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16

17 ABSTRACT
18
19 Here we present a new theoretical framework that connects the error growth behavior in

20 numerical weather prediction (NWP) with the atmospheric kinetic energy spectrum. Building on
21 previous studies, our newly proposed framework applies to the canonical observed atmospheric
22 spectrum that has a -3 slope at synoptic scales and a -5/3 slope at smaller scales. Based on this
23 realistic hybrid energy spectrum, our new experiment using hybrid numerical models provides
24  reasonable estimations for the finite predictable ranges at different scales. We further derive an
25 analytical equation that helps understand the error growth behavior. Despite its simplicity, this
26  new analytical error growth equation is capable of capturing the results of previous comprehensive
27  theoretical and observational studies of atmospheric predictability. The success of this new
28  theoretical framework highlights the combined effects of quasi-two-dimensional dynamics at
29  synoptic-scales (-3 slope) and three-dimensional turbulence-like small-scale chaotic flows (-5/3
30 slope) in dictating the error growth. It is proposed that this new framework could serve as a guide

31  for understanding and estimating the predictability limit in the real world.
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32 \body

33 1. Introduction

34 In his pioneering work (Lorenz 1969, hereafter L69), Lorenz first showed that a flow with
35 many length scales, like the atmosphere, might have an intrinsic finite range of predictability.
36 Although Lorenz studied the simple 2D vorticity turbulence model in his paper, the conclusion of
37  his study is profound and intriguing. Follow-up studies using more sophisticated models (e.g.,
38  Leith and Kraichnan 1972; Daley 1981; Foude et al. 2013; Sun and Zhang 2016; Judt 2018; Zhang
39 etal. 2019) further supported Lorenz’ results and the concept of “butterfly effect” has been widely
40  accepted since then. Butterfly effect depicts that even the smallest unresolved errors by numerical
41  models will propagate upscale and ruin our practical weather prediction at the synoptic-scale after
42  a finite length of time (Palmer et al. 2014). Inspired by L69, estimations of this finite range of
43  predictability has since been done extensively (e.g., Smagorinsky 1969; Lorenz 1982; Foude et al.
44  2013). For the synoptic weather system in mid-latitudes, more recent studies agree with Lorenz
45  that this finite number should be around two weeks (L69; Reeves 2014; Zhang et al. 2019; Judt
46 2020). With this intrinsic predictability limit, current operational forecasts still have quite some
47  room for improvement. In general, our operational weather forecast is skillful for less than 10
48  days in the mid-latitudes despite decades of “quiet revolution” (Bauer et al. 2015; Alley et al.
49  2019). To push our numerical weather prediction (NWP) skill closer to its intrinsic limit, we must
50 understand further the error growth dynamics that limit NWP.

51 Over the years, conceptually and numerically simple turbulence frameworks, as used in
52 L69, have contributed a lot to our understanding. In a turbulent fluid, the inverse cascade rate of
53  the errors from small to large scales, which is the essence of the “butterfly effect,” is noted to be

54  intimately connected with the eddy turnover timescales that are determined by the slope of the
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55  background energy spectrum of the fluid. For a flow with energy spectra of power-law behavior
56  (k7), previous studies find that if the slope p < 3, the eddy doubling time decreases with scale and
57  theupscale spreading of initially small-scale error provides an intrinsical limit to the predictability
58 of such flows; if p >3, it is concluded that there is no such a limit (L69; Rotunno and Snyder 2008,
59  hereafter RS2008).

60 Most of these studies mentioned above generally assume one single slope for the
61  atmosphere. However, our real world is more complicated. Instead of one constant p ,
62  observational studies (e.g., Nastrom and Gage 1985) indicate that the energy spectra in the
63  atmosphere show a distinct transition from a slope of around -3 at synoptic scales (~1000s km) to
64  a shallower -5/3 slope at mesoscales (~100s km) in the mid-latitudes. Numerous realistic
65  simulations, using both regional (Skamarock 2004; Waite and Snyder 2013; Sun and Zhang 2016)
66 and global high-resolution model (Skamarock et al. 2014), also successfully reproduce the
67 transition of the slope, consistent with the observational estimates. The mechanism(s) that
68  determine the slopes of the kinetic energy spectra are still under debate (Charney 1971; Tulloch
69  and Smith 2006; Callies et al. 2014). Nevertheless, according to L69 and RS2008, we would expect
70  an intrinsic predictability limit for our atmosphere due to this shallower slope at the small-scale
71  end of the kinetic energy spectra.

72 Based on the observed kinetic energy spectra, we here propose a novel and simple
73  theoretical framework for understanding error growth from minute perturbations in the real
74  atmosphere. This framework features a “two-stage” error growth process, which connects to the
75  two different slopes of the observed kinetic energy spectra. Figure 1 shows a conceptual schematic
76  for the canonical atmospheric kinetic energy spectrum and the proposed error growth behavior

77  linked to this spectrum. An initially minute error will, in the first stage, grow much faster at small
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78  scales due to decreasing eddy turnover time within the -5/3 slope range. Within an inherently finite
79  time, these small-scale errors within the -5/3 slope wavelength range will start to saturate while
80  projecting to larger and eventually synoptic scales. In the second stage, the errors at synoptic scales
81  (corresponding to wavelength range within the -3 slope) will grow quasi-exponentially until
82  saturation due to near-constant eddy turnover time in this wavelength range.

83 With this conceptual picture, the next step is to quantify the growth of the errors under a
84  simple analytical framework. As a tool to help our understanding of complex and chaotic nonlinear
85 interaction, simple analytic equations have been used along with the earlier numeric studies on
86  error growth dynamics. Lorenz (1982) showed that the growth of error variance E could be
87  reasonably well parameterized by a simple exponential growth equation. Dalcher and Kalnay
88  (1987) proposed a modified version based on Lorenz (1982) to describe the evolution of the error

89  variance £

d E
90 Z(E) = (@ +5) (1 - E—m) )

91 by introducing an external error source S. This equation is adopted and widely used in studies of
92  forecast uncertainty of operational weather prediction (e.g., Magnusson and Kallen 2013; Herrera
93 et al. 2016; Zagar et al. 2017). However, very limited analytical work focused on the intrinsic
94  predictability limit of weather systems where the external error source is eliminated.

95 Selz and Craig (2015) fitted the errors in their “identical twin experiments” to an analytical
96 equation they constructed. The reasonable agreement in their study between the full-physics model
97 and simple analytical equations implies that we may also use analytical equations to investigate
98 theintrinsic predictability limit. More recently, Zhang et al. (2019) found that Eq. (1) well captured
99 the evolution of the intrinsic error dynamics in the full-physics model. However, both studies

100 mentioned here did not provide detailed explanations behind this consistency between the results
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101 of complex full-physics atmospheric models and simple analytical equations considered. This
102 paper serves as an extension of RS2008 and Zhang et al. (2019) and aims to provide a framework
103  that helps us further understand the connection of error growth behavior, the background kinetic
104  energy spectrum of the real atmosphere, and the detailed analytical equation proposed. In section
105 2, we first revisit L69’s earlier model on error growth for different kinetic energy spectrum slopes.
106  Based on the results of the L69 model, we then propose our hybrid framework for the real
107  atmosphere with hybrid kinetic energy spectra in section 3. A simple analytical equation is also
108  derived in section 3 to further our understanding of the atmospheric predictability limit in the real
109  atmosphere. A brief discussion is given in section 4.

110

111 2. Revisiting the Lorenz (1969) model

112 The original model of L69 was devised to study the error growth and predictability of an
113 atmospheric-like fluid system with homogeneous isotropic turbulence using a two-dimensional
114  vorticity (2DV) equation. In this model, Lorenz assumed power-law behavior (k?) for the basic-
115  state kinetic energy with specific considerations dedicated to the scenarios with p = 5/3, 7/3, and
116 3, respectively. While these calculations are robust, it is found that the downscale energy spectral
117  slope of a large-scale forcing for the 2DV equation is -3 (Kraichnan 1967). Given that synoptic-
118  scale forcing is the main driver for weather systems in the mid-latitudes, the physically consistent
119  choice for the L69 model, therefore, is p=3, which raises concerns about his results for other
120  scenarios. The model in L69 is elegantly generalized in RS2008 to include a surface quasi-
121 geostrophic (SQG) equation, which is known to have a -5/3 energy spectrum analogous to 3-
122 dimensional turbulence. Our study will adopt this generalized model in RS2008 and further

123 illustrate different error growth scenarios in 2DV (-3 slope) and SQG (-5/3 slope).
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124 The evolutions of the errors for the 2DV and SQG systems are detailed in L69 and RS2008.

125  We here briefly summarize their equations as a set of second-order initial-value problems:

d2
gz @) = Xl Crpzt™”

126 (2)

d? ;. soc SQG ,SQG
d_tZ(ZK ) =2l Cr 21

127  where Cg 1 1s a constant coefficient matrix derived to reflect the interactions between different
128  length scales (K and L represent different spectral bands in the wavenumber space), N is the total
129  number of spectral bands considered in the model'. The structure and amplitude of Cy; is
130  determined by the dynamic model and, more importantly, by the background kinetic energy
131 spectrum of the fluids (refer to L69 and RS2008). Z2P¥ and Z;°¢ are the ensemble means of the
132 perturbation kinetic energy (error fields) for the 2DV and SQG equations, respectively, integrated
133 over any given spectral band K. For each spectral band K, errors with different length scales
134  (spectral bands) also contribute to the evolution of ZzPV and ZI“:;QG. In addition, both L69 and
135  RS2008 also introduce nonlinear saturation treatment to their equations by directly letting Zy
136  fixed at its corresponding background kinetic energy Xy if Zgx(t) = Xk in the course of the
137  integration. This treatment makes no change to the growth rate of Zy until it reaches saturation.

138  To better describe the gradual decrease in the growth rate of Zy as it approaches saturation, Durran
139  and Gingrich (2014) introduces one additional term (1 —Zx / XK) to force the time tendencies of

140  the Zg smoothly asymptote to zero as Zy approaches Xx. The same nonlinear treatment as Durran

141 and Gingrich (2014) is applied to our numerical model (Appendix A) to make it more realistic.

! Adjacent spectral bands are differed by a constant resolution factor p (p = V2 in this study). Assuming the
length scales for all N spectral bands are Dy, Dy, ... Dy_1, then we have D, = p¥ Dy for each spectral band K.
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142 Despite similar forms in Eq. (2), very different error evolutions are found between the 2DV
143 (-3 slope) case versus the SQG (-5/3 slope) case, which are rooted in their striking differences in
144 (g (see Table 1 and Table 3 in RS2008) and the corresponding basic-state spectra. Through
145  directly comparing their results with L69, RS2008 concluded that the basic-state energy spectrum
146  was the determining factor in the error-energy evolution. They showed that a -5/3 spectrum would
147  lead to limited predictability under varying dynamical models, while a -3 spectrum may have
148  unlimited predictability when the initial perturbation becomes infinitesimally small.

149

150  2.a Error growth for the 2DV case (-3 slope)

151 Figure 2 depicts the error growth in different experiments using the 2DV equation under
152  different initial condition errors. For each experiment, the initial error distribution is set so that the
153  error field is limited to the small scales only. No initial error is added to the spectral bands that
154  have larger length scales than the cutoff spectral band K (cutoff K in Fig. 2a)?. For length scales
155  equal to or smaller than spectral band K, their initial error amplitudes are set to their saturation
156  values. Increased K means that the initial error is pushed to smaller scales, and thus its amplitude
157  is exponentially reduced. We can find that, as the cutoff K increases (initial error reduces
158  exponentially), the time needed for the error to saturate at large scales increases linearly (Fig. 2b).
159  Therefore, if we could keep reducing the initial error to smaller and smaller scales, we could keep
160  increasing the error saturation time at large scales without any limitation.

161 This linearity in Fig. 2b also implies that a similar amount of additional predictable time
162  can be gained each time we increase K and therefore limit the initial condition errors to a smaller

163  scale. In other words, error growth at different length scales can be characterized by a single growth

2 Given the power-law distribution of the base spectrum, the total initial error will decrease exponentially when
we linearly increase K.
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164  rate in the 2DV case. Indeed, this uniform error growth rate agrees well with the turbulence
165  assumption for a flow with a -3 spectrum. More specifically, if A is a measure of the amplitude of

166 the total error energy, then the evolution of A( t) could be written as

167 —A=daA
dt

168  assuming «a is the error growth rate. The error doubling time 7, can be then calculated to be 7, =

1 . . :
169 %2) , inversely proportional to the error growth rate a. From the turbulence perspective, the scale-

170  dependent error doubling time 7,(k) is comparable to the eddy turnover time 7. Tj is a

171  characteristic timescale that is defined as the time taken for a parcel with velocity v, to move a
172 distance 1 / k> Vk being the velocity associated with the (inverse) scale k. 7, can be estimated from

173 the spectral energy density E(k) (e.g., see Vallis 2006 page 349),

k=3 k=3
174 Ty ~ % tp(k)=01) 1, =D EQO (3)

175  where D is a constant on the order of unity. Therefore, we have,

In2  In2 [E(k)

“,(k) D k3

176 a

(4)

177 which means that the error growth rate is constant for the 2DV case since E (k) o« k~3. Given this

178  constant a, the evolution of the total error energy in the 2DV case ZZ5Y, can be simplified as

d
2DV \ _ 2DV
179 % (Ztotal - aZtotal (5)
180 To include the error saturation effect at later times, we could also add an additional term

181  as in Durran and Gingrich (2014) to force the time tendency of Z22Y, to decrease smoothly to 0 as

182 ZZPY, approaches its saturation threshold Z25Y. With this adjustment, Eq. (5) becomes
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: z28,
ota

103 T - au(1-5%)  ©
sat

184  While this additional term is ad hoc, Eq. 6) captures the error growth behavior reasonably well
185  (Fig. 2c¢).

186

187  2.b Error growth for the SQG case (-5/3 slope)

188 For the SQG scenario, with a -5/3 slope, the eddy turnover time in Eq. (3) will decrease
189  exponentially with decreasing length scales. Hence, the gain in extra forecast lead time through
190 further limiting the initial error to smaller scales will also become exponentially smaller. More
191  specifically, by increasing cutoff K in the experiments (e.g., for experiments of K=12 and K=13
192  in Fig.3a), the additional time we gain is simply the time it takes for the initial errors to propagate
193  back and saturate larger scales (e.g., upscale growth from K=13 to K=12), which is on the order
194  ofthe eddy turnover time at that scale (7x-1,). Given exponentially decreasing eddy turnover time
195  under a -5/3 slope, Fig. 3b shows that the error saturation time at large scales can be extended at
196  most by a few turnover cycles of the current smallest resolved scale, and it will eventually approach
197  anear-constant value when the initial condition error approaches zero.

198 This limited predictability for the SQG (-5/3 slope) case could also be explained according
199  to the turbulence energy cascade theory. After a finite time (on the order of eddy turnover time of
200 the large-scale end if estimated using the turbulence assumption, more on this in Appendix B),
201  errors will saturate no matter how small the initial error is. What we care about the most here is
202 the characteristic finite timescale needed for the errors to saturate. For simplicity, we could write

203 the error growth equation to be

d
204 = Zita) = ¥ 7
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205  where fotil is the total error for the SQG scenario. Assuming the saturation value of the total

206  error for the SQG case is Z 505 then the time needed for the error to saturate, according to Eq. (7),

sat »
207  issimply Z Ssgta/y. y is the linear error growth rate that may vary with different base-state kinetic
208  energy spectra and different initial condition errors. We acknowledge this linear error growth is
209 not very realistic or physical. Yet, it is very simple and provides an estimation for the error

210  saturation time if we know the value of y. Similar to Eq. (6) , we need to add a saturation term

7506

5QG
Z . . .
211 (1 - ng—g'g) to represent the saturation effect when Z:. approaches its saturation value sat -

total
sat

212 Eq. (7) then becomes

d . soc ZSQGI
_ tota
213 a(ztotal = V<1 - Zsoa) (8)

sat

214  Figure 3c further verifies that Eq. (8), which simply provides an estimation for the error saturation
215  time, might not be a bad approximation for the original numerical solution of SQG-like error
216  dynamics in Eq. (2).

217 Compared to Egs. (2), Eq. (6) and Eq. (8) are more simplified with known analytical
218  solutions that are much easier to understand. Moreover, we can estimate the parameters in both
219  analytical error growth models from their respective basic-state spectrum. For example, a can be
220  estimated from Eq. (4), whereas y is related to the eddy turnover time at the large-scale end of the
221 -5/3 spectrum (more details will be discussed later). Next, we will combine and extend these simple
222 analytical formulas to further explain the complex multiscale predictability of the real atmosphere.
223

224 3. The hybrid framework

225  3.a The hybrid L69 model
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226 In the real atmosphere, different from either 2DV or SQG, the observed kinetic energy
227  spectra in the upper troposphere in the mid-latitudes usually consist of a -3 spectrum at the synoptic
228  scales and a -5/3 spectrum at meso- and smaller scales (Nastrom and Gage 1985). Therefore, the
229  error growth representative of the observed atmospheric energy spectra would have simultaneous
230  contributions from both the 2DV-like spectrum at synoptic scales and the SQG-like spectrum at
231 smaller scales. The ensemble means of the total error for any spectral bank K can then be written
232 as

d2

233 —
dt?

d2
(zig) = 5 (23 +22)  (9)

234 which is a combination of the two ODEs in Eq. (2) and could be solved numerically as before. We
235  should note here that the nonlinear saturation adjustment, as in Durran and Gingrich (2014), is also
236  added to Eq. 9) when solving this equation. More details on this can be found in Appendix A. Due
237  to this additional nonlinear saturation effect, the hybrid model of Eq. (9) cannot be linearly
238  decoupled as the summation of a solution to the SQG-like system and a solution to the 2DV-like
239  system.

240 Figure 4 shows an example of the error evolution solved from Eq. (9), with the saturation
241 terms included. To solve this hybrid model, we first construct a hybrid basic-state energy spectrum

242  similar to the observed spectrum? and the C 1 and C,fic are then computed based on the

243 respective -3 and -5/3 parts of the kinetic energy spectrum (see Appendix A for more details).
244 Consistent with our schematic shown in Fig. 1, we can find that the errors first grow at small scales
245  that are dominated by the -5/3 slope. These errors at the small scales then start to saturate at

246  increasingly larger scales, and the total error growth will come predominantly from the -3 slope

3 The observed spectrum transition happens at ~400km in the mid-latitudes, corresponding to zonal wavenumber
~70.
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247  part of the kinetic energy spectrum after the smaller-scale errors saturate. Moreover, given that
248  the evolution of small-scale errors is dominated by the SQG-like spectra, further reducing initial
249  errors to infinitesimal scales does not help extend the predictability limit.

250

251 3.b The analytical equation

252 To derive an analytical expression for error growth under the observed hybrid spectra, we
253  first separate the total errors £; into two parts according to different length scales. The total errors

254 & = &€ s+ E_3. Here £ s represents the meso-small scales errors in the -5/3 slope regime, £_5
3 3

255  represents the synoptic-scale errors in the -3 slope regime,
256 Given the decreasing eddy turnover time within the -5/3 slope regime, the meso-small

257  scales errors € s feature SQG-like upscale growth. At the same time, this upscale growth process
3

258  would transfer a small portion of these smaller-scale errors into the synoptic scales due to cross-
259  scale nonlinear interaction. While the physical mechanisms of the upscale error propagation in the
260  real atmosphere are still under investigation (Zhang et al. 2007; Bierdel et al. 2018), this effect is
261  included in Cg ; terms in the numerical solution. In light of Eq. (7), the evolution of small-scale
262  errors £ s could then be simplified as

3

d ,
263 —(8 5) =y - F(S 5,8_3> (10)
dt\ -3 73

264  where ylrepresents the SQG-like upscale error growth as in Eq. (7) and F(E_g, 8_3) here
3

265  represents the energy that is transited to the synoptic scales through interactions between the -3
266  slope and the -5/3 slope. An additional nonlinear saturation treatment as in Eq. (8) will be
267  introduced later. Given that the -3 slope regime has much weaker cross-scale interaction compared

268  to the -5/3 slope regime, it is reasonable that the small-scale errors are dominated by the SQG-like
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269  error growth associated with the -5/3 slope only, which implies that the y "term shall dominate the

270 T (8_5, E 3 ) term in Eq. (10). The numerical solution in Fig. 4 also suggests that the initial growth
3

271 of the errors under a hybrid spectrum is mostly on the small-scale end. Therefore, assuming £° %t
3

272 is the saturation error for the -5/3 slope regime, we can neglect the T’ (8_5, E_; ) term here and use
3

gS(é.t
273 3 / ~as a simple estimate of the characteristic time needed for the small scale errors €_s to
y 3

274  saturate.
275 On the other hand, the errors at the synoptic scales will have both the 2DV-like exponential

276  growth and the contributions from smaller scales. In light of Eq. (5) and the subtraction of the

277 T (8_5, E_; ) term in Eq. (10), the evolution of £_3 could also be approximately written as:
3

d
279 - (8_3) = ag_g + T (S 5, 8_3 > (11)
dt -3

278  where «a is the corresponding error growth rate for the synoptic scales.

280 Combining Eq. (10) and Eq. (11), we can write the evolution for the total errors &,
281 d(e)—d<e +e)— Es+y (12)
de VT q\©5 T ©3) T e Ty
282  Again, we can add (1 - gifu) term to describe the saturation of &;, similar to Eq. (6) and Eq. (8).
t

283  The equation then becomes

d , &t
284 (€)= <a8_3 +y ) =) (1)
285 Note that this equation is very similar to Eq. (1) that is used in Zhang et al. (2019) and

286 earlier studies (e.g., Dalcher and Kalnay 1987; Magnusson and Kéllén 2013). The only difference
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287  between Eq. (13) and Eq. (1) is that £_5 in Eq. (13) is replaced with total error variance &; ( E in
288  Eq. (1) ), which allows us to provide an analytical solution to the total error £;. Moreover, this

289  change is a valid approximation of Eq. (13). When &; is small, the growth of the errors is

290  dominated by SQG-like upscale process (the y ‘term in Eq. (13) is much larger than a&; or a€_3).
291  Changing £_3 to &; only has minor impacts on the results. When £; becomes larger, then the
292 2DV-like growth dominates, £_3; approximates to the value of &, due to the relatively small

293  saturation value of Ef‘ét. Therefore, we could approximately replace £_s; with &; and define ¢ =
3

294 &,/E% | then Eq.(13) becomes

de(t)

295 — " (ae(t) + (1 —e®)) (14)

296  where &(t) is the normalized error. e=1 means error reaches a maximum or becomes saturated. «
297  is the error growth rate and f = Y / gsat: Figure 4b shows the evolution of normalized total
t

298 errors derived by numerically solving saturation adjusted Eq. (9) versus the fitted curve using the
299  analytical solution derived from Eq. (14). Both solutions agree with each other well. As mentioned
300 earlier, Eq. (14) was also proposed in earlier studies and shown to be useful. Through simple
301  derivation and approximation, our contribution here focuses on directly linking £ with the intrinsic
302  upscale error growth (associated with the shallower -5/3 spectrum) under a nearly perfect model
303  and nearly perfect initial condition scenario.

304 Indeed, similar to a, the parameter § could also be estimated directly from the kinetic
305  energy spectrum E (k) under our framework. We use 8 to represent upscale error growth processes
306 from small convective scales to mesoscales within the -5/3 slope range (stage 1 of Fig. 1). After
307  some time t;;, the mesoscale error will start to saturate, and the large-scale quasi-exponential error

308  growth starts to dominate. In Eq. (14), the transition happens when ae(t;;) = [, which implies
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309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

£(t) = (15)

Before t;;, we have

,B~,8(1 — s(t)) < ded_(tt) < ag(t)+ B <2pB (Whent < tyg, €(t) is small ) (16)
or,
dz(tt) ~ B, (When t < ty;) 17

Combining Egs. (15) and (17), we have,

B
be = g(tkt)/dg(t) ~ (a)/ﬁ = % (18)
Tdt

Recall Egs. (7) and (10), the characteristic time needed for the smaller-scale errors £ s to saturate
3

could also be estimated to be

ey ey
t 3 = 2 (19)
kt , ﬁ Si?at
|4

Combining Eq. (18) and Eq. (19), we get

gs%t gs%t
l ~—23 or E ~ 23 (20)
a BE a &g
where
sat 5

—% _ saturated kinetic energy of k3 regime

gsat total kinetic energy
If the kinetic energy spectrum E (k) is known and fits the canonical atmospheric kinetic energy
spectrum in Fig. 1, then we could define k, as the wavenumber of the transition scale of the kinetic

energy spectrum. For any wavenumber k that is greater than k; but smaller than kg (the
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326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

wavenumber at the smallest scale resolved), E (k) lies in the -5/3 regime. The kinetic energy in the
-5/3 slope regime can then be written as |, kk: E (k) dk. Similarly, we can also write the total kinetic

energy as the sum of the kinetic energy in the -3 slope regime and the kinetic energy in the -5/3

slope regime, hence

ks Ks

E(k)dk = f E(k)dk (21)
]

kt
SEatZI E(k)dk+f
k

l k¢

where k; is the wavenumber at the largest scale that a -3 slope might hold. Therefore, we have

t
€5 [MpU) dk
~ == (22)
& fk:E(k) dk

RI™

Another easy way to estimate the value of § is by utilizing the schematic shown in Fig. 1. At
transition time t,, the small-scale errors in the -5/3 regime start to saturate, and the large-scale

errors in the -3 regime are still negligible. Therefore the normalized error could be estimated to be

sat
€s
3
sat*
gt

Combining this with Eq. (15), once again, we have Eq. (22).

In light of Eq. (4) and Eq. (22), if the canonical atmospheric kinetic energy spectrum E (k)
is known to us, then we can directly estimate the error growth behavior of the system using the

analytical Eq. (14) proposed above, the parameter of this analytical equation can be calculated as

follows:
“s E(k) dk
_ In2 E(k)synopticscale ﬁ . fkt ( )
“= -3 yand == S————  (23)
D k a fkls E(k) dk

To sum up, this simple analytical framework that we show is consistent with the error

growth scenario described in Fig. 1. This framework is also well connected to the background
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344  kinetic energy spectrum. All parameters in the analytical error growth model can be directly
345  estimated from the energy spectrum of the background flow (Eq. 23).

346

347  3.c Verification and predictability limits

348 It is natural to ask how well our proposed hybrid framework applies to the real atmosphere.
349  For a more direct comparison, simple dimensional results are used here. The largest length scale
350 Lg (corresponding to wavenumber 1) is chosen to be the circumference of a latitudinal cycle at the

351  mid-latitude (~30000 km). The total kinetic energy of the background flow E is estimated to be
352 150 m? s2, as in L69%. The units of distance and time are then L* = LO/ o and T =
353 L / VB ~ 4.25 day, respectively. Therefore ¢ = 1 in the equation represents 4.25 days in the real

354  atmosphere.

355 Table 1 shows the predictability limit derived from Eq. (9) of our hybrid framework and
356  the results from L69. For L69, the predictability limit is simply the time when Zg (t) = Xx. We
357  use a99% threshold for the calculation of the saturation time in our hybrid model under the Durran
358 and Gingrich (2014) adjustment. Clearly, the predictability limits in our hybrid framework are
359  much longer than L69. The reasons for this are twofold. On the one hand, L69 used a -5/3 slope
360 across all the scales. By switching to the -3 slope at the synoptic scales as in the real atmosphere,
361  our hybrid framework has less energy at smaller scales (consistent with observations), which leads
362  to longer eddy turnover time, lower error growth rate, and hence longer predictability limit. On the

363  other hand, the saturation approach we adopted from Durran and Gingrich (2014) will slow down

4169 use 148 m? s2 for total energy. Density weighted total energy from reanalysis data give a strong seasonal
variation, ranging from less than 100 m? s in the summer and more than 200 m s in the winter.
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364  the error growth rate as the errors approach their saturation threshold, which also will extend the
365  predictability limit.

366 What is more intriguing is that the proposed hybrid framework shows an approximate two-
367  week limit for the synoptic scales at ~ 5000km. This limit agrees with our current understanding.
368  The same two-week limit for day-to-day weather predictability was first proposed by Lorenz in
369  his early studies by analyzing the operational model products (Lorenz 1973, 1984; Reeves 2014).
370  This limit is also found in today’s most sophisticated numerical models (Foude et al. 2013; Judt
371 2018; Zhang et al. 2019). Moreover, the fitted a and £ in Fig. 4b also agree well with the number
372 estimated using full-physics convection-permitting global simulation (Fig. 3 in Zhang et al. 2019).
373 While all the predicted limits will vary proportionally with slightly different dimensional analysis
374  (due to uncertainty in total kinetic energy E, for example), the ratio between the saturation times
375  for different length scales will hold under dimensional process. Assuming this 2-week limit for the
376  synoptic weather, then we learn from table 1 that the predictability limit for motions at ~1000 km
377  is ~7 days, the predictability limit for ~500 km is ~ 5 days, and ~2 days for 100 km. All these
378 numbers are generally consistent with the findings derived from complex, state-of-the-science
379  modeling experiments in Zhang et al. (2019).

380 As we have mentioned before, we could also estimate the value of @ and  from the kinetic
381  energy spectrum directly. Utilizing the airplane data (Marenco et al. 2018), the observed

382  atmospheric spectrum was fitted to a functional form in Lindborg (1999),

5
383 E(k) =dk™3+d,k™3 (24)

384 whered; = 9.1 x107%,d, = 3 x 1071%, Note E (k) has units of m3 - s72, k has units of m™1.
385  Therefore d; has units of m*/3 - s72, d, has units of s72. The first term of Eq. (24) describes the

386  shallower -5/3 wavelength range of the observed kinetic energy spectrum, while the second term
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387 of Eq. (24) fits the synoptic -3 slope wavelength range. Figure 7 of Lindborg (1999) shows that
388 this functional form of Eq. (24) works well for horizontal scales smaller than 1000 km when
389  compared with the airplane observation data. Substituting Eq. (24) into Eq. (3) and assuming D

390 equals 1.0, we find that the eddy turnover time for the synoptic-scale regime is around 16 hours

1
1day

391 that is independent of the wavenumber k . The value of « is then estimated to be around

392 according to Eq. (23). Moreover, from Eq. (24) we can also tell the transition scale k; ~

5

393 27T/400km (considering dlkt_3 = d,k;3). Assuming k; ~ Zn/10000km‘ ks ~ Zn/lkm , theng
394  can also be estimated to be on the order of 1/100 using Eq. (23). Hence, for the midlatitudes, an

395 estimate of ¢ and f from the energy spectrum can be given here,

1 L 1 a

U B~ ——~

100 15min

396 a~ (25)

397  These numbers, again, approximately match what we found in Fig. 4b and in earlier works done
398  using full-physics models (Zhang et al. 2007, 2019).

399

400 4. Discussion

401 This proposed hybrid framework extends and complements earlier studies done by L69
402  and RS2008. By considering both the synoptic-scale 2DV-like dynamics (-3 slope) and the SQG-
403  like motions (-5/3 slope) at smaller scales, our framework provides an improved understanding of
404  the real atmosphere. The dimensional results also confirm that this hybrid framework gives more
405  realistic estimations of the predictability limit compared to L69. To better understand the error
406  growth process, we further derive a simple analytical equation for the evolution of the total error

407  fields, which seems to work well with the idealized and full-physics simulation (Zhang et al. 2019).
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408 We note here the canonical atmospheric kinetic energy spectra shown in Fig. 1 is really an
409  idealization of the aircraft observations, which mainly reflect the upper levels in the mid-latitudes.
410  This canonical structure, however, is not always observed in the real atmosphere, which varies
411  with different seasons, latitudes, and height levels. While the -3 slope and -5/3 slope are strictly
412 assumed when building our new hybrid framework, it is easy to find that both numbers are likely
413  not strictly required. On the smaller-scale end, the predictability limit, according to L69, will be
414  limited as long as the slope is shallower than -3. L69 also showed that a -7/3 slope produced very
415  close estimates of the predictability limit to the -5/3 scenario. Switching the slope of the small-
416  scale spectrum from -5/3 to -7/3 or -2 in our hybrid model also has minor effects on the results and
417  the predictability limits at large synoptic scales (not shown). The -3 slope for the synoptic scales
418  plays a more significant role in determining the predictability limits in the sense that a steeper
419  slope (e.g., -4 slope) will lead to longer predictability limits at the largest synoptic scales. As the
420 2DV and SQG dynamics do not support slopes other than -3 and -5/3, the experimental results of
421  changing the slopes to different numbers based on the 2DV/SQG system are therefore less
422  convincing. Yet, based on the eddy turnover time argument, a slightly different slope shall not
423  change the general picture (“two-stage” error growth process) shown in Fig. 1.

424 We shall acknowledge the fact that this newly proposed framework is based on L69.
425  Therefore all the assumptions made in L69 are still used in our current framework, which may
426  pose limitations to the application of the framework. First, the statistical assumptions made in L69,
427  such as homogeneity and isotropy, are not strictly valid for the real atmosphere. These assumptions
428  do not allow any climatological mean motions and properties. It is also well known that systems
429  like mountains and clouds are not randomly distributed. This heterogeneity could also be found in

430 the kinetic energy spectrum of the real atmosphere. A recent global high-resolution simulation
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431  shows that the kinetic energy spectrum of the tropical region is different from the canonical
432 spectrum shown in Fig. 1 (Judt 2020), indicating that the tropics may have very different error
433 growth behavior than the mid-latitudes. Second, the specific dynamical equations adopted are also
434  not strictly accurate for the real atmosphere. The two-dimensional vorticity equation is, at best, a
435  very crude approximation for the large-scale dynamics. There is also no evidence showing that the
436  small-scale dynamics could be described using surface quasi-geostrophic equations. Nonetheless,
437  RS2008 has shown that, from the perspective of error growth, the kinetic energy spectrum slope
438  might be more important compared to the dynamical equations used. The reason we choose these
439  equations is also that their spectra are defensible on physical grounds so that we can combine them
440  to construct a hybrid spectrum that is consistent with observational and full-physics modeling
441  studies. With a realistic transition of the kinetic energy spectrum slope, we expect that our hybrid
442  framework would capture the key components of the error growth behavior.

443 We also note here that we were not able to prove the causality between the kinetic energy
444  spectrum and the error growth behavior in our framework. There are distinct differences between
445  correlation and causation. It is also possible that the same physical processes/mechanisms lead to
446  both the transition of the slopes and the error growth behavior simultaneously. For example, it has
447  been hypothesized that moist convection and gravity waves generated by that might be responsible
448  for the -5/3 slope at the small-scale end (Sun et al. 2017; Durran and Weyn 2016). Moist physics
449  have also been shown to be the key for the upscale error propagation (Zhang et al. 2003, 2007,
450  Selz and Craig 2015). Hence, moist convection might be the actual source for both the shallower
451  kinetic energy spectrum and the intrinsic predictability limit. If that is the case, slightly perturbing
452  the moist physics scheme or the location of the convective grid will also lead to similar intrinsic

453  predictability limit and error growth processes even in a coarse resolution model that is unable to
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454  resolve the transition of the slope (e.g., Tribbia and Baumhefner 2004). Ongoing research is being
455  done to study the underlying physical processes for error growth behavior and will be reported
456  separately in the future.

457 Another limitation of this hybrid framework is the lack of vertical structure in the model.
458  Studies have shown that there is some degree of height dependence in the observed and simulated
459  atmospheric spectra (Judt 2018). More critical differences may be found between the troposphere
460 and the stratosphere (Skamarock et al. 2014). Given the connection between the background
461  kinetic energy spectrum and the error growth behavior, it is very likely that differences in the
462  spectrum could be associated with different predictability limits in the stratosphere and the
463  troposphere. Their coupling will add another layer of complexity to the study (Butler et al. 2019).
464 With all these inadequacies aside, the most promising and encouraging finding of this study
465  is that this simple new theoretical framework, which is built and based on the hybrid kinetic energy
466  spectrum, could capture the error growth behavior found in the complex full-physics simulation.
467  This strong connection between the kinetic energy spectrum and the error growth process might
468  also apply to other turbulent fluids, like the ocean, which is less understood now. Our simple model
469  may provide a new perspective for the predictability of these turbulent fluids and beyond, as will

470  Dbe further examined in future studies.
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471  Appendix A
472 Hybrid Model details
473  The derivation of Eq. (2) can be found in detail in L69 and RS2008 and hence will not be repeated
474  here. It is assumed that all motions may adequately be represented by a relatively short sequence
475  of spectral bands (/, 2, ..., n), with corresponding nondimensional wavenumber Ny, N, ..., N,,.
476  Adjacent spectral bands are differed by a resolution factor p, so that Ny = pNg_;. Following L69
477  and RS2008, Cy ; in Eq. (2) is shown to be
n

478 CxL = Z By —mi—m Nj Xim (A1)

m=1
479  where By is derived to represent the triads interaction between the spectral bands (K, L). X, is
480  basic-state kinetic energy integrated over the mth spectral band. If the kinetic energy spectrum
481  E(k)~k™P, then it is easy to show that X,,~p~™®~D | following the definition of L69. Hence
482  the impact of basic-state kinetic energy spectrum on error growth is primarily through X,,,
483  whereas different dynamical formulation (SQG or 2DV) would lead to different By ;. The results
484  of RS2008 have shown that X, is the dominant factor in determining Cy ; and error growth
485  behavior.
486 In L69 and RS2008, the derivation and calculation of Cy ; in Eq. (A1) are both based on a
487  kinetic energy spectrum that processes one constant slope only (-3 or -5/3). To form our consistent
488  hybrid framework, we assume the observed hybrid spectrum can be represented by two separate
489  segments,
490 X, = X2PV 4+ x>0 (A2)

491  therefore Cg}” and C;'QLG can be calculated according to X227 and X32¢, respectively. The
492 amplitude of X2V and X;2¢ is set so that X227 = X% at transitional spectral band m. Moreover,
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493  for the convenience of dimensional analysis, the total energy Y. —; X, is set to be 1. As is shown
494  in RS2008, computation of By ; get increasingly difficult when K = L and they are both large,
495  due to rapidly decreasing integration area. In this study, a total of 24 spectral bands are used

496  whereas resolution factor p is set to /2 , which means the smallest scale is ~10km after
497  dimensional results.

498 Note we could also compute a single matrix € and hence form an L69-type system of ODEs
499  based on the hybrid spectrum in (A2) under 2DV dynamics (as done in Durran and Gingrich 2014),
500 utilizing the fact that —5/3 is also an admissible spectral slope for 2DV if we add small-scale
501 forcing. However, we believe this single matrix assumption is as unphysical as our current
502  approach, if not more. If we examine the derivation process for matrix C in L69, the “inertial
503 range” idea is implicitly adopted, where no energy source/sink is considered during the derivation.
504  Under this “inertial range” idea, it is unlikely for the 2DV system itself to present a hybrid spectrum
505 automatically. It is also unphysical to assume the small-scale motions still obey the 2DV dynamics.
506  Therefore, we choose our current approach in the manuscript, which keeps the consistency
507  between the “inertial range” assumption and the derivation of Cy ; terms for different systems.
508 Nonetheless, this should have a minor effect on our results given the results shown in earlier studies

509  (RS2008; Durran and Gingrich 2014)

510 The nonlinearity saturation effect introduced by Durran and Gingrich (2014) is also
511 included in our study. The original set of n second-order differential equations in Eq. (2) can be

512  rewritten to a set of 2n first-order differential equations.

dZy dYy
513 W == YK )y T = Z CK,LZL (AS)
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514  An additional saturation term is added to the first equation in (A3) to force the error growth rate

515  smoothly approaches to zero. Hence the system in (A3) becomes

n
dzZ Z dY,
X dr ~ L"

517  These first-order differential equations are the final system we solve numerically. Also, since the
518  solution will asymptotically approach its saturation value under Durran and Gingrich (2014)
519  adjustment, we define the saturation time as the time when Zx /X equal 99% in the numerical
520  solution.

521

522 Appendix B

523 Upscale error cascade in a turbulent fluid

524 Following the classical homogeneous turbulence approach, an estimate of the time needed
525  for the small-scale error to contaminate the entire system can be derived as follows. Assume errors
526  on a small scale will most contaminate the motion at the next larger scale (e.g., adjacent spectral
527  waveband in our study) in a time scale comparable to the eddy turnover time at that scale t(k),

528  defined by

1
529 (k) ~ [v(k)k] 71 = [E(k)k3] 2 (B1)

530  Where k is the horizontal wavenumber, v(k) is the velocity at this horizontal scale, and E (k) is
531 the background kinetic energy spectrum. More generally, errors initially confined to a relatively

532  small scale (wavenumber 2k) will contaminate a larger scale (wavenumber k) after time 7(k) in
533  Eq. Bl. In other words, the time needed for the error to propagate per unit wavenumber is L}f)
534  Thus, the total time needed for errors to propagate from the small scale kg to the large scale k;

535  could then be estimated as
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1
ks ks 31 —5
536 T~ f T(:) dk = f %dk (B2)
K, K,

537  Assume the kinetic energy spectrum of the background flow satisfy the power-law form E~ Ak™P,

538  We have,

[ ahu(
avin(). p=3
1
539 T~ 2 @-3)  (@-3) (B3)
Ll—(ks 2 —k; 2 ), p+3
Az(p — 3)
540 If we can reduce our initial error to smaller and smaller scales, then in the limit of kg — oo,
0, p=3
541 T ~ (—pt3~3 (B4)
Ak, PP 2 L (ky), p<3
(3-p) [ 4k oo P

542  Thus T (the predictability limit), the time needed for errors at the smallest scales propagate to the
543  largest scale, will grow larger and larger for a turbulent system with a steep slope p = 3. However,
544  for p < 3, predictability time remains finite no matter how we confine the initial error. And this
545  finite predictability time has the same order of magnitude as the eddy turnover time at the largest
546  scale k;.

547
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660  Figure 1. A schematic diagram for the canonical atmospheric kinetic energy spectrum (adopted
661 from Skamarock et al. 2014) and illustration of our proposed two-stage error growth
662  hypothesis: @ the initial small-amplitude error triggers error growth which saturates first at the
663  smallest scales and subsequently propagates upscale at the wavelength range with a shallower -
664 5/3 slope; and @ quasi-exponential error growth until saturation at synoptic scales in the
665  wavelength range with a -3 slope. See details on the scales and equations in the text.

666

Page | 34

Accepted for publication in Journal of the Atmospheric Sciences. DOI10.1175/JAS-D-19-0271.1.



10° ' ‘
- .Iccutoﬁm
o - ‘lcculofﬁS
Q cutoff14
o] 10'2 L IC 4
= - - |Ceutoff15
é I ‘Iccutofﬁ(i
o
= ICculofﬁ?
g '10_4 3 - - | Qoutof18 3
E]-Q)_ : A - .ICcutofﬁQ
% |' : | - - |Ctutoff20/ |
5 10° " t N |=——F(k) BG]
5 1 1 1 1
w | | ] 1 1
| S | B | | ot |
[l o B e e S ARRRRR R 3
10° 10" 10? 10°
Wavenumber
b
1.4 )
£
E13: |
c .
k=) o
£1.2- 1
@ e
w ”
AR |
N
g
5 1- :
=z
0.9 ‘ ‘ ‘ ‘ ‘
10 12 14 16 18 20 22
IC cutoff K

Normalized Total Error

= aquation fit
==== grror (2DV)

0 0.5 1 1.5
667 Normalized Time

668  Figure 2. Predictability limit for the 2DV case with a -3 slope.
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669 a) Initial condition errors setup for our experiments, with the cutoff spectral band K increasing
670 from 12 to 20. b) corresponding normalized error saturation time at large scales (~5000km).
671  The size of the circle is symbolic of the amplitude of the initial condition error. The dashed line is
672  the linear fit of the results. ¢) comparison between numerically solved Eq. 2 (dash line) and fitted
673  results (red line) using Eq. 6 under 2DV dynamics.

674
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676  Figure 3. Predictability limit for the SQG case with a -5/3 slope (otherwise the same as in Figure

677  2). a) Initial condition errors setup for our experiments. b) corresponding normalized error
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678  saturation time at large scales (~5000km). With reduced initial condition error (increased IC
679  cutoff number), error saturation time in SQG approaches to a fixed value (dash line), and thus
680  predictability is intrinsically limited. ¢) comparison between numerically solved Eq. (2) (dash line)
681  and fitted results (red line) using Eq. (8) under SQG dynamics.
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684  Figure 4. Error evolution in our new hybrid-model framework. a) error kinetic energy spectral
685  density (blue dash lines) as a function of wavenumber k at dimensional timet=1, 2, 3,4,5,7, 9,
686 11, 13, 15 days numerically solved from saturation-adjusted Eq. (9) along with the base state
687  background spectrum (black line). b) total error energy (blue dash line) integrated over all the
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688  spectral bands from the solution of saturation adjusted Eq. (9) versus the fitted total error

689  evolution (red line) using our analytically derived error model (Eq. 14). The fitted a =

690 0.49day !,

R I™

= 0.014.
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692 TABLE LIST
693

694 Table 1. Range of predictability limits for different length scales calculated using the Lorenz-69

695  model versus our new, more realistic hybrid-model framework.

696
Lorenz-69
Our hybrid model
Length Scale | Saturation
Saturation time
time
10000 km 5.6 days 19.2 days
5000 km 3.2 days 13.8 days
2500 km 1.8 days 10.4 days
1250 km 1.1 days 7.9 days
625 km 15.7 hours 5.5 days
313 km 9.5 hours 4.0 days
156 km 5.8 hours 2.8 days
78 km 3.6 hours 1.9 days
39 km 2.2 hours 1.2 days
697
698
699
700
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