The Security-Utility Trade-off for Iris Authentication and Eye
Animation for Social Virtual Avatars

Brendan John, Student Member, IEEE, Sophie Jorg, Sanjeev Koppal, Senior Member, IEEE, and Eakta Jain

Abstract—The gaze behavior of virtual avatars is critical to social presence and perceived eye contact during social interactions in
Virtual Reality. Virtual Reality headsets are being designed with integrated eye tracking to enable compelling virtual social interactions.
This paper shows that the near infra-red cameras used in eye tracking capture eye images that contain iris patterns of the user. Because
iris patterns are a gold standard biometric, the current technology places the user’s biometric identity at risk. Our first contribution
is an optical defocus based hardware solution to remove the iris biometric from the stream of eye tracking images. We characterize
the performance of this solution with different internal parameters. Our second contribution is a psychophysical experiment with a
same-different task that investigates the sensitivity of users to a virtual avatar’'s eye movements when this solution is applied. By
deriving detection threshold values, our findings provide a range of defocus parameters where the change in eye movements would go
unnoticed in a conversational setting. Our third contribution is a perceptual study to determine the impact of defocus parameters on the
perceived eye contact, attentiveness, naturalness, and truthfulness of the avatar. Thus, if a user wishes to protect their iris biometric,
our approach provides a solution that balances biometric protection while preventing their conversation partner from perceiving a
difference in the user’s virtual avatar. This work is the first to develop secure eye tracking configurations for VR/AR/XR applications and

motivates future work in the area.

Index Terms—Security, Eye Tracking, Iris Recognition, Animated Avatars, Eye Movements

1 INTRODUCTION

Eye tracking will transform virtual and mixed reality. Major hard-
ware companies are integrating eye trackers into head-mounted dis-
plays (HMDs) to enable applications ranging from intuitive gaze-based
interfaces [63,68, 86], foveated rendering [9,64], and streaming opti-
mization [24,52]. Foveated rendering is driving eye tracking within VR
headsets due to the potential to both optimize resources and reduce sim-
ulator sickness [64,78]. For social virtual reality with hyper-realistic
virtual avatars [51,53], eye tracking is required to transfer non-verbal
social cues from the user to his or her conversational virtual avatar.
Because of the networked nature of social platforms and the use of
cloud-based rendering techniques for VR [57], it is expected that XR
devices will follow an ‘always on and connected’ model. Streaming
eye tracking data makes it susceptible to attacks. Most critically, the
iris image of the user is vulnerable. The iris image is a gold standard
biometric that is used in high security applications, such as border
customs [2], and is recognized as such by headset manufacturers [4].
John et al. [42] showed that typical eye tracker eye images, if stolen,
could be used to biometrically identify as a user. They presented a
proof of concept solution that blurred the eye image to remove the
high frequency patterns that form each person’s unique iris signature.
They evaluated this solution for a target viewing task. However, for
such a solution to be impactful, it is also necessary to determine the
consequences of a security mechanism for specific applications. We
focus on the application of eye tracking to animate the eyes of virtual
avatars, as eyes are critical to realism and naturalness of avatars, gaze is
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a crucial social cue in conversations, and inadvertently altering a user’s
gaze may result in unintended changes in how he or she is perceived.

Our first contribution is to discuss the theoretical basis of this prob-
lem and a proposed solution, provide a novel hardware mechanism
to achieve the solution, and evaluate its ability to reduce accuracy of
iris authentication. Our second contribution is to determine detection
thresholds for the amount of image defocus that can be applied before
a difference in eye animations is perceived. Our third contribution is a
study to determine how image defocus impacts perceived eye contact,
attentiveness, naturalness, comfort, and truthfulness of the conversa-
tional avatar. Based on this work, it is possible to recommend to a user
how to create their preferred level of security for eye tracking, and how
much impact this setting will have on the perceived characteristics of
their virtual avatar. More broadly, this work motivates the need to inves-
tigate the security-utility tradeoff for a wide range of XR applications
and develop eye tracking configurations that prioritize security.

2 BACKGROUND

Eye Tracking in Virtual Reality Current applications of eye move-
ments in VR are driving investments in the next generation of eye
tracking hardware. Applications include foveated rendering [9, 64],
which optimizes computational resources in rendering by reducing
resolution in the periphery, streaming algorithms that reduce the band-
width of streamed 360° content [24, 38, 52], intuitive interfaces for
navigation and predicting intent [10, 63], subtle gaze direction using
luminance cues in the periphery to guide attention [31], redirected
walking methods that take advantage of saccadic masking and blinks
to orient the user within a limited physical space [46,79], classifying
neurodegenerative disease through eye movements [62], virtual experi-
ences designed to improve joint attention of children with ASD [55],
and modeling how users explore 360° content [73]. Eye tracking
hardware in VR ranges from video-based oculography [45], electro-
oculography (EOG) [13], photo-sensor oculography (PS-OG) [48, 84],
and magnetic sclera coils [83]. EOG, PS-OG, and sclera coil eye track-
ers provide gaze estimation without imaging the eye itself, however
video-based eye trackers are the most readily available solutions today.
EOG and sclera coil approaches are invasive, as they require electrodes
to be attached to the user’s head or a magnetic contact lens to be worn
by the user. PS-OG trackers are still being evaluated in terms of power
usage and the ability to deploy within consumer devices, as the current
implementation occludes the user’s field of view [84]. Companies like
Facebook, HTC, and Magic Leap have opted for a non-invasive video-
based eye tracker that captures images of the eye, including the iris and



other identifiable features like eyebrows [21]. Thus, there is a need to
investigate techniques that secure the iris during gaze estimation.

Eye Movements for Conversational Virtual Avatars Eye move-
ments play an important role in non-verbal communication, and thus are
critical in creating compelling social interactions with virtual avatars.
For example, Steptoe et al. [77] showed that the presence of eye move-
ments caused participants to more accurately determine if an avatar
was being truthful or not when compared to an avatar without eye
movements. This is important for conversational avatars that discuss
sensitive information, such as medical diagnoses [82]. The animation
of virtual eyes can be data-driven or generated by procedural algo-
rithms that model the dynamics of the eye. Realistic eye animations
may include characteristics such as micro-saccadic jitter, blinks, eye
lid displacement, and pupil diameter [71]. Results from Duchowski et
al. [23] suggest that data-driven eye animations are perceived as more
natural than procedural animations. Jorg et al. [43] found that subtle
variations in the amplitude of noise within data-driven eye animations
influenced how natural the animations were perceived. This suggests
that a small amount of spatial noise in the signal may be detected, and
have a negative impact on the naturalness of eye animations. Results
from Garau et al. [30] suggest that a virtual avatar rendered with natu-
ralistic eye and head movements did not improve communication over
an audio-only conversation, when the eye and head movements do not
match the context of the conversation. The authors also showed that an
avatar with eye movements based on the current conversation produced
similar responses in attentiveness and involvement to that of a video
call with a real person. This implies that while models can be used to
generate natural eye movements for an avatar, they may not contain the
non-verbal cues and subtleties needed to simulate a real conversation.
In these cases real eye tracking data is critical. In this paper we focus
on data-driven eye movements in the absence of cues like blinks, eyelid
movement, or pupil dilation to isolate the influence of perceived gaze
direction and dynamics of the eyeball.

Privacy & Security in Eye Tracking There is a growing concern
in keeping eye movement data private and secure in both real-time ap-
plications [49], and published datasets [50]. Publicly available datasets
release de-identified gaze data from individuals viewing VR videos [19],
the social interactions of children with ASD [22], and individual re-
sponses to emotional content such as nude imagery and faces [69].
Sensitive information, such as personality traits [36] and neurological
diagnoses [47], could be linked to individuals that contributed to the
aggregate data. To protect against this type of attack, differential pri-
vacy techniques have been proposed for securing heatmaps and other
gaze-based features [50,74]. However, they are constrained to dealing
with already recorded gaze data and not real-time streams.

Mobile eye trackers rely on videos from an eye camera that cap-
tures the user’s eye, and a front facing scene camera that records what
they see. The scene camera is akin to wearable devices that are al-
ways on and recording video data. Public perception of these devices
is overwhelmingly negative, as seen with the initial release of the
Google Glass, as they infringe on the privacy of both the user and
bystanders [20,59,70]. Daily users of eye tracking technology trade-off
the privacy of their everyday actions for the benefit of activity logging,
gaze-based interfaces, and assistive applications [7,37,55, 81]. Steil
et al. have developed a privacy approach specifically for the scene
camera, using a controlled shutter to disable the video feed in private
situations [75]. The eye camera is unique in that it captures raw eye
movements and personally identifying information without any layer of
security. Previous approaches for wearable-based privacy and security
do not apply to this context. This paper focuses on a solution to protect
against unauthorized iris-based identification from eye images.

Iris Authentication Infrared images of the eye with sufficient
resolution capture iris patterns unique to the individual. Iris recognition
places in the top tier of biometrics as it is universal, distinct, permanent,
and robust against spoofing attacks [39]. It is important to keep the iris
pattern secure, as recognition methods are robust to poor lighting [44],
off-axis imaging [16], occlusion [17], and distance [8], making the
biometric accessible at times when the user may not consent. Iris
authentication has been long established through the work of John

Daugman [18] and many others!, as a statistically valid method for
recognition of an individual. As a result, iris patterns have been trusted
for identification at voting booths [5], border customs [2], schools [1],
and in hospitals [3]. These applications highlight the sensitivity of
information that could be accessed if a hacker is able to steal identity
through a biometric. Thus, the presence of a user’s iris within a dataset
or application places the user’s identity at risk.

Defocus-based Identity Preservation Rana and colleagues pre-
sented a systems argument for why applications that process images and
videos do not necessarily need access to the raw image feed [40,41].
Neustaedter et al. [60] explored adding blur to increase privacy of a
tele-conference video feed. They found that there is no general purpose
blur level that preserves utility across all scenarios in this context. For
example, the participants specified a much higher amount of blur in
video that captured embarrassing activities such as picking their nose or
changing clothes, compared to daily computer work. Participants were
asked to identify the activities being performed in each video, with the
level of blur being decreased until they could confidently classify the
activity. The computed blur thresholds and classification rate determine
that blur is effective at increasing privacy while retaining utility, but that
the trade-off must be evaluated across applications and sensors. Hasan
et al. [34] investigated various image filters such as masking, blurring,
and pixelation with respect to their effectiveness in obscuring specific
features of the content as well as retaining the utility and aesthetics of
the photograph. They reported that blur was effective at obscuring the
gender of the photographed person, though not so much the ethnicity or
expression. Ultimately they determined that there is no ‘one size fits all’
solution for every scenario, and object size or security context can influ-
ence the optimal method. Pittaluga and Koppal [65] have implemented
a similar blur-based privacy approach within the context of micro-scale
image sensors. A hardware-based approach is used to add blur, as
opposed to a software-based Gaussian blur. The use of optics to scatter
light before the image is captured creates blur on the camera sensor.
Applications like head tracking, person tracking, and facial recognition
are explored with several types of camera sensors (thermal, IR , RGB)
imaging the user. Each camera configuration and application must be
optimized and designed to balance the trade-off between security and
utility. Our work investigates adding blur to eye images pre-capture,
however the goal is to do so without modifying the stock hardware or
optics. This allows consumers to control their own privacy, as current
consumer technology would lack any specialized privacy hardware.

John et al. [42] have proposed the only existing method to protect
the iris biometric within eye tracking images. Gaussian blur is applied
to the eye images to remove high frequency details from iris patterns.
A monocular glasses-based eye tracker was used to collect data from
five participants, in which eye images were captured and matched to
each other. The authors found that an eye camera at 320x240 resolution
is able to capture iris patterns that successful identify each individual
without false positives. Their results suggest that a Gaussian blur with
o =5 pixels is needed to reach the highest level of privacy, where no
frames from any individual could be correctly recognized. Utility for
the collected data was determined by an on-screen target viewing task,
where blur at 6 = 5 produced gaze error of less than 1.5° visual angle.
At higher levels of blur pupil detection rates drastically decrease to 60%
on average, resulting in a gaze data stream with gaps and low confidence
values. Applying blur in software creates a risk that image data could be
compromised before security is enforced. Our contribution to the state
of the art is to explore the theoretical basis of a defocus-based solution,
and propose and evaluate a hardware instantiation that is compatible
with a popular eye tracker design. Importantly, we investigate the
security-utility tradeoff of defocus parameters when utility is defined
as how a virtual avatar is perceived, rather than data-level numerical
error as in John et al. [42].

3 SECURITY VULNERABILITY AND SOLUTION

The newest wave of VR and AR devices include integrated eye tracking
devices, and are susceptible to identity theft and spoofing attacks. In

IPlease see [27] for a review.



this section we describe the threat model that puts the user at risk, and
propose defocus as a solution to enable secure eye tracking configura-
tions. We provide a theoretical basis of a solution and evaluate it with
respect to degrading the iris biometric and errors in gaze estimation
while viewing on-screen targets.

3.1 Threat Model

Iris patterns present in eye tracking data streams can serve as a pass-
word, and are continuously streamed when an eye tracker is in use.
This data stream is subject to a man-in-the-middle attack if images are
sent over a network. In configurations where images are not streamed
over a network, they are still subject to attacks when data is transferred
at the hardware level.

An approach to protecting eye images is to only stream gaze data
that is relevant to the application [6]. Image data is encapsulated within
a processing unit, reducing the chance that a malicious user can gain
access. However, this also restricts applications that may utilize the
iris for improved gaze estimation [14], realistic rendering of the user’s
eye [26], and iris authentication in cases where it is desired, such as
logging into the Microsoft Hololens 2.

Beyond risks in how manufacturers handle this sensitive data, the
user must also control the permissions for third party applications that
may access gaze and eye image data. There are growing concerns over
how companies, large and small, handle sensitive data, with Facebook
having their largest security breach most recently in 2018. A simple
approach that alleviates all of these risks is to remove iris features prior
to the image being recorded by the camera sensor. Then, even if a
hacker gains access to the images they will not be able to use the iris
patterns for authentication. Our work takes this approach.
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Fig. 1: In (i-ii) we depict, in 1D, the eye tracking image component /¢
and the iris texture component /g. In (iii) we show these again in the
frequency domain, where the filter F' is depicted as Gaussian blur and
I is some distribution spanning the shaded region. In (iv) we see I
remains usable for eye tracking when the standard deviation 6 from
Ic - F is not less than a minimum detectable bound €.

3.2 Frequency-based argument for proposed solution

Our main assumption is that the eye tracking signal component /¢
and the iris texture component /g are separable, and the image can be
expressed as I = Ic + Ig. Without loss of generality, we assume these
are 1D functions, but all our arguments below hold for 2D signals. /¢
is the component of the image that contains the eye tracking signal,
and is modeled with a Gaussian distribution Ic ~ N(u = 0, o¢). This
Gaussian disk captures eye tracking features, such as corneal reflection
highlights or pupil extent [33]. The other component, /g, corresponds
to iris texture. Although iris textures have broad variation, we can
assume that I is band-limited, since the highest frequency in the signal
is limited by image resolution. Let us denote the largest possible
frequency as B.

While /¢ contains primarily low frequency content (defined by the
standard deviation o¢), Ig contains both low and high frequency con-
tent, with the higher frequencies being the identifying features (up to
the maximum frequency B). Figure 1 illustrates the general functional
form in spatial and frequency domain for these two signals.

Consider a low-pass filter F' that is convolved with the image. We
consider optical defocus, where the filter form is F (x)=N(u=0,0), i.e.,
a Gaussian blur. When [ is convolved with F(x), the result is

Ip(x) = I(x)* F (x) = Ic(x) * F (x) + I (x) * F (x) = I5(x) + Ip(x). (1)

Our claim: 1t is possible to select F (x) such that the eye tracking fea-
tures are still detectable in I, while I} no longer contains the higher
frequencies that enable iris-based authentication. Let I and fg de-
note the Fourier transform of I and I respectively, and £ denote the
Fourier transform of F. Note that the Fourier transform of a Gaussian
distribution is also a Gaussian with standard deviation 6 = é, ie.,

F~N(u=0,6r)and ic = N(u = 0,6¢). In Fourier domain, Eq.1 is

N N A

Ip(x) =Ic(x) - F(x) +Ig - F (x). )

Upper bound (i.e. how much defocus is too much): If 6r < 6¢, then
the first term of Eq. 2 comprises the multiplication of two zero mean
Gaussian functions, which yields a Gaussian function with zero mean
and 6 << 6¢. In the spatial domain, this corresponds to a Gaussian
with ¢ >> o¢. Intuitively, the corneal highlight or pupil extent has
been heavily blurred, leading to difficulty in gaze location estimation.
In frequency terms this means that the disk in the image is blurred
enough that its transformed Gaussian dual has a indiscernible standard
deviation, i.e. 6 < &, where € is vanishingly small. Thus, this imposes
an upper limit on of.

Lower bound (i.e. how much defocus is too little): Within the second
term of Eq.2, which contains the texture information necessary for
iris-based authentication, the higher frequencies have been attenuated
as a result of the point-wise multiplication with a Gaussian that has
fallen off. Since Ig is band-limited by maximum frequency B, it’s
extent is within the range covered by F. If of is large enough the
values of F' are extremely small and “zero out” the values of [ during
point-wise multiplication. This imposes a lower limit on o, such that
the identifying features of the iris are removed from /(x).

Our proposed approach: Optical defocus is produced by increas-
ing the distance between the camera and the user’s eye, forcing the iris
region out of focus. While some configurations allow the camera to be
adjusted or even feature a lens with adjustable focus, eye trackers with
limited access to the camera may require additional optics or hardware
to be installed. In our configuration the amount of defocus is controlled
by varying the distance between the eye and the camera.

3.3

We implement optical defocus to create a secure eye tracking config-
uration. We use a Pupil Labs Pro glasses-based eye tracker with an
adjustable telescoping arm to increase camera distance. Example eye
images from in-focus and out-of-focus configurations are shown in
Figure 2. Eye trackers for XR devices use similar cameras, and this
form of eye tracker is readily available to researchers and consumers.
This is one instance of a secure eye tracking configuration. An exam-
ple alternative configuration would be using an eye camera with an
adjustable focus lens.

Camera Distance The out-of-focus configuration was implemented
by increasing distance between the eye and camera to degrade iris
authentication. First, the in-focus configuration was set up by placing
the eye camera as close as possible to the user’s eye, while keeping the
eye in the center of the eye image frame. Then, to create the out-of-
focus configuration the experimenter adjusted the telescoping arm to
the farthest point, again orienting the camera such that the eye stayed
within the frame. We compute the distance between the camera lens
and the eye to quantify the impact of this process on gaze accuracy and
iris authentication.

Implementation
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Fig. 2: Experimental setup for evaluation. The adjustable telescoping arm of the eye tracker is used to create an out-of-focus configuration. Eye
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images from an in-focus configuration (23.3mm) and out-of-focus configuration (35.4mm) are shown.

Camera distance is computed by modeling an imaging system with
a thin lens. Figure 3 illustrates such a system. The distance between
the iris and lens, and the lens and camera sensor are related by
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where d is the distance from the lens to the iris plane, Wiy, is the width
of the iris as measured in the image, and W,,,,,;4 is the actual width of
the iris. Variables d and u are related by the lens equation
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where f is the focal length of the camera in mm. We estimate W,,,,14
as the average width of a human iris, 11 mm [61], measure Wj,,¢ within
the image, and compute f.
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Fig. 3: Camera system imaging a flat iris plane with a thin lens. The
lens equation produces the relationship %z% + % and %z%.

As shown in Figure 3, the distance between the lens and camera
sensor, u, is constant. The same process was followed to set up the
in-focus eye tracker configuration for each participant. We compute
as follows: (1) For each participant Eq. 3 and Eq. 4 are used to solve
for d, (2) the average distance for all participants, d, is computed, (3)
d is substituted into Eq. 4 to compute u. This process assumes that
the measured values of d are within the depth of field of the camera
for which the iris region is in-focus, and can be be estimated with the
average distance, d.

‘We computed the amount of defocus, o, that was generated by an
increase in distance from the in-focus configuration to the out-of-focus

configuration. First, the out-of-focus distance dsecyre 1S computed using

W, , . .
Himg = Waortd g Wimg from an out-of-focus eye image. This is then

u secure

substituted into Eq. 4 to generate a new u value, i/, that represents the
depth of a focal plane given the new camera distance. The amount of
defocus ¢ in mm is then computed by

W u—u

D= o (&)

where D is the lens diameter measured to be 1.05mm, and ¢ represents
the spread of a point that was in focus at the near distance, projected
onto the camera sensor at the distance dgecyre. O 18 then converted from
mm to pixels using the factor 0.003%, as specified in the OV9712-1D
sensor spec sheet.

Iris Authentication For our experiment, iris segmentation was per-
formed using an open source implementation of IrisSeg [29]. Our
authentication procedure applies a bank of 1D Log-Gabor filters to
the resulting iris pattern to generate a binary code that captures the
identifying features of the iris pattern [44, 54].

To perform authentication the bit values of these codes are com-
pared using Hamming Distance to determine if the source and target
match. Hamming distance is defined as the number of bits that disagree
between source and target binary codes,

H (Scode & Tcode) N (Smask N Tmask) H

HD =
HSmask N Tmask“

; 6)

where S,,4. and T,,q4. are the input binary codes with their respective
masks. The binary masks indicate which pixels contain the iris pattern,
with zeros indicating eye lids, eye lashes, or any other detected noise
[17]. In the subsequent data analysis iris codes are excluded if at
least 75% of the bits are considered noise. We use a threshold of
HD,,;;, = 0.37 to authenticate a match between source and target.

3.4 Evaluation

An iris authentication procedure is used to evaluate the increase in
security from an in-focus configuration to out-of-focus configuration.
Utility is measured using a target viewing task in a typical eye tracking
setup, with error calculated between the estimated gaze positions and
on-screen targets. Ideally, a secure configuration will degrade iris
authentication while preserving the accuracy of gaze estimation.

Metrics The ability to authenticate a user is measured using the Cor-
rect Recognition Rate (CRR) [56]. CRR is computed as the percentage
of frames between the source and target inputs where HD < HD g4,
Through this metric we determine that images collected during our
“stop-and-stare” authentication routine can be used to identify the indi-
vidual, with minimal false positives.

Eye tracking utility was measured in terms of gaze accuracy during
the five target viewing task. The Pupil Labs software was used to iden-
tify frames with circular targets. These frames were used to calibrate a
gaze mapping model that predicts the 2D gaze point-of-regard within



In-Focus | Out-of-focus | Defocus | In-Focus | Out-of-focus In-Focus Out-of-focus | In-Focus | Out-of-focus

1D Distance Distance o CRR CRR Gaze Error | Gaze Error | Precision Precision

(mm) (mm) (pixels) (%) (%) (°) (°) (°) (°)
S01 24.9 324 2.5 91 16 1.0 1.0 0.1 0.1
S02 30.0 35.8 3.6 87 3 1.4 1.3 0.1 0.1
S03 24.3 32.6 2.5 90 5 1.2 2.4 0.1 0.1
S04 24.6 31.7 2.2 95 15 2.2 2.0 0.1 0.1
S05 34.3 37.1 3.9 42 0 1.5 1.8 0.2 0.1
S06 26.1 38.8 4.4 73 0 1.7 1.1 0.1 0.1
S07 26.3 33.4 2.8 82 21 1.4 2.7 0.1 0.1
S08 29.4 36.3 3.7 78 1 1.4 1.6 0.1 0.1
S09 24.6 37.6 4.1 66 1 1.8 1.4 0.2 0.2
S10 24.0 347 32 86 0 1.1 1.4 0.1 0.1
S11 27.5 37.8 4.1 99 0 0.8 1.5 0.1 0.2
S12 25.4 33.7 2.9 78 27 2.0 2.1 0.1 0.1
S13 26.5 33.9 3.0 76 17 1.9 1.5 0.1 0.2
S14 24.9 37.4 4.0 79 0 0.9 1.6 0.1 0.1
S15 30.0 31.8 2.2 57 0 0.9 1.9 0.1 0.1
Mean 25.1 33.1 33 79 7 1.4 1.7 0.1 0.1
Std. Dev. 2.8 2.3 0.7 15 9 0.4 0.5 0.04 0.04

Table 1: Security and utility results for in-focus and out-of-focus eye tracking configurations. On average there was a difference of 8mm between
in-focus and out-of-focus configurations. Defocusing the camera caused a decrease in CRR without an appreciable impact on gaze accuracy.
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Fig. 4: Results for security and utility show that CRR is degraded by defocus (o) and increased camera distance. Circles indicate data from the
in-focus configuration, while crosses indicate data from the out-of-focus configuration. The dashed line represents a sigmoid curve fit to CRR as a
function of distance. Angular error measured between targets and gaze data for the out-of-focus configuration was at most 2.7°.

the scene camera feed [45]. Once calibrated, the average error between
projected gaze and the center of each target was computed in terms
of visual angle. We computed the precision as the Root Mean Square
Deviation between successive gaze locations while the targets were
present to measure the stability of the gaze at each target.

Method We modify the experimental setup of John et al. [42] and
evaluate the proposed hardware solution. Users sat with a chin rest and
viewed circular targets presented on a desktop screen (see Figure 2).
First, the eye tracker was set up for an in-focus configuration, as spec-
ified in Section 3.3. A video with five circular targets appearing for
four seconds each was then shown, generated with Pupil Labs. The eye
tracker was calibrated offline using Pupil Lab’s default 3d_calibration
routine from Pupil Labs, with gaze samples and ground truth collected
when the targets were present.

The user was asked to look directly at the eye tracking camera for
five seconds, simulating a “stop-and-stare” interface for iris authenti-
cation [16, 66], prior to target viewing and directly afterwards. Only
images from this part of the data collection were used for authentication,
ensuring that the pupil and iris are on-axis with the camera. On-axis im-
ages increase the reliability of iris segmentation and matching [16, 80].
Each user logged around 300 frames during this procedure.

Eye tracking data was collected at 30 Hz using a Pupil Labs Pro
glasses-based eye tracker (ca. 2016) with an eye image resolution of
320x240 [45]. We calibrated the fixed focus Pupil Labs eye camera
using a checkerboard pattern and MATLAB’s Single Camera Calibrator
App to compute a focal length, f, of 338.04 pixels (1.014mm). Prior to

analysis, frames containing blinks or motion blur were removed.

Participants Eye tracking data and images were collected from
fifteen participants (8 male, 7 female) in an IRB approved user study.
Participant demographics were 20% Asian, 13% Hispanic, 13% African
American, 27% Indian, and 27% Caucasian.

Results We computed an authentication threshold, HD,,,,;, = 0.37,
based on the distributions of inter-class and intra-class HD values for
our in-focus eye images. These distributions and HD,,,, are illustrated
in Figure 5. For our entire dataset, HD,,;;, = 0.37 creates an overall
true positive rate of 60.1%, a false negative rate of 39.9%, true negative
rate of 99.9988%, and a false positive rate of 0.0012%. While a higher
true positive rate may be ideal, increasing the value of HD,,,,;;, would
also increase the the false positive rate and compromise the system.

The average Hamming Distance between participants i and j, HD;j,
is shown in Figure 6, with white cells indicating HD;; is less than
HD,,,;,. Grey cells indicate that the source does not match the tar-
get. Our results generate no false positives when the authentication
condition is HD;j < HD gy

Authentication by HD;; has the highest accuracy when comparing
in-focus images with in-focus images. As expected, in-focus images
did not create any matches with out-of-focus images. However, out-
of-focus images did create matches with other out-of-focus images
from the same individual, albeit less frequently. Only three participants
produced a HD;; less than HD,,,, for the out-of-focus images.

Table 1 reports the CRR values, with an average in-focus CRR
of 78.6%, while the out-of-focus images had a rate of 7.1%. Fig-
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ure 4 (Right) demonstrates the relationship between camera distance
and CRR by fitting a sigmoid function of the form f(d) = m,
where a = —0.43, b = 12.10, and d is the input distance in mm. At
30mm CRR was 45%, and by 35mm CRR has dropped to 8%, showing
that only a small percentage of frames can successfully authenticate
the user at increased distances.

The computed o values from Eq.5 are presented in Table 1. Fig-
ure 4 (Left & Center) shows gaze accuracy and CRR respectively for
the out-of-focus configuration as function of ¢. Using ¢ to measure
defocus allows us to compare results across configurations independent
of the implementation, such as with software-based Gaussian blur.

Table 1 contains these average gaze error and precision values for
each participant and configuration and Figure 4 (Left) demonstrates the
relationship between out-of-focus gaze error and 6. We found that
the average error across participants for the in-focus and out-of-focus
configurations were 1.4° and 1.7° respectively. These values both fall
within the magnitude for noise in an eye tracking system [35]. Ten
participants saw an increase in error from the out-of-focus configura-
tion, with the maximum error being 2.7°. Error within this range is
acceptable for target viewing, where the targets span approximately 7°.

Discussion Using HD,,,;;, we computed CRR for each participant,
comparing every eye image with every other eye image. For the in-
focus configuration we found on average 78.6% of frames were a
match. This indicates that a login procedure that matches only one
input image to another may not be robust enough for a consistent user
experience. Using a larger HD,,,;;, would create a smoother process,
but compromise security. Instead, collecting a small set of ideal on-
axis images and computing the average hamming distance from the
reference may be a more dependable approach.

Previous research has shown that camera distance degrades iris au-
thentication [42], based only on data from one user. We paramaterized
and evaluated this approach extensively, and found that the average
error of 1.7° introduced with this secure configuration did not have con-
siderable impact on a target viewing task. While this error is acceptable
for target viewing, it may not be for more complex applications such as
animating the eyes of a social virtual avatar.

4 EVALUATION OF UTILITY FOR AVATAR GAZE

Social virtual avatars have eye animation with the goal of increasing
social presence and immersion. A large body of work has established

that the animation of eye movements impacts viewer perceptions of
avatar attributes, such as truthfulness and attentiveness [25,72,77]. The
goal of this section is to determine how the noise introduced by secure
eye tracking impacts the perception of animated virtual avatars.

4.1 Research Questions & Expected Outcomes

We conducted perceptual studies to answer the following questions:

* RQ;: At what level of defocus do viewers detect a difference in
the animation of a virtual avatar’s eyes compared to a reference?

* RQ>: What is the relationship between eye image defocus and
the perception of avatar truthfulness, naturalness, attentiveness,
comfort, and eye contact?

For RQ; we hypothesize that a medium amount of defocus, i.e., less
than or equal to ¢ = 3 pixels, applied to the image feed will be detected
by the viewer at a rate near chance, while data from larger values of o
will be detected at a higher rate. Past work has shown that the pupil
detection rate declines after ¢ = 3 [42], which would result in a halt
in eye animations during frames where the pupil was not detected.
Additionally, the offset in gaze required for a viewer to indicate there
is no longer mutual gaze varies across viewing distance and display
mediums, ranging from less than 1° up to 9° [28]. Our results in
Section 3.4 indicate gaze error for all values of ¢ up to 4.4 were more
than 1° and less than 3°, falling within the range for mutual gaze with
a virtual human face.

For RQ, we selected the attributes truthfulness, naturalness, atten-
tiveness, comfort, and eye contact as they are influenced by avatar eye
movements. We again hypothesize that up to a medium amount of
defocus, i.e., less than or equal to o = 3 pixels, there will be no dif-
ference in how eye movements are perceived by viewers. For defocus
greater than 6 = 3 we expect negative responses, or values less than
3 (‘Neither Disagree or Agree’) on the measured Likert scale.

4.2 Study 1: Detection Threshold

The goal of study 1 is to answer RQ|. We designed a same-different
experiment where naive viewers are presented with a reference avatar
with unmodified eye tracking and a stimulus avatar with modified eye
tracking, and they are tasked with reporting whether the two avatars
are identical or different from each other. We compute psychometric
curves from the participant responses and report the point of subjective
equality (PSE) and detection threshold (DT). These values clarify the
level of defocus at which viewers are able to perceive a difference in
the eyes of the virtual avatar.

Stimuli Generation Naturalistic gaze data was recorded with the
Pupil Labs Pro glasses-based eye tracker in a conversational scenario.
We selected an English as a second language instructional video from
YouTube?. The details of the video are shown in Table 2. The video
had an instructor speak conversational sentences in English for the
student to pause and repeat back to them. The topic of the conversation
was a technique for learning English grammar. One of the authors
watched the video, and acted out the part of the student by repeating
sentences back as appropriate while being eye tracked. We extracted six
12 second segments from different parts of this dataset, resulting in six
eye animations. Gaze directions from these segments were transferred
on to a virtual avatar.

The virtual avatar was animated and rendered with the Unity game
engine, version 2017.4.24f1. We created a model with Character Cre-
ator 3. We chose a bald male avatar with a realistic appearance to avoid
simulating hair. Only the eyes of the avatar were animated; the rest of
the face was static without any eye movement. The model was rigged
to animate both eyes using monocular gaze data, as our eye tracker
only records movements of the right eye. A reference gaze vector,
< x,y,z >, was recorded with the author looking straight ahead at the
beginning of data collection. This vector is used to generate a gaze
offset vector, < —x, —y,0 >, which when added to the reference gaze
direction creates a ‘forward’ vector < 0,0,z >. Using the ‘forward’

thtps ://tinyurl.com/yxetvjw8



ID | Video Timestamp | Sentences spoken

1 0:30.73 - 0:42.73

“You may have been wondering, well, how am I going to learn to speak English properly if I don’t study English grammar? Well, today I am
going to talk to you about that. So, how is it that we do this?”

2 0:44.26 - 0:55.26

language.”

“There is a special technique and it is very easy. Research has shown that it is the best way to learn English grammar, or grammar for any

3 0:59.51 - 1:11.51

learn English grammar?”

“It’s called point of view stories, or point of view mini stories. A mini story is just a small story. So, how is that we use point of view stories to

4 1:20.10 - 1:32.10

time that the story is being told.”

“We listen to a number of different points of view for this very story. And by point of view I mean that we change something in the story, like the

5 1:47.58 - 1:59.58

“Let’s start with an example. Now, when I usually teach these in a classroom, I'll start by telling it in the present tense. So let’s start there.”

6 2:28.18 - 2:40.18

“Make sure you understand it. So your next question may be, how are we going to use this story to learn English grammar? And that’s a good
question. As I said before, we are going to hear this story told in a number of different ways.”

Table 2: Conversational sentences spoken and their timestamps in the video? while eye movements were recorded for each animation stimulus.

vector the avatar eye is oriented straight ahead towards the viewer. For
each gaze vector in the animation data stream the gaze offset is added
to generate a current gaze direction, which is then used to orient each
eye. Gaze shifts relative to the gaze offset create the eye movements
seen in the stimuli. The animations did not include any audio.

Fig. 7: Eye animations from blurred and unblurred images were pre-
sented side-by-side with identical avatars. The deviation in gaze from
defocus (o = 5) is shown in the avatar on the right.

For each of the six eye animations, we had the recorded eye images
from which gaze positions are estimated. The original eye images
were blurred using MATLAB’s imgauss filt function at five levels of
o, defined in pixels. The blurred images were fed through the Pupil
Pro gaze detection pipeline, and the gaze positions estimated from
the modified eye images were recorded. This procedure ensured that
the internal parameters in the processing pipeline for the eye images
were constant. It may be possible to tune the internal parameters in the
processing pipeline to fit blurred input eye images. We left this tuning
and its evaluation for a future experiment.

The Unity camera was positioned such that the rendered face spanned
8 visual degrees in our experimental setup, consistent with the size of a
human face at a distance of 1.5m. This design choice was based on prior
studies that use a distance of 1.5m or more when evaluating real face
to face conversations and virtual interactions [11,53]. Figure 7 shows
the experiment setup with the side by side avatars. The reference and
stimulus were not labeled. The left and right placement was swapped
to avoid bias, resulting in a total of 60 trials per participant (6 eye
animations x 2 positions (L/R) x 5 levels of ©).

Method We created a same-different task where each trial consists
of a stimulus and a reference presented simultaneously, and participants
are asked to indicate if they are the same or different [15,23]. The Miss
Rate is computed as the proportion of ‘same’ responses. The Point of
Subjective Equality (PSE) corresponds to the 50% Miss Rate, i.e., the
stimulus level at which participants are as likely to detect as they are
to miss the difference between the stimulus and the reference. In other
words, the PSE clarifies when a viewer can discriminate the presence
of the stimuli at the same rate as chance. The Detection Threshold (DT)
provides an upper bound on the amount of defocus that can be applied
before a difference is perceived by a viewer.

We select the value of o that corresponds to a 25% Miss Rate as
the DT, where the participant is expected to consistently respond that

the two animations are different. This threshold has been previously
adopted in several virtual reality pyschometric experiments, as it is
halfway between chance and a perfect detection rate [12, 13,76, 85].

Our experiment uses a within-subjects design. Participants were pre-
sented with avatar eye animation generated from five levels of defocus
in a randomized order. Both the stimuli and reference were shown on
screen at the same time. Before starting the experiment participants
were given the following prompt to describe the task: “In each trial you
will be shown two videos of an animated virtual avatar side by side for
12 seconds. Only the eyes will be animated. Your task is to indicate
whether the two animations presented are the same or different. Again,
only the eyes are animated, so there will be no differences in other
regions of the face. You will provide your response after each trial.” A
break was offered to participants halfway through the experiment. After
completing all of the trials, participants filled out a post-study question-
naire that indicated their age, gender, ethnicity, and prior experience
with virtual reality displays. The experiment took approximately 25
minutes. The experimental setup was as shown in Figure 2. Eye track-
ing data from a remote device mounted to the monitor was recorded,
but is not discussed in our analysis.
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Fig. 8: Study 1 pilot results. Colored solid lines indicate psy-
chometric functions fit to responses for all defocus levels, o =
[0,1,2,3,4,5,6,7,8], for five participants and dashed lines indicate
the corresponding functions fit to the subset o = [0, 1, 3,5, 8].

Pilot experiment A five participant pilot experiment was conducted
to establish the number of defocus levels (o) to evaluate in Study 1.
Nine levels, 6 = [0,1,2,3,4,5,6,7,8], were used. We found that the
experimental duration exceeded 30 minutes and resulted in participants
reporting fatigue even with mandatory breaks. Individual psychometric
functions are shown in Figure 8. We then computed individual psycho-
metric functions if only a subset of these nine levels were presented
to the participant. We found that using only the defocus levels cor-
responding to o = [0, 1,3,5,8] led to psychometric curves that were



comparable (varied by at most 0.6 ¢). Reducing the number of defo-
cus levels reduced the the experiment duration by approximately 11
minutes. Hence the subset was selected for the main experiment.
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Fig. 9: Resulting psychometric functions of the same-different task for
individual and pooled responses. Gray dashed lines represent individual
responses, and the solid black line represents a function fit to the average
responses across individuals. Error bars represent the 95% confidence
interval for PSE and DT values.

Participants Twenty participants (11 male, 8 female, 1 “Preferred
Not To Answer”) with age ranging from 18 to 26 years were recruited
from the university community under an IRB approved protocol. All
participants reported normal or corrected-to-normal vision. Four partici-
pants reported no prior experience with a VR HMD. Of the participants
that had experience with VR HMDs, the majority (75%) have used
more than one type of HMD, such as the Oculus Rift DK2, Oculus Go,
Google Cardboard, Samsung Gear VR, and HTC Vive.

Results The responses collected from each participant consisted
of 60 categorical data items (‘same’/‘different’). Responses for each
participant were grouped by level of defocus. Miss Rate was then
calculated for each o as the number of ‘same’ responses divided by the
total number of responses. Miss Rate represents the probability that the
participant does not detect a difference between animations.

Response quality was validated using the Miss Rate for stimuli where
o = 0. These stimuli showed two identical animations on screen, and
if the participant responded ‘different’ 50% of the time or more, they
either misunderstood the task or did not follow instructions. Four partic-
ipants were removed from analysis using this criteria. A psychometric
sigmoid function, defined as f (o) = m, models the probability
that a participant would answer ‘same’ as a continuous function of .
We fit a and b to each participant’s responses using MATLAB’s glm fit
function. PSE and DT are then computed for each individual. A pooled
psychometric function was computed by averaging Miss Rate across
participants, and then fitting a function to the values, see Figure 9. The
shaded region indicates a usable range of defocus for each individual
curve, marking the area between the PSE and DT where a difference is
not consistently perceived.

Discussion As shown in Table 3, the individual PSE values ranged
from 1.70 to 6.06, and DT ranged from 3.64 to 8.38. The variation
between individuals is also illustrated in Figure 9, as responses for Miss
Rate ranges from 0.70 to 0.97 at o = 0, where there is no difference
between the two presented animations. Another source of this variation
might stem from the strategy participants used to detect differences.
Several participants indicated after the experiment that they examined
the amount of visible sclera on either side of the avatar’s iris in both
animations to determine if there was a difference, while others indicated
they relied on the movement during shifts in gaze direction. We expect
participant responses to be more accurate during our experiment than
a typical interaction with an avatar, as they are informed to look for

Participant | PSE | DT | Participant | PSE | DT
SO1 322 | 4.21 S14 2.61 | 3.79
S02 1.90 | 4.07 S15 1.70 | 3.90
S05 4.58 | 6.56 S16 2.80 | 4.21
S06 442 | 8.21 S17 331 | 4.75
S07 6.06 | 8.38 S18 1.97 | 3.64
S08 474 | 7.17 S19 4.84 | 8.21
S09 3.08 | 6.20

S12 249 | 447 Average 3.50 | 5.67
S13 3.88 | 5.46 Std. Dev. 1.30 | 1.73

Table 3: PSE and DT for each participant in Study 1.

differences from a reference presented side by side with the stimuli.

Our analysis shows that the defocus value of 6 = 3.50 is the aver-
age PSE, i.e., at this defocus level the viewer has as much chance of
perceiving difference in eye animation relative to the original reference
as she does to not perceive any difference. The average DT is 0 = 5.67
pixels, which is the defocus level at which there is a 75% chance that
viewers will be able to detect that the eye animation of the avatar is
different compared to the original. These findings connect well with
the results reported by John et al. [42]. They reported that defocus
produced with ¢ = 3 degraded iris authentication for most individuals
and o = 5 completely degraded iris authentication.

The implications of our findings taken together with John et al.’s
reports are as follows: if a user is comfortable with a moderate level of
security, they can use up to o = 3.50 of defocus without a noticeable
effect on the eye animation of their social virtual avatar. Some users
may want a higher level of security, and if they select a defocus of
o =5 there is some chance the noise will be noticed in exchange for
their preferred security level. It is likely though that when the reference
animation is not shown it will be more difficult for a viewer to notice
that the eye animation is modified. It is possible that in this case viewers
may feel that “something is oft” and report that the avatar did not make
eye contact with them, or that the avatar did not pay attention to them,
or that the avatar was not truthful or natural. We investigated these
judgements in our next experiment.

4.3 Study 2: Avatar Attributes

The goal of this experiment is to answer RQ»>. We measure responses
to truthfulness, naturalness, attentiveness, comfort, and eye contact for
increased values of . Five levels of ¢ are considered: None (¢ = 0),
Low (o = 1), Medium (¢ = 3), High (0 = 5) and Very High (o = 8).

Stimuli Generation The animation renders from Study 1 were used
for Study 2. However, instead of two animations being presented only
one animation was shown at a time in the center of the screen.

Method The study structure and apparatus was identical to Study
1, except participants rated each animation. The prompt provided
to participants was: “In each trial you will be shown a video of an
animated virtual avatar for 12 seconds. Only the eyes are animated.
Imagine you are having a conversation with the avatar. Your task is to
respond to several prompts about the animation after each trial.”. Based
on prior work we evaluate each interaction in terms of truthfulness [77],
naturalness [43], attentiveness [25], comfort with the avatar [32], and
eye contact [58]. After watching each animation the participant used a
mouse to respond to the following prompts, using a five point Likert
scale from ‘Strongly Disagree’ to ‘Strongly Agree’(1-5):

(1) The avatar was truthful. (2) The eye movements of the avatar
were natural. (3) The avatar paid attention to me. (4) I felt comfortable
in the presence of this avatar. (5) The avatar made eye contact with me.

The experiment follows a within-subjects design, where every par-
ticipant saw every animation and defocus level. Animations were pre-
sented in randomized order, and a break was offered halfway through
the experiment. Each stimulus was presented and rated twice, leading
to a total of 60 trials per participant (6 eye animations x 2 repetitions X
5 levels of o). The experiment took approximately 35 minutes. Again,
eye tracking data from a remote device mounted to the monitor was
recorded and is not discussed in our analysis.
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Fig. 10: Box plots indicating the median, 25%, and 75% quartiles for Study 2 results. Significantly different groups are marked with * when
p < .05, ** when p < .01, and *** when p < .001. For clarity ** significance brackets were established but not drawn between groups 6=|0, 1]
and 0=5, along with *** significance bars for groups 6=[0, 1,3] and 0=8 across all attributes.

Pilot experiment A five participant pilot experiment was conducted
to establish the number of repetitions for Study 2. We found that
showing three repetitions of each stimulus resulted in participants
asking for additional breaks after the halfway point, and the experiment
could take up to an hour to complete. To limit the experiment duration
and reduce participant fatigue we decided to use only two repetitions.

Participants Nineteen participants (14 male, 5 female) with age
ranging from 19 to 39 were recruited from the university community
under an IRB approved protocol. All participants reported normal or
corrected-to-normal vision. Participants were ineligible if they had
previously participated in Study 1, to ensure they had not previously
seen the animation stimuli.

Results Likert scale responses for each dependent vari-
able (truthfulness, naturalness, attentiveness, comfort, eye contact) rep-
resent ordinal data grouped by the defocus parameter o. Figure 10
shows the average and standard error values for each attribute.

The Kolmogorov-Smirnov test for normality was applied to each
group and variable. Data were not normally distributed (p <
0.001), and therefore non-parametric statistical tests were used. A
Friedman test showed a significant main effect of ¢ for truthful-
ness (x2(4)=162.72,p < 0.001), naturalness (x2(4)=290.2,p < 0.001),
attentiveness (2 (4)=300.41,p < 0.001), comfort (y2(4)=279.15,p <
0.001), and eye contact (y2(4)=199.23,p < 0.001). For each attribute
pairwise Wilcoxon signed rank tests with Bonferroni correction showed
significant differences between ¢ = 5 and all other levels of o (p < .05
or less); as well as between ¢ = 8 and all other levels of o (p < .001).
Additionally, for naturalness and eye contact significant differences
were found between o = 0 and ¢ = 3, with(p < .01) and (p < .05)
respectively. Figure 10 visualizes the results as boxplots.

Discussion Our analysis shows that for ¢ = 0, i.e., no blur, average
responses for each attribute were approximately 4, or ‘Slightly Agree’
on the Likert scale. Thus, participants agreed that the avatar was
truthful, eye movements were natural, the avatar paid attention to them,
they were comfortable with the avatar, and maintained eye contact.
They did not ‘Strongly Agree’ with these statements, however. For
truthfulness, naturalness, and comfort this is likely a result from only
the avatar’s eyes being animated and the lack of blinks. With respect
to attentiveness and eye contact, the animations did not respond to the
user’s gaze, causing participants to provide only slight agreement. Still,
at the end of the experiment several participants asked if the avatar
was responding to their eye movements, as they knew they were being
eye tracked. This indicates that the animation stimuli was convincing
enough to simulate eye contact and interaction with the avatar.

Significance testing found a decrease in all response values at 6 =5
and o = 8. Average responses for ¢ = 5 ranged from 3.04 to 3.78, indi-
cating participants did not have a negative experience, but less positive.
This is consistent with the findings from Study 1, as ¢ =5 is near the
DT (o =5.67). At 0 = 8§ only responses for truthfulness averaged to
3, i.e., ‘Neither disagree or agree’, which means the participants were
not able to consistently determine if the avatar acted truthfully based
on eye movements. Avatars using 6 = 8 may be limited in their ability
to immerse the viewer within a conversational setting. Averages for
the rest of the attributes fell between 1.93 and 2.58, indicating that the

avatar no longer convinced them. Eye tracking in the presence of this
much defocus is not feasible for a convincing social avatar.

5 CONCLUSION

We have implemented and evaluated a novel hardware-based eye track-
ing configuration to secure the iris biometric from unauthorized identi-
fication. The secure configuration produced an average Correct Recog-
nition Rate of 7% compared to 79% before defocus is introduced. Our
second contribution is a pyschophysical experiment that determines the
detection threshold for users viewing the eye movements of a virtual
avatar animated using eye tracking data. Our results suggest that a
defocus parameter of ¢ = 3.5 should be used if utility is preferred over
security, and ¢ = 5 if security is preferred. Our third contribution is
measuring the effect of ¢ on several attributes important for social
interactions with virtual avatars, such as eye contact and naturalness.
Results indicate attributes are degraded at o values of 5 and 8, and the
avatar no longer maintains eye contact, attentiveness, or naturalness.

Limitations The stimuli used for our perceptual evaluation has lim-
itations. Particularly, our evaluation does not consider the impact of
defocus on eye movement characteristics such as the blinks, the dy-
namics of saccades with large amplitudes, or estimated pupil diameter.
These characteristics play an important role in complex social interac-
tions and are more prominent the closer the user is to the avatar. The
stimuli also did not include head or mouth movements. The defocus so-
lution presented in this paper leveraged the telescoping arm of a popular
eye tracker. More generally, a defocus solution applies to configurations
where the eye camera is readily accessible, though future work might
investigate clip on optics similar to Pittaluga and Koppal [65]. Our
findings with respect to the fall in correct recognition rate are based on
the Daugman method of iris recognition. If the iris recognition module
were to be replaced with upcoming deep network based approaches,
such as one proposed by Proenca and Neves [67], the fall in correct
recognition rate as a function of hardware parameters might need to be
re-assessed. Our work provides a foundation for developing an auto-
mated system that continually optimizes the security-utility trade-off
even as new methods of eye tracking and iris recognition are invented.

Future Work It would be interesting to investigate an optimization
framework for security and utility. It would also be useful to create
implementations of secure eye tracking configurations that apply to
different camera form factors. Additional perceptual experiments with
a smaller distance from an avatar, and more realistic features on the
avatar that include blinks, eyelid movements, and pupil diameter would
provide further insight as well as implementing a similar evaluation
within an immersive VR environment. Our work motivates active re-
search in these directions before eye tracking in XR becomes ubiquitous
and users are at risk to malicious attacks.
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