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Abstract

Let Q4 denote the set of proper [g]-colorings of the random graph Gy, ;m, m = dn/2
and let H, be the graph with vertex set {1, and an edge {0, 7} where o, T are mappings
[n] — [q] iff h(o,7) = 1. Here h(o, 7) is the Hamming distance | {v € [n] : o(v) # T7(v)}|.
We show that w.h.p. H, contains a single giant component containing almost all col-

orings in €, if d is sufficiently large and ¢ > locgd 5 for a constant ¢ > 3/2.

1 Introduction

In this short note, we will discuss a structural property of the set €2, of proper [g]-colorings of
the random graph G, ,,,, where m = dn/2 for some large constant d. That is, proper colorings
using colors from [¢] = {1,2,...,¢}. For the sake of precision, let us define H, to be the
graph with vertex set ), and an edge {o, 7} iff h(0o,7) = 1 where h(c,7) is the Hamming
distance |{v € [n] : 0(v) # 7(v)} |. In the Statistical Physics literature the definition of H,
may be that colorings o, 7 are connected by an edge in H, whenever h(o,7) = o(n). Our
theorem holds a fortiori if this is the case.

Heuristic evidence in the statistical physics literature (see for example [15]) suggests there
is a clustering transition cq such that for ¢ > ¢4, the graph H, is dominated by a single
connected component, while for ¢ < ¢4, an exponential number of components are required
to cover any constant fraction of it; it may be that ¢4 ~ @' (Here A(d) =~ B(d) is taken
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to mean that A(d)/B(d) — 1 as d — oco. We do not assume d — oo, only that d is a
sufficiently large constant, independent of n.) Recall that G, ,, for m = dn/2 becomes ¢-
colorable around g ~ ﬁ or equivalently when d ~ 2qlogq, [3, [7]. In this note, we prove
the following:

Theorem 1.1. Ifq > % for constant ¢ > 3/2, and d is sufficiently large, then w.h.p. H,
contains a giant component that contains almost all of §2,.

d
logd"®

In particular, this implies that the clustering transition ¢y, if it exists, must satisfy ¢y < %

Theorem [1.1] falls into the area of “Structural Properties of Solutions to Random Constraint
Satisfaction Problems”. This is a growing area with connections to Computer Science and
Theoretical Physics. In particular, much of the research on the graph H, has been fo-
cussed on the structure near the colorability threshold, e.g. Bapst, Coja-Oghlan, Hetterich,
Rassman and Vilenchik [4], or the clustering threshold, e.g. Achlioptas, Coja-Oghlan and
Ricci-Tersenghi [2], Molloy [13]. Other papers heuristically identify a sequence of phase
transitions in the structure of Hy, e.g., Krzakala, Montanari, Ricci-Tersenghi, Semerijan and
Zdeborova [12], Zdeborova and Krzakala [I5]. The existence of these transitions has been
shown rigorously for some other CSPs. One of the most spectacular examples is due to Ding,
Sly and Sun [8] who rigorously showed the existence of a sharp satisfiability threshold for
random k-SAT.

An obvious target for future work is improving the constant in Theorem to 1. We should
note that Molloy [13] has shown that w.h.p. there is no giant component if ¢ < (11;;‘2)51, for
some g4 > 0. Looking in another direction, it is shown in [9] that w.h.p. H,,q > d+ 2 is
connected. This implies that Glauber Dynamics on €, is ergodic. It would be of interest to

know if this is true for some ¢ < d.

Before we begin our analysis, we briefly explain the constant 3/2. We start with an arbitrary
[q]-coloring and then re-color it using only approximately = d/logd of the given colors. We
then use a disjoint set of approximately d/2logd colors to re-color it with a target x ~
coloring 7. We will assume that 7 uses colors from {qo + 1,...,q0 + x}-

_d_
2logd

2 Greedily Re-coloring

Our main tool is a theorem from Bapst, Coja-Oghlan and Efthymiou [5] on planted colorings.
We consider two ways of generating a random coloring of a random graph. We will let
Z, = |9,]. The first method is to generate a random graph and then a random coloring. In
the second method, we generate a random (planted) coloring and then generate a random
graph compatible with this coloring.

Random coloring of the random graph G,, ,,,: Here we will assume that m is such that
w.h.p. Z, > 0.
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(a) Generate G, ,, subject to Z, > 0.
(b) Choose a [g]-coloring ¢ uniformly at random from §2,.

(c) Output II; = (G, 0).
Planted model:

1. Choose a random partition of [n] into ¢ color classes Vi, Vs, ..., V, subject to

2 (5) < ()

2. Let I',,, be obtained by adding m random edges, each with endpoints in different color
classes.

3. Output IIy = (I'ym, 0).

We will use the following result from [5]:

Theorem 2.1. Let d = 2m/n and suppose that d < 2(q—1)log(q—1). Then Pr(Ily € P) =
o(1) implies that Pr(Il; € P) = o(1) for any graph+coloring property P.

Consequently, we will use the planted model in our subsequent analysis. Let

_ 4 d _d
T ¢—1 logd—Tloglogd ~ logd’

(1)

qo0

The property P in question will be: “the given [¢]-coloring can be reduced via single vertex
color changes to a [go]-coloring”.

In a random partition of [n] into ¢ parts, the size of each part is distributed as Bin(n,q™!)
and so the Chernoff bounds imply that w.h.p. in a random partition each part has size
b (1 loany

q nl/2

We let I' be obtained by taking a random partition Vi, Vs, ..., V, and then adding m = %dn
random edges so that each part is an independent set. These edges will be chosen from

V= (5) - ona(")) = - oy (1-1)

mn .~ _dq

possibilities. So, let d= Ny ~ oot and replace ' by T where each edge not contained in a V;

is included independently with probability p = %A . Vi, Vo, ..., V, constitutes a coloring which
we will denote by 0. Now I' has m edges with probability Q(n~!/2) and one can check that
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the properties required in Lemmas and below all occur with probability 1 — o(n~1/2)
and so we can equally well work with I".

Now consider the following algorithm for going from o via a path in €, to a coloring with
significantly fewer colors. It is basically the standard greedy coloring algorithm, as seen in
Bollobas and Erd6s [6], Grimmett and McDiarmid [10] and in particular Shamir and Upfal
[14] for sparse graphs.

In words, it goes as follows. At each round of the algorithm, U denotes the set of vertices that
have never been re-colored, by the start of the round. Having used r — 1 colors to re-color
some subset of vertices we start using color . We let W; = V; N U denote the unchanged
vertices of V; for j > 1. We then let k be the smallest index j for which W; # (. During
the re-coloring process, we will keep track of sets C,. and U, C U, which are, respectively,
the sets of vertices already re-colored r and the vertices of U not adjacent to any vertices
in C,. These sets are initially defined in the re-coloring process by the re-coloring all of W),
with color r so that C, = Wy, and we proceed thereafter by choosing vertices from U, and
re-coloring them with color r (each time increasing |C,| by 1 and decreasing |U,| by at least
1). We finish when U, = (), and in this way the terminal set C,. of vertices re-colored r will
be a maximal independent subset of the set U. Note that in this construction, some or all
of the vertices in V,, may be re-colored with s < r.

At any stage of the algorithm, U is the set of vertices whose colors have not been altered.
The value of L in line D is [n / log? d—‘ .

ALGORITHM GREEDY RE-COLOR
begin
Initialise: r = 0,U = [n], Cy < 0;
repeat;
r«r+1,C, <« 0
Let W; =V, NU for j > 1 and let k = min {j : W, # 0};
A: G W, U« U\C,U, < U\ {neighbors of C, in f};

If r < k, re-color every vertex in W, with color r;

repeat (Re-color some more vertices with color r);
Arbitrarily choose v € U,., C, < C, +v, U, < U, — v;
U, < U, \ {neighbors of v in f},

until U, = 0;

U+ U\Up;

D: until |U| < L;
Suppose that at this point we have used ry colors;

A+2};

If possible, re-color U with colors ro + 1,...,7¢ + Sg, where so = Longd

end
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2.1 Following a path in H,

We first observe that each re-coloring of a single vertex v vertex in line C can be interpreted
as moving from a coloring of 2, to a neighboring coloring in H,. This requires us to argue
that the re-coloring by GREEDY RE-COLOR is such that the coloring of T is proper at all
times. We argue by induction on r that the coloring at line A is proper. When r = 1 there
have been no re-colorings. At the start of round r either all vertices previously colored r
have been re-colored and C, is a subset of vertices originally colored k > r or is a subset of
the vertices originally colored r. In the first case we can simply re-color W one vertex at a
time with color r. Also, during the loop beginning at line B we only re-color vertices with
color r if they are not neighbors of the set C, of vertices colored r so far. This guarantees
that the coloring remains proper until we reach line D. The following lemma shows that we
can then reason as in Lemma 2 of Dyer, Flaxman, Frieze and Vigoda [9], as will be explained
subsequently.

Lemma 2.2. Let p = m/(g) = A/n where A is some sufficiently large constant. With
probability 1 — o(n='?), every S C [n] with s = |S| < n/log> A contains at most sA/log? A
edges.

The above lemma, is Lemma 7.7(i) of Janson, Luczak and Rucmskl [11] and it implies that
if A = d then w.h. p. FU at line D contains no K-core, K = A+ 1. Here FU denotes the

sub-graph of T induced by the vertices U. For a graph G = (V, E) and K > 0, the K-core
is the unique maximal set S C V such that the induced subgraph on S has minimum degree
at least K. A graph without a K-core is K-degenerate i.e. its vertices can be ordered as
V1, Vg, . .., Uy SO that v; has at most K — 1 neighbors in {vy, va,...,v;_1}. To see this, let v,
be a vertex of minimum degree and then apply induction.

Suppose now that we have reached Line D and we find |U|] < L. We claim that we can
re-color the vertices in U with K 4 1 new colors, all the time following some path in H,.

Let vy, .. 4 denote an ordering of U such that the degree of v; is less than K in the
subgraph F of T induced by {vi,va,...,v;}. We will prove the claim by induction on 1,
the inductive assertion being that we can re-color vy, vs, ..., v; ignoring conflicts caused by
vertices vitq, ..., vy|. The asertion with ¢ = |U| shows the existence of the path we want.
The claim is trivial for ¢ = 1. Let o9 be the coloring of U at line D, when first we have
|U| < L. By induction there is a path g, 01, ..., 0, from the coloring ¢ restricted to I';_1,
using only colors rg + 1,...,79 + sg to do the re-coloring. Vertices outside of U will not be
re-colored by this sequence.

Let (wj, ¢j) denote the (vertew, color) change defining the edge {o,_1,0;}. We construct a
path (of length < 2r) that re-colors T,. For j=1,2,...,r, we will re-color w; to color c;,
if no neighbor of w; has color ¢;. Failing this, v; must be the only neighbor of w; that is
colored ¢;. This is because o, is a proper coloring of fi,l. Since v; has degree less than K in

fi, there exists a new color for v; which does not appear in its neighborhood. Thus, we first
re-color v; to any new (valid) color, and then we re-color w; to ¢;, completing the inductive

THE ELECTRONIC JOURNAL OF COMBINATORICS 22 (2015), #P00 5



step. Note that because the colors used in Step D have not been used in Steps A,B,C, this
re-coloring does not conflict with any of the coloring done in Steps A,B,C.

2.2 Bounding the number of colors used

We need to show that GREEDY RE-COLOR uses at most ¢y colors. To do this we show that
w.h.p. each execution of Loop B re-colors a large number of vertices. Let a;(G) denote the
minimum size of a maximal independent set of a graph GG. The round will re-color at least

a1 (T'y) vertices, where U is as at the start of Loop B. The following result is from Lemma
7.8(i) of [11].

Lemma 2.3. Let p =m/(}) = A/n where A is some sufficiently large constant. (G ) >
M with probability 1 — o(n='/?). (see Lemma 7.8(i)).

Now the application of Step A and Loop B re-colors a maximal independent set C). of the
graph 'y induced by U, as U stands at the beginning of Step A. This implies that the size of
O, stochastically dominates the size of a maximal independent set in G|y 5. This is because
we can obtain G|y by adding edges to V; N U,i > 1 with probability p. Here we follow the
usual analysis of greedy algorithms and argue that edges inside U are not conditioned by the
process. This is often referred to as the method of deferred decisions. In this way we couple
I'y with Gy so that every independent set in Gy 5 is contained in an independent set in

I'y.
And so using Lemma [2.3] we see that w.h.p. each execution of Loop B re-colors at least

log(c?/ log? C/Z\> — 3log log(c?/ log? C/l\)n S 4- 1 logd — 6loglog dn

d q d

vertices, for d sufficiently large. We have replaced A of Lemma by c/i\/ log? d to allow for
the fact that we have replaced n by |U| > L. Here we refer to the size of |U| immediately
after the update of r. Consequently, at the end of Algorithm GREEDY RE-COLOR we will
have used at most

~

q d d q d
q—1 logd—6loglogd ~ 10g%d q—1 logd— Tloglogd

qo0

d

colors. The term —%—
log“ d

+ 2 arises from the re-coloring of U at line D.

2.3 Finishing the proof:

cd
logd

Gpnm that uses colors from {qo +1,...,90 + x}. We prove that almost every [¢]-coloring o

Now suppose that ¢ > where d is large and ¢ > 3/2. Fix a particular y-coloring 7 of
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of G, can be transformed into 7 changing one color at a time. It follows that for almost
every pair of [g]-colorings o, ¢’ we can transform o into ¢’ by first transforming o to 7 and
then reversing the path from o’ to 7.

We proceed as follows. Applying Theorem with the property P as described following
(1), we see that w.h.p., a uniformly random [g]-coloring o of G, ,, can be transformed one
vertex at a time into a [go]-coloring 6. Then we process the vertices of the color classes of
T, re-coloring vertices to their 7-color. When we process a color class C' of 7, we switch the
color of vertices in C to their 7-color i one vertex at a time. We can do this because when
we re-color a vertex v, a neighbor w will currently either have one of the ¢y colors used by
0 and these are distinct from i or alternatively, w will have already been been re-colored
with its 7-color and this will be distinct from ¢c. This proves Theorem (1.1 O

Acknowledgement: We thank the referee for an exemplary sequence of reviews.
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