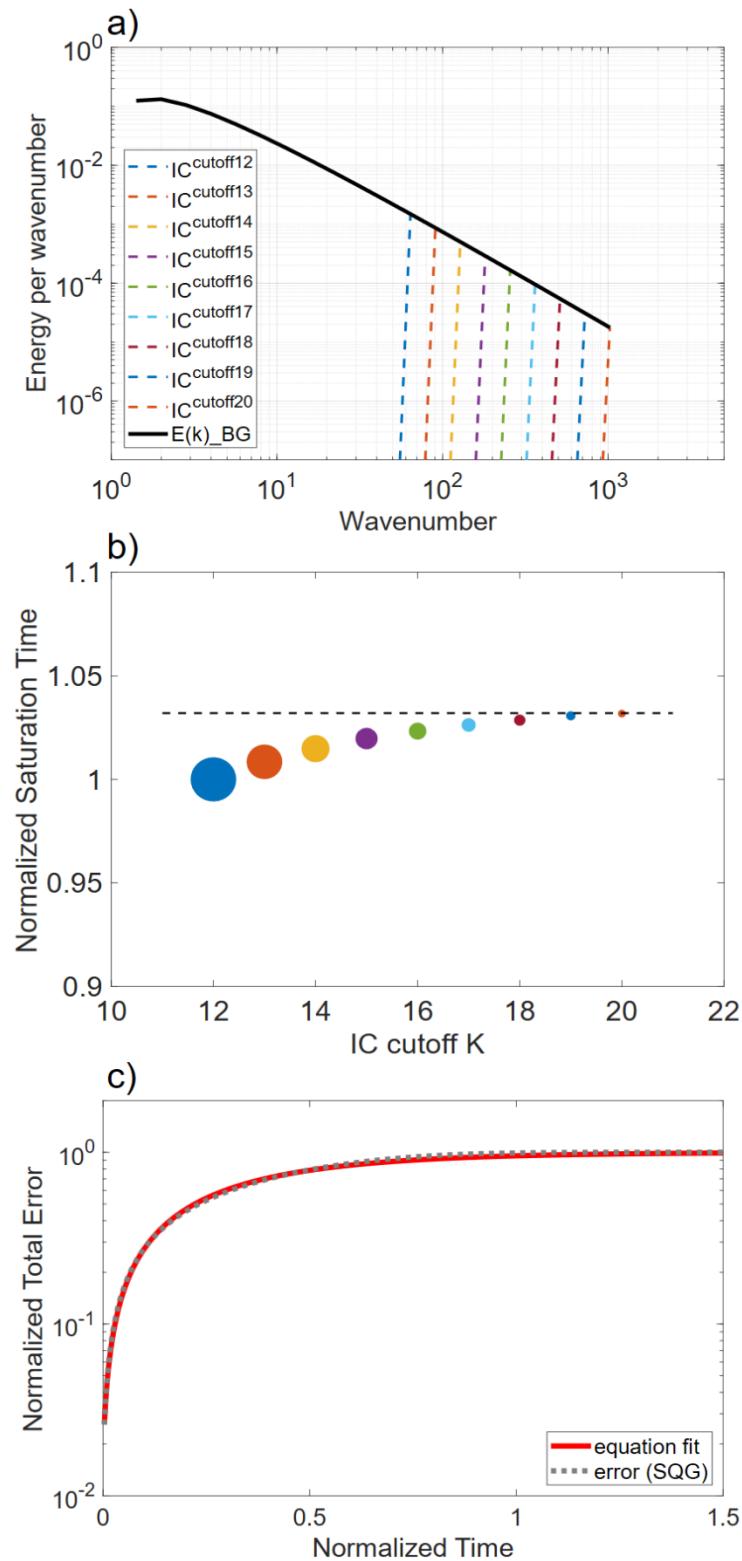


667

668 **Figure 2. Predictability limit for the 2DV case with a -3 slope.**

669 **a)** Initial condition errors setup for our experiments, with the cutoff spectral band K increasing
670 from 12 to 20. **b)** corresponding normalized error saturation time at large scales (\sim 5000km).
671 The size of the circle is symbolic of the amplitude of the initial condition error. The dashed line is
672 the linear fit of the results. **c)** comparison between numerically solved Eq. 2 (dash line) and fitted
673 results (red line) using Eq. 6 under 2DV dynamics.

674

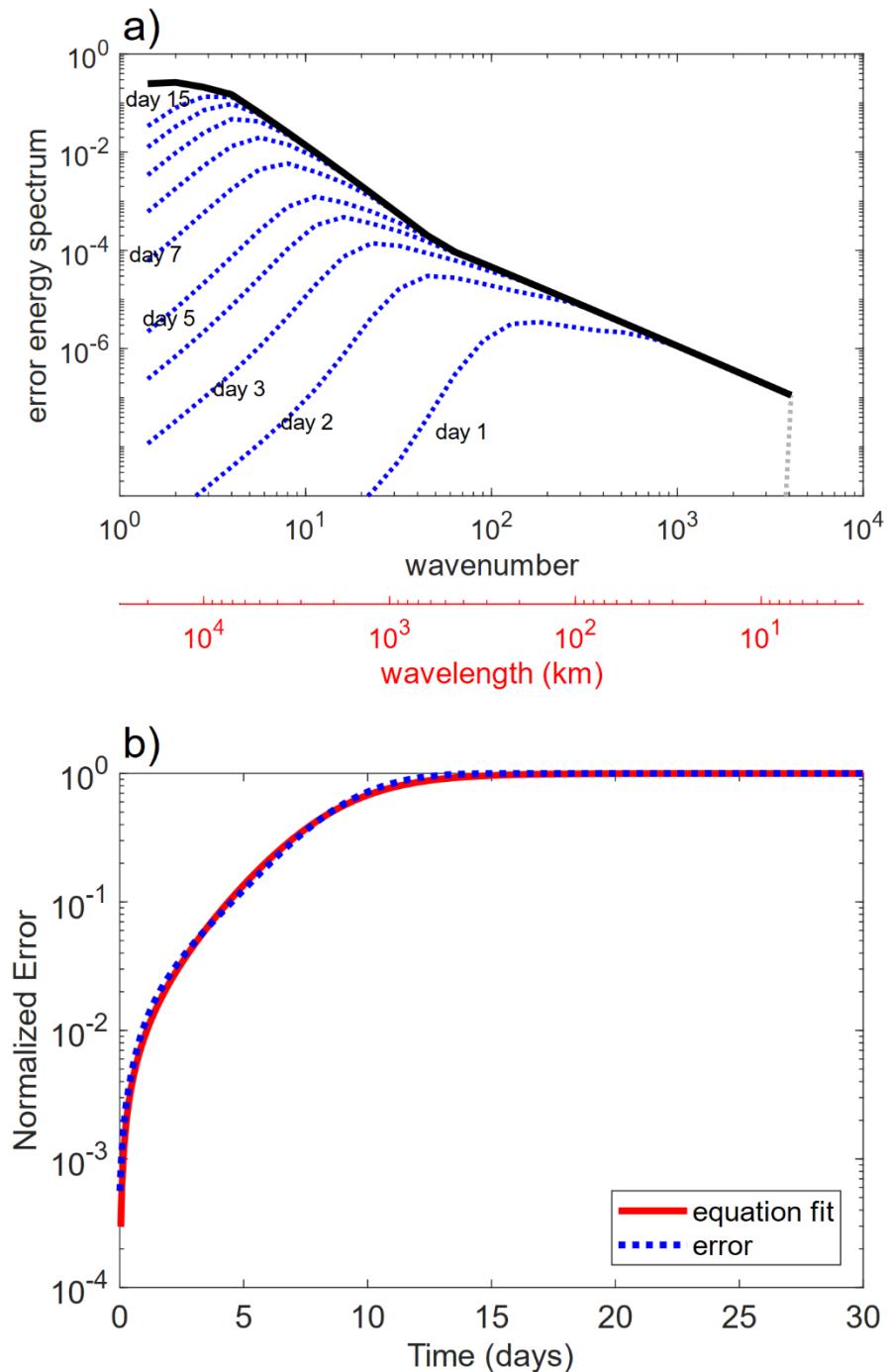


675

676 **Figure 3. Predictability limit for the SQG case with a $-5/3$ slope (otherwise the same as in Figure**
 677 **2).** **a)** Initial condition errors setup for our experiments. **b)** corresponding normalized error

678 saturation time at large scales (\sim 5000km). With reduced initial condition error (increased IC
679 cutoff number), error saturation time in SQG approaches to a fixed value (dash line), and thus
680 predictability is intrinsically limited. **c)** comparison between numerically solved Eq. (2) (dash line)
681 and fitted results (red line) using Eq. (8) under SQG dynamics.

682



683

684 **Figure 4. Error evolution in our new hybrid-model framework.** **a)** error kinetic energy spectral
 685 density (blue dash lines) as a function of wavenumber k at dimensional time $t = 1, 2, 3, 4, 5, 7, 9,$
 686 $11, 13, 15$ days numerically solved from saturation-adjusted Eq. (9) along with the base state
 687 background spectrum (black line). **b)** total error energy (blue dash line) integrated over all the

688 spectral bands from the solution of saturation adjusted Eq. (9) versus the fitted total error

689 evolution (red line) using our analytically derived error model (Eq. 14). The fitted $\alpha =$

690 0.49 day^{-1} , $\frac{\beta}{\alpha} = 0.014$.

691

692 **TABLE LIST**

693

694 **Table 1.** Range of predictability limits for different length scales calculated using the Lorenz-69
695 model versus our new, more realistic hybrid-model framework.

696

<i>Length Scale</i>	<i>Lorenz-69</i> <i>Saturation</i> <i>time</i>	<i>Our hybrid model</i> <i>Saturation time</i>
10000 km	5.6 days	19.2 days
5000 km	3.2 days	13.8 days
2500 km	1.8 days	10.4 days
1250 km	1.1 days	7.9 days
625 km	15.7 hours	5.5 days
313 km	9.5 hours	4.0 days
156 km	5.8 hours	2.8 days
78 km	3.6 hours	1.9 days
39 km	2.2 hours	1.2 days

697

698

699

700