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 16 

ABSTRACT 17 

  18 

 Here we present a new theoretical framework that connects the error growth behavior in 19 

numerical weather prediction (NWP) with the atmospheric kinetic energy spectrum. Building on 20 

previous studies, our newly proposed framework applies to the canonical observed atmospheric 21 

spectrum that has a -3 slope at synoptic scales and a -5/3 slope at smaller scales.  Based on this 22 

realistic hybrid energy spectrum, our new experiment using hybrid numerical models provides 23 

reasonable estimations for the finite predictable ranges at different scales. We further derive an 24 

analytical equation that helps understand the error growth behavior. Despite its simplicity, this 25 

new analytical error growth equation is capable of capturing the results of previous comprehensive 26 

theoretical and observational studies of atmospheric predictability. The success of this new 27 

theoretical framework highlights the combined effects of quasi-two-dimensional dynamics at 28 

synoptic-scales (-3 slope) and three-dimensional turbulence-like small-scale chaotic flows (-5/3 29 

slope) in dictating the error growth. It is proposed that this new framework could serve as a guide 30 

for understanding and estimating the predictability limit in the real world.  31 
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\body 32 

1.  Introduction 33 

 In his pioneering work (Lorenz 1969, hereafter L69), Lorenz first showed that a flow with 34 

many length scales, like the atmosphere, might have an intrinsic finite range of predictability. 35 

Although Lorenz studied the simple 2D vorticity turbulence model in his paper, the conclusion of 36 

his study is profound and intriguing. Follow-up studies using more sophisticated models (e.g., 37 

Leith and Kraichnan 1972; Daley 1981; Foude et al. 2013; Sun and Zhang 2016; Judt 2018; Zhang 38 

et al. 2019) further supported Lorenz’ results and the concept of “butterfly effect” has been widely 39 

accepted since then. Butterfly effect depicts that even the smallest unresolved errors by numerical 40 

models will propagate upscale and ruin our practical weather prediction at the synoptic-scale after 41 

a finite length of time (Palmer et al. 2014). Inspired by L69, estimations of this finite range of 42 

predictability has since been done extensively (e.g., Smagorinsky 1969; Lorenz 1982; Foude et al. 43 

2013). For the synoptic weather system in mid-latitudes, more recent studies agree with Lorenz 44 

that this finite number should be around two weeks (L69; Reeves 2014; Zhang et al. 2019; Judt 45 

2020). With this intrinsic predictability limit, current operational forecasts still have quite some 46 

room for improvement.  In general, our operational weather forecast is skillful for less than 10 47 

days in the mid-latitudes despite decades of “quiet revolution” (Bauer et al. 2015; Alley et al. 48 

2019). To push our numerical weather prediction (NWP) skill closer to its intrinsic limit, we must 49 

understand further the error growth dynamics that limit NWP.  50 

 Over the years, conceptually and numerically simple turbulence frameworks, as used in 51 

L69, have contributed a lot to our understanding. In a turbulent fluid, the inverse cascade rate of 52 

the errors from small to large scales, which is the essence of the “butterfly effect,” is noted to be 53 

intimately connected with the eddy turnover timescales that are determined by the slope of the 54 
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background energy spectrum of the fluid. For a flow with energy spectra of power-law behavior 55 

(k-p), previous studies find that if the slope p < 3, the eddy doubling time decreases with scale and 56 

the upscale spreading of initially small-scale error provides an intrinsical limit to the predictability 57 

of such flows; if p ≥ 3, it is concluded that there is no such a limit (L69; Rotunno and Snyder 2008, 58 

hereafter RS2008).  59 

 Most of these studies mentioned above generally assume one single slope for the 60 

atmosphere. However, our real world is more complicated. Instead of one constant 𝑝 , 61 

observational studies (e.g., Nastrom and Gage 1985) indicate that the energy spectra in the 62 

atmosphere show a distinct transition from a slope of around -3 at synoptic scales (~1000s km) to 63 

a shallower -5/3 slope at mesoscales (~100s km) in the mid-latitudes.  Numerous realistic 64 

simulations, using both regional (Skamarock 2004; Waite and Snyder 2013; Sun and Zhang 2016) 65 

and global high-resolution model (Skamarock et al. 2014), also successfully reproduce the 66 

transition of the slope, consistent with the observational estimates.  The mechanism(s) that 67 

determine the slopes of the kinetic energy spectra are still under debate (Charney 1971; Tulloch 68 

and Smith 2006; Callies et al. 2014). Nevertheless, according to L69 and RS2008, we would expect 69 

an intrinsic predictability limit for our atmosphere due to this shallower slope at the small-scale 70 

end of the kinetic energy spectra. 71 

 Based on the observed kinetic energy spectra, we here propose a novel and simple 72 

theoretical framework for understanding error growth from minute perturbations in the real 73 

atmosphere. This framework features a “two-stage” error growth process, which connects to the 74 

two different slopes of the observed kinetic energy spectra.  Figure 1 shows a conceptual schematic 75 

for the canonical atmospheric kinetic energy spectrum and the proposed error growth behavior 76 

linked to this spectrum. An initially minute error will, in the first stage, grow much faster at small 77 
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scales due to decreasing eddy turnover time within the -5/3 slope range. Within an inherently finite 78 

time, these small-scale errors within the -5/3 slope wavelength range will start to saturate while 79 

projecting to larger and eventually synoptic scales. In the second stage, the errors at synoptic scales 80 

(corresponding to wavelength range within the -3 slope) will grow quasi-exponentially until 81 

saturation due to near-constant eddy turnover time in this wavelength range. 82 

 With this conceptual picture, the next step is to quantify the growth of the errors under a 83 

simple analytical framework. As a tool to help our understanding of complex and chaotic nonlinear 84 

interaction, simple analytic equations have been used along with the earlier numeric studies on 85 

error growth dynamics. Lorenz (1982) showed that the growth of error variance E could be 86 

reasonably well parameterized by a simple exponential growth equation. Dalcher and Kalnay 87 

(1987) proposed a modified version based on Lorenz (1982) to describe the evolution of the error 88 

variance E 89 

𝑑

𝑑𝑡
(𝐸) =  (𝛼𝐸 + 𝑆) (1 −

𝐸

 𝐸∞
)                 (1) 90 

by introducing an external error source S. This equation is adopted and widely used in studies of 91 

forecast uncertainty of operational weather prediction (e.g., Magnusson and Kallen 2013; Herrera 92 

et al. 2016; Žagar et al. 2017). However, very limited analytical work focused on the intrinsic 93 

predictability limit of weather systems where the external error source is eliminated. 94 

 Selz and Craig (2015) fitted the errors in their “identical twin experiments” to an analytical 95 

equation they constructed. The reasonable agreement in their study between the full-physics model 96 

and simple analytical equations implies that we may also use analytical equations to investigate 97 

the intrinsic predictability limit. More recently, Zhang et al. (2019) found that Eq. (1) well captured 98 

the evolution of the intrinsic error dynamics in the full-physics model. However, both studies 99 

mentioned here did not provide detailed explanations behind this consistency between the results 100 
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of complex full-physics atmospheric models and simple analytical equations considered. This 101 

paper serves as an extension of RS2008 and Zhang et al. (2019) and aims to provide a framework 102 

that helps us further understand the connection of error growth behavior, the background kinetic 103 

energy spectrum of the real atmosphere, and the detailed analytical equation proposed. In section 104 

2, we first revisit L69’s earlier model on error growth for different kinetic energy spectrum slopes. 105 

Based on the results of the L69 model, we then propose our hybrid framework for the real 106 

atmosphere with hybrid kinetic energy spectra in section 3. A simple analytical equation is also 107 

derived in section 3 to further our understanding of the atmospheric predictability limit in the real 108 

atmosphere. A brief discussion is given in section 4.  109 

 110 

2. Revisiting the Lorenz (1969) model 111 

 The original model of L69 was devised to study the error growth and predictability of an 112 

atmospheric-like fluid system with homogeneous isotropic turbulence using a two-dimensional 113 

vorticity (2DV) equation.  In this model, Lorenz assumed power-law behavior (k-p) for the basic-114 

state kinetic energy with specific considerations dedicated to the scenarios with p = 5/3, 7/3, and 115 

3, respectively. While these calculations are robust, it is found that the downscale energy spectral 116 

slope of a large-scale forcing for the 2DV equation is -3 (Kraichnan 1967). Given that synoptic-117 

scale forcing is the main driver for weather systems in the mid-latitudes, the physically consistent 118 

choice for the L69 model, therefore, is p=3, which raises concerns about his results for other 119 

scenarios. The model in L69 is elegantly generalized in RS2008 to include a surface quasi-120 

geostrophic (SQG) equation, which is known to have a -5/3 energy spectrum analogous to 3-121 

dimensional turbulence. Our study will adopt this generalized model in RS2008 and further 122 

illustrate different error growth scenarios in 2DV (-3 slope) and SQG (-5/3 slope). 123 
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 The evolutions of the errors for the 2DV and SQG systems are detailed in L69 and RS2008. 124 

We here briefly summarize their equations as a set of second-order initial-value problems: 125 

  (

𝑑2

𝑑𝑡2
(𝑍𝐾

2𝐷𝑉) = ∑ 𝐶𝐾,𝐿
2𝐷𝑉𝑍𝐿

2𝐷𝑉𝑁
𝐿=1

𝑑2

𝑑𝑡2
(𝑍𝐾

𝑆𝑄𝐺) = ∑ 𝐶𝐾,𝐿
𝑆𝑄𝐺𝑍𝐿

𝑆𝑄𝐺𝑁
𝐿=1

)  (2) 126 

where 𝐶𝐾,𝐿 is a constant coefficient matrix derived to reflect the interactions between different 127 

length scales (K and L represent different spectral bands in the wavenumber space), N is the total 128 

number of spectral bands considered in the model 1 . The structure and amplitude of 𝐶𝐾,𝐿  is 129 

determined by the dynamic model and, more importantly, by the background kinetic energy 130 

spectrum of the fluids (refer to L69 and RS2008). 𝑍𝐾2𝐷𝑉 and 𝑍𝐾
𝑆𝑄𝐺   are the ensemble means of the 131 

perturbation kinetic energy (error fields) for the 2DV and SQG equations, respectively, integrated 132 

over any given spectral band K. For each spectral band K, errors with different length scales 133 

(spectral bands) also contribute to the evolution of 𝑍𝐾2𝐷𝑉  and 𝑍𝐾
𝑆𝑄𝐺 . In addition, both L69 and 134 

RS2008 also introduce nonlinear saturation treatment to their equations by directly letting 𝑍𝐾  135 

fixed at its corresponding background kinetic energy 𝑋𝐾  if  𝑍𝐾(𝑡) ≥ 𝑋𝐾  in the course of the 136 

integration.  This treatment makes no change to the growth rate of 𝑍𝐾 until it reaches saturation. 137 

To better describe the gradual decrease in the growth rate of  𝑍𝐾 as it approaches saturation, Durran 138 

and Gingrich (2014) introduces one additional term (1 − 𝑍𝐾 𝑋𝐾⁄ ) to force the time tendencies of 139 

the 𝑍𝐾 smoothly asymptote to zero as 𝑍𝐾 approaches XK. The same nonlinear treatment as Durran 140 

and Gingrich (2014) is applied to our numerical model (Appendix A) to make it more realistic. 141 

                                                           
1 Adjacent spectral bands are differed by a constant resolution factor 𝜌 (𝜌 = √2 in this study). Assuming the 

length scales for all N spectral bands are 𝐷0, 𝐷1, … 𝐷𝑁−1, then we have 𝐷0 = 𝜌𝐾𝐷𝐾  for each spectral band K. 

Accepted for publication in Journal of the Atmospheric Sciences. DOI10.1175/JAS-D-19-0271.1.



Page | 8  
 

 Despite similar forms in Eq. (2), very different error evolutions are found between the 2DV 142 

(-3 slope) case versus the SQG (-5/3 slope) case, which are rooted in their striking differences in 143 

𝐶𝐾,𝐿 (see Table 1 and Table 3 in RS2008) and the corresponding basic-state spectra.  Through 144 

directly comparing their results with L69,  RS2008 concluded that the basic-state energy spectrum 145 

was the determining factor in the error-energy evolution. They showed that a -5/3 spectrum would 146 

lead to limited predictability under varying dynamical models, while a -3 spectrum may have 147 

unlimited predictability when the initial perturbation becomes infinitesimally small.  148 

 149 

2.a Error growth for the 2DV case (-3 slope)   150 

 Figure 2 depicts the error growth in different experiments using the 2DV equation under 151 

different initial condition errors. For each experiment, the initial error distribution is set so that the 152 

error field is limited to the small scales only.  No initial error is added to the spectral bands that 153 

have larger length scales than the cutoff spectral band K (cutoff K in Fig. 2a)2. For length scales 154 

equal to or smaller than spectral band K, their initial error amplitudes are set to their saturation 155 

values. Increased 𝐾 means that the initial error is pushed to smaller scales, and thus its amplitude 156 

is exponentially reduced. We can find that, as the cutoff 𝐾  increases (initial error reduces 157 

exponentially), the time needed for the error to saturate at large scales increases linearly (Fig. 2b). 158 

Therefore, if we could keep reducing the initial error to smaller and smaller scales, we could keep 159 

increasing the error saturation time at large scales without any limitation. 160 

 This linearity in Fig. 2b also implies that a similar amount of additional predictable time 161 

can be gained each time we increase K and therefore limit the initial condition errors to a smaller 162 

scale. In other words, error growth at different length scales can be characterized by a single growth 163 

                                                           
2 Given the power-law distribution of the base spectrum, the total initial error will decrease exponentially when 

we linearly increase K.      
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rate in the 2DV case.  Indeed, this uniform error growth rate agrees well with the turbulence 164 

assumption for a flow with a -3 spectrum. More specifically, if A is a measure of the amplitude of 165 

the total error energy, then the evolution of 𝑨( 𝑡) could be written as     166 

𝑑

𝑑𝑡
𝑨 =  𝛼𝑨 167 

assuming 𝛼 is the error growth rate. The error doubling time 𝜏𝐷 can be then calculated to be 𝜏𝐷 =168 

ln(2)

𝛼
 , inversely proportional to the error growth rate 𝛼. From the turbulence perspective, the scale-169 

dependent error doubling time 𝜏𝐷(𝑘)  is comparable to the eddy turnover time 𝜏𝑘 . 𝜏𝑘  is a 170 

characteristic timescale that is defined as the time taken for a parcel with velocity 𝑣𝑘 to move a 171 

distance 1 𝑘⁄ , 𝑣𝑘 being the velocity associated with the (inverse) scale 𝑘. 𝜏𝑘 can be estimated from 172 

the spectral energy density E(k) (e.g., see Vallis 2006 page 349), 173 

𝜏𝑘 ~ √
𝑘−3

𝐸(𝑘)
 ,   𝜏𝐷(𝑘) = 𝑂(1) 𝜏𝑘 =  𝐷√

𝑘−3

𝐸(𝑘)
              (3) 174 

where 𝐷 is a constant on the order of unity. Therefore, we have, 175 

𝛼 =
𝑙𝑛2

𝜏𝐷(𝑘)
=
𝑙𝑛2

𝐷
 √
 𝐸(𝑘)

𝑘−3
             (4) 176 

which means that the error growth rate is constant for the 2DV case since 𝐸(𝑘) ∝  𝑘−3. Given this 177 

constant 𝛼, the evolution of the total error energy in the 2DV case 𝑍𝑡𝑜𝑡𝑎𝑙2𝐷𝑉  can be simplified as  178 

𝑑

𝑑𝑡
(𝑍𝑡𝑜𝑡𝑎𝑙

2𝐷𝑉 ) =   𝛼𝑍𝑡𝑜𝑡𝑎𝑙
2𝐷𝑉            (5) 179 

 To include the error saturation effect at later times, we could also add an additional term 180 

as in Durran and Gingrich (2014) to force the time tendency of 𝑍𝑡𝑜𝑡𝑎𝑙2𝐷𝑉  to decrease smoothly to 0 as 181 

𝑍𝑡𝑜𝑡𝑎𝑙
2𝐷𝑉  approaches its saturation threshold 𝑍𝑠𝑎𝑡2𝐷𝑉.  With this adjustment,  Eq. (5) becomes 182 
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𝑑

𝑑𝑡
(𝑍𝑡𝑜𝑡𝑎𝑙

2𝐷𝑉 ) =   𝛼𝑍𝑡𝑜𝑡𝑎𝑙
2𝐷𝑉 (1 −

𝑍𝑡𝑜𝑡𝑎𝑙
2𝐷𝑉

 𝑍𝑠𝑎𝑡
2𝐷𝑉)        (6) 183 

While this additional term is ad hoc, Eq. 6) captures the error growth behavior reasonably well 184 

(Fig. 2c).  185 

  186 

2.b Error growth for the SQG case (-5/3 slope)  187 

 For the SQG scenario, with a -5/3 slope, the eddy turnover time in Eq. (3) will decrease 188 

exponentially with decreasing length scales. Hence, the gain in extra forecast lead time through 189 

further limiting the initial error to smaller scales will also become exponentially smaller. More 190 

specifically, by increasing cutoff K in the experiments (e.g., for experiments of K=12 and K=13 191 

in Fig.3a), the additional time we gain is simply the time it takes for the initial errors to propagate 192 

back and saturate larger scales (e.g., upscale growth from K=13 to K=12), which is on the order 193 

of the eddy turnover time at that scale (𝜏𝐾=12). Given exponentially decreasing eddy turnover time 194 

under a -5/3 slope, Fig. 3b shows that the error saturation time at large scales can be extended at 195 

most by a few turnover cycles of the current smallest resolved scale, and it will eventually approach 196 

a near-constant value when the initial condition error approaches zero. 197 

 This limited predictability for the SQG (-5/3 slope) case could also be explained according 198 

to the turbulence energy cascade theory. After a finite time (on the order of eddy turnover time of 199 

the large-scale end if estimated using the turbulence assumption, more on this in Appendix B), 200 

errors will saturate no matter how small the initial error is. What we care about the most here is 201 

the characteristic finite timescale needed for the errors to saturate.  For simplicity, we could write 202 

the error growth equation to be 203 

𝑑

𝑑𝑡
(𝑍𝑡𝑜𝑡𝑎𝑙

𝑆𝑄𝐺 ) =  𝛾                     (7) 204 

Accepted for publication in Journal of the Atmospheric Sciences. DOI10.1175/JAS-D-19-0271.1.



Page | 11  
 

where 𝑍𝑡𝑜𝑡𝑎𝑙
𝑆𝑄𝐺  is the total error for the SQG scenario. Assuming the saturation value of the total 205 

error for the SQG case is 𝑍𝑠𝑎𝑡
𝑆𝑄𝐺 , then the time needed for the error to saturate, according to Eq. (7),  206 

is simply 𝑍𝑠𝑎𝑡
𝑆𝑄𝐺/𝛾.  𝛾 is the linear error growth rate that may vary with different base-state kinetic 207 

energy spectra and different initial condition errors. We acknowledge this linear error growth is 208 

not very realistic or physical. Yet, it is very simple and provides an estimation for the error 209 

saturation time if we know the value of 𝛾. Similar to Eq. (6) ,  we need to add a saturation term 210 

(1 −
𝑍𝑡𝑜𝑡𝑎𝑙
𝑆𝑄𝐺

 𝑍𝑠𝑎𝑡
𝑆𝑄𝐺) to represent the saturation effect when 𝑍𝑡𝑜𝑡𝑎𝑙

𝑆𝑄𝐺  approaches its saturation value 𝑍𝑠𝑎𝑡
𝑆𝑄𝐺 .  211 

Eq. (7) then becomes 212 

𝑑

𝑑𝑡
(𝑍𝑡𝑜𝑡𝑎𝑙

𝑆𝑄𝐺 ) =  𝛾 (1 −
𝑍𝑡𝑜𝑡𝑎𝑙
𝑆𝑄𝐺

 𝑍𝑠𝑎𝑡
𝑆𝑄𝐺)                   (8) 213 

Figure 3c further verifies that Eq. (8), which simply provides an estimation for the error saturation 214 

time, might not be a bad approximation for the original numerical solution of SQG-like error 215 

dynamics in Eq. (2). 216 

 Compared to Eqs. (2), Eq. (6) and Eq. (8) are more simplified with known analytical 217 

solutions that are much easier to understand. Moreover, we can estimate the parameters in both 218 

analytical error growth models from their respective basic-state spectrum. For example, 𝛼 can be 219 

estimated from Eq. (4), whereas 𝛾 is related to the eddy turnover time at the large-scale end of the 220 

-5/3 spectrum (more details will be discussed later). Next, we will combine and extend these simple 221 

analytical formulas to further explain the complex multiscale predictability of the real atmosphere.  222 

 223 

3. The hybrid framework  224 

3.a The hybrid L69 model  225 
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 In the real atmosphere, different from either 2DV or SQG, the observed kinetic energy 226 

spectra in the upper troposphere in the mid-latitudes usually consist of a -3 spectrum at the synoptic 227 

scales and a -5/3 spectrum at meso- and smaller scales (Nastrom and Gage 1985). Therefore, the 228 

error growth representative of the observed atmospheric energy spectra would have simultaneous 229 

contributions from both the 2DV-like spectrum at synoptic scales and the SQG-like spectrum at 230 

smaller scales. The ensemble means of the total error for any spectral bank 𝐾 can then be written 231 

as 232 

𝑑2

𝑑𝑡2
(𝑍𝐾

𝑡𝑜𝑡𝑎𝑙) =
𝑑2

𝑑𝑡2
(𝑍𝐾

𝑆𝑄𝐺 + 𝑍𝐾
2𝐷𝑉)        (9) 233 

which is a combination of the two ODEs in Eq. (2) and could be solved numerically as before. We 234 

should note here that the nonlinear saturation adjustment, as in Durran and Gingrich (2014), is also 235 

added to Eq. 9) when solving this equation. More details on this can be found in Appendix A. Due 236 

to this additional nonlinear saturation effect, the hybrid model of Eq. (9) cannot be linearly 237 

decoupled as the summation of a solution to the SQG-like system and a solution to the 2DV-like 238 

system.  239 

 Figure 4 shows an example of the error evolution solved from Eq. (9), with the saturation 240 

terms included. To solve this hybrid model, we first construct a  hybrid basic-state energy spectrum 241 

similar to the observed spectrum 3  and the 𝐶𝐾,𝐿2𝐷𝑉  and 𝐶𝐾,𝐿
𝑆𝑄𝐺  are then computed based on the 242 

respective -3 and -5/3 parts of the kinetic energy spectrum (see Appendix A for more details). 243 

Consistent with our schematic shown in Fig. 1, we can find that the errors first grow at small scales 244 

that are dominated by the -5/3 slope. These errors at the small scales then start to saturate at 245 

increasingly larger scales, and the total error growth will come predominantly from the -3 slope 246 

                                                           
3 The observed spectrum transition happens at ~400km in the mid-latitudes, corresponding to zonal wavenumber 

~70.  
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part of the kinetic energy spectrum after the smaller-scale errors saturate.  Moreover, given that 247 

the evolution of small-scale errors is dominated by the SQG-like spectra, further reducing initial 248 

errors to infinitesimal scales does not help extend the predictability limit. 249 

 250 

3.b The analytical equation  251 

 To derive an analytical expression for error growth under the observed hybrid spectra, we 252 

first separate the total errors ℰ𝑡 into two parts according to different length scales. The total errors  253 

ℰ𝑡 = ℰ−5
3

+ ℰ−3. Here ℰ
−
5

3

 represents the meso-small scales errors in the -5/3 slope regime, ℰ−3 254 

represents the synoptic-scale errors in the -3 slope regime,  255 

 Given the decreasing eddy turnover time within the -5/3 slope regime, the meso-small 256 

scales errors ℰ
−
5

3

 feature SQG-like upscale growth. At the same time, this upscale growth process 257 

would transfer a small portion of these smaller-scale errors into the synoptic scales due to cross-258 

scale nonlinear interaction. While the physical mechanisms of the upscale error propagation in the 259 

real atmosphere are still under investigation (Zhang et al. 2007; Bierdel et al. 2018), this effect is 260 

included in 𝐶𝐾,𝐿 terms in the numerical solution. In light of Eq. (7), the evolution of small-scale 261 

errors ℰ
−
5

3

 could then be simplified as 262 

𝑑

𝑑𝑡
(ℰ

−
5
3
) =  𝛾 ′ −  Γ (ℰ

−
5
3
, ℰ−3 )    (10) 263 

where 𝛾 ′  represents the SQG-like upscale error growth as in Eq. (7) and Γ (ℰ
−
5

3

, ℰ−3 )  here 264 

represents the energy that is transited to the synoptic scales through interactions between the -3 265 

slope and the -5/3 slope. An additional nonlinear saturation treatment as in Eq. (8) will be 266 

introduced later. Given that the -3 slope regime has much weaker cross-scale interaction compared 267 

to the -5/3 slope regime, it is reasonable that the small-scale errors are dominated by the SQG-like 268 
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error growth associated with the -5/3 slope only, which implies that the  𝛾 ′ term shall dominate the 269 

Γ (ℰ
−
5

3

, ℰ−3 )  term in Eq. (10). The numerical solution in Fig. 4 also suggests that the initial growth 270 

of the errors under a hybrid spectrum is mostly on the small-scale end. Therefore, assuming ℰ
−
5

3

𝑠𝑎𝑡 271 

is the saturation error for the -5/3 slope regime, we can neglect the Γ (ℰ
−
5

3

, ℰ−3 ) term here and use 272 

ℰ
−
5

3

𝑠𝑎𝑡

𝛾 ′
⁄   as a simple estimate of the characteristic time needed for the small scale errors ℰ

−
5

3

 to 273 

saturate. 274 

 On the other hand, the errors at the synoptic scales will have both the 2DV-like exponential 275 

growth and the contributions from smaller scales.  In light of Eq. (5) and the subtraction of the 276 

Γ (ℰ
−
5

3

, ℰ−3 ) term in Eq. (10), the evolution of ℰ−3 could also be approximately written as: 277 

𝑑

𝑑𝑡
(ℰ−3) =  𝛼ℰ−3 +  Γ (ℰ−5

3
, ℰ−3 )     (11) 279 

where 𝛼 is the corresponding error growth rate for the synoptic scales.  278 

 Combining Eq. (10) and Eq. (11), we can write the evolution for the total errors ℰ𝑡, 280 

𝑑

𝑑𝑡
(ℰ𝑡) =  

𝑑

𝑑𝑡
(ℰ

−
5
3
+ ℰ−3) =  𝛼ℰ−3 + 𝛾

′   (12) 281 

Again, we can add (1 − ℰ𝑡

 ℰ𝑡
𝑠𝑎𝑡) term to describe the saturation of ℰ𝑡, similar to Eq. (6) and Eq. (8). 282 

The equation then becomes  283 

𝑑

𝑑𝑡
(ℰ𝑡) = ( 𝛼ℰ−3 + 𝛾

′ ) (1 −
ℰ𝑡
 ℰ𝑡
𝑠𝑎𝑡)      (13) 284 

  Note that this equation is very similar to Eq. (1) that is used in Zhang et al. (2019) and 285 

earlier studies (e.g., Dalcher and Kalnay 1987; Magnusson and Källén 2013). The only difference 286 
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between Eq. (13) and Eq. (1) is that ℰ−3 in Eq. (13) is replaced with total error variance ℰ𝑡 ( E in 287 

Eq. (1) ), which allows us to provide an analytical solution to the total error ℰ𝑡. Moreover, this 288 

change is a valid approximation of Eq. (13).  When ℰ𝑡  is small, the growth of the errors is 289 

dominated by SQG-like upscale process (the 𝛾 ′ term in Eq. (13) is much larger than 𝛼ℰ𝑡 or 𝛼ℰ−3). 290 

Changing ℰ−3 to ℰ𝑡  only has minor impacts on the results. When ℰ𝑡  becomes larger, then the 291 

2DV-like growth dominates, ℰ−3  approximates to the value of  ℰ𝑡  due to the relatively small 292 

saturation value of ℰ
−
5

3

𝑠𝑎𝑡.  Therefore, we could approximately replace  ℰ−3 with ℰ𝑡 and define 𝜀 =293 

 ℰ𝑡 ℰ𝑡
𝑠𝑎𝑡⁄  ,  then   Eq. (13) becomes 294 

𝑑𝜀(𝑡)

𝑑𝑡
= (𝛼𝜀(𝑡) +  𝛽)(1 − 𝜀(𝑡))          (14) 295 

where ε(t) is the normalized error. ε=1 means error reaches a maximum or becomes saturated.  𝛼 296 

is the error growth rate and 𝛽 =  𝛾′

ℰ𝑡
𝑠𝑎𝑡⁄ .  Figure 4b shows the evolution of normalized total 297 

errors derived by numerically solving saturation adjusted Eq. (9) versus the fitted curve using the 298 

analytical solution derived from Eq. (14). Both solutions agree with each other well. As mentioned 299 

earlier, Eq. (14) was also proposed in earlier studies and shown to be useful. Through simple 300 

derivation and approximation, our contribution here focuses on directly linking 𝛽 with the intrinsic 301 

upscale error growth (associated with the shallower -5/3 spectrum) under a nearly perfect model 302 

and nearly perfect initial condition scenario.   303 

 Indeed, similar to 𝛼, the parameter 𝛽 could also be estimated directly from the kinetic 304 

energy spectrum 𝐸(𝑘) under our framework. We use 𝛽 to represent upscale error growth processes 305 

from small convective scales to mesoscales within the -5/3 slope range (stage 1 of Fig. 1). After 306 

some time 𝑡𝑘𝑡, the mesoscale error will start to saturate, and the large-scale quasi-exponential error 307 

growth starts to dominate. In Eq. (14), the transition happens when 𝛼𝜀(𝑡𝑘𝑡) =  𝛽, which implies 308 
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𝜀(𝑡𝑘𝑡) =
𝛽

𝛼
                                             (15) 309 

Before 𝑡𝑘𝑡, we have 310 

𝛽~𝛽(1 − 𝜀(𝑡)) <
𝑑𝜀(𝑡)

𝑑𝑡
<  𝛼𝜀(𝑡) + 𝛽 < 2𝛽           (𝑤ℎ𝑒𝑛 𝑡 < 𝑡𝑘𝑡, 𝜀(𝑡) 𝑖𝑠 𝑠𝑚𝑎𝑙𝑙  )                (16) 311 

or, 312 

𝑑𝜀(𝑡)

𝑑𝑡
 ~ 𝛽,                     (𝑤ℎ𝑒𝑛 𝑡 < 𝑡𝑘𝑡)                      (17) 313 

Combining Eqs. (15) and (17), we have,  314 

𝑡𝑘𝑡 =
𝜀(𝑡𝑘𝑡)

𝑑𝜀(𝑡)
𝑑𝑡

⁄  ~(
(
𝛽
𝛼)

 𝛽
⁄

) = 
1

𝛼
                     (18) 315 

Recall Eqs. (7) and (10), the characteristic time needed for the smaller-scale errors ℰ
−
5

3

 to saturate 316 

could also be estimated to be  317 

𝑡𝑘𝑡~ 

ℰ
−
5
3

𝑠𝑎𝑡

𝛾 ′
= 

ℰ
−
5
3

𝑠𝑎𝑡

 𝛽 ℰ𝑡
𝑠𝑎𝑡         (19) 318 

Combining Eq. (18) and Eq. (19), we get 319 

 
1

𝛼
 ~

ℰ
−
5
3

𝑠𝑎𝑡

 𝛽 ℰ𝑡
𝑠𝑎𝑡 , 𝑜𝑟      

𝛽

𝛼
 ~ 

ℰ
−
5
3

𝑠𝑎𝑡

 ℰ𝑡
𝑠𝑎𝑡     (20)  320 

where 321 

ℰ
−
5
3

𝑠𝑎𝑡

 ℰ𝑡
𝑠𝑎𝑡 =

𝑠𝑎𝑡𝑢𝑟𝑎𝑡𝑒𝑑 𝑘𝑖𝑛𝑒𝑡𝑖𝑐 𝑒𝑛𝑒𝑟𝑔𝑦 𝑜𝑓  𝑘−
5
3  𝑟𝑒𝑔𝑖𝑚𝑒  

𝑡𝑜𝑡𝑎𝑙 𝑘𝑖𝑛𝑒𝑡𝑖𝑐 𝑒𝑛𝑒𝑟𝑔𝑦
 322 

If the kinetic energy spectrum 𝐸(𝑘) is known and fits the canonical atmospheric kinetic energy 323 

spectrum in Fig. 1, then we could define 𝑘𝑡 as the wavenumber of the transition scale of the kinetic 324 

energy spectrum. For any wavenumber 𝑘  that is greater than 𝑘𝑡  but smaller than 𝑘𝑠  (the 325 
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wavenumber at the smallest scale resolved), 𝐸(𝑘) lies in the -5/3 regime. The kinetic energy in the 326 

-5/3 slope regime can then be written as ∫ 𝐸(𝑘)
𝑘𝑠

𝑘𝑡
𝑑𝑘.  Similarly, we can also write the total kinetic 327 

energy as the sum of the kinetic energy in the -3 slope regime and the kinetic energy in the -5/3 328 

slope regime, hence  329 

ℰ𝑡
𝑠𝑎𝑡 = ∫ 𝐸(𝑘)

𝑘𝑡

𝑘𝑙

𝑑𝑘 + ∫ 𝐸(𝑘)
𝑘𝑠

𝑘𝑡

𝑑𝑘 =  ∫ 𝐸(𝑘) 𝑑𝑘
𝑘𝑠

𝑘𝑙

     (21)  330 

where  𝑘𝑙 is the wavenumber at the largest scale that a -3 slope might hold. Therefore, we have 331 

𝛽

𝛼
 ~ 

ℰ
−
5
3

𝑠𝑎𝑡

 ℰ𝑡
𝑠𝑎𝑡 = 

∫ 𝐸(𝑘)
𝑘𝑠

𝑘𝑡
𝑑𝑘

∫ 𝐸(𝑘) 𝑑𝑘
𝑘𝑠

𝑘𝑙

         (22) 332 

Another easy way to estimate the value of 𝛽 is by utilizing the schematic shown in Fig. 1. At 333 

transition time 𝑡𝑘𝑡, the small-scale errors in the -5/3 regime start to saturate, and the large-scale 334 

errors in the -3 regime are still negligible. Therefore the normalized error could be estimated to be 335 

ℰ
−
5
3

𝑠𝑎𝑡

 ℰ𝑡
𝑠𝑎𝑡. Combining this with Eq. (15), once again, we have Eq. (22). 336 

 In light of Eq. (4) and Eq. (22), if the canonical atmospheric kinetic energy spectrum 𝐸(𝑘) 337 

is known to us, then we can directly estimate the error growth behavior of the system using the 338 

analytical Eq. (14) proposed above, the parameter of this analytical equation can be calculated as 339 

follows:  340 

𝛼 =
𝑙𝑛2

𝐷
 √
 𝐸(𝑘)𝑠𝑦𝑛𝑜𝑝𝑡𝑖𝑐 𝑠𝑐𝑎𝑙𝑒

𝑘−3
 , 𝑎𝑛𝑑  

𝛽

𝛼
=  
∫ 𝐸(𝑘)
𝑘𝑠

𝑘𝑡
𝑑𝑘

∫ 𝐸(𝑘) 𝑑𝑘
𝑘𝑠

𝑘𝑙

      (23) 341 

 To sum up, this simple analytical framework that we show is consistent with the error 342 

growth scenario described in Fig. 1. This framework is also well connected to the background 343 
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kinetic energy spectrum. All parameters in the analytical error growth model can be directly 344 

estimated from the energy spectrum of the background flow (Eq. 23).    345 

  346 

3.c Verification and predictability limits  347 

 It is natural to ask how well our proposed hybrid framework applies to the real atmosphere. 348 

For a more direct comparison, simple dimensional results are used here. The largest length scale 349 

𝐿0 (corresponding to wavenumber 1) is chosen to be the circumference of a latitudinal cycle at the 350 

mid-latitude (~30000 km). The total kinetic energy of the background flow 𝐸 is estimated to be 351 

150 m-2 s-2, as in L69 4 . The units of distance and time are then 𝐿∗ = 𝐿0
2𝜋⁄  and 𝑇∗ =352 

𝐿∗

√𝐸
⁄ ~ 4.25 𝑑𝑎𝑦, respectively. Therefore 𝑡 = 1 in the equation represents 4.25 days in the real 353 

atmosphere.   354 

 Table 1 shows the predictability limit derived from Eq. (9) of our hybrid framework and 355 

the results from L69. For L69, the predictability limit is simply the time when 𝑍𝐾(𝑡) = 𝑋𝐾.  We 356 

use a 99% threshold for the calculation of the saturation time in our hybrid model under the Durran 357 

and Gingrich (2014) adjustment. Clearly, the predictability limits in our hybrid framework are 358 

much longer than L69. The reasons for this are twofold. On the one hand, L69 used a -5/3 slope 359 

across all the scales. By switching to the -3 slope at the synoptic scales as in the real atmosphere, 360 

our hybrid framework has less energy at smaller scales (consistent with observations), which leads 361 

to longer eddy turnover time, lower error growth rate, and hence longer predictability limit. On the 362 

other hand, the saturation approach we adopted from Durran and Gingrich (2014) will slow down 363 

                                                           
4 L69 use 148 m-2 s-2 for total energy. Density weighted total energy from reanalysis data give a strong seasonal 

variation, ranging from less than 100 m-2 s-2  in the summer and more than 200 m-2 s-2  in the winter.     
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the error growth rate as the errors approach their saturation threshold, which also will extend the 364 

predictability limit. 365 

 What is more intriguing is that the proposed hybrid framework shows an approximate two-366 

week limit for the synoptic scales at ~ 5000km. This limit agrees with our current understanding. 367 

The same two-week limit for day-to-day weather predictability was first proposed by Lorenz in 368 

his early studies by analyzing the operational model products (Lorenz 1973, 1984; Reeves  2014). 369 

This limit is also found in today’s most sophisticated numerical models (Foude et al. 2013; Judt 370 

2018; Zhang et al. 2019). Moreover, the fitted 𝛼 and 𝛽 in Fig. 4b also agree well with the number 371 

estimated using full-physics convection-permitting global simulation (Fig. 3 in Zhang et al. 2019).  372 

While all the predicted limits will vary proportionally with slightly different dimensional analysis 373 

(due to uncertainty in total kinetic energy E, for example), the ratio between the saturation times 374 

for different length scales will hold under dimensional process. Assuming this 2-week limit for the 375 

synoptic weather, then we learn from table 1 that the predictability limit for motions at ~1000 km 376 

is ~7 days, the predictability limit for ~500 km is ~ 5 days, and ~2 days for 100 km. All these 377 

numbers are generally consistent with the findings derived from complex, state-of-the-science 378 

modeling experiments in Zhang et al. (2019).  379 

 As we have mentioned before, we could also estimate the value of 𝛼 and 𝛽 from the kinetic 380 

energy spectrum directly. Utilizing the airplane data (Marenco et al. 2018), the observed 381 

atmospheric spectrum was fitted to a functional form in Lindborg (1999),   382 

𝐸(𝑘) = 𝑑1𝑘
−
5
3 + 𝑑2𝑘

−3                (24) 383 

where 𝑑1 = 9.1 × 10−4, 𝑑2 = 3 × 10−10. Note 𝐸(𝑘) has units of m3 ⋅ 𝑠−2, k has units of m−1. 384 

Therefore 𝑑1 has units of m4/3 ⋅ 𝑠−2,  𝑑2 has units of 𝑠−2. The first term of Eq. (24) describes the 385 

shallower -5/3 wavelength range of the observed kinetic energy spectrum, while the second term 386 
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of Eq. (24) fits the synoptic -3 slope wavelength range. Figure 7 of Lindborg (1999) shows that 387 

this functional form of Eq. (24) works well for horizontal scales smaller than 1000 km when 388 

compared with the airplane observation data. Substituting Eq. (24) into Eq. (3) and assuming D 389 

equals 1.0, we find that the eddy turnover time for the synoptic-scale regime is around 16 hours 390 

that is independent of the wavenumber 𝑘 . The value of 𝛼 is then estimated to be around 1

1 𝑑𝑎𝑦
 391 

according to Eq. (23). Moreover, from Eq. (24) we can also tell the transition scale 𝑘𝑡  ~ 392 

2𝜋
400𝑘𝑚⁄  (considering 𝑑1𝑘𝑡

−
5

3 =  𝑑2𝑘𝑡−3 ). Assuming  𝑘𝑙 ~2𝜋 10000𝑘𝑚⁄ , 𝑘𝑠  ~
2𝜋

1𝑘𝑚⁄  , then 𝛽
𝛼
 393 

can also be estimated to be on the order of 1/100 using Eq. (23). Hence, for the midlatitudes, an 394 

estimate of 𝛼  and 𝛽 from the energy spectrum can be given here, 395 

𝛼 ~ 
1

1 𝑑𝑎𝑦
,

𝛽

𝛼
~

1

100
, 𝛽~

𝛼

100
~

1

15 𝑚𝑖𝑛
            (25) 396 

These numbers, again, approximately match what we found in Fig. 4b and in earlier works done 397 

using full-physics models (Zhang et al. 2007, 2019).  398 

 399 

4. Discussion 400 

 This proposed hybrid framework extends and complements earlier studies done by L69 401 

and RS2008. By considering both the synoptic-scale 2DV-like dynamics (-3 slope) and the SQG-402 

like motions (-5/3 slope) at smaller scales, our framework provides an improved understanding of 403 

the real atmosphere. The dimensional results also confirm that this hybrid framework gives more 404 

realistic estimations of the predictability limit compared to L69.  To better understand the error 405 

growth process, we further derive a simple analytical equation for the evolution of the total error 406 

fields, which seems to work well with the idealized and full-physics simulation (Zhang et al. 2019).  407 
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 We note here the canonical atmospheric kinetic energy spectra shown in Fig. 1 is really an 408 

idealization of the aircraft observations, which mainly reflect the upper levels in the mid-latitudes. 409 

This canonical structure, however, is not always observed in the real atmosphere, which varies 410 

with different seasons, latitudes, and height levels. While the -3 slope and -5/3 slope are strictly 411 

assumed when building our new hybrid framework, it is easy to find that both numbers are likely 412 

not strictly required. On the smaller-scale end, the predictability limit, according to L69, will be 413 

limited as long as the slope is shallower than -3. L69 also showed that a -7/3 slope produced very 414 

close estimates of the predictability limit to the -5/3 scenario.  Switching the slope of the small-415 

scale spectrum from -5/3 to -7/3 or -2 in our hybrid model also has minor effects on the results and 416 

the predictability limits at large synoptic scales (not shown). The -3 slope for the synoptic scales 417 

plays a more significant role in determining the predictability limits in the sense that a steeper 418 

slope (e.g., -4 slope) will lead to longer predictability limits at the largest synoptic scales. As the 419 

2DV and SQG dynamics do not support slopes other than -3 and -5/3, the experimental results of 420 

changing the slopes to different numbers based on the 2DV/SQG system are therefore less 421 

convincing. Yet, based on the eddy turnover time argument, a slightly different slope shall not 422 

change the general picture (“two-stage” error growth process) shown in Fig. 1.  423 

 We shall acknowledge the fact that this newly proposed framework is based on L69. 424 

Therefore all the assumptions made in L69 are still used in our current framework, which may 425 

pose limitations to the application of the framework. First, the statistical assumptions made in L69, 426 

such as homogeneity and isotropy, are not strictly valid for the real atmosphere. These assumptions 427 

do not allow any climatological mean motions and properties. It is also well known that systems 428 

like mountains and clouds are not randomly distributed. This heterogeneity could also be found in 429 

the kinetic energy spectrum of the real atmosphere. A recent global high-resolution simulation 430 
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shows that the kinetic energy spectrum of the tropical region is different from the canonical 431 

spectrum shown in Fig. 1 (Judt 2020), indicating that the tropics may have very different error 432 

growth behavior than the mid-latitudes. Second, the specific dynamical equations adopted are also 433 

not strictly accurate for the real atmosphere. The two-dimensional vorticity equation is, at best, a 434 

very crude approximation for the large-scale dynamics. There is also no evidence showing that the 435 

small-scale dynamics could be described using surface quasi-geostrophic equations. Nonetheless, 436 

RS2008 has shown that, from the perspective of error growth, the kinetic energy spectrum slope 437 

might be more important compared to the dynamical equations used. The reason we choose these 438 

equations is also that their spectra are defensible on physical grounds so that we can combine them 439 

to construct a hybrid spectrum that is consistent with observational and full-physics modeling 440 

studies. With a realistic transition of the kinetic energy spectrum slope, we expect that our hybrid 441 

framework would capture the key components of the error growth behavior. 442 

 We also note here that we were not able to prove the causality between the kinetic energy 443 

spectrum and the error growth behavior in our framework. There are distinct differences between 444 

correlation and causation. It is also possible that the same physical processes/mechanisms lead to 445 

both the transition of the slopes and the error growth behavior simultaneously. For example, it has 446 

been hypothesized that moist convection and gravity waves generated by that might be responsible 447 

for the -5/3 slope at the small-scale end (Sun et al. 2017; Durran and Weyn 2016). Moist physics 448 

have also been shown to be the key for the upscale error propagation (Zhang et al. 2003, 2007; 449 

Selz and Craig 2015). Hence, moist convection might be the actual source for both the shallower 450 

kinetic energy spectrum and the intrinsic predictability limit.  If that is the case, slightly perturbing 451 

the moist physics scheme or the location of the convective grid will also lead to similar intrinsic 452 

predictability limit and error growth processes even in a coarse resolution model that is unable to 453 
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resolve the transition of the slope (e.g., Tribbia and Baumhefner 2004). Ongoing research is being 454 

done to study the underlying physical processes for error growth behavior and will be reported 455 

separately in the future. 456 

    Another limitation of this hybrid framework is the lack of vertical structure in the model. 457 

Studies have shown that there is some degree of height dependence in the observed and simulated 458 

atmospheric spectra (Judt 2018). More critical differences may be found between the troposphere 459 

and the stratosphere (Skamarock et al. 2014). Given the connection between the background 460 

kinetic energy spectrum and the error growth behavior, it is very likely that differences in the 461 

spectrum could be associated with different predictability limits in the stratosphere and the 462 

troposphere. Their coupling will add another layer of complexity to the study (Butler et al. 2019). 463 

 With all these inadequacies aside, the most promising and encouraging finding of this study 464 

is that this simple new theoretical framework, which is built and based on the hybrid kinetic energy 465 

spectrum, could capture the error growth behavior found in the complex full-physics simulation.  466 

This strong connection between the kinetic energy spectrum and the error growth process might 467 

also apply to other turbulent fluids, like the ocean, which is less understood now. Our simple model 468 

may provide a new perspective for the predictability of these turbulent fluids and beyond, as will 469 

be further examined in future studies.  470 

Accepted for publication in Journal of the Atmospheric Sciences. DOI10.1175/JAS-D-19-0271.1.

https://journals.ametsoc.org/doi/full/10.1175/JAS-D-18-0269.1


Page | 24  
 

Appendix A 471 

Hybrid Model details 472 

The derivation of Eq. (2) can be found in detail in L69 and RS2008 and hence will not be repeated 473 

here. It is assumed that all motions may adequately be represented by a relatively short sequence 474 

of spectral bands (1, 2, …, n), with corresponding nondimensional wavenumber 𝑁1, 𝑁2, … , 𝑁𝑛. 475 

Adjacent spectral bands are differed by a resolution factor 𝜌, so that 𝑁𝐾 = 𝜌𝑁𝐾−1. Following L69 476 

and RS2008, 𝐶𝐾,𝐿 in Eq. (2) is shown to be 477 

𝐶𝐾,𝐿 = ∑ 𝐵𝐾−𝑚,𝐿−𝑚 𝑁𝑚
2  𝑋𝑚

𝑛

𝑚=1

             (𝐴1) 478 

where 𝐵𝐾,𝐿 is derived to represent the triads interaction between the spectral bands (K, L). 𝑋𝑚 is 479 

basic-state kinetic energy integrated over the mth spectral band.  If the kinetic energy spectrum 480 

𝐸(𝑘)~𝑘−𝑝, then it is easy to show that 𝑋𝑚~𝜌−𝑚(𝑝−1) , following the definition of L69.  Hence 481 

the impact of basic-state kinetic energy spectrum on error growth is primarily through  𝑋𝑚 , 482 

whereas different dynamical formulation (SQG or 2DV) would lead to different 𝐵𝐾,𝐿.  The results 483 

of RS2008 have shown that 𝑋𝑚  is the dominant factor in determining 𝐶𝐾,𝐿  and error growth 484 

behavior. 485 

 In L69 and RS2008, the derivation and calculation of 𝐶𝐾,𝐿 in Eq. (A1) are both based on a 486 

kinetic energy spectrum that processes one constant slope only (-3 or -5/3). To form our consistent 487 

hybrid framework, we assume the observed hybrid spectrum can be represented by two separate 488 

segments, 489 

𝑋𝑚 = 𝑋𝑚
2𝐷𝑉 + 𝑋𝑚

𝑆𝑄𝐺        (𝐴2) 490 

therefore 𝐶𝐾,𝐿2𝐷𝑉  and 𝐶𝐾,𝐿
𝑆𝑄𝐺  can be calculated according to 𝑋𝑚2𝐷𝑉  and 𝑋𝑚

𝑆𝑄𝐺 , respectively. The 491 

amplitude of 𝑋𝑚2𝐷𝑉 and 𝑋𝑚
𝑆𝑄𝐺  is set so that  𝑋𝑚2𝐷𝑉 = 𝑋𝑚

𝑆𝑄𝐺 at transitional spectral band m. Moreover, 492 
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for the convenience of dimensional analysis, the total energy ∑ 𝑋𝑚
𝑛
𝑚=1  is set to be 1. As is shown 493 

in RS2008, computation of 𝐵𝐾,𝐿 get increasingly difficult when 𝐾 =  𝐿 and they are both large, 494 

due to rapidly decreasing integration area. In this study, a total of 24 spectral bands are used 495 

whereas resolution factor 𝜌  is set to √2  , which means the smallest scale is ~10km after 496 

dimensional results. 497 

 Note we could also compute a single matrix 𝐶 and hence form an L69-type system of ODEs 498 

based on the hybrid spectrum in (A2) under 2DV dynamics (as done in Durran and Gingrich 2014), 499 

utilizing the fact that −5/3 is also an admissible spectral slope for 2DV if we add small-scale 500 

forcing. However, we believe this single matrix assumption is as unphysical as our current 501 

approach, if not more.  If we examine the derivation process for matrix C in L69, the “inertial 502 

range” idea is implicitly adopted, where no energy source/sink is considered during the derivation. 503 

Under this “inertial range” idea, it is unlikely for the 2DV system itself to present a hybrid spectrum 504 

automatically.  It is also unphysical to assume the small-scale motions still obey the 2DV dynamics. 505 

Therefore, we choose our current approach in the manuscript, which keeps the consistency 506 

between the “inertial range” assumption and the derivation of 𝐶𝐾,𝐿 terms for different systems. 507 

Nonetheless, this should have a minor effect on our results given the results shown in earlier studies 508 

(RS2008; Durran and Gingrich 2014) 509 

 The nonlinearity saturation effect introduced by Durran and Gingrich (2014) is also 510 

included in our study. The original set of n second-order differential equations in Eq. (2) can be 511 

rewritten to a set of 2n first-order differential equations. 512 

𝑑𝑍𝐾
𝑑𝑡

= 𝑌𝐾  ,    
𝑑𝑌𝐾
𝑑𝑡

=∑𝐶𝐾,𝐿𝑍𝐿

𝑛

𝐿=1

                 (𝐴3) 513 
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An additional saturation term is added to the first equation in (A3) to force the error growth rate 514 

smoothly approaches to zero. Hence the system in (A3) becomes 515 

𝑑𝑍𝐾
𝑑𝑡

= (1 −
𝑍𝐾
𝑋𝐾
) 𝑌𝐾  ,    

𝑑𝑌𝐾
𝑑𝑡

=∑𝐶𝐾,𝐿𝑍𝐿

𝑛

𝐿=1

             (𝐴4) 516 

These first-order differential equations are the final system we solve numerically. Also, since the 517 

solution will asymptotically approach its saturation value under Durran and Gingrich (2014) 518 

adjustment, we define the saturation time as the time when 𝑍𝐾/𝑋𝐾 equal 99% in the numerical 519 

solution. 520 

 521 

Appendix B 522 

Upscale error cascade in a turbulent fluid 523 

 Following the classical homogeneous turbulence approach, an estimate of the time needed 524 

for the small-scale error to contaminate the entire system can be derived as follows. Assume errors 525 

on a small scale will most contaminate the motion at the next larger scale (e.g., adjacent spectral 526 

waveband in our study) in a time scale comparable to the eddy turnover time at that scale 𝜏(𝑘), 527 

defined by  528 

𝜏(𝑘) ~ [𝜐(𝑘)𝑘] −1 = [𝐸(𝑘)𝑘3] −
1
2                                        (𝐵1) 529 

Where 𝑘 is the horizontal wavenumber, 𝜐(𝑘) is the velocity at this horizontal scale, and 𝐸(𝑘) is 530 

the background kinetic energy spectrum. More generally, errors initially confined to a relatively 531 

small scale (wavenumber 2𝑘) will contaminate a larger scale (wavenumber 𝑘) after time 𝜏(𝑘) in 532 

Eq. B1.  In other words, the time needed for the error to propagate per unit wavenumber is 𝜏(𝑘)
𝑘

. 533 

Thus, the total time needed for errors to propagate from the small scale 𝑘𝑠 to the large scale 𝑘𝑙 534 

could then be estimated as  535 
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𝑇 ~∫  
𝜏(𝑘)  

𝑘

𝑘𝑠

𝑘𝑙

𝑑𝑘 = ∫  
[𝐸(𝑘)𝑘3] −

1
2  

𝑘

𝑘𝑠

𝑘𝑙

𝑑𝑘                      (𝐵2) 536 

Assume the kinetic energy spectrum of the background flow satisfy the power-law form 𝐸~ 𝐴𝑘−𝑝, 537 

We have,  538 

𝑇 ~

{
 
 

 
 𝐴−

1
2𝑙𝑛 (

𝑘𝑠
𝑘𝑙
) ,           𝑝 = 3

2

𝐴
1
2(𝑝 − 3)

(𝑘𝑠
(𝑝−3)
2 − 𝑘𝑙

(𝑝−3)
2 ) ,       𝑝 ≠ 3

          (𝐵3) 539 

If we can reduce our initial error to smaller and smaller scales, then in the limit of 𝑘𝑠 → ∞, 540 

𝑇 ~{

∞,           𝑝 ≥ 3 

2

(3 − 𝑝)
[𝐴𝑘𝑙

(−𝑝+3)]
−
1
2
 ~ 𝜏(𝑘𝑙) ,       𝑝 < 3 

          (𝐵4) 541 

Thus 𝑇 (the predictability limit), the time needed for errors at the smallest scales propagate to the 542 

largest scale, will grow larger and larger for a turbulent system with a steep slope 𝑝 ≥ 3.  However, 543 

for 𝑝 < 3, predictability time remains finite no matter how we confine the initial error. And this 544 

finite predictability time has the same order of magnitude as the eddy turnover time at the largest 545 

scale 𝑘𝑙.  546 

  547 
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 655 

Figure Legends 656 

 657 

 658 

 659 

Figure 1. A schematic diagram for the canonical atmospheric kinetic energy spectrum (adopted 660 

from Skamarock et al. 2014) and illustration of our proposed two-stage error growth 661 

hypothesis: ① the initial small-amplitude error triggers error growth which saturates first at the 662 

smallest scales and subsequently propagates upscale at the wavelength range with a shallower -663 

5/3 slope; and ② quasi-exponential error growth until saturation at synoptic scales in the 664 

wavelength range with a -3 slope. See details on the scales and equations in the text.  665 

  666 
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 667 

Figure 2. Predictability limit for the 2DV case with a -3 slope.      668 
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 a) Initial condition errors setup for our experiments, with the cutoff spectral band K increasing 669 

from 12 to 20.    b) corresponding normalized error saturation time at large scales (~5000km). 670 

The size of the circle is symbolic of the amplitude of the initial condition error. The dashed line is 671 

the linear fit of the results. c) comparison between numerically solved Eq. 2 (dash line) and fitted 672 

results (red line) using Eq. 6 under 2DV dynamics. 673 

  674 
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 675 

Figure 3. Predictability limit for the SQG case with a -5/3 slope (otherwise the same as in Figure 676 

2). a) Initial condition errors setup for our experiments. b) corresponding normalized error 677 
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saturation time at large scales (~5000km). With reduced initial condition error (increased IC 678 

cutoff number), error saturation time in SQG approaches to a fixed value (dash line), and thus 679 

predictability is intrinsically limited. c)  comparison between numerically solved Eq. (2) (dash line) 680 

and fitted results (red line) using Eq. (8) under SQG dynamics. 681 

  682 
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 683 

Figure 4. Error evolution in our new hybrid-model framework.   a) error kinetic energy spectral 684 

density (blue dash lines) as a function of wavenumber k at dimensional time t = 1, 2, 3, 4, 5, 7, 9, 685 

11, 13, 15 days numerically solved from saturation-adjusted Eq. (9) along with the base state 686 

background spectrum (black line).  b) total error energy (blue dash line) integrated over all the 687 
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spectral bands from the solution of saturation adjusted Eq. (9) versus the fitted total error 688 

evolution (red line) using our analytically derived error model (Eq. 14). The fitted 𝛼 =689 

0.49 𝑑𝑎𝑦−1,
𝛽

𝛼
= 0.014. 690 

  691 
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TABLE LIST 692 

 693 

Table 1.   Range of predictability limits for different length scales calculated using the Lorenz-69 694 

model versus our new, more realistic hybrid-model framework. 695 

 696 

Length Scale 

Lorenz-69  

Saturation 

time 

Our hybrid model 

Saturation time 

10000 km 5.6 days 19.2 days 

5000 km 3.2 days 13.8 days 

2500 km 1.8 days 10.4 days 

1250 km 1.1 days 7.9 days 

625 km 15.7 hours 5.5 days 

313 km 9.5 hours 4.0 days 

156 km 5.8 hours 2.8 days 

78 km 3.6 hours 1.9 days 

39 km 2.2 hours 1.2 days 

 697 

 698 

 699 

 700 
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