
How many randomly colored edges make a randomly
colored dense graph rainbow hamiltonian or rainbow

connected?

Michael Anastos∗ and Alan Frieze†

June 3, 2020

Abstract

In this paper we study the randomly edge colored graph that is obtained by adding
randomly colored random edges to an arbitrary randomly edge colored dense graph.
In particular we ask how many colors and how many random edges are needed so that
the resultant graph contains a fixed number of edge disjoint rainbow Hamilton cycles
w.h.p. We also ask when in the resultant graph every pair of vertices is connected by
a rainbow path w.h.p.

1 Introduction

In this paper we study the following random graph model: We start with a graph H = (V,E)
and a set R of m edges chosen uniformly at random from

(
[n]
2

)
\E, that is from the edges not

found in H. We then add to H the edges in R to get the graph

GH,m = (V,E ∪R).

After this, we color every edge of GH,m independently and uniformly at random with a color
from [r]. We denote the resultant colored graph by

Gr
H,m = (V,E ∪R, c).

Here c : E ∪R ↦→ [r] is the function that assigns to every edge in E ∪R its color.
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The random graph model GH,m was first introduced by Bohman, Frieze and Martin in [2].
It can be considered as an extension of the Erdős-Rényi model which we can retrieve from
GH,m by setting H = ∅. The main motivation for this model is the following: Let G be some
class of graphs and P be a property, an increasing property in our case, that is satisfied by
almost all the members of G. The following question arises. For any graph G ∈ G, suppose
we perturb slightly its edge set at random, by adding a few random edges. How many are
needed so that the result is a graph that satisfies property P w.h.p.1 In [2] they study the
case where G is the set of graphs of minimum degree δn, δ > 0 and P is the property of a
graph having a Hamilton cycle. They show that a linear number of random edges suffices in
order to make any member of G Hamiltonian w.h.p. They also point out that for δ < 0.5,
complete bipartite graphs with bipartitions of sizes δn and (1 − δ)n need a linear number
of random edges in order to become Hamiltonian. Here it is worth mentioning that in the
Erdős-Rényi random graph, G(n,m), the threshold for Hamiltonicity is (log n+ log log n)n.
GH,m has since been studied in a number of other contexts, see for example [1], [3], [9], [10]
and [13].

In this paper we enhance this model by randomly coloring edges. We [r]-color the edges
of GH,m independently and uniformly at random and we denote the resultant graph by Gr

H,m.
We then ask about the existence of a rainbow Hamilton cycle in GH,m and whether Gr

H,m is
rainbow connected.

A Hamilton cycle is called rainbow if no color appears twice on its edges. It was shown by
Frieze and Loh [8] and by Ferber and Krivelevich [5] that form ≥ (1+o(1))(log n+log log n)n
if we color G(n,m) randomly with (1 + o(1))n colors then G(n,m) contains a rainbow
Hamilton cycle. This implies that if we randomly [(1 + o(1))n]-color a typical graph of
minimum degree δn then w.h.p. the resultant graph will contain a rainbow Hamilton cycle.
In comparison, as mentioned earlier, a graph of linear minimum degree needs only a linear
number of edges in order to become Hamiltonian.

We say a graph is rainbow connected if every pair of its vertices are connected by a
rainbow path. For a fixed graph G of minimum degree d is known that 20n

d
colors are

sufficient to color it such that the resultant graph is rainbow connected, see [12].

The class of graphs of interest in our case will be the graphs on n vertices, of minimum
degree δn with δ > 0 which we denote by G(n, δ). For the rest of this paper we let 0 < δ < 0.5
and H be an arbitrary member of G(n, δ). We also let

θ = θ(δ) = − log δ and t0 = t0(δ) = min

{
δn

260
,

n

1000 + 200θ

}
. (1)

Our first theorem builds on the Hamiltonicity result of [2].

Theorem 1. Let 1 ≤ t ≤ t0 and m ≥ min
(

10(435+75θ)tn
9

,
⏐⏐⏐([n]2 ) \ E(H)

⏐⏐⏐) and r ≥ (120+20θ)n

then, w.h.p. Gr
H,m contains t edge disjoint rainbow Hamilton cycles.

When t = 1 the above theorem states that a linear number of edges and a linear number
of colors suffice in order for Gr

H,m to have rainbow-Hamilton cycle. In addition it says that

1We say that a sequence of events En holds with high probability if P {En} → 1 as n → ∞.
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if you require a multiple number of edge disjoint rainbow Hamilton cycles then it suffices to
multiply the number of random edges that are added appropriately.

The following Theorem concerns the rainbow connectivity of Gr
H,m.

Theorem 2. For rainbow connectivity the following holds:

(i) If r = 3 and m ≥ 60δ−2 log n then w.h.p. G3
H,m is rainbow connected.

(ii) For δ ≤ 0.1 there exists H ∈ G(n, δ) such that if m ≤ 0.5 log n then w.h.p. G4
H,m is not

rainbow connected.

(iii) If r ≥ 7 and m = ω(1) then w.h.p. Gr
H,m is rainbow connected.

The rest of the paper is divided as follows. In Section 2 we give the proof of Theorem 1
and in Section 3 we give the proof of Theorem 2. We close with Section 4.

2 Proof of Theorem 1

Let G be a graph of minimum degree at least k. A k-out random subgraph of G, denoted
Gk−out, can be generated by adding independently at random k edges incident to vertex v
for every v ∈ V .

We will often use the following version of the Chernoff bounds for the binomial distribu-
tion B(n, p).

Pr(|B(n, p)− np| ≥ ϵnp) ≤ 2e−ϵ2np/3, for 0 ≤ ϵ ≤ 1.

We partition H into two subgraphs H ′, H ′′ as follows. We include every edge of H into
E(H ′) independently with probability p = 1

20
. We then set E(H ′′) = E(H) \ E(H ′). Since

H has minimum degree δn and p · δn ≫ log n, the Chernoff bounds imply that w.h.p. E(H ′)
has minimum degree δ(H ′) ≥ δn

21
and maximum degree ∆(H ′) ≤ n

19
and

(
1
20

+ o(1)
)
|E(H)|

edges. We partition H so that it will be easier to expose the random edges in stages.

To prove Theorem 1 we first prove a non-colored version of it. Namely we show

Theorem 3. Let Q ⊂ E(H ′′) ∪ R be such that |Q| = (81 + 15θ)n and Q is distributed
as a random subset of

(
[n]
2

)
\ E(H ′) of the corresponding size. Then w.h.p. H ′

6−out ∪ Q is
Hamiltonian

To get Theorem 1 from Theorem 3 we use a result of Ferber, Kronenberg, Mousset and
Shikhelmam [6], stated as Theorem 6 below. We use it in order to extract t rainbow subgraphs
from H ′ each of which has the properties of H6−out needed in the proof of Theorem 3. And
each of these subgraphs can become hamiltonian by adding to it (81 + 15θ)n random edges.
We then argue that by suitably refining those edges the Hamilton cycles will be rainbow.
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2.1 Proof of Theorem 3

We first randomly split Q into two sets Q1, Q2 of sizes (45+15θ)n and 36n respectively. We
then show that H ′

6−out ∪Q1 is connected and has good expansion properties. Then we apply
a standard Pósa rotation argument to show that E(H ′) ∪Q1 ∪Q2 spans a Hamilton cycle.

Lemma 4. With probability 1− o(n−2), the following hold:

1. H ′
6−out ∪Q1 is connected,

2. for every S ⊆ V such that |S| ≤ n/5 we have that |NH′
6−out∪Q1

(S)| > 2|S|.

Proof. We start by examining the second property for “small” sets.

Claim 1: With probability 1− o(n−2) every S ⊂ V such that |S| ≤ δ2n/200 satisfies
|NH′

6−out
(S)| > 2|S|.

Proof of Claim 1: Let S, T ⊂ V be such that |T | = 2|S| and |S| ≤ δ2n/200. In H ′ every
vertex in S has at most 3|S| ≤ 3δ2n/200 out neighbors in S ∪ T . Furthermore observe that
given H ′ every set of 6 edges adjacent to v in H is equaly likely to be chosen by v during
the construction of H ′

6−out. Thus

Pr(NH′
6−out

(v) ⊆ S ∪ T ) ≤
(
3|S|
6

)/(
δn

6

)
≤
(
3|S|
δn

)6

.

Therefore, with s = |S|,

Pr(Claim 1 is violated) ≤
δ2n/200∑
s=1

(
n

s

)(
n

2s

)(
3s

δn

)6s

≤
δ2n/200∑
s=1

(
en

s

)s(
en

2s

)2s(
3s

δn

)6s

≤
δ2n/200∑
s=1

(
e3 · 36s3

δ6n3

)s

= o(n−2).

End of proof of Claim 1.

Now we examine the second property for “large” sets. Here we are going to use the edges
from Q1. Let ∆(H ′) be the maximum degree of H ′. Then ∆(H ′) ≤ n/19 w.h.p.

Claim 2: With probability 1 − o(n−2) every S ⊆ V such that δ2n/200 < |S| ≤ n/5
satisfies |NH′

6−out∪Q1
(S)| > 2|S|.

4



Proof of Claim 2: For δ2n/200 ≤ |S| ≤ n/5 by considering only the edges in Q1 we have

Pr(Claim 2 is violated) ≤ o(n−2) + (1 + o(1))

n
5∑

s= δ2n
200

(
n

s

)(
n

2s

)(
1− s(n− 3s)− sn/19(

n
2

) )|Q1|

(2)

≤ o(n−2) + (1 + o(1))

n
5∑

s= δ2n
200

(
en

s

)s(
en

2s

)2s

e
− s(n−3s−n/19)|Q1|

(n2)

≤ o(n−2) + (1 + o(1))

n
5∑

s= δ2n
200

(
e3n3

4s3
e−

2|Q1|
5n

)s

≤ o(n−2) + (1 + o(1))

n
5∑

s= δ2n
200

(
e3 · 2003

4δ6
e−(18+6θ)

)s

= o(n−2).

Explanation of (2): The o(n−2) term accounts for the probability that ∆(H ′) > n/19.
The (1 + o(1)) factor in front of the summation accounts for conditioning on this event. s
denotes the size of S. We choose S and a set of size 2s that contains the neighborhood of
S. We then estimate the probability p that an edge of Q1 joins S to V \ T . Out of at most(
n
2

)
choices for an edge of Q1 there are s(n − 3s) which join S to V \ (S ∪ T ), of which at

most s∆(H ′) are in E(H ′). The probability there is no S to V \ (S ∪ T ) edge is bounded by
(1− p)|Q1|.
End of proof of Claim 2.

Claims 1 and 2 imply the second property of our Lemma. At the same time Claim 1
implies that every connected component of H ′

6−out has size at least δ2n
200

. In the event that
any two of the at most 200δ−2 components of H ′

6−out are connected by an edge in Q1 we
have that H6−out ∪Q1 is connected. Observe for any two disjoint sets S1, S2 of size at least
δ2n/200, the Chernoff bounds imply that

Pr(S1 ∪ S2 span ≥ |S1| ||S2|/10 edges in H ′) = exp
{
−O(δ2n2)

}
.

Since there are at most 2n choices for each of S1, S2 we have that w.h.p. every pair of
components S1, S2 of H

′
6−out spans at most |S1||S2|/10 edges in E(H ′), thus there are at least

9|S1||S2|/10 edges in
(
[n]
2

)
\ E(H ′) whose inclusion in Q1 can connect S1 to S2. Therefore

Pr(H ′
6−out ∪Q1 is not connected ) ≤

(
200δ−2

2

)(
1− 9

10

(
δ2n

200

)2

· 1(
n
2

))|Q1|

= o(n−2).

Our next Lemma builds on Lemma 4 and completes the proof of Theorem 3. It is basically
an adaptation of Pósa’s argument to our setting.
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Lemma 5.
Pr(H ′

6−out ∪Q1 ∪Q2 is not Hamiltonian) = o(n−2).

Proof. Let Q2 = {e1, ..., e|Q2|} and set Gi = (H ′
6−out∪Q1)∪{e1, ..., ei}. Assume that Gi is not

Hamiltonian and consider a longest path Pi in Gi, i ≥ 0. Let x, y be the end-vertices of Pi.
Given yv where v is an interior vertex of Pi we can obtain a new longest path P ′

i = x..vy..w
where w is the neighbor of v on Pi between v and y. In such a case we say that P ′

i is obtained
from Pi by a rotation with the endpoint x being the fixed end-vertex.

Let ENDi(x;Pi) be the set of end-vertices of longest paths of Gi that can be obtained
from Pi by a sequence of rotations that keep x as the fixed end-vertex. Thereafter, for
z ∈ ENDi(x;Pi) let Pi(x, z) be a path that has end-vertices x, z and can be obtain form
Pi by a sequence of rotations that keep x as the fixed end-vertex. Observe that since Gi is
connected but not Hamiltonian for z ∈ ENDi(x;Pi) and z′ ∈ ENDi(z;Pi(x, z)) neither xz
nor zz′ belong to Gi since otherwise we can close the path into a cycle that is not Hamiltonian
and then use the connectivity of Gi to get a longer path than P . At the same time it follows
from Pósa [14]

|N(ENDi(x, Pi))| < 2|ENDi(x, Pi)|.
Moreover for every z ∈ ENDi(x;Pi)

|N(ENDi(z, Pi(x, z)))| < 2|ENDi(z, Pi(x, z))|.

As a consequence, since Lemma 4 states that ∀S ⊂ V |S| ≤ n/5 we have 2|S| ≥ NH6−out∪Q1(S),
we get that |ENDi(x, Pi)| ≥ n

5
.

Let Ei = {{z, z′} /∈ H ′ : z ∈ ENDi(x;Pi) and z′ ∈ ENDi(z;Pi(x, z))}. H ′ has maxi-
mum degree at most n/19. Furthermore |END(x, Pi)| ≥ n/5 and for every z ∈ ENDi(x, Pi)
we have |ENDi(z;Pi(x, z))| ≥ n/5. Hence

|Ei| ≥
1

2
· n
5

(
n

5
− n

19

)
≥ n2

70
.

Now let Yi+1 be the indicator that ei+1 ∈ Ei and Z =
∑|Q2|

i=1 Yi. Then Pr(Yi = 1) ≥ 1/35.
Therefore Z dominates the binomial Bin(|Q2|, 1/35). Thus since |Q2|/35 = 36n/35, the
Chernoff bound implies that Pr(Z ≤ n) = e−Ω(n) = o(n−2). Hence G|Q2| = H ′

6−out ∪Q1 ∪Q2

is Hamiltonian with the required probability.

2.2 Partitioning H ′

We are now ready to apply Theorem 6, given below and partition H ′ into t+1 edge disjoint
subgraphs. t of them will be rainbow and will satisfy the property described in Theorem 3.
The final step will be to show that for each i ∈ [t] we can set aside a random subset Ri ⊆ R,
of size (81 + 15θ)n such that Hi ∪Ri is rainbow.

The following theorem is taken from Ferber et al [6]. It is a combination of Lemma 2.7
and Theorem 3.1 of that paper. From Theorem 3.1 we get the that each Fi is distributed as
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a random graph F ∗
k−out. Lemma 2.7 allows the substitution of Fk−out in place of F ∗

k−out with
the stated probability error n−ω(1).

Theorem 6 ([6]). Let ϵ > 0 be a constant, k ≥ 2 be an integer and P be a monotone
increasing graph property. Let F be a graph on n vertices with minimum degree δ(F ) =
ω(log n) whose edges are colored independently and uniformly at random from [kn]. Then,
w.h.p. F can be partitioned into F = F0 ∪ F1 ∪ · · · ∪ Fr such that the following holds.

1. F0, F1, . . . , Fr are edge-disjoint subgraphs of F ,

2. r = (1− ε) δ(F )
2k

,

3. For every 1 ≤ i ≤ r, E(Fi) is rainbow and of size at most kn, and

4. For every 1 ≤ i ≤ r, Pr [Fk-out satisfies P ] ≤ Pr [Fi satisfies P ] + n−ω(1).

By monotone, we mean here that if Fk−out satisfies P then adding edges to Fk−out gives
a graph that also satisfies P .

We apply the above Theorem with F = H ′ and r = t, k = 6 and P the property that
the addition of (81+ 15δ)n random edges from

(
[n]
2

)
\H ′ makes the graph Hamiltonian with

probability at least 1− n−2. This gives a partition of H ′ into F0 ∪ F1 ∪ F2... ∪ Ft It follows
from Theorem 6 and Lemma 5 that we can finish our proof by showing that w.h.p. we can
pair each of the Fi, i ∈ [t] with a random subset Qi ⊆ E(H ′′) ∪ R of size (81 + 15δ)n such
that Fi ∪Qi is rainbow.

2.3 Partitioning E(H ′′) ∪R

We can assume that m = min {(435 + 75θ)tn, m̄H} , m̄H =
⏐⏐([n]

2

)
\ E(H)

⏐⏐}. We start by
extracting t disjoint sets, Q′

1, ..., Q
′
t, from E(H ′′) ∪ R, of size m1 = (435 + 75θ)n such that

Q′
i is uniformly distributed among all t element subsets of

(
[n]
2

)
\ E(H ′). If m = m̄H then(

[n]
2

)
\E(H ′) = E(H ′′) ∪R and we can choose the sets directly by first randomly choosing a

set Q′ of size tm1 from E(H ′′)∪R. We can do this, because our choice of t0 implies that m1 ≤
0.44n and |E(H ′)| ≤ n2/19 w.h.p. Otherwise m = tm1 and |E(H ′′)∪R| ≥ m̄H ≥ tn and we
proceed by generating two integers a, b whose distribution is the same as |A∩R|, |E(H ′′)∩A|
where A is a random subset of

(
[n]
2

)
of size tm1. We then generate Q′ by adding to it a and

b random elements of R and E(H ′′) respectively. In both cases we proceed by randomly
partitioning Q′ into t pieces of the same size to get the desired sets Q′

1, Q
′
2, ..., Q

′
m1

.

From Lemma 5 any subset Ai of Q
′
i that satisfies: (i) Ai ∪ F ′

i is rainbow and (ii) |Ai| =
(81 + 15θ)n satisfies the requirements for Qi. In the case that at least (87 + 15θ)n colors
appear in Q′

i, since at most 6n colors are used for the edges of Fi, such a set exists. Finally
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the probability that fewer colors appear is bounded by(
r

(87 + 15θ)n

)(
(87 + 15θ)n

r

)(435+75θ)n

≤
(

er

(87 + 15θ)n

)(87+15θ)n(
(87 + 15θ)n

r

)(435+75θ)n

= e(87+15θ)n

(
(87 + 15θ)n

(120 + 20θ)n

)(348+60θ)n

≤
[
e

(
3

4

)4 ](87+15θ)n

= o

(
1

n

)
.

This completes the proof of Theorem 1.

3 Proof of Theorem 2

3.1 Proof of Theorem 2 (i)

We will show that if R is large enough then w.h.p., for any pair of vertices u, v ∈ V there are
many edges in R between their neighborhoods N(u), N(v). It will follow that w.h.p. there
is a rainbow path of length 3 from u to v, which necessarily uses all of the three available
colors.

Let R = {r1, ..., rm}. Let C be the event that G is rainbow connected. For u, v ∈ V let
B(u, v) be the event that there exist fewer than 10 log n paths of the form (u, u0, v0, v) in G,
where {u, u0} , {v, v0} ∈ E(H) and {u0, v0} ∈ R. Then let C(u, v) be the event that there
is a rainbow such path. Given r1, ..., ri−1 either there exist 10 log n such paths or ri creates
such a path with probability at least δn(δn−10 log n)/

(
n
2

)
≥ δ2. The Chernoff bound implies

that

Pr(B(u, v)) ≤ Pr(Binomial(60δ−2 log n, δ2) < 10 log n) ≤ exp

{
−1

2
· 1
9
· 60 log n

}
≤ n−3.

Observe that a path of length 3 in G is rainbow with probability 1 · 2
3
· 1
3
= 2

9
since we may

assign any color to its first edge, then any of the other two colors to its second edge and
finally the remaining color to its third edge. Thus,

Pr(⌝C) ≤
∑

u,v∈V :u̸=v

Pr(⌝C(u, v)) ≤
∑

u,v∈V :u̸=v

Pr(B(u, v)) +Pr(⌝C(u, v)|⌝B(u, v))

≤
∑

u,v∈V :u̸=v

(
n−3 +

(
1− 2

9

)10 logn
)

≤ n2
(
n−3 + n−20/9

)
= o(1).
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3.2 Proof of Theorem 2 (ii)

Our counterexample will consist of 2 disjoint copies of G(0.5n, p) with p = 0.11. We will
show that if |R| is not sufficiently large then, in both copies there will be vertices that are
in distance at least 2 from R.

Let δ ≤ 0.1. Partition V into 2 sets V1, V2 each of size 0.5n. Then generate H by
including in E(H) every edge in V1 × V1 or in V2 × V2 independently with probability 0.22.
Since 0.22 · 0.5n = 0.11n, the Chernoff bounds imply that for all v ∈ V the degree of v, d(v)
satisfies 0.1n < d(v) < 0.12n. In particular w.h.p. H ∈ G(n, 0.1).

In the case that ∃v ∈ V1 and u ∈ V2 such that no edge in R has an endpoint in each of
({v}∪N(v))×({u}∪N(u)) then u and v are at distance at least 5 in G. Since any such path
cannot be rainbow when is colored by four colors we have that G is not rainbow connected.

Observe that w.h.p. R covers sets R1 ⊂ V1 and R2 ⊂ V2 each of size at most log n.
Therefore a vertex in V1 \R1 has at least one neighbor in R1 independently with probability
1− (1− 0.22)|R1| ≤ 1− n−1/2. Therefore

Pr(∃v ∈ V1 : ({v} ∪N(v)) ∩R = ∅) ≥ 1− (1− n−1/2)0.5n = 1− o(1).

Similarly, Pr(∃v ∈ V2 : ({v} ∪ N(v)) ∩ R = ∅) = 1 − o(1). Hence w.h.p. G is not rainbow
connected when r = 4.

3.3 Proof of Theorem 2 (iii)

We extract from V a small set of vertices S such that for every v ∈ V there exists s ∈ S that
shares many neighbors with v in H (see Lemma 7). We then show that any two vertices in
S are connected by a rainbow path of length 3. We extend these paths into many paths of
length 7 to show that w.h.p. G7

H,m is rainbow connected.

Lemma 7. Let G ∈ G(n, δ). Then there exists S ⊂ V satisfying the following conditions:

1. |S| ≤ 2/δ.

2. ∀v ∈ V \ S, there exists s ∈ S such that |N(v) ∩N(s)| ≥ δ2n/4.

Proof. Let S be a maximal subset of V such that for every v, w ∈ S we have |N(v)∩N(w)| <
δ2n/4. Then the maximality of S implies that S satisfies the second condition of our Lemma.
Then either |S| < 2/δ or there exist S1 ⊂ S of size ⌈2/δ⌉. In the latter case we have

n = |V | ≥

⏐⏐⏐⏐⏐ ⋃
s∈S1

N(s)

⏐⏐⏐⏐⏐ ≥ ∑
s∈S1

|N(s)| −
∑

s1 ̸=s2∈S1

|N(s1) ∩N(s2)|

≥ δn|S1| −
δ2n

4
· |S1|2

2
= δ|S1|n

(
1− δ|S1|

8

)
> n.

Contradiction.
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Proof of Theorem 2 (iii). Assujme that r = 7. For larger r we can use the first 7
colors. Also, we will still need m = ω(1) for r > 7, r = O(1). Let S be a set satisfying the
conditions of Lemma 7. For v ∈ V let sv ∈ S be such that |N(v)∩N(s)| ≥ δ2n/4. Let JS be
the event that every pair of vertices s1, s2 ∈ S are joined by three internally vertex disjoint
rainbow paths of length 3. Since |S| = O(1) and each vertex in S has Ω(n) neighbors and
m = ω(1) and r = 7 we have

P (JS) ≥ 1− 3|S|2 ·
(
1− ω

n2

(
1− 7 · 6 · 5

73

))(δn/6)2

= 1− o(1).

Here we have partitioned the neighborhoods of two vertices sa, sb ∈ S into 6 parts so that we
can find 3 disjoint pairs of parts Ai, Bi, i = 1, 2, 3 and then have rainbow paths a,Ai, Bi, b, i =
1, 2, 3 w.h.p.

Given JS occurring let v1, v2 /∈ S. Then there is a rainbow path Pv1,v2 of length 3 from sv1
to sv2 not containing v1, v2. Assume that v1, v2 share fewer than δ2n/8 common neighbors.
Let Jv1,v2 be the event that Pv1,v2 can be extended to a rainbow path from v1 to v2. Assume
that Pv1,v2 uses colors 5, 6, 7. Then there will be a rainbow path from v1 to v2 if there is a
vertex w ∈ N(v1) ∩ N(sv1) such that edge {v1, w} gets color 1 and edge {w, sv1} gets color
2 and colors 3,4 are similarly used for some path of length 2 from sv2 to v2. It follows that

Pr(Jv1,v2 does not occur ) ≤ 2

(
1−

(
1

7

)2
)δ2n/4−δ2n/8

= o(n−3).

The remaining cases for v1, v2 follow in a similar manner. Taking a union bound over v1, v2
gives us Theorem 2 (iii).

4 Conclusion

We have extended the notion of adding random edges to dense graphs and asking probabilistic
questions to that of adding randomly colored edges. The most interesting question for us
that is left open by the above analysis is as to whether 5 or 6 colors can be used to improve
Theorem 2 (iii) .
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