

1 **Object-oriented Composite Analysis of Warm Sector Rainfall in North China**

2

3 Jiaolan Fu^{1,2}, Fuqing Zhang², and Timothy D. Hewson³

4 ¹National Meteorological Center, China Meteorological Administration, Beijing, China

5 ²Department of Meteorology and Atmospheric Science, and Center for Advanced Data

6 Assimilation and Predictability Techniques, The Pennsylvania State University,

7 University Park, Pennsylvania

8 ³ECMWF, Shinfield Park, Reading, UK

9

10

11 *Monthly Weather Review*

12 February 10, 2019

13

14

15 Correspondence to: Jiaolan Fu (fujiaolan@cma.gov.cn)

16

17

18

Early Online Release: This preliminary version has been accepted for publication in *Monthly Weather Review*, may be fully cited, and has been assigned DOI 10.1175/MWR-D-19-0038.1. The final typeset copyedited article will replace the EOR at the above DOI when it is published.

19

Abstract

20 Warm sector rainfall (WSR) occurs, by definition, in a warm air region that is
21 isolated from any forcing related to synoptic frontal boundaries at the surface. This study
22 explores the use of an object-oriented technique to objectively and automatically identify
23 various WSR events over North China from June to September in 2012-2017. A total of
24 768 substantive events are identified over the 6 years. They have a mean maximum
25 rainfall accumulation of 35 mm/hr. Most such events occur over the plains; with two
26 frequency maxima, one to the south of the Yanshan Mountain Ranges, and the other near
27 the junction of Henan, Shandong and Jiangsu provinces. WSR-related rainstorms can
28 form in all warm-season months but are most commonly seen between mid-July and
29 mid-August (40% of all events occurred then). Geographically, the region at greatest risk
30 moves gradually northward from mid-June to mid-August, consistent with the
31 progression of the East Asian summer monsoon. There are two diurnal peaks in WSR
32 activity, one from late afternoon to early evening and the other from late evening to early
33 morning. Three classes of upper-level synoptic pattern seem to be conducive to WSR: i) a
34 “Mongolia front pattern”, ii) “northern China front pattern”, iii) a “southern front pattern”.
35 All of these patterns are accompanied by warm and moist southwesterly flow at low
36 levels. Prior to WSR events, there is usually an upper level trough. According to other
37 studies, such a feature is not usually seen for WSR events in South China.

38 1. Introduction

39 Weather occurring well ahead of a surface cold front is typically described as
40 “pre-frontal” or “warm sector” weather (Omoto 1965; Nozumi and Arakawa 1968).
41 Omoto (1965) indicated that in the United States, to the east of the Rocky Mountains,
42 extensive precipitation zones occur frequently in the warm sectors of cyclones. The
43 lifting mechanism causing the rainfall has been shown to often derive from synoptic-scale
44 disturbances aloft rather than local forcing near the ground. Boustead et al. (2013) also
45 found that significant tornado outbreaks in warm sectors tend to be driven more by
46 synoptic-scale weather systems at upper levels. If the low level environment is favorable,
47 with an ample supply of moisture and convective available potential energy (CAPE), the
48 development of absolute vorticity upstream of the tornadogenesis location can relate to an
49 upper-level jet streak and a negatively tilted mid-level trough. In South China
50 Warm-Sector Rainfall (WSR) occurs frequently during late spring (Huang et al. 1986;
51 Ding 1994), and can deliver extreme rainfall rates and totals. In recent years, greater
52 efforts have been made to study WSR and the related convective initiation in South China
53 by field experiments, numerical simulations and case studies (Zhang et al. 2011; He et al.
54 2016; Liu et al. 2016; Wu and Luo 2016; Luo et al. 2017; Zhong and Chen 2017).

55 In contrast, WSR in North China - defined in this study to be within the red
56 rectangle on Fig. 1 - had not generated as much attention until the extreme rainfall event
57 in Beijing on 21 July 2012 (Chen et al. 2012; Zhang et al. 2013; Zhong et al. 2015).
58 Although WSR events in North China are not as frequent as those in South China, more

59 and more heavy rainfall cases are reported to be in the WSR class (Xu et al. 2014; Chen
60 et al. 2018; Sun et al. 2018). The intensity, location and timing of such events are
61 currently difficult for operational Numerical Weather Prediction (NWP) models and
62 human forecasters to predict accurately (Zhang et al. 2013; Luo et al. 2017).

63 Huang et al. (1986) was the first observational study to examine WSR in China.
64 They defined this to be a significant rainfall event that occurs in the warm region 200 km
65 or more ahead of a surface cold front. Some events had no synoptic frontal boundaries
66 within the broader vicinity. According to Huang et al. (1986), meteorologists subjectively
67 characterize WSR events by examining the location of precipitation relative to a surface
68 (or low-level) cold front, or other weather systems (Chen et al. 2012; Wang et al. 2018).
69 Regarding the extreme rainfall event in Beijing on 21 July 2012, the WSR classifications
70 vary greatly from paper to paper. For example, Chen et al. (2012) considered rainfall
71 between 10:00 and 16:00 LST (UTC/GMT +8 hours) to be WSR, whilst Zhong et al.
72 (2015) classified heavy rainfall in the early afternoon (13:00-14:00 LST) as WSR. Sun et
73 al. (2013), on the other hand, divided the rainfall into a pre-frontal stage (10:00-20:00
74 LST) and a frontal stage (20:00-02:00LST). Increasingly, objective methods have been
75 developed to better characterize the synoptic climatology, identifying weather systems
76 that are associated with severe weather (Jenkner et al. 2009; Meng et al. 2013; He et al.
77 2017; Huang et al. 2017; Haberlie and Ashley 2018).

78 Studies of rainfall characteristics, background circulation, mesoscale processes and
79 the underlying physical drivers of WSR in South China have recently been reviewed by

80 He et al. (2016). They found that most rainfall events in late spring over South China
81 exhibit characteristics of WSR, whilst the maximum rainfall location is closely related to
82 specific topography. The synoptic patterns for such events can be classified in three
83 categories: i) recirculation of cold air, ii) presence of an upper level trough, and iii) a
84 strong southwesterly monsoon flow. They also demonstrated that boundary layer cold air,
85 and/or topography and/or a thermally driven circulation due to local land/sea contrast
86 may be the main triggering mechanisms for warm sector convective systems in South
87 China. Wu and Luo (2016) recently found that mesoscale boundaries (of low-level
88 convergence) between the convectively generated cold outflow and the southwesterly
89 monsoon flow might provide another triggering mechanism.

90 For the North China WSR-induced extreme rainfall event of 21 July 2012 in Beijing,
91 it was found that the westward extension of the subtropical high over the western North
92 Pacific and a developing strong low-level jet transporting abundant moisture and energy
93 to the Beijing area together built a favorable environment for torrential rain (Zhao et al.
94 2013). Yu and Meng (2016) showed that the strength and location of a mid-level trough
95 and a low-level depression were vital factors for the determination of precipitation
96 distribution and intensity. Zhang et al. (2013) and Zhong et al. (2015) indicated that WSR
97 was mostly generated by convective cells triggered by low-level warm and moist
98 southeasterly flows impinging on local topography. .

99 The current study seeks to develop an objective method to identify WSR, and to
100 examine the WSR-related rainfall climatology and circulation patterns over North China

101 through object-oriented composite analysis of all WSR events during the warm seasons
102 (June to September) of 2012 to 2017. The remainder of the paper is organized as follows.
103 Section 2 describes the data and methodology. The 6-year summary statistics of the
104 WSR-related rainstorms are described in section 3. Section 4 presents the synoptic flow
105 patterns present during warm sector rainfall. Finally, a summary is given in section 5.

106

107 **2. Data and methodology**

108 2.1. Precipitation and reanalysis data

109 In this study, North China is the box bounded by 110 and 120°E and 34 and 43°N
110 (Fig. 1). The terrain over North China is complex with the Taihangshan and Yanshan
111 Mountain Ranges in the north and west respectively, and the Bohai Sea in the east. Strong
112 rainfall events mainly occur from June to September in North China. The WSR-related
113 rainstorms during these warm-season months from 2012 to 2017 are studied. The rainfall
114 data used herein is a regional gridded dataset, that covers the domain and beyond, and
115 which has a 1-hour temporal resolution and a 0.1 degree spatial resolution. It is provided
116 by China's National Meteorological information Center
117 (http://data.cma.cn/data/detail/dataCode/SEVP_CLI_CHN_MERGE_CMP_PRE_HOUR_GRID_0.10/) and is based on optimal interpolation methods. The inputs consist of
118 reports from 30,000 automatic weather stations in China and a global satellite-based
119 rainfall product called CMORPH developed by NOAA (Pan et al. 2012). There is about
120 0.01% to 0.05% missing data during the entire study period; we ensured that our analysis

122 of WSR-related rainstorms skipped the related dates/times.

123 The ERA-Interim reanalysis dataset (Simmons et al. 2007) from ECMWF, with a
124 time resolution of 6-hour and a spatial resolution of 0.75X0.75 degrees
125 (<http://apps.ecmwf.int/datasets/data/interim-full-daily/levtype=sfc/>) is used to analyze the
126 environmental conditions surrounding WSR events in this study. The variables used
127 include direct model output of temperature, geopotential height, relative humidity,
128 specific humidity, precipitable water vapor and CAPE. In ERA-Interim CAPE is
129 calculated by considering parcels of air departing at different model levels below 350hPa.
130 All the ERA-Interim variables used here were available at 6-hour intervals, except for
131 CAPE which was available every 12 hours.

132

133 2.2. Identification of WSR

134 Based on research into WSR in South China (Huang et al. 1986), in which WSR is
135 found in the warm sector, typically 200 km or more from the surface front, a multi-step
136 objective identification method of WSR is developed for our study. The schematic in
137 Figure 2 illustrates the process.

138

139 2.2.1 Automatic detection of the low-level synoptic front

140 1) Renard and Clarke (1965) were the first to objectively locate the front line using a
141 thermodynamic definition. Hewson (1998) later developed a front identification tool to
142 automatically plot atmospheric fronts objectively based on this method. The underpinning

143 idea here is that one wants to automatically draw a line, on a low-level pseudo horizontal
144 surface, which follows the warm air boundary of a band of enhanced thermal gradient
145 (Renard and Clark, 1965). Jenkner et al. (2009) adopted and adapted existing algorithms
146 to detect low-level fronts from high-resolution model output over complex terrain. One
147 component of that detection method is heavy smoothing of the input fields. The north and
148 west of North China domain and many adjacent regions are characterized by complex
149 topography. So for simplicity, and considering our overall aims, the present study adopted
150 the algorithms of Jenkner et al. (2009), but with the threshold criteria for each parameter
151 being tuned for the North China region, based in part on operational practice in China
152 Details are outlined below:

153 1) Choice of variable and pseudo-horizontal level

154 There are several thermodynamic variables that can be used to define a low-level
155 front (e.g. temperature, potential temperature, equivalent potential temperature). During
156 the summer season in China, temperature gradients between different air masses are often
157 weak. However, a sharp gradient of specific humidity and (therefore) equivalent potential
158 temperature can often be identified (Ninomiya 1984). Therefore, the equivalent potential
159 temperature (θ_e) is used in the present study as the thermal parameter τ .

160 The formula of θ_e follows (Bolton 1980):

$$161 \theta_e = T_k \left(\frac{1000}{p} \right)^{0.2854(1-0.28 \times 10^{-3}r)} \times \exp \left[\left(\frac{3.376}{T_L} - 0.00254 \right) \times r(1 + 0.81 \times 10^{-3}r) \right] \quad (1)$$

162 where T_k , p , and r are the absolute temperature, pressure and mixing ratio at the initial
163 level, respectively. T_L is the absolute temperature at the lifting condensation level. In

164 order to minimize the potential impacts of interactions between the boundary layer and
165 synoptic fronts aloft, the 850-hPa level, which is near the ground over the western and
166 northern parts of North China and upstream regions, was chosen for the front detection.

167 2) Smoothing of the initial data

168 Ordinarily, equivalent potential temperature is not smooth enough for the
169 computation of masking conditions and the locating function, which represent higher
170 order derivatives of τ . By using a simple diffusive smoothing filter (Eqn. 2), equivalent
171 potential temperature and zonal and meridional wind components are preprocessed to
172 eliminate noise. Where n is the filter times and set equal to 3. A much higher value as
173 used by Jenkner et al. (2009) was not needed here because ERA-Interim is much lower
174 resolution than Jenkner's model.

175
$$\tau_{i,j}^n = \frac{1}{2}\tau_{i,j}^{n-1} + \frac{1}{8}(\tau_{i+1,j}^{n-1} + \tau_{i-1,j}^{n-1} + \tau_{i,j+1}^{n-1} + \tau_{i,j-1}^{n-1}) \quad n = 1, \dots, n_f \quad (2)$$

176 Fig. 3a provides an example of these pre-processed fields.

177

178 3) Detection of front location

179 A first order horizontal derivative of θ_e (Eqn. 3) is calculated to define the
180 contiguous area that has at least the minimum front strength K .

181
$$|\nabla\theta_e| > K \quad (3)$$

182 This threshold is set to 4 K/100 km in this study based on a comparison between
183 manual and objective frontal analyses for typical cases. The front strength is slightly
184 weaker than that used by Jenkner et al. (2009). On the example in Fig. 3b the masked

185 areas where K is larger than 4 K/100km are outlined by black contours.

186

187 Equation (4) is the formula for calculating the thermal front parameter (TFP); it denotes a

188 second-order horizontal derivative of θ_e .

189
$$\text{TFP} = -\nabla|\nabla\theta_e| \cdot \frac{\nabla\theta_e}{|\nabla\theta_e|} = 0 \quad (4)$$

190
$$\nabla \cdot \nabla|\nabla\theta_e| < 0 \quad (5)$$

191 Initially the front location is defined to be the zero-value contour line of TFP, which

192 coincides with the maximum of the gradient of θ_e . In the terminology of Hewson (1998)

193 this denotes the middle of the “frontal zone”. Ordinarily, for forecasters, one would want

194 to identify the line of the TFP maximum, to show the actual front, along the warm air side

195 of the baroclinic zone, which will coincide better with other parameters such as pressure

196 troughs, but for our purposes, where the focus is well away from the front, we do not

197 require that level of specificity. In the example of Fig. 3b the zero line of TFP is marked

198 by green contours, and then Fig. 3c clearly shows how the fronts align with the middle of

199 baroclinic zones.

200 Note that sometimes a localized minimum gradient of θ_e may be embedded within

201 broad baroclinic zones, due to some discontinuous variation of θ_e . So finally the TFP

202 zero contours are also masked by Equation (5) to ensure that identified fronts coincide

203 with gradient maxima.

204 The front type is also identified by estimating frontal displacement with time. The

205 direction of movement (Eqn. 6) is by definition perpendicular to a front, and frontal

206 velocity can be approximated as follows using the gradient of TFP:

207
$$\mathbf{V}_f = \mathbf{V} \cdot \frac{\nabla(\text{TFP})}{|\nabla(\text{TFP})|} \quad (6)$$

208 where \mathbf{V} is the horizontal wind vector (at 850hPa). \mathbf{V}_f is positive for a cold front and
209 negative for a warm front while $\mathbf{V}_f = 0$ broadly indicates a stationary front. In the
210 example in Fig. 3c, the front types are mostly well-defined.

211

212 4) Distinguishing a synoptic front

213 Since very localized frontal boundaries usually play a lesser role in regional rainfall,
214 only synoptic fronts are considered for WSR in this study. Here only fronts which are
215 longer than 10 degrees on latitude/longitude grids (about 700 to 1000 km in the study
216 region) are retained as synoptic fronts. Others are deleted. The fronts are detected every 6
217 hours during the study period. In the Fig. 3 example, note how both the identified fronts
218 extend across a considerable distance.

219

220 2.2.2 Objective identification of mesoscale rainstorms

221 A “mesoscale convective system” is defined as “a cloud system that occurs in
222 connection with an ensemble of thunderstorms and produces a continuous precipitation
223 area of the order of 100km or more in horizontal extent in at least one direction”
224 (American Meteorological Society, 2019). In this study, a mesoscale rainstorm is defined
225 as a continuous rainfall area (CRA), whose attributes, such as intensity and size (in
226 gridded 1-h rainfall totals), are given in Table 1. In the classifications of Li et al. (1998),

227 who investigated hourly rainfall intensity over China, our mesoscale rainstorm definition
228 would correspond to a “strong convective rainfall event”. Here our CRA identification
229 method concurs with the proposals of Ebert and McBride (2000); we use our gridded
230 rainfall dataset to estimate areal coverage, centroid, maximum rainfall, etc., for any
231 identified mesoscale rainstorm. All mesoscale rainstorms for each hour during the period
232 from June to September 2012 to 2017 are identified and archived. In the example on Fig.
233 4, four such rainstorms are identified at 14:00 LST July 21 2012.

234

235 2.2.3 Automatic detection of a WSR-related rainstorm

236 Based on the WSR definition proposed by Huang et al. (1986), the influence area of
237 frontal rainfall is deemed to extend up to 200 km away from the front itself. We identify
238 these limits, as illustrated on Figure 3d. Then any mesoscale rainstorm whose centroid
239 lies outside of the front’s influence area (shaded) is assigned to be a WSR-related
240 rainstorm.

241 For example, Figure 5 shows the identified fronts (at 8:00 LST) and mesoscale
242 rainstorms (at 13:00 LST) from July 20-31 2012. Two main synoptic frontal systems are
243 detected moving erratically from Inner Mongolia southwards to east China during this
244 period. About 9 mesoscale rainstorms are identified; these are mostly situated near the
245 identified synoptic fronts. Only one of these is assigned to be in the WSR category in
246 North China, on panel (b) near the border between Hebei and Beijing. This is in fact the
247 first stage (13:00 to 14:00 LST) of the extreme rainfall event of 21 July 2012 examined in

248 Zhong et al. (2015). It is situated in the tongue of high equivalent potential temperature
249 ahead of the identified cold front. This event illustrates well the effectiveness of this
250 automatic method for detecting WSR. And there are naturally some clear benefits relative
251 to manual analysis, such as reduced manpower and consistency of approach. Based on
252 our method described above, a total of 768 WSR rainstorms were automatically identified
253 during the warm-season months of the 6-year study period. In the next sub-section we
254 analyze their morphology and temporal and spatial distributions.

255 Three experiments are made to discuss the uncertainty of the identified WSR events
256 due to the different time intervals of rainfall and circulation data. The comparative
257 experiments and the strategy used in present study are shown in Table 2. Indeed, it shows
258 some variance in the number of shared WSR events, with a maximum bias of 92 and
259 minimum bias of 38, comparing to the identification strategy used. The errors of the
260 WSR events are possibly related to the different stages (such as formation, movement,
261 dissipation) of the life-cycle of a surface front. Take the Fig.5b as an example, a WSR
262 event at 13:00 LST 21 July 2012 in North China is identified when the front at 8:00 LST
263 is used, which is consistent with the definition of Zhong et al. (2015). But the same WSR
264 event will not be identified when the front at 14:00 LST, which is located over north of
265 North China, is employed. According to the 6-hour interval circulation data, the stage and
266 location of the front during the period of 09-13:00 LST are not sure. For the newly
267 formed or slowly moving front at 14:00 LST, the front at 8:00 LST should be used.
268 However for the fast moving front system, the front at 14:00 LST would be better.

269 2.3. Classification of circulation patterns

270 To further understand the synoptic background of WSR, the circulation patterns
271 associated with various WSR-related rainstorms are subjectively classified into several
272 categories using the 6-hourly reanalysis data. Figure 6 shows the distribution and
273 frequency of identified frontal boundaries for the scenarios when WSR-related rainstorms
274 occur between June and September in the years 2012 to 2017. There seem to be two high
275 frequency centers, one running approximately northeast-southwest through Inner
276 Mongolia, the other situated approximately between the Yangtze-Huai Rivers. The front
277 frequency north of 45°N (Mongolia) is relatively low during this period. Ding and Chan
278 (2005) noted that the synoptic frontal zone tends to experience several northward jumps
279 with the northward progression of the East Asia summer monsoon: the west-east-oriented
280 frontal zone tends to be situated in South China from April to May, firstly shifts to the
281 Yangtze-Huai River Valley in early June, subsequently leaps to North China around
282 mid-July, and typically begins to retreat southward in mid-August.

283 The frontal boundaries related to WSR-related rainstorm events can be divided into
284 three categories based on the location of the fronts, namely, the Mongolia front (north of
285 45°N), the northern China front (between 35 and 45N°), and the Yangtze-Huai River
286 front (south of 35°N), which are respectively indicated by grey, blue and red lines in
287 Figure 6a. At any given time, there are eight possible scenarios regarding frontal
288 boundaries identified over East Asia, just one of the above fronts, two or three of them, or
289 none. The frequencies of the eight possible scenarios of fronts when WSR-related

rainstorm events occur are summarized in Table 3. Scenario (II), only a northern China front, is the most populated category accounting for 29% (83 samples). The three scenarios that include a northern China front and one other (IV, VI, and VII), together account for about 34% (98 samples in total). The scenarios (III and V), in which Yangtze-Huai River fronts are dominant, account for 21% (60 samples in total). The remaining scenarios (I and VIII) account for just 16% of all cases (47 in total).

We next composite the synoptic circulation patterns using the arithmetic mean of 500-hPa geopotential height present during the events in each of the eight scenarios. Since this shows that some scenarios share similar synoptic flow characteristics, we then subjectively merge together some of these eight patterns to arrive at just three. The deciding factors in this process were the location of a 500-hPa trough, the positioning of the West Pacific Subtropical High, and indeed the locations of the frontal zones themselves. The first circulation pattern consists of all events with only a Mongolia front identified (I), which we call the “Mongolia front pattern”. The second circulation pattern, which we call the “northern China front pattern”, is obtained by combining five scenarios (II, IV, VI, VII), which share a circulation pattern similar to that associated with scenario (II) (“only northern China front”) or/and in which northern China fronts are identified . The third circulation pattern is defined by events where Yangtze-Huai River fronts are dominant (III, V). This we label the “southern front pattern”. Due to no identified front for scenario VIII, compared with the upper three patterns, the circulation of scenario VIII is not composited with any of them. But it has similar circulation with northern China

311 front pattern and not shown here. The dynamic, thermodynamics, and moisture
312 conditions associated with each of these three patterns are composited to analyze the
313 environmental conditions for WSR.

314

315 **3. Statistics of WSR-related rainstorms**

316 WSR-related rainstorm frequency plots (Fig. 7) are generated by counting the total
317 number of cases in a one-degree box, with box assignation dependent on where the
318 rainstorm centroid was located. The rainstorms mainly occur on the plains over the
319 central-eastern part of North China with two peak frequencies, one at somewhat higher
320 altitudes just south of the Yanshan Mountain Range, and the other near the junction of the
321 Henan, Shandong and Jiangsu provinces (Fig. 7a). The annual mean rainfall of North
322 China (not shown) is also characterized by a gradual decrease from southeast to
323 northwest with two maxima, one in northeast part of Hebei province, and the other in the
324 southeast region of North China. He and Zhang (2010) indicated that on average, rainfall
325 amount over the North China plain is higher than it is over the higher terrain north of this.
326 They attributed the rainfall distribution to be at least partially the impacts of regional
327 mountain-plains solenoid on rainfall diurnal variations. A similar spatial distribution is
328 found here for the WSR rainstorms. Meanwhile, the location of the peak frequency of
329 WSR rainstorm near to the junction of the three provinces is consistent with the peak
330 frequency of occurrence of squall lines in North China (Meng et al. 2013). That may
331 provide a mesoscale “explanation” for this being a focal point of WSR rainstorm events.

332 Compared to the front line frequency distribution (Fig. 6b), WSR rainstorm events are
333 mainly located southeast (“downstream”) of the northern China front and northwest
334 (“upstream”) of the Yangtze-Huai River front.

335 Figure 7b-d show intra-seasonal variations in the spatial distribution of WSR
336 rainstorm events. The rainstorm events can occur from June to September. However,
337 whilst climatologically the main rain belt stays in Central China from Mid-June to
338 Mid-July, there is still a relatively high frequency over the south and east of North China
339 region, with a maximum frequency over the boundaries between Shandong and Henan
340 (Fig. 7b). Between mid-July and mid-August, the WSR rainstorm event distribution (Fig.
341 7c) resembles the total warm season distribution (Fig. 7a) and is similarly much more
342 amplified than in the other two periods. When the main rain belt jumps to North China,
343 another frequency peak appears over the northeast of North China (Figure 7c). And when
344 the rain belt retreats southward from mid-August to mid-September, the frequency of
345 WSR rainstorm events decreases significantly, although the northern focal point within
346 the North China region persists (Figure 7d).

347 The WSR-attributable rainfall fraction is derived by dividing the total rainfall
348 amount from WSR rainstorm events by total rainfall from of all identified mesoscale
349 rainstorms over North China during the summer-time analysis period. Although the WSR
350 fraction is about 5 to 10% over most of the plains in North China, which is not as much
351 as it is in South China during the late spring season (He et al. 2016), locally WSR events
352 account for as much as 15% to 25% of total rainfall. This is seen particularly in areas that

353 are somewhat more topographically complex, such as the north-central part of Tianjin,
354 the northeast of Hebei province, the northwest of Henan province, and central part of
355 Shandong province (Fig. 8a). The WSR over the above regions may be closely associated
356 with mesoscale processes and local factors, such as mountain-associated lifting and land–
357 sea contrasts (Wu and Luo 2016). In respect of whether a rainstorm event will be
358 WSR-related, there is about 40% chance in each sub-period (Fig. 8b). This is irrespective
359 of whether the main rain belt is situated in North China or not. Yeh and Chen (1998)
360 indicated that about 50% of the rainfall occurred as scattered orographic showers in
361 non-front periods during the Taiwan Area Mesoscale Experiment.

362 In respect of the morphology of WSR rainstorms, the areas of the identified
363 rainstorm (rainfall amounts >5 mm/hr) (Fig. 9a) and of more extreme conditions (>10
364 mm/hr) (Fig. 9b) are respectively about 5000 to 20000 km^2 and 2500 to 10000 km^2 , with
365 means of 12000 km^2 and 5900 km^2 . The maximum rainfall of WSR rainstorm events is
366 mostly about 20 to 40 mm/hr, with a mean value of 35mm/hr, and an extreme hourly total
367 of 89 mm (Fig. 9c). For the diurnal variation, there are two peaks, one from afternoon to
368 early evening (14:00 to 22:00 LST) and the other from midnight to early morning (1:00
369 to 7:00 LST). The first peak has a slightly larger, which may indicate that solar radiation
370 plays an important triggering role. Recent papers revealed that nocturnal precipitation in
371 the warm season over North China is often associated with the initiation and movement
372 of convective systems triggered over the eastern edges of plateaus in the afternoon, which
373 subsequently propagate to the plain area overnight (He and Zhang 2010; Bao and Zhang

374 2013; Yuan et al. 2014). The mountain-plains solenoid circulation, a low-level
375 southwesterly nocturnal jet and cold pool dynamics are likely to be jointly responsible for
376 nighttime precipitation enhancement (He and Zhang 2010; Bao and Zhang 2013).

377

378 **4. Composite analysis of the synoptic flow patterns of WSR**

379 The large-scale circulation of all WSR-related rainstorms was further classified into
380 three synoptic patterns, named the Mongolia front pattern, the northern China front
381 pattern, and the southern front pattern. Fig. 10 shows the composite 500hPa geopotential
382 height, 850hPa wind vector and identified average fronts as well as centroids of all
383 WSR-related rainstorms for each. All three patterns are characterized by the presence of a
384 synoptic or short-wave trough, with the influence also of a subtropical high over central
385 eastern China and the northwest Pacific. The northern China front pattern, with a trough
386 in west of North China and a subtropical high to the southeast, accounts for 69.6% of the
387 total. The northern China front pattern is one of the typical synoptic types that deliver
388 heavy rainfall in North China (Book Writing Team of North China Heavy rainfall, 1992).
389 20.8% of cases belong to the southern front pattern, which has a trough over North China
390 and the front over Yangtze-Huai River valley (Fig. 10c). The Mongolian front pattern,
391 which is characterized by a short-wave on the periphery of the subtropical high, is
392 relatively uncommon, featuring only 6.6% of the time (Fig. 10a).

393 For the Mongolian front pattern (Fig. 10a), a continental high pressure center
394 controls the north part of East Asia with the short wave trough over the Huang-Huai

395 inter-river region and the subtropical high along the east coast of China. A strong
396 southwesterly current flowing from South China into North China with convergence
397 implied over the eastern part of North China, which may help with forcing ascent. Most
398 of the identified WSR-related rainstorms are located over the southern part of North
399 China. All are situated at cyclonic curvature or left side of the strong southerly flow.

400 For the northern China front pattern (Fig. 10b), the mean cold front is mainly
401 situated to the Northwest China (upstream) of North China. The trough is over western
402 North China, while the subtropical high is relatively far south, with its northern edge at
403 the south of the Huang-Huai inter-river region. North China is controlled by the
404 southwesterly flow, as was the case for the Mongolian front pattern, but with the leading
405 edge of strong southwesterlies over the south of North China. The identified WSR-related
406 rainstorms lie on the leading edge of or within the strong southwesterly. Nearly three
407 quarters of the rainstorms in North China occurred under this synoptic pattern. The
408 extreme event in Beijing on July 21 2012 had a similar circulation pattern (Sun et al.,
409 2013). The coexistence of the subtropical high and the upper-level trough will lead to the
410 development and enhancement of southerly flow, as was identified by Zhong et al. (2015)
411 for the July 21 2012 extreme event in Beijing. The southerly not only transports abundant
412 water vapor and convective energy to North China, but also supports the development of
413 convective systems by convergence or shear in the strong southerly flow, as well as by
414 lifting forced by the Taihang Mountains.

415 With respect to southern front pattern (Figure 10c), the front zone is relatively far

416 south and the front boundary mainly affects the Yangtze River Basin in China. A
417 northeast - southwest oriented trough extends from Inner Mongolia to west of Huanghuai
418 valley with the main body of the subtropical high situated in the northwestern Pacific.
419 North China is under the control of the trough. All identified WSR-related rainstorms lie
420 beneath the bottom of the trough or west of the trough (“post-trough”). Compared to the
421 low level flows of the Mongolian front pattern and the northern China front pattern, the
422 southerly at low level is ahead of the trough, and disconnected from the southerly current
423 along northwest of the subtropical high. This has been caused by the southeastward
424 withdrawal of the subtropical high. The high CAPE and PW is separated from the main
425 pool of tropical moisture over and south of the Mei-Yu region. The shear line between
426 northwesterly and southwesterly at 850hPa lies slightly more westward compared to the
427 upper level trough at 500hPa. It indicates that it is a negatively tilted synoptic system.
428 This circulation pattern resembles that of the decaying upper-level cold vortex (Gao and
429 He, 2013), although there is no closed upper level circulation identified on the
430 composited plot. At the decaying stage of cold vortex, the low level cold northerly flow
431 obviously decreases and southerly winds prevail under and ahead of the trough line (Liu
432 et al., 2012). Height disturbances (i.e. short wave) behind of the trough frequently
433 develop, which may lead to convective weather. Gao and He (2013) indicated that heavy
434 convective precipitation can occur at the decaying stage of cold vortex in North China.
435 Past studies have pointed out that moisture at low levels and CAPE are important for
436 the development of WSR (Zhong et al. 2015; Wu and Luo 2016; Luo et al. 2017). The

437 composited equivalent potential temperature is characterized by a high-value tongue
438 extending to North China with the identified WSR-related rainstorms lying within that
439 tongue (not shown). Fig. 11 shows the composited precipitable water vapor (PWAT) as
440 contours and CAPE with shading. Similar to the distribution of equivalent potential
441 temperature, a tongue of high PWAT extends into North China for all three patterns. The
442 average PWAT is about 50mm for the Mongolian and northern China front patterns, due
443 to the warm, moist flow on the northwest periphery of the subtropical high. The PWAT
444 for the southern front pattern is slightly less, with a mean value of about 40 mm. In
445 respect of the convective instability, the mean CAPE for the Mongolian front pattern is
446 about 500 to 1000J/kg with the identified WSR-related rainstorms lying on the
447 northwestern periphery of the maximum. However, the maxima of CAPE of the China
448 continent controls North China for the northern China front pattern, with a mean larger
449 than 1000 J/kg. There is a secondary, more isolated maximum of CAPE over North China
450 for the southern front pattern, with the average value 500 to 800J/kg. Clearly, for the
451 southern front pattern, moisture pooling and instability energy occur in conjunction with
452 the trough, and highlights the importance of cold temperatures aloft and decreased
453 stability with the trough. These ingredients are a bit different than the other two patterns
454 that have a direct "tap" to the tropical moisture to the south.

455 As stated by Luo et al. (2017), warm sector heavy rainfall is not well forecasted
456 either by the operational NWP models or by human weather forecasters. So the
457 identification of favorable environment conditions, from NWP forecast fields, can assist

458 in discriminating the potential for WSR. Conditions present before WSR should also be
459 valuable to analyze possible outcomes. The circulations 6 to 24-hour ahead of
460 WSR-related rainstorms have also been composited here. In order to exclude the
461 influence of persistent WSR-related scenarios, only circulations at the start of these
462 events have been used.

463 Figure 12 shows the composited 500hPa geopotential height and 850hPa wind 6
464 hours ahead of the identified WSR-related rainstorms. For the Mongolian front pattern,
465 the short wave was present 6 hours ahead of the WSR rainstorms (Figure 12a), and even
466 12 and 18 hours ahead (not shown). For the northern China front pattern, there is a weak
467 trough upstream of North China and the subtropical high is a little south of where it is
468 when the rainstorms occur (Figure 12b). A height disturbance begins to develop over
469 central and western Inner Mongolia 6 hours ahead with a relative weaker southerly flow
470 compared to that when WSR rainstorms occurs for the southern front pattern (Figure 12c).
471 Compared to Fig.10, the southerly winds at low levels and the upper level troughs seems
472 to get stronger from 6 hours ahead to just the time when the rainstorms occur for all three
473 patterns.

474 The height differences at 500 hPa among the three patterns are calculated. The
475 similar positive differences of 500 hPa heights between Mongolia front and the other two
476 patterns are statistically significant over eastern Mongolia to Northeast China (Figure 13
477 a and b), which is caused by the discrepancy of broad high for Mongolia front pattern and
478 troughs for the other two patterns. Between northern China front and the southern one,

479 significant differences of 500 hPa height are found over North China and Northwestern
480 Pacific Ocean due to the distinct locations of their troughs and subtropical highs (Figure
481 13c).

482 The circulation of each pattern is characterized by the developing of the short wave
483 trough or trough at upper levels. This is different from the upper-level synoptic pattern of
484 WSR in South China, most of which has no prominent synoptic-scale lifting (Wu and
485 Luo 2016). As a human forecaster, identifying pre-cursor disturbances, such as
486 upper-level synoptic or short-wave troughs, can be useful for highlighting the potential
487 for the development of WSR, alongside an analysis of the boundary triggering
488 mechanisms in North China. On the one hand, the upper level trough may provide a
489 dynamic explanation for the development of mesoscale systems at the lower level. On the
490 other hand, the trough may bring cold and dry air over the warm moist flow at the lower
491 levels which will be helpful to generate potential convective instability.

492

493 **5. Concluding remarks**

494 Using gridded rainfall data and ERA Interim reanalysis data, this work has
495 investigated the general features of WSR in North China during the months June to
496 September in the years 2012 to 2017. It may provide valuable background information
497 for human forecasters in warning of the potential occurrence of WSR.

498 WSR is defined to be located outside of a frontal influence area, requiring a
499 separation of > 200 km from either side of the front. One might argue that the cold side of

500 a front is not the warm sector; however, the region of study, in the summer season,
501 ordinarily lies in extensive ‘warm sector’ conditions well south of a primary cold front
502 typically found north of China. More localized fronts can be found within this broad
503 warm sector, and the rainbands connected to these are directly excluded with this
504 double-sided condition. Based on our WSR definition, an objective identification of WSR
505 was first developed. There are three steps in this procedure, including the detection of
506 fronts and their areas of influence, mesoscale rainstorm identification, and WSR
507 discrimination. This method helps meteorologists to select the WSR cases with higher
508 efficiency in a way that is consistent for climatological analysis.

509 This survey identified 768 WSR rainstorm events in total during the warm-season
510 months of a 6-year period, which are mainly located over the plains of North China, with
511 two maximum frequency regions, one to the south of the Yanshan Mountain Range and
512 the other over the junction of Henan, Shandong and Jiangsu provinces. The two peak
513 areas may be related to topographic effects and frequently observed squall lines. WSR
514 can occur in North China from June to September, with a peak in Mid-July to
515 Mid-August. The higher WSR frequency moves northwards across North China between
516 mid-June and mid-August with a clear reduction in frequencies after mid-August. This is
517 all associated with the natural progression of the East Asian summer monsoon. Although
518 WSR does not occur very often in North China it can still account for 15 to 25% of total
519 rainfall during warm season over some smaller-scale topographically complex regions.
520 And about 40% of identified mesoscale rainstorms are WSR-related in North China

521 during the warm season.

522 The areal coverage of WSR-related rainstorms with rainfall intensity larger than 10
523 mm/hr are mostly 2500 to 10000 km² with mean areal coverage of 5900 km². The
524 maximum rainfall of the rainstorms is mostly 20 to 40 mm/hr with an average maximum
525 1h rainfall of 35mm and extreme maximum of 89mm. There are diurnal peaks of WSR,
526 one from afternoon to early evening (14:00 to 22:00 LST) and the other during nighttime
527 (1:00 to 7:00 LST), respectively, which has a similar diurnal variation to convective
528 rainfall in general across North China. The nighttime peak may be associated with the
529 mountain-plains solenoid circulation, a low level southwesterly and cold pool dynamics
530 of MCS.

531 Based on the location of identified fronts of WSR-related rainstorms their
532 circulations are classified into three synoptic patterns: i) the Mongolian front pattern with
533 a short-wave trough in the south of north China along the periphery of the subtropical
534 high, ii) the northern China front pattern with a trough in the west of north China and a
535 subtropical high in the south and iii) the southern front pattern with a negative tilted
536 trough over North China, all of which are accompanied by warm and moist southwesterly
537 flow at low levels. The most frequent pattern is North China front pattern, which
538 accounts for 69.6% of the total WSR events. The moisture and convective instability
539 energy of north front pattern and North China front pattern have similar features with an
540 average PWAT of 50mm and CAPE of about 1000 J/kg. The water vapor and energy of
541 south front pattern are a little bit less with the average PWAT of 40 mm and CAPE of 500

542 to 800J/kg. A trough or short wave trough for all three pattern are found at and at least 6h
543 ahead of the time when WSR rainstorms occur. The patterns are generally different from
544 what is seen for WSR in South China. Analyzing disturbances at upper levels as well as
545 the favorable low-level environmental conditions would assist human forecasters in
546 discriminating the potential for WSR.

547 This present work has only summarized the basic characteristic and circulation
548 patterns of WSR in North China. The precise mechanism(s) of the heavy rainfall over the
549 warm sector and its predictability need to be further investigated in the future. First of all,
550 the background environment only provides the necessary conditions, but whether the
551 WSR will develop or not still needs to be looked into via systematic examinations of both
552 WSR and non-WSR cases. In particular, we also need more research on the initiation and
553 maintenance mechanisms, or otherwise, for convective systems related to WSR. In
554 addition, the performance of NWP models should be further examined, by assessing both
555 operational and alternative NWP products, and by conducting cloud-resolving numerical
556 simulations of both WSR and non-WSR cases.

557

558 **Acknowledgements:** We are grateful to Dongbin Zhang for providing the gridded
559 rainfall dataset and for comments from two anonymous reviewers. This research was
560 sponsored by project supported by the National Key Research and Development Program
561 of China (Grant No. 2018YFC1507703) and National Key Technologies R & D Program
562 of China (Grant No. 2015BAC03B00). Partial support is provided by the US NSF grant

563 AGS-1712290.

564

565 **References**

566 American Meteorological Society, cited 2019: Mesoscale convective system. Glossary of
567 Meteorology. [Available online
568 at http://glossary.ametsoc.org/wiki/Mesoscale_convective_system]

569 Bao, X., and F. Zhang, 2013: Impacts of the mountain–plains solenoid and cold pool
570 dynamics on the diurnal variation of warm-season precipitation over northern China.
571 *Atmos. Chem. Phys.*, **13**, 6965-6982.

572 Bolton, D., 1980: The Computation of Equivalent Potential Temperature. *Monthly*
573 *Weather Review*, **108**, 1046-1053.

574 Book Writing Team of North China Heavy rainfall,1992: Heavy rainfall in North
575 China. Beijing,China Meteorological Press, 182PP.

576 Boustead, J. M., B. E. Mayes, W. Gargan, J. L. Leighton, G. Phillips, and P. N.
577 Schumacher, 2013: Discriminating Environmental Conditions for Significant Warm
578 Sector and Boundary Tornadoes in Parts of the Great Plains. *Weather and Forecasting*,
579 **28**, 1498-1523.

580 Chen, Y., and Coauthors, 2012: Analysis and thinking on the extremes of the 21 July
581 2012 torrential rain in Beijing Part I: Observation and Thinking. *Meteorological*
582 *Monthly*, **38**, 1255-1266.

583 Chen, Y., and Coauthors, 2018: Analysis of a forecast failure case of warm sector

584 torrential rainfall in North China. *Meteorological Monthly*,
585 **44**, 15-25.

586 Ding, Y., 1994: *Monsoons over China*. Kluwer Academic
587 Publishers, Dordrecht, Netherlands, 419 pp.

588 Ding, Y., and J. C. L. Chan, 2005: The East Asian summer monsoon: an overview.
589 *Meteorology and Atmospheric Physics*, **89**, 117-142.

590 Ebert, E. E., and J. L. McBride, 2000: Verification of precipitation in weather systems:
591 determination of systematic errors. *Journal of Hydrology*, **239**, 179-202.

592 Gao Y., and L., He. 2013: The Phase Features of a Cold Vortex over North China. *Journal*
593 *of Applied Meteorological Science*, **24(6)**: 704-713.

594 Haberlie, A. M., and W. S. Ashley, 2018: A Method for Identifying Midlatitude
595 Mesoscale Convective Systems in Radar Mosaics. Part I: Segmentation and
596 Classification. *Journal of Applied Meteorology and Climatology*, **57**, 1575-1598.

597 He, H., and F. Zhang, 2010: Diurnal Variations of Warm-Season Precipitation over
598 Northern China. *Monthly Weather Review*, **138**, 1017-1025.

599 He, L., T. Chen, and Q. Kong, 2016: A review of Studies on prefrontal torrential rain in
600 South China. *Journal of Applied Meteorological Science*, **27(5)**, 559-569.

601 He, Z., Q. Zhang, L. Bai, and Z. Meng, 2017: Characteristics of mesoscale convective
602 systems in central East China and their reliance on atmospheric circulation patterns.
603 *International Journal of Climatology*, **37**, 3276-3290.

604 Hewson, T. D., 1998: Objective fronts. *Meteorological Applications*, **5**, 37-65.

605 Huang, S., Z. Li, and C. Bao, 1986: *Heavy Rainfalls in the pre-rainy season in South*
606 *China*. Guangdong Science and Technology Press, Guangzhou, China, 230 pp.

607 Huang, Y., Z. Meng, J. Li, W. Li, L. Bai, M. Zhang, and X. Wang, 2017: Distribution and
608 Variability of Satellite - Derived Signals of Isolated Convection Initiation Events
609 Over Central Eastern China. *Journal of Geophysical Research: Atmospheres*, **122**,
610 11,357-311,373.

611 Jenkner, J., M. Sprenger, I. Schwenk, C. Schwierz, S. Dierer, and D. Leuenberger, 2009:
612 *Detection and climatology of fronts in a high - resolution model reanalysis over the*
613 *Alps*. Vol. 17, 1-18 pp.

614 Li, L., Y.-j. Zhu, and B. Zhao, 1998: Rain rate distributions for China from hourly rain
615 gauge data. *Radio Science*, **33**, 553-564.

616 Liu, R., J. Sun, J. Wei, and S. Fu, 2016: Classification of persistent heavy rainfall events
617 over South China and associated moisture source analysis. *Journal of Meteorological*
618 *Research*, **30**, 678-693.

619 Liu Y., and Coauthors, 2012: A comprehensive analysis of the structure of a northeast
620 China-cold-vortex and its characteristics of evolution. *Acta Meteorologica Sinica*,
621 **70(3)**: 354-370.

622 Luo, Y., and Coauthors, 2017: The Southern China Monsoon Rainfall Experiment
623 (SCMREX). *Bulletin of the American Meteorological Society*, **98**, 999-1013.

624 Meng, Z., D. Yan, and Y. Zhang, 2013: General Features of Squall Lines in East China.
625 *Monthly Weather Review*, **141**, 1629-1647.

626 Ninomiya, K., 1984: Characteristics of Baiu Front as a Predominant Subtropical Front in
627 the Summer Northern Hemisphere. *Journal of the Meteorological Society of Japan.*
628 *Ser. II*, **62**, 880-894.

629 Nozumi, Y., and H. Arakawa, 1968: Prefrontal rain bands located in the warm sector of
630 subtropical cyclones over the ocean. *Journal of Geophysical Research*, **73**, 487-492.

631 Omoto, Y., 1965: On Pre-Frontal Precipitation Zones in the United States. *Journal of the*
632 *Meteorological Society of Japan. Ser. II*, **43**, 310-330.

633 Pan, Y., Y. Shen, J. Yu, and P. Zhao, 2012: Analysis of the combined gauge-satellite
634 hourly precipitation over China based on the OI technique. *Acta Meteorologica Sinica*,
635 **70**, 1381-1389.

636 Renard, R. J., and L. C. Clarke, 1965: Experiments in numerical objective frontal
637 analysiS. *Monthly Weather Review*, **93**, 547-556.

638 Simmons, A., S. Uppala, D. Dee, and S. Kobayashi, 2007: ERA-Interim: New ECMWF
639 reanalysis products from 1989 onwards. *ECMWF Newsletter*, ECMWF.

640 Sun, J., S. Zhao, and S. Fu, 2013: Multi-scale characteristics of record heavy rainfall over
641 Beijing area on July 21, 2012 *Journal of Atmospheric Science*, **37**, 705-718.

642 Sun, M., X. Wang, L. Hu, H. Chen, and T. Han, 2018: Study on initiation and propagation
643 mechanism of a warm-sector torrential rain in North China. *Meteorological Monthly*,
644 **44**, 1255-1266.

645 Wang, L., Y. Chen, T. Xiao, S. Li, and L. Ge, 2018: Statistical Analysis of Warm-Sector
646 Rainstorm Characteristics over the Southern of Middle and Lower Reaches of the

647 Yangtze River in Summer. *Meteorological Monthly*, **44**, 771-780.

648 Wu, M., and Y. Luo, 2016: Mesoscale observational analysis of lifting mechanism of a
649 warm-sector convective system producing the maximal daily precipitation in China
650 mainland during pre-summer rainy season of 2015. *Journal of Meteorological
651 Research*, **30**, 719-736.

652 Xu, J., S. Yang, J. Sun, F. Zhang, and Y. Chen, 2014: Discussion on the formation of a
653 warm sector torrential rain case in North China. . *Meteorological Monthly*, **40**,
654 1455-1463.

655 Yeh, H.-C., and Y.-L. Chen, 1998: Characteristics of Rainfall Distributions over Taiwan
656 during the Taiwan Area Mesoscale Experiment (TAMEX). *Journal of Applied
657 Meteorology*, **37**, 1457-1469.

658 Yu, H., and Z. Meng, 2016: Key synoptic-scale features influencing the high-impact
659 heavy rainfall in Beijing, China, on 21 July 2012. *Tellus A: Dynamic Meteorology
660 and Oceanography*, **68**, 1-15.

661 Yuan, W., W. Sun, H. Chen, and R. Yu, 2014: Topographic effects on spatiotemporal
662 variations of short-duration rainfall events in warm season of central North China.
663 *Journal of Geophysical Research: Atmospheres*, **119**, 11,223-211,234.

664 Zhang, D. L., Y. Lin, P. Zhao, X. Yu, S. Wang, H. Kang, and Y. Ding, 2013: The Beijing
665 extreme rainfall of 21 July 2012: “Right results” but for wrong reasons. *Geophysical
666 Research Letters*, **40**, 1426-1431.

667 Zhang, R., Y. Ni, L. Liu, Y. Luo, and Y. Wang, 2011: South China Heavy Rainfall

668 Experiments (SCHeREX). *Journal of the Meteorological Society of Japan. Ser. II,*

669 **89A**, 153-166.

670 Zhao, Y., Q. Zhang, Y. Du, M. Jiang, and J. Zhang, 2013: Objective analysis of
671 circulation extremes during the 21 July 2012 torrential rain in Beijing. *Acta
672 Meteorologica Sinica*, **27**, 626-635.

673 Zhong, L., R. Mu, D. Zhang, P. Zhao, Z. Zhang, and N. Wang, 2015: An observational
674 analysis of warm-sector rainfall characteristics associated with the 21 July 2012

675 Beijing extreme rainfall event. *Journal of Geophysical Research: Atmospheres*, **120**,
676 3274-3291.

677 Zhong, S., and Z. Chen, 2017: The Impacts of Atmospheric Moisture Transportation on
678 Warm Sector Torrential Rains over South China. *Atmosphere*, **8**, 1-16.

679

Table 1. Attributes defining a “mesoscale rainstorm” in this study (values in mm are 1h rainfall totals from the gridded rainfall analysis)

Definition	1h rainfall total	Heavy rainfall sub-area	Length of heavy rainfall sub-area*	Maximum rainfall
a continuous rainfall area	$\geq 5\text{mm}$	$\geq 10\text{mm}$	$\geq 100\text{ km}$ in at least one direction	$\geq 20\text{mm}$

* The length here represents the size of its main axis in any direction, which goes through the mass center of a sub-area.

Table 2. Information of the WSR identification strategy used in present research (No.0) and the three comparative experiments (No.1-3).

Experiment No.	Time of front	Time of rainfall	No. of WSR events	No. of shared WSR events with No.0
1	T	T to T+5h	761	730
2	T	T-1h to T+4h	764	701
3	T	T-2h to T+3h	767	676
0	T	T+1 to T+6h	768	768

Table 3. The frequency of eight front-relative scenarios related to WSR rainstorms.

Category	Definition	No. of samples
I	Only Mongolia front	19
II	Only northern China front	83
III	Only Yangtze-Huai River front	35
IV	coexistence of Mongolia front and northern China front	39
V	coexistence of Mongolia front and Yangtze-Huai River front	25
VI	coexistence of northern China front and Yangtze-Huai River front	43
VII	coexistence of Mongolia front, northern China front, and Yangtze-Huai River front	16
VIII	No front	28

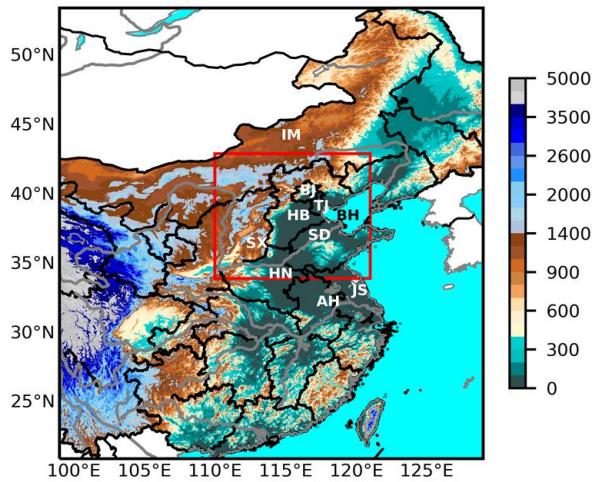


Fig.1 Study domain and the topography over China (shaded, unit: m). The red rectangle represents North China and white text denotes the cities of Beijing (BJ) and Tianjin (TJ), and the provinces of Shanxi (SX), Hebei (HB), Shandong (SD), Inner-Mongolia(IM), Henan(HN), Anhui(AH) ,Jiangsu (JS). Bohai sea (BH) is marked by black text.

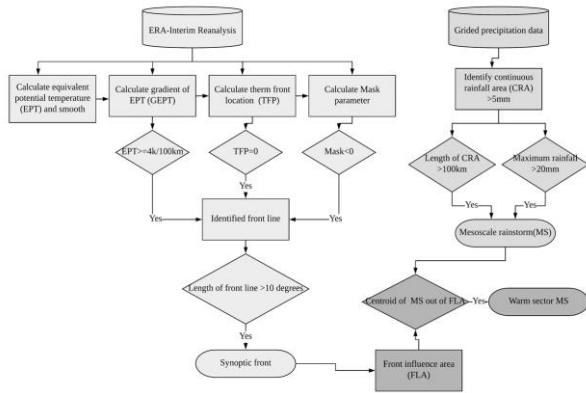


Fig.2 Flow chart of automatic method used to identify frontal boundaries, mesoscale rainstorms, and warm sector mesoscale rainstorms. Data (cylinders), processes (rectangles), decisions (diamonds) and final solutions (oval) are all presented.

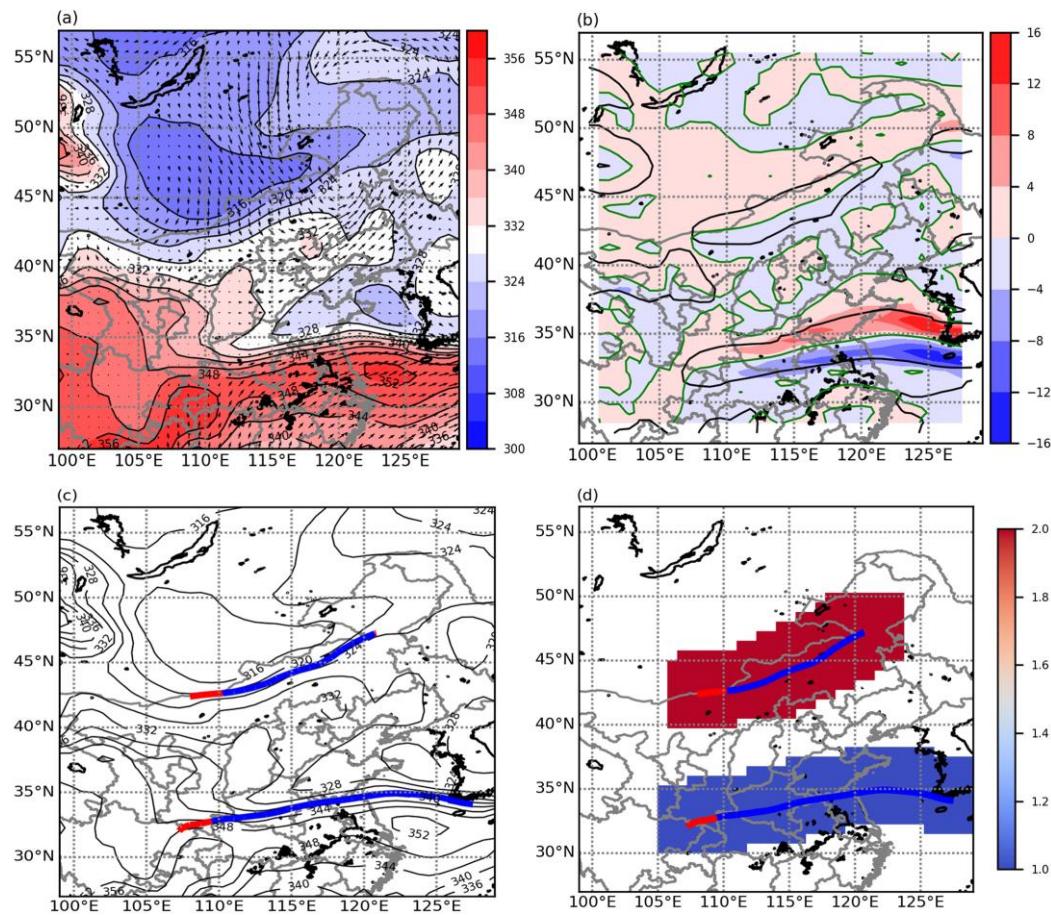


Fig.3 Data for 08:00 LST July 1 2012: (a) Smoothed equivalent potential temperature (K, shaded) and wind vectors at 850hPa, (b) thermal front parameter (shaded) with zero contours (green) and gradient of equivalent potential temperature =4 K/100km (black contours), (c) equivalent potential temperature (black contours) and synoptic front boundaries (blue/red), (d) front boundaries and their areas of influence (shaded).

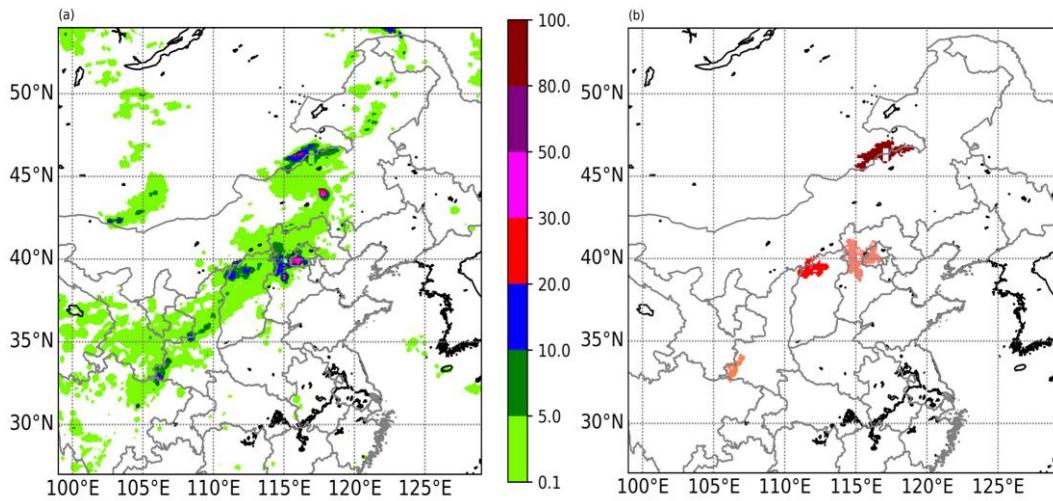


Fig.4 (a) The distribution of 1h rainfall (mm) and (b) identified mesoscale rainstorms for 13:00-14:00 LST 21 July 2012.

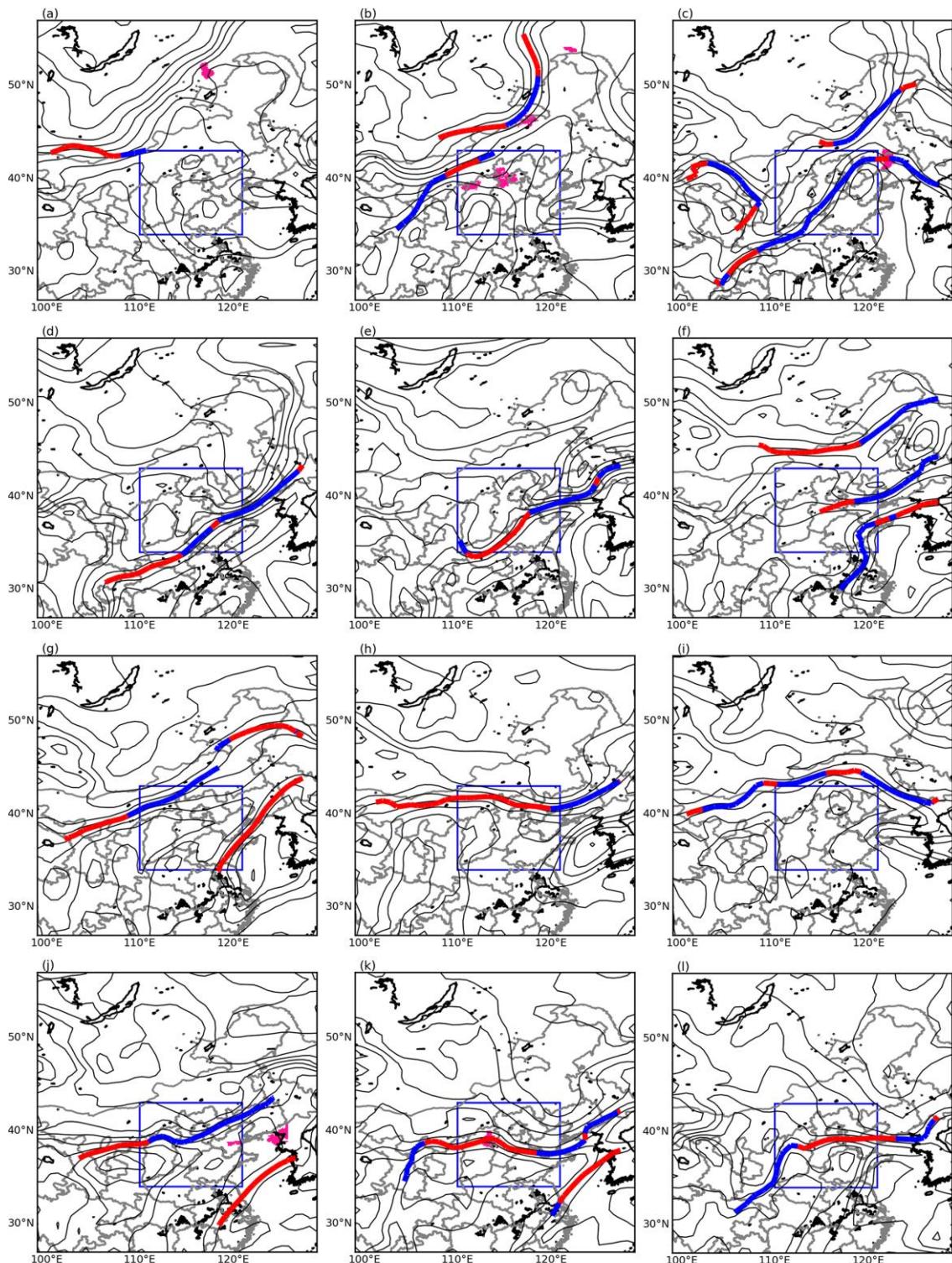


Fig.5 850hPa equivalent potential temperature (black contours, interval $x4K$) , identified front locations (blue/red lines) at 08:00 LST, and detected mesoscale rainstorms (pink shaded) at 13:00 LST during the period from 20th (a) to 31st (l) July 2012. The blue rectangle

represents North China.

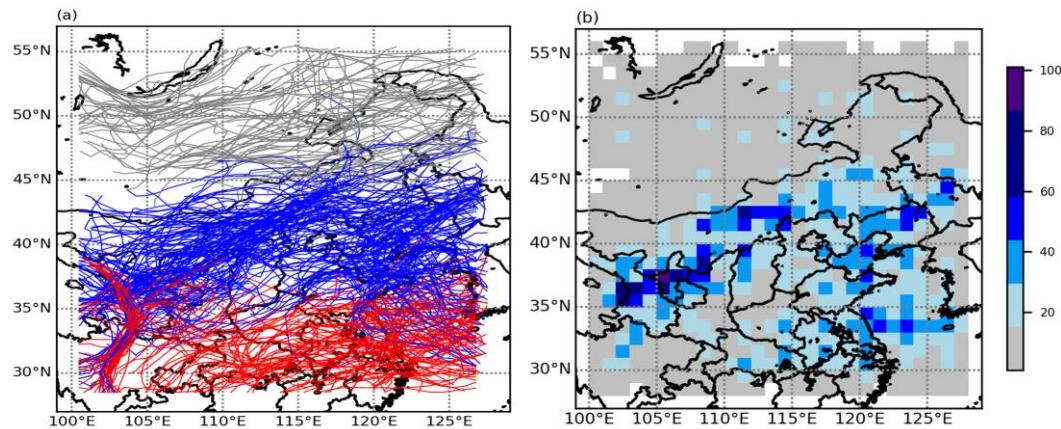


Fig.6 (a) The distribution of synoptic scale fronts for all detected warm sector rainstorms. Grey, blue and red lines indicate that fronts are averagely located at north of 45°N, between 35 and 45°N, south of 35°N, respectively. (b) Front frequency in one degree grid boxes during the period under study.

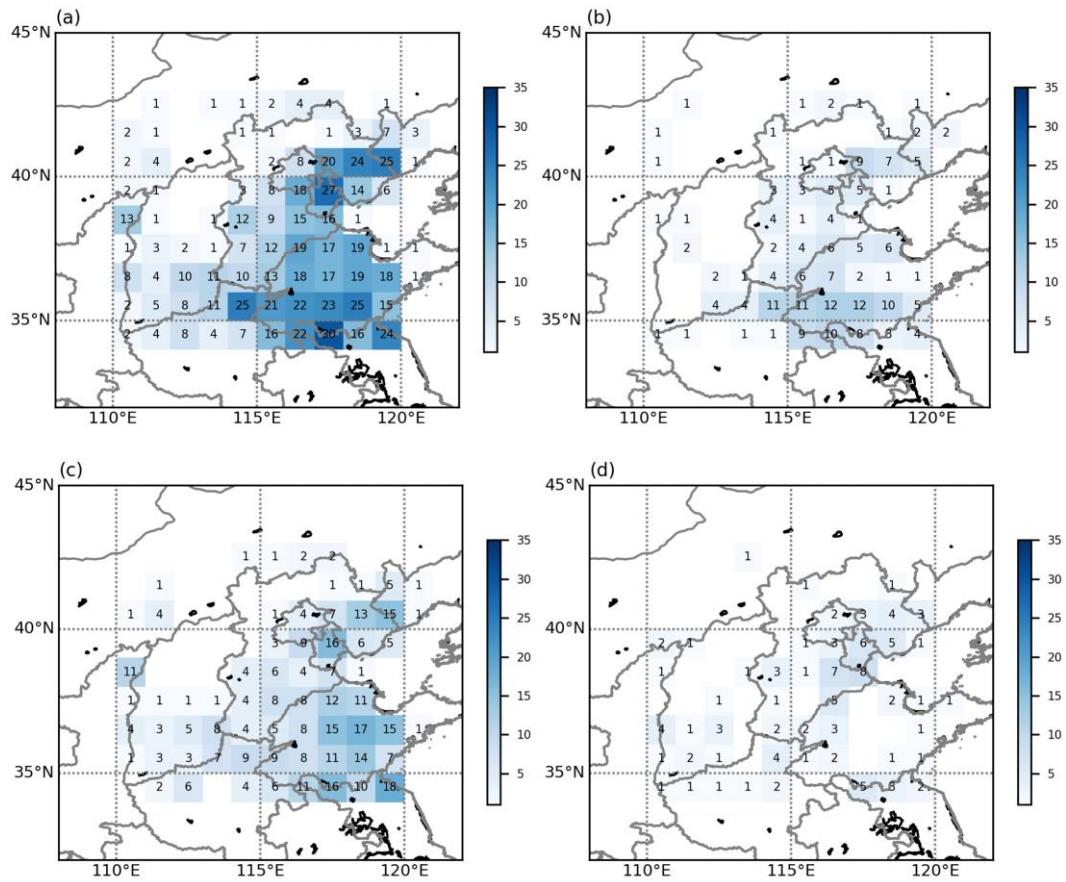


Fig.7 The distribution of warm sector rainstorms in North China for (a) June to September, (b) June 15 to July 14, (c) July 15 to August 14, and (d) August 15 to September 14, all for 2012 to 2017. Figures show actual values.

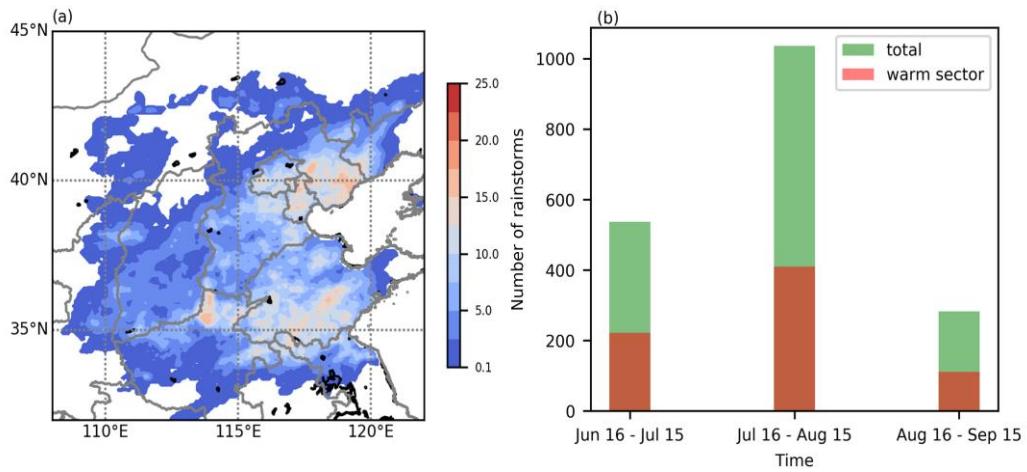


Fig.8 (a) Spatial distribution of the ratio (%) of rainfall attributable to warm sector rainstorm versus rainfall attributable to all rainstorms over North China during the study period, (b) frequencies of these rainstorm types by date.

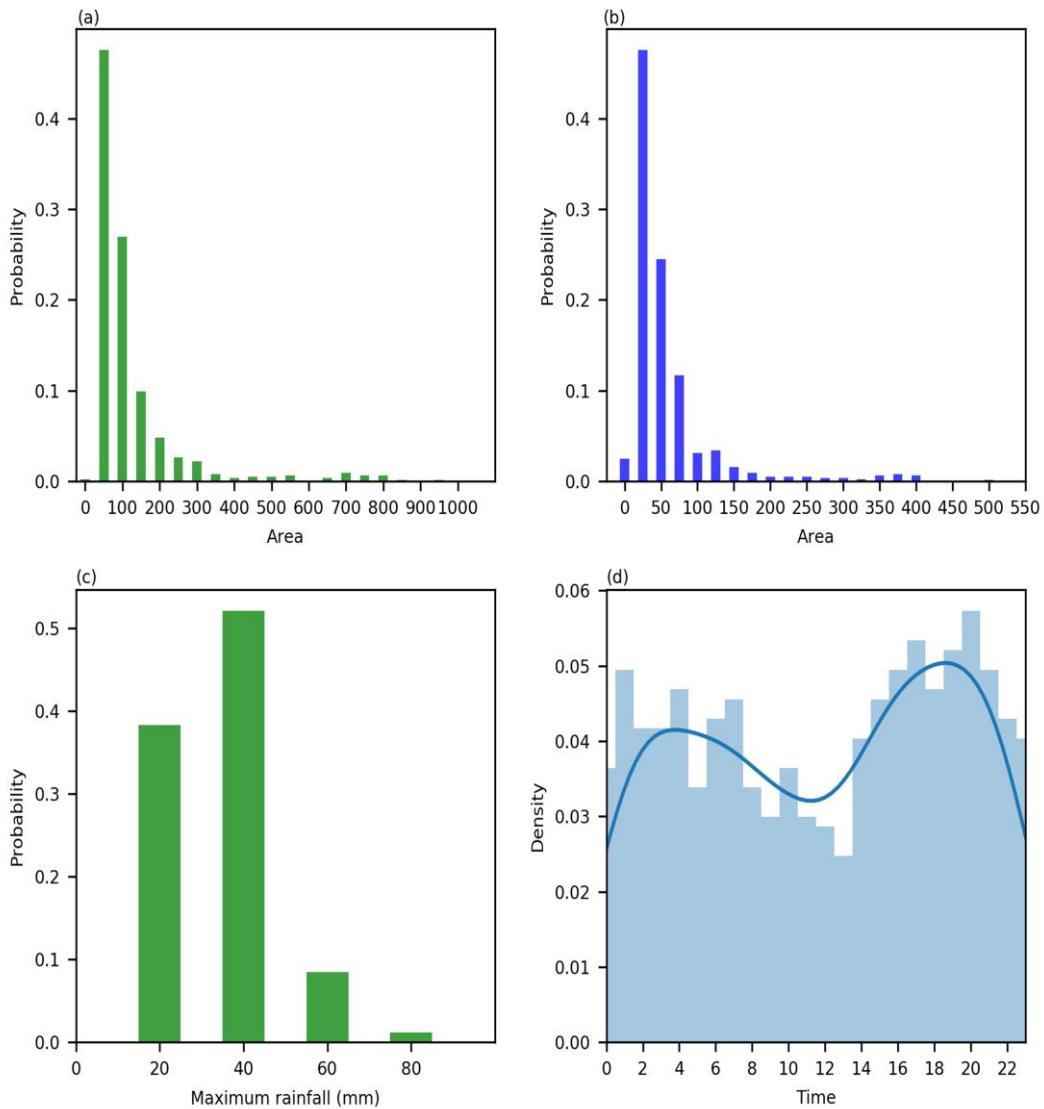


Fig.9 Warm sector rainstorm statistics for North China for the study period. (a) Rainstorm area (km^2), (b) area with rainfall larger than 10 mm in 1h (km^2), (c) maximum rainfall (mm in 1h), (d) times of occurrence.

Fig.10 Composite analysis of 500hPa geopotential height (unit: dm), 850hPa wind vectors and average front lines (blue) for three different circulation patterns. (a) Mongolian front pattern, (b) northern China front pattern, (c) southern front pattern. The numbers in brackets over each picture's upper right corner indicate the total numbers within the composite and the relative frequency of each synoptic pattern. The green dots are the centroids of rainstorms associated with each synoptic pattern.

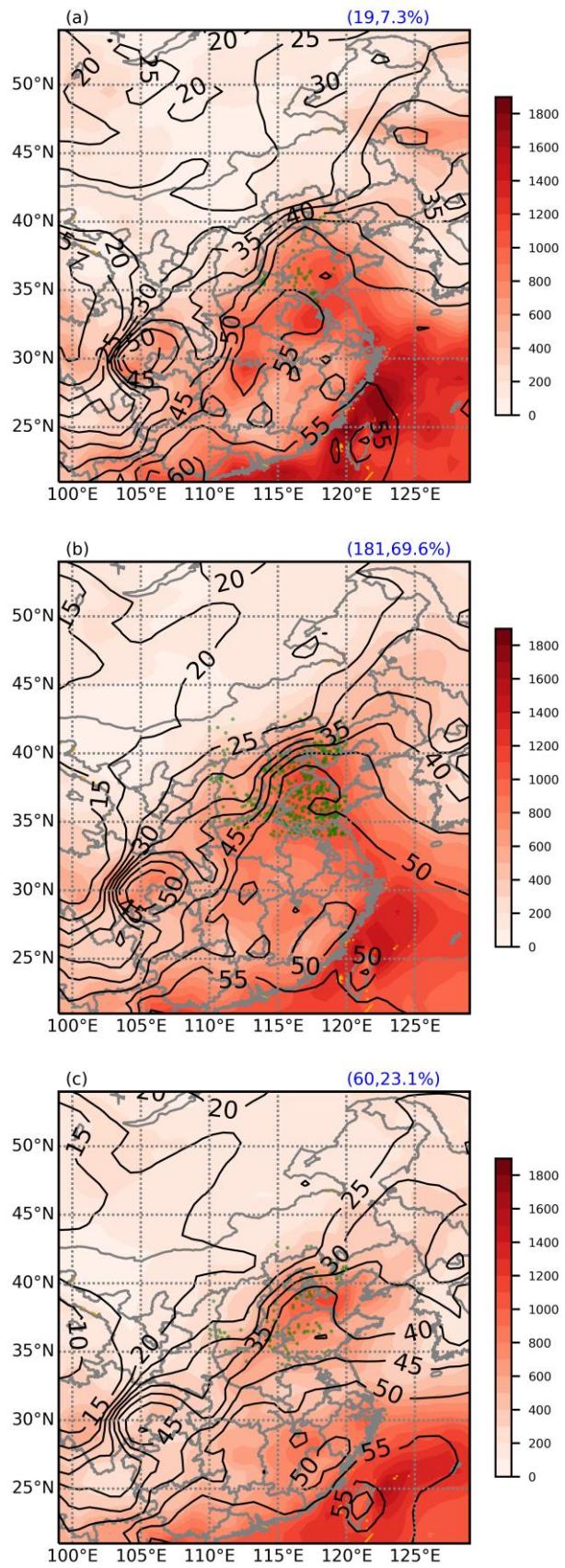


Fig.11 AS Fig.10, but for total column water vapor (mm, contours) and convective available potential energy (J/kg, shading) without superimposing the average front boundaries.

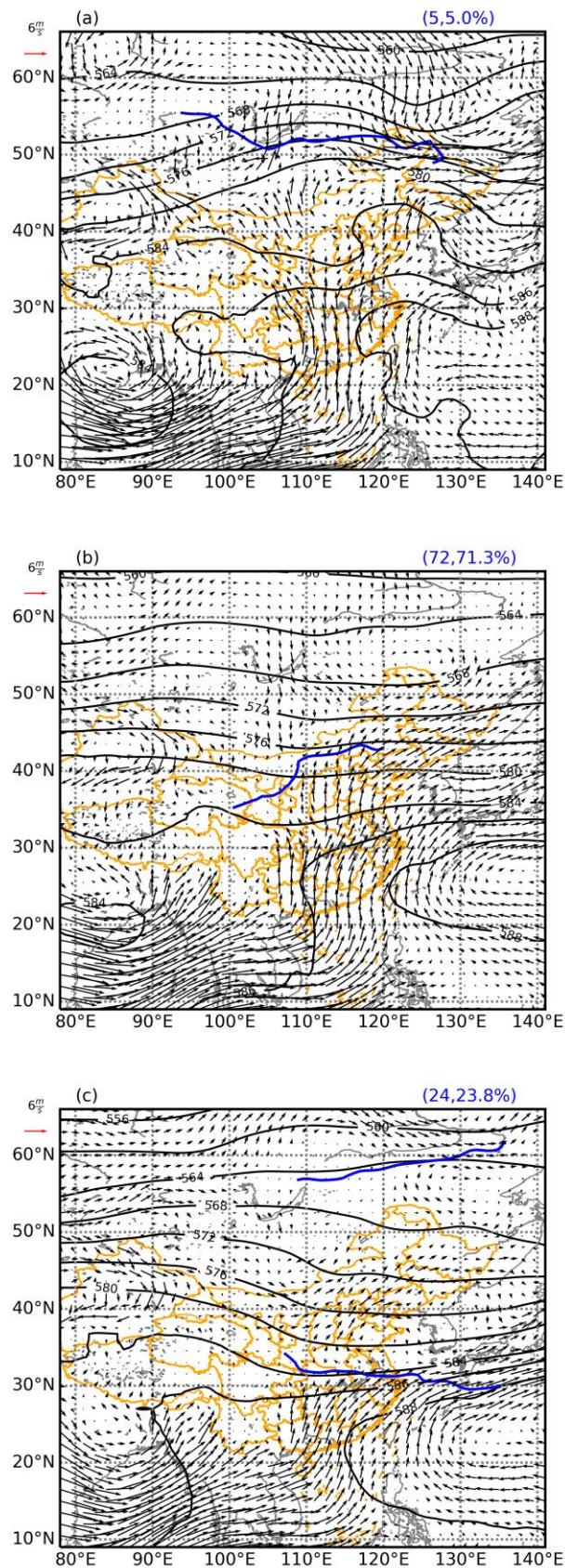


Fig.12 As Fig.10, but for 6 hours ahead of the WSR-related rainstorms without superimposing their centroids. Also, for a continuous WSR event, only the circulations at the start of these events are composited.

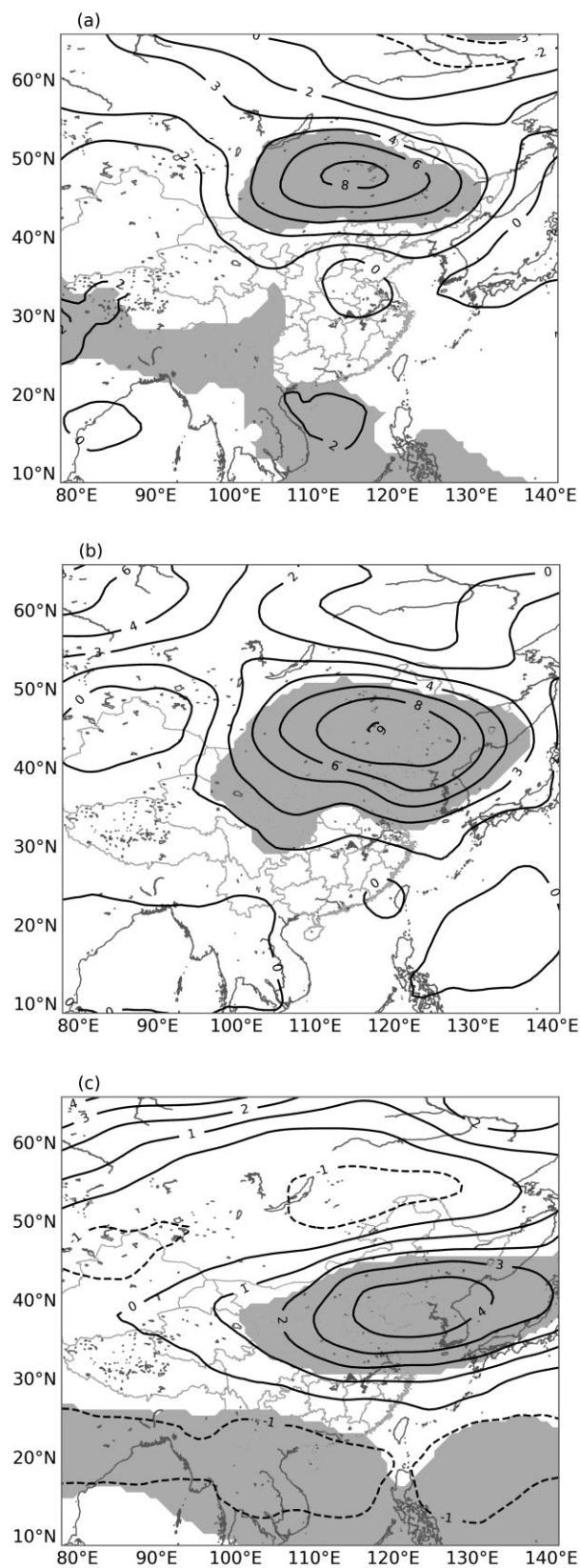


Fig.13 The 500hPa height differences between Mongolia front and northern China front pattern (a)、Mongolia front and southern front pattern (b)、northern China front pattern and southern front pattern. Differences exceeding the 0.01 t test significant level are shaded.