MINORS OF A RANDOM BINARY MATROID

COLIN COOPER, ALAN FRIEZE, AND WESLEY PEGDEN

ABSTRACT. Let A be an n x m matrix over GF5 where each column consists of k£ ones, and
let M be an arbitrary fixed binary matroid. The matroid growth rate theorem implies that
there is a constant Cj; such that m > Cj/n? implies that the binary matroid induced by A
contains M as a minor. We prove that if the columns of A = A, ,,, », are chosen randomly,
then there are constants ks, Las such that k > kjp; and m > Ljy/n implies that A contains
M as a minor w.h.p.

1. INTRODUCTION

There is by now a vast and growing literature on the asymptotic properties of random combi-
natorial structures. First and foremost in this context are Random Graphs and Hypergraphs,
see [3], [8] and [I0] for books on this subject. Random groups in their own right and in the
guise of random permutations are included in this. Going further afield into Algebraic Ge-
ometry we see a recent surge of interest in Random Simplicial Complexes, initiated by the
paper of Linial and Meshulam [I5]. See Kahle [I1] for a recent survey. Another area of
interest in this vein is that of Random Matroids. This paper concerns one aspect of these.
For the basic facts on matroids see Welsh [22] or Oxley [16]. Basically we see that two models
of a random matroid have been considered so far.

In the first model a matroid is chosen uniformly at random from the set of all matroids with
n elements, see for example Oxley, Semple, Warshauer and Welsh [I7]. Recently, there have
been some breakthrough results in this subject. Bansal, Pendavingh and van der Pol [4] give
a very close estimate for loglogm, where m,, is the number of matroids on a fixed ground
set with n elements. And Nelson [19] showed that almost all matroids are non-representable.
Pendavingh and van der Pol [20] considered random matroids of rank r and showed that
almost all r-sets will be bases in this model.

The second model considers representable matroids. Given a matrix A we let M(A) denote
the representable matroid with ground set equal to the columns of A and independence given
by linear independence. An example of this model is the space of n x m matrix with entries
chosen independently and uniformly from GF,, see for example Kelley and Oxley [12].
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The random graph G,,,,, can be identified with a random n x m (0,1)-matrix A, ,, o where
each row represents a vertex and each column has exactly two ones and defines an edge. If
the entries are considered to be in GF5 and the ones in each column are chosen at random,
then we have a matrix representation of a random graph and a random graphic matroid.

The columns of A, ,,» define a (random) graphic matroid. If we want to generalize this
to random sample from a larger class of binary matroids, then one natural way is to take
k random ones instead of 2 ones in each column, to obtain the random matrix A,, ,, s, the
vertex-edge incidence matrix of a random k-uniform hypergraph. It is this model of a random
binary matroid that is the subject of this paper.

Many properties of a matroid are determined by whether or not it contains some particular
fixed matroid as a minor. For example a binary matroid is regular if and only if it does not
contain the Fano plane or its dual as a minor, see Tutte [21]. We are interested in the event
that A,, ,,, , contains a fixed binary matroid M as a minor. The matroid growth rate theorem
of Geelen, Kung and Whittle [9] implies that there is a constant C); depending only on M
such that any binary matroid of rank n on m > Cj;n? elements must contain M as a minor
(see also Kung [13]. We prove that (when k is large), for the random matroid induced by
A,k this quadratic condition can be replaced by a linear one. We prove the following:

Theorem 1.1. Let M be a fized binary matroid. Then there exist constants kyr, Ly such
that if k > ky; and m > Lyn then w.h.pﬂ My contains M as a minor.

We briefly recall the definition of the minor relation for matroids. Given a matroid M on the
ground set E' and with the family Z of independent sets, for X C E, the deletion M\ X is the
matroid on £\ X whose independent sets consist of {I € Z: I C E\ X}. The contraction
M/X (X € 7) is the matroid on F\ X whose independent setsare {/ C E\ X : TUX € T}.
M is a minor of M if it can be obtained from M by deletion and contraction operations.
(For X ¢ 7, the contraction can be defined by M/X := (M/Y) \ X, where Y is any basis
of X.)

Theorem is related to the result of Altschuler and Yang [I]. They prove that if matrix
M is an n(m) x m matrix with random entries in GF, and m — n(m) — oo then w.h.p. the
matroid associated with M contains any fixed minor. This can be related to our theorem on
taking ¢ = 2 and k = n(m)/2. (We have reversed the roles of m,n from their statement.)
However, the results of [I] rely heavily on the fact that pre-multiplying a uniform random
matrix in this model by a non-singular matrix yields another uniform random matrix. Our
model lacks this property. Furthermore, multiplying A, ,,» by a non-singular matrix will
not fix this property. This is because whatever matrix we use as a pre-multiplier, we will
only have a sample space of size at most (Z) for the resulting column set, as opposed to 2".

2. PROOF OF THEOREM [I.1]

2.1. Outline of our proof. Fix k and let the matrix A,, = A,, ,,, » have columns
[a;,as,...,a,] where m = Kn for K sufficiently large. Let M be a fixed binary matroid and

1A sequence of properties £,,n > 1 is said to hold with high probability (w.h.p.) if lim,, o Pr(&,) = 1.
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let Ry = [my, my,...,my| be a representation of M by a p x ¢ matrix. Assume without
loss of generality that Ry, has full row-rank p. In this outline we will assume that & is odd.
There are some minor adjustments needed for k even.

Let

(1) ny =n and my; = %
Denote the n; X m; matrix consisting of the first m; columns of A,, by X. It follows from

Theorem 1 of Cooper [6] that w.h.p. the columns of X are linearly independent.

We will use results on hypergraph cores to find a sub-matrix B; of X that has ny rows
and my linearly independent columns where ny is close to ny and my > n/5, and with the
property that B; has k& random ones in each column and at least k/10 ones in each row.

We extend B; to an ny X ny non-singular submatrix B of A,, which again has exactly &
ones in each column, as follows. Let I; denote the index set of the rows of B;. We extend
B: by choosing Ln columns of A,,, disjoint from X to create a submatrix L. Here L is a
sufficiently large constant. These columns will only have ones in rows indexed by I;. Again
using properties of hypergraph cores, we show that w.h.p. L contains a submatrix L; which
has ng rows and mj columns which (i) has full row rank and (ii) each row has at least (kL
ones. Here ng is close to ny and 0 < ¢ < 1. We next obtain L3 from L; by adding n, — n3
rows of zeros. We then argue that the matrix Ly = [By : L3] has ny rows and has full row
rank w.h.p. The matrix B is an arbitrary extension of B; to a square non-singular n, X no
sub-matrix of Ls.

k

We then argue that w.h.p. the rows of B™! have between gqny = 2e *ny and ny — egny ones.

2
We let A be the ng X ms submatrix of A,, whose rows are the rows of B, andAWhose columns
are those columns of A,, which have ones only in rows of B. Note that M(A) is a minor of
M(A,,). Now write A = [B : M] and consider the matrix A; = [I: My] for M; = B~'M,
where we assume that the first ny columns form the ny X ns identity matrix. Suppose that
M, contains a submatrix equal to our target matrix Rj;. Then we are done. Indeed, suppose
w.l.o.g. that Ry lies in the first p rows and the first ¢ columns of M;. Then we get M as
a minor of M(A) (and hence of M(A,,)) by deleting the first p columns of B and the last
mg — ng — q columns of M and contracting the last ny — p columns of B, as we explain next.

Recall that a minor of A,, is obtained by deleting and contracting columns. Recall from the
definition of contraction that if S denotes an independent set (of column indices), then a set
T (of column indices) disjoint from S is independent in the contraction M /S iff SUT is an
independent set (of columns) in M.

Contraction is simple if the columns S are a subset of the columns of an identity matrix
I =1, In view of this, we pre-multiply A = [B : M] by B~! to obtain A; = [I : M].
Pre-multiplying by a non-singular matrix does not change the underlying matroid, seeing
as column dependence/independence is preserved. We can assume that the first ny columns
form the ny X ny identity matrix I. If we contract a set S of the columnﬁ of I, then a
representation of the contracted matroid is given by deleting the |S| rows of A; that have a
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one in a column of S to obtaln a matrix A2 In which case we see that a set T of columns
of A2 is independent in A2 if and only if the set of columns corresponding to S U T is
independent in the matroid represented by A,,.

To prove that Ry, = [my, ms, ..., m,] appears as a submatrix of My, we will consider B~'c
where ¢ is a random column of A outside of the n/4 + Ln columns considered so far in the

construction of B. For a set R of rows and a column x of B~'A let ¢5(x) be the column x
restricted to the rows R. We argue next that we can find R of size p such that

(2) Pr(¢r(B7'c) =m;) = Q(1) for 1 < j < q.

This means that w.h.p. we can find a copy of each column of R,; by searching through w
random columns, where w = o(n) is any function tending to infinity with n.

To justify , let S; denote the support of the ith row of B™!. Our strategy for analyzing
B~!c is to show that there is a set R of p rows of B! and a partition Ay, A1,..., A, of
[ng] such that for all ¢ € R,1 < j < {, S; contains A; or is disjoint from it. There will
be a corresponding p x ¢, (0,1)-matrix D = (D[s, j]) with the following properties. D has
full row rank and for some constants 0 < e; < g < 1, D[i,j] = 1 implies (i) 7, = 1 for
ke A;i € R, (r;=(r;.) being the ith row of B71), (ii) |A;| > eny for j > 0.

Given R and D we proceed as follows: Let ¢ = (¢1,¢9,...,¢n,) be a random column with
k 1’s. Let v satisfy Dv = m; (the first column of Ry/) and v; = 0 if |4;] < eyn. We can
assume that v has at most p ones and that £ > p. Equation follows from

(3) Pr(¢r(B™'c) =my) > Pr(cp = v) = Q(1),
where cg = (do, ds, . .., dy) and where d; = ZleAj .

The condition in will be satisfied if exactly one element is chosen from each A; such that
v; = 1 and the rest are chosen from Ay = [ny] \ J,cp Si- This has probability ©(1).

We will show in Section [2.7 how to choose the set of p rows R so that they contain at least
e1ny common zeros. Then in Section we will show that if S} = Sp,5? = S; then the

partition A, = ]_, Sf-j, o= (&,8,...,&) (as (&, &, ...,&) runs over {0,1}") suffices as
a partition. We will take D[i, o] = 1 only if { = 1 and |A| > e1ns.

2.2. Some Notation. We summarize here the meaning of some parameters. The reader
might find this useful to refer back to.

(i) By is the ng x my submatrix derived from the first m; columns of A, .. Every
column has k ones and every row has at least k/10 ones. The columns of B; are
linearly independent and the values ns, mqy satisfy , @D below. The set I; is the
index set of rows of B;.

(ii) L is an ny x Ln submatrix of A, ,, , whose columns are disjoint from those of B;.

(iii) L; is an n3 x mg submatrix of L which has rank ns, where ns, ms satisfy , .
The rows of L; have index I, C ;.
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(iv) Ly is an my row matrix that contains By as a sub-matrix and has rank ny and many
more than no columns. It is therefore possible to find an ny x ny non-singular submatrix
B that contains B; and is contained in L.

(v) In general bold named variables are either matrices or vectors.

We now give a detailed proof of Theorem [I.1]

2.3. Building B;. Consider the k-uniform hypergraph H; induced by the first m; = n/4
columns X of A, ,, . L.e. the hypergraph with a vertex for each row and where each edge
e;,J < n/4 corresponds to the column c; of X via e; contains an element ¢ € [n] if and
only if X[i,j] = 1. H; is distributed as a random k-uniform hypergraph with n; vertices
and my edges. We show next that w.h.p. the k/10-core C of H; is large. The r-core of a
hypergraph H = (V, F) is the largest set S C V such that each s € S has degree at least r
in the sub-hypergraph of H induced by S i.e. each s € S lies in at least r edges e, e C S.
The k/10-core will provide us with a matrix B; with at least k£/10 ones in each row.

We use some results on the cores of random k-uniform hypergraphs (see e.g. Cooper [7] or
Molloy [14]). Let ¢ = kmy/ny = k/4, and let = be the greatest solution to

() =7 = :

k=1
4 ( e xzk/lo 2$z>

We will use a simple continuity argument to prove the existence of x and bound it as in
below.

It is known that w.h.p.,

k/10-1
) Vel mm (1= 35,
=0
and
z\ k/(k-1)
(6) ms = |E(CY)] ~m, (E> .

Here, A(z) =~ B(zx) stands for A(z) = (14 o(1))B(z) as * — oo, A(x) 2 B(z) stands for
A(x) > (14 0(1))B(x) as x — oo.

We will first argue that for k large we have

k k
- < 2
(7) S <w<]

The upper bound follows directly from the definition (4]). To prove the lower bound let
k x

4 < _ gme yHI0- 2931)"3‘1'
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If # > 2(i + 1), then & < Q{T*ll), Thus for 2 > k/5 and 6 = 1,2,
k/10—6

X xk/10 10ze\ ¥/t
E = < T <
il (k/10)! k

and so
k/10—0

; 10 k/10 9\ k/10
- Z %S (% 6—10x/k) < (E) since x > k/5.

i=0
Thus S(k/5) > 0 for k large. As S(k/4) < 0, the lower bound in follows from the
continuity of S(z). It then follows from (5) that w.h.p.

(8) ny >ng = V(G| >m (1 - %) :

Similarly, using (6) along with ¢ = k/4 and = > k/5 from gives

=
9) > my > % (%) > Ny

for k large.

5 5’

~|3

Now consider the submatrix By of X comprised of the columns corresponding to the edges of
H, that are contained in C;. The distribution of ones in B, is that each of the my columns
chooses k random ones from ny rows, subject only to each row having at least k/10 ones.
This is an interpretation of a standard result on cores of graphs being random subject to
a lower bound on minimum degree. Let [; denote the index set of the rows of By. Thus
|[1| = Na.

2.4. Extending B; to a basis. We fix some sufficiently large constant L > 1 and begin by
choosing Ln columns of A,, disjoint from X to make a sub-matrix L. We choose the first
Ln columns following X that have ones only in rows indexed by I;. The probability that

()

a random column only has ones in rows [; is @) = Q(1) and so w.h.p. we only need to
k

examine O(n) columns of A,, in order to find these Ln columns. Now let 0 < { < 1 be a
small constant. Let now H, denote the k-uniform hypergraph induced by the columns of L
and let Cy = Cy(Hy) denote its (Lk-core. Using [7], [14] once again we see that we have to
let x be the greatest solution to

(10) ¢=Lk= S
(1- ey )
Then w.h.p.,
CLE-1
(11) ng = |V(Cy)| = ny (1—6—06 z; ?>
We will next argue that for k, L large we have
1 L
(12) A+Q)Lk <z < Lk.

2
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The upper bound follows directly from the definition . To prove the lower bound let now

Ste) =Lk = < —e xeCLk 2901)]61'

2 < 1. Thus for z > (HC Fand 0 = 1,2,

If z > % then & § gattl where £ =

(H—l)' 1+¢
CLEO i 1 xSk 1 ex \ &
Z e S . S Pl
R T RN (S e g (ng)

and since n = 12i< < 1, then
(Lk CLk _\CLk
Z a <— e_xe 2/ (CLK) < e
il T CLE - 1-¢
Thus S(1+) Lk) > () for large k and the lower bound in follows by continuity.

It then follows from that for large enough L, we have that w.h.p.
(13) N9 Z ng = |V(Cg)| Z N9 (1 - G_Qk) .

Similarly, using a similar expression to () along with ¢ = Lk and = > (1 4+ ¢)Lk/2 in
gives us that the number mgs of edges in C satisfies

1 k/(k—1) A1 I
(14) Ln = ms3 Z Lng (%() and so mg > w,
for k large.
We argue next that w.h.p. the matrix L; induced by C5 has rank ns. For this we rely on

the following lemma, which we will need for several purposes:

Lemma 2.1. Let A = (A[i, j]) be an N x M matriz over GFy chosen uniformly at random
from matrices where each column has k ones, and condition on the event that each row has
at least vko ones, where v < 1 and vk > 1 and 0 = M/N = O(1). Let o be a fized member
of GFéW. If & o is the event that there exists a set S of rows with |S| = s whose sum is o,
then

(a)

Pr(31 <s< Ne ¥ :&,,)=O0(NF).
(b) If o > €% /(1 — v)? then

Pr(3Ne ™" <s < N:&4)=ONT).

We can take K = vko /6 in the above.

Thus K can be made arbitrarily large, by taking k sufficiently large. Note also that we
exclude |S| = N from the statement of the lemma, since this would be false with o equal to
all ones (k odd) or all zeros (k even).
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We apply the lemma to L; by taking N = n3, M = mg where ( = 1/2 and then let v be
equal to % € [kQ—_kl(l — ek, %] The bounds on « being justified by , , and
(14). Assume that L > 10e°*, so that the lower bound on o in (b) is satisfied. We will now
make the following:

Assumption A: k is odd.

We will deal with the case of k even in Section [3] Now if % is odd and L; does not have full
row rank, then & o occurs with e = 0 for some 1 < s < n3. But Lemma implies that

Pr(31 < s < ng: & occurs) = O(n™ ).

So, w.h.p. we have found an n3 x ms matrix L; of rank ns. Now consider the matrix
L, = [B; : Ls]. Here Lj is obtained from L; by adding ny — n3 rows of zeros. We claim
that w.h.p. Ly has rank n,. Let Iy C I; be the row indices of L;. Let the rows of Ly be
ai, ag,...,a,, and suppose that there exists J C I; such that ZieJ a; = 0. Then we have
J NIy = else Ly does not have rank ng. We have J C I; \ I, and then implies that
|J| < ne~?*. But then we obtain a contradiction from Lemma [2.1[a) applied to the rows of
Bl-

Because Ly has full row rank, we can obtain B as an extension of B; to an n, X ny non-
singular sub-matrix of Ly. After this we order the columns of B so that the columns of B,
come first.

2.5. Proof of Lemma We first deal with small s. Suppose that 1 < s < Ne % If
T C S C[NJ,|S| =s,let & rs denote the event that column j of A has ones in all of the
rows 1" and zero’s in the rows S \ 7. Then where a = (a1, a, ..., ),

(15) Pr(fa)< > > Pr (ﬂgj,sj,b«).

SC[N],|S|=s dj=ajmod 2,j€[M] S;C8S,|S;|=d;
di+do+-+dyr >vkos
Explanation: We sum over sets S and then for each j € [M] we fix the number of ones
dj =|{i €S :Ali,j] =1} of column j that appear in the rows S. We then choose the rows
S; where these ones appear and multiply by the probability that things are just so.

To estimate the probabilities in the RHS of we will use the following model: we choose X
uniformly from [N]**. Then column i of A contains a one in positions X K1), for 1 <5 <k
and 1 <4 < M. It is possible that X;; = X, ;, for some 4, ji, jo. Let § be the event that
this does not happen. Then

(16) Pr(S) > (1 - %) > e K0,

()

Explanation: -3~ bounds from above the probability that a fixed column contains a repeat,
by the expected number of repeats. Each column is independently generated and follows.
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Thus Pr(S) = Q(1) and events involving X that occur w.h.p. will also occur w.h.p. if we
condition on S.

We see next that given S, each matrix with exactly k& ones in each column is equally likely.
Indeed, each such matrix arises from the same number (k!)™ of choices of X. Thus we can
use X to generate our matrix A in a uniform way. It remains to deal with the lower bounds
on row sums.

The row-sums p; = [{(a,b): Xop =1i}|,1 <i < N| will be independent Poisson random
variables, subject to p; > vko,i € [N] and p; + p2 + ...+ py = kM. This was proved in
[2] where the lower bound of ko is replaced by 2. We include a proof in an appendix for
completeness. Thus

b = N
17 Pr(p=1 where f,(\) = e* — —.
(17) (0 =D = gy Yhere i) = =35
Here we choose A so that E(p) = ko, which implies that

Afko—1(A)
18 I = ko,
) [AWEY

This choice of A ensures that Pr(p; + ps + ... + py = kM) = Q(M~/2). This follows from
a version of the local central limit theorem, proved in [2].

It follows that for large k, we have
k
(19) 7" <\ < ko and fp(N) > 2.

The upper bound in follows from the fact that fiko—1(A) > fyke(A). The lower bound
follows from the fact that if k is large, then the RHS of is large and then \ approaches
ko which is large. This then implies that f.;,—1(\) approaches f..,(\) as k grows.

Suppose now that we condition on the row sums p; = 61, p0 = 05,...,py = O0y. Fix S and

S; € S,18;| =d;,j € [M]. Then if dy +dy + --- + dpr = d then

M
r <ﬂ5j,5j,s> < kM d HH (0:k)
j=1 Jj=11i€S;
o < edQ/k:M o
MdH H = Md H i

€S €S

Explanation of (20): The conditioned model involves a vector X € [N]*¥ that can be
viewed as a random permutation of p; copies of i for i € [N]. We can assume that these

copies are distinguishable. Then, if ¢ € S; and (i1, j1), . . ., (4, Ji) represent prior assignments,
k6,

21 Pr(Ali,jl =1 Aliy, 51l =1,...,Ali;, 1] =1) < R

( ) I'( [L]] | [Zlﬂjl] ? ) [Zlajl] ) — kM —l

To see , observe that there are at most k positions in X that give us A[i, j] = 1 and for
each there are at most p; out of kM — [ equally likely choices of being ¢. The second term
in equation follows.
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Next let

Dy=<d=(dy,dy,....dy):dj =a;mod 2,d; <k,je[M], > dj=1(

j€(M]

and

Eg:{ez(el,ZES)29126,0127]{0,265}

i€S

Note that

M+10/2—-1 M2l /AM {—~kos+s—1 ;
22 D, < < —— and |E,| = 2",
@ ol (M) < M male el

Here the notation A <, B is used in place of A = O(B).

The first inequality in is obtained as follows: Let d; = (d; —1)/2 if a; = 1 and let
d; = d;/2 if aj = 0. Then }_;d; = (¢ — {1)/2 where {; is the number of a; equal to one.
Knowing a, which is fixed, we can re-construct the d;’s from the d}’s. This explains the
binomial coefficient. After this we use

(137)- el o) < e
Plugging into (15)) we obtain,
Pr(&; q)
Z2/kA4

g > Z o> Y Pr(pi=6ii€8) x H99
C[NJ,|S|=s t=ykos deD, S;CS,S;|=d; O€E, icS
1/2 et 0;

SESD YD DD VD DD o) | e e )

SCIN],|S|=s t=ykos deD,; S;CS,|S;|=d; O€E, icS ics

1/2 sel/RMN\ £ =g
(D) 2 5 S () T

l=~kos deD, OcE, =

The M'/? factor in the third line follows from our choice of A from (I8]). To obtain the last
line we used ZSjQSISj\:dj 1< gttty — g,

Thus,

Pr(Ese) <o M1/2< > Z > DL fv,w (Sei\jw)g

l=~kos deD, OcE,

< a2 E s kM g e 02 /am (2ko)" sel+t/kM ¢
= (£/2)! etz M

l=~kos
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k/3

s kM l
23 < M1/2 Ne € gs —vkos/2
(23) =0 s Z ez ) € ;

l=~kos

since k is large. Now if u, is the summand in then

” o2k/35252  o2k/35242  ,2Kk/34

< < =
up—g —  AM T ~ykso2N ~vkN

1
< a7
-2
since vk > 1.

Hence, since the largest term in the sum in (23)) is at £ = vykos, it follows that

Nel €2k/38 vkos/2 S€2k/3 vkos/3
24 P <, M3 — <M (o :
e () () e (5

Summing the RHS of for 1 < s < Ne” and taking k large completes the proof of part
(a) of the lemma.

Assume now that Ne ™ < s < N/2. If the sum of the rows in S is 0, (resp. 1), then no
column has exactly one one (resp. exactly two ones) in the rows of S. Let these events be
Agi,i = 0,1. If the ones in each column were generated completely at random then, with
the aid of the Vandermonde identity,

= G :
(2) <1Nsk8k+1ﬁ<1Nsi)>M
Pr(As)) = (gj %)M _ <1 _ %)M .

k—1 M
k(k—1 -1
(26) = (1- (k=1s(s —1) II(1-+—)) -
2IN=s—k+2)(N—-s—k+1) ¢ N —i
Now we can, for some r (equal to the number of zeroes in a), bound the probability of
Es.a by the product of the RHS of with M replaced by r and the RHS of with M

replaced by M —r. It follows therefore that, after ignoring conditioning on the event B that
every row of A contains at least vko ones, we have

Pr(f,0) < (1 _ (A o(1))ktk - ”526_“/N>M < (1 _ ’f2§_2k)M < (1— eV

2(N —s)?
So, in fact, taking account of B, we have

Pr(é:s’a)
Pr(B)

(1 o 6—2k’)M
Pr(B)

(27) Pr(€sa | B) < <
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We need a lower bound for Pr(B). By (17) above, we have,

kyo— 1

N
- 2ko /3
P(B)_le/2 (1—e § ) _N1/2<1_6( )

Plugging this into we see that for large k, since (1 —7)%0 > e
Pr(Esq | B) < (1— e )M < (1 — ¢ )N,
So,

S
s=Ne—k

N
N
Pr(35,|S| > Ne™*: £50) < Y ( )(1 — e )N — O(NTK),
Finally, if N/2 < |S| < N — 1, then the complement S of S is non-empty, and the rows S
sum to « if and only if the rows S sum to 3 — «, where 3 is the row-sum of A. But this

probability is controlled by the cases above, since 1 < |S| < N/2. O

2.6. The initial rows of B™! have many, but not too many, ones. We argue next
that the rows of B~ must contain many ones. Let ry,ro,...,1,, denote the rows of B™1.
We consider its first row ry. Let by, bs, ..., b,,, be the columns of B;. Then we must have
rib; =1 and rib;, =0 for i = 2,3,...,my. Suppose that r; has s ones and let this event be
& = &o(s). Then, for & to occur there must be s rows of B; whose sum is (1,0,0,...,0).

= 3
We consider case (a) and we assume that s < so = npe*. In which case we find, using (24),
that

(28) 50 <b n1/2 Z ( ) _ O(?’L_k/SO).

Now suppose that r; has 5;n, ones. We can assume from that

We apply Lemmato Bi with N = ng, M = ma,y = g2~ < L and a = (1,0,0,...,0).

(29) B; > eony where g = e7F

We also need a bound on 1 — f3;. Again consider r;. Suppose that this has at least ny(1 — &)
ones in positions S. Now since each column of B; has exactly k£ ones, we know that the
sum of the rows of By is either 0 (if k is even) or 1=(1,1,...,1) (if £ is odd). (We take care
of k even, even though the assumption is still that & is odd.) Thus the ny — s rows of By
corresponding to [ng] \ S will sum to (1,0,0,...,0) or (0,1,1,...,1) according as k is even or
odd. We can apply Lemma once more. This deals with all rows because the probability
in is bounded by o(n~!) and so we can use the union bound.

Remark 2.2. We see that if we fiz a positive integer K and if k is sufficiently large, then
Y icr Ti contains at least so ones for all |I| < K. This is because each such I gives us an

a with only |I| ones viz. the characteristic vector of I. There are O(n®) such o and the
probability bound in will be small enough to deal with all such I if K < k/50.
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2.7. A few rows of B~! are not enough to cover [n,]. Let S;,i € [ny] be the indices
of the columns where row 7 of B™! has a one. We will apply the following lemma to the
complements of the S;’s. In which case we will have N = nqy, X; = [no] \ S; and § = .

Lemma 2.3. Let X1, Xy, ..., Xn C [N] satisfy | X;| > ON. Let r be a fized positive integer
independent of N. If N is sufficiently large, then there exists a set I C [N],|I| = r and
s = [log, r] such that |,c; X;| = 0,N/2. Here 6o =6 and 611 = 6%/4 for i > 0.

Proof We will assume that r = 2% is a power of two. For general r we take the smallest
power of two greater than r. This will explain the extra factor of two in the denominator in
our lower bound on |(,c; X|.

We will prove this by induction on s. As a base case, consider s = 1. Now suppose
that for some ¢t > 2 we find that |X; N X;| < dN/(2t) for all ¢ < t. This implies that
| X\ U Xi| = 6N/2 and so }UZZI X;| > t6N/2. This process must stop after 2/ steps
and our induction on s has a base case, i.e. there exists i, ¢ < 2/§ such that | X;NX;| > §2N/4.

Suppose that for some s we can we can find {iy, s, ..., } C [[[;_(2/0;)] such that |Y;]| >
0sN where Y; = ﬂ?; Xi;. Assuming N is sufficiently large, we can generate a sequence
Y1,Ys, ..., Y5, where (i) |Y;| > 6N fori =1,2,...,2/6, and (ii) each Y; is the intersection
of 2° distinct X; and (iii) no X; appears in more than one of these intersections. Applying

the argument that gave us the base case we see that there exists ¢,¢ < 2/d, such that
|§/ZHY;5| 265+1N- U

Putting X; = [no] \ 5; for i € [ny] we see that we can find for any constant r, a set of r rows,
such that there are Q(n) columns without a one in the union of the rows.

2.8. Constructing a representative matrix. We now consider the construction of the
partition Ay, Ay, ..., A, in Section . Let R denote an arbitrary set of p rows of B!, Let
g1 = 27%¢, where gy = e~ %, as in (29), and consider the p x 2P matrix D with entries in
{0,1}. The ith row u; of D is associated with set S; and the columns of D are indexed by
o= (£1,&,...,&) € 2P and they are associated with an atom A, = = Sfj in the Boolean
algebra Bp, generated by the sets S;. Here & = £;(0) = 0,1 and S} = 5;,5) = 5; = [ny] \ 5.
The columns run over the 2P sequences {0, 1}”. For each j € [ny] there is a unique o = o (j)
such that j € A, i.e. the A, partition [ny]. Thus £ = 2P — 1 here. Further, if S, = )_, Si&
then S; is partitioned into the parts S, such that (o) = 1.

Row i of D contains a one in position o if (o) = 1 and |As| > e1ne. Otherwise, row i of
D contains a zero in position o. We now claim that D has row rank p.

Fix some () # I C [p] and let v’ = 3", _;r; and Sg = {j : r] =1}. Note that Lemma
and Remark means that we can assume that |Sg| > gon. Now let n = > ._,u; and
Sn=U,,=15s- We have

’Sn‘ > |Sg| — 2Peing > gong — 2Peyng > 0.

il
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Explanation: When an entry u; , = 1 this means (among other things) that j € S; for all
Jj € Ay and thus r;; =1 for all j € A,. Thus, S, is equal to Sz minus sets of the form S,
where (i) &(o) = 1 for an odd number of ¢ € I and (ii) |Ag| < e1n2.

It follows that there exists o such that n, = 1 ie. n # 0. Because [ is arbitrary, we see
that D has full row rank.

2.9. Finishing the proof of Theorem [1.1] Recall that the minor M can be represented
by a px ¢ matrix Ry. Let R be a set of row indices where (i) |[R| = p and (ii) |[n] \ U,cp Si| >
osn, s = [log, p| (see Lemma [2.3)). Suppose that c is a column of A,, not involved in the
construction of B. We say that c is a candidate column if ¢; = 0 whenever j € A, for which
|Ay| < e1m. Next let ¢, = ZjeAU ¢;. If ¢ is a candidate column then r; - ¢ = u; - cg where

cr is the column vector with components ¢, € 2P\, (Remember that r; is row i of B~
and that u; is row ¢ of D.) For a column x of A,,, let ¢r(x) be the column x restricted to
the p rows of R. Let c; be the first column of the target matrix M and let ¢ be a random
candidate column. Let v satisfy Dv = m; and v, = 0 if |A,| < e1n. Assume also that v
has at most p ones and that £ > p. There are always such solutions. Then we have

(30) Pr(¢r(B™'c) =m,;) = Pr(r;-c=u;-cg = my;,i € R) > Pr(cg =v) > &b

Explanation of second inequality: Let J = {o : v, = 1}. Each index o corresponds to
a set A, of size at least e;n. Now we will have cg = v if column ¢ has a single one in each
Ag, 0 € J and its remaining ones Ay = [n2] \ U, Si- All of the sets where we need to place
ones are of size at least e1ny and follows.

It follows from this that we can find a copy of M w.h.p. by examining a further w random
columns, where w = w(n) — oo, is arbitrary. This completes the proof of Theorem .

3. k EVEN

We now examine the adjustments needed for the case of k even. The problem here is that
the rows of A,, now sum to zero and so we cannot construct B in quite the same way as for

k odd.

Going back to Section we define L, Lo, L in the same way, but now we can only say
that w.h.p. the rank of Ly is nj = ng — 1. So now we choose ¢ € I, such that if the matrix
L; = [Bj : L] is obtained from L, by deleting row ¢ then L} has full row rank. We claim
now that w.h.p. L} also has full row rank. Suppose now that there exists J C I \ {i} such
that >, ;a; = 0. Then we must have J N (I3 \ {i}) = 0. For otherwise, L3 does not have

full row rank. But then J C I \ I, and by we can assume that |J| < nye™2F and then
we can apply Lemma [2.1)(a) to J and B to get a contradiction w.h.p.

Then we let B* be obtained from B; by removing row ¢ and then we can extend it to an
nj X nj non-singular submatrix of Lj. We need to argue that B* has many ones and zeros
in each row. For this we need to argue about sums of rows of the matrix B} which has k or
k — 1 ones in each column and at least k£/10 ones in each row. The row we deleted from B,
came by considering L; which is independent of B; and so the ones in each column of B}
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are still randomly chosen subject to the row constraints. We can then argue via Lemma
that (B*)"" has many ones and zeros in each row.

We write
B* L* * *
A, = 7 C* R
u; Up 0 us
where [uy, ug, 0, u3] is row ¢ and C* comprises the unviewed random columns that appear

where there is a zero in row i. R*, us comprise the rest of the matrix. Now let B be the
ng X Ny matrix obtained from B* by adding a column e,, and a row e£3 where e,, has a
unique one in position ng.

The number of ones in a row of X is dominated by the binomial Bin(n/4, k/n) and so w.h.p.
the maximum number of ones in any row is O(logn). Then we write

N I, O §1,1 E\31,1 §1,2 131
B_lAm - 0 IQ L271 0 Cl,2 R2
0 g2 Uy 0 0 us

Here we have split u; into [u; 1, u; o] where u;; = 0 and u; 5 is an all ones vector of dimension
O(logn). And then the matroid M associated with A,, has a minor isomorphic to M if Ry,

appears in C; ;. The argument for this is covered by the case k odd, concentrating on the
sub-matrix [Iy : Cy4].

4. FURTHER (QUESTIONS

We have shown that A,, contains a copy of an arbitrary fixed binary matroid as a minor
under the assumption that k, m/n are sufficiently large. It would be of interest to reduce k,
perhaps to three, and to get precise estimates for the number of columns needed for some
fixed matroid, the Fano plane for example. In this way we could perhaps get the precise
number of columns needed to make the random matroid associated with A,,, non-graphic
or non-regular, w.h.p. Behavior of random matroids over fields other than GF5 are also an
interesting target.

Acknowledgement: We thank Peter Nelson for for helpful discussions.
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Proof of Let p be the vector of row counts in X and let A, B be arbitrary positive
integers,

S:{pG[M]N) Z pj:Aand‘v’j,ijB}.

1<j<N

Fix 5 € 5. Then, if Pry refers to a random choice from S,

» M! Mt
Pr(p=¢) = (m)/ Egm

On the other hand, if Pry refers to a random choice via independent Poisson,

5 pa) - (L) /(s qp 0

1<j<N fB( peS 1<j<N
B fB( ) N)\s > / N/\s
a <§1'§2 Z Pl pa!. ~!
=Pri(p= 5)
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