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Abstract—Due to the grow of modern dataset size and the
desire to harness computing power of multiple machines, there
is a recent surge of interest in the design of distributed ma-
chine learning algorithms. However, distributed algorithms are
sensitive to Byzantine attackers who can send falsified data to
prevent the convergence of algorithms or lead the algorithms to
converge to value of the attackers’ choice. Some recent work
proposed interesting algorithms that can deal with the scenario
when up to half of the workers are compromised. In this paper, we
propose a novel algorithm that can deal with an arbitrary number
of Byzantine attackers. The main idea is to ask the parameter
server to randomly select a small clean dataset and compute
noisy gradient using this small dataset. This noisy gradient will
then be used as a ground truth to filter out information sent by
compromised workers. We show that the proposed algorithm
converges to the neighborhood of the population minimizer
regardless the number of Byzantine attackers. We further provide
numerical examples to show that the proposed algorithm can
benefit from the presence of good workers and achieve better
performance than existing algorithms.

Index Terms—Byzantine attacker, convergence, distributed
gradient descent.

I. INTRODUCTION

The design of distributed optimization algorithms has at-
tracted significant recent research interests [2]–[15]. The surge
of interest in this area is motivated by many factors. Here we
list some of them. First, as the amount of data keeps growing at
a fast pace, it is challenging to fit all data in one machine [16]–
[18]. Second, distributed optimization algorithms are useful
to harness the computing power of multiple machines [16]–
[18]. Third, in certain scenarios, data is naturally collected at
different locations, and it is too costly to move all data to a
centralized location [19].

In a typical distributed optimization setup, there are one
parameter server and multiple workers. The whole dataset is
divided by the server into small parts and each part is stored in
one workers. Most of the existing works in this area assume
that these workers behave honestly and follow the protocol.
However, in practice, by using distributed optimization algo-
rithms, there is a risk that some of the workers might be
compromised. Compromised workers (also called Byzantine
attackers in the sequel) can prevent the convergence of the
optimization algorithms or lead the algorithms to converge to
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a value chosen by these attackers by modifying or falsifying
intermediate results during the execution of optimization algo-
rithms. For example, as shown in [20], [21], the presence of
even a single Byzantine worker can prevent the convergence
of distributed gradient descent algorithm.

There have been some interesting recent works to design
distributed machine learning algorithms [9]–[11], [20]–[29]
that can deal with Byzantine attacks. The main idea of these
works is to compare information received from all workers,
and compute a quantity that is robust to attackers for algorithm
update. For example, the algorithm in [20] uses the geometric
median mean of gradient information received from workers
for parameter update. The algorithm Krum in [21] chooses
the gradient vector that is closest (in certain sense) to its
m − p neighbors, where m is the number of workers and
p is the number of compromised workers, to be the esti-
mated gradient for parameter updating. Alistarh et al. [22]
propose a Byzantine-resilient SGD algorithm, in which at each
iteration the server combines the current and past gradient
information from each worker to compute next update, to
solve convex problem with high dimension. Xie et al. [23]
compare the performance of algorithms that use geometric
median, marginal median and mean median to update param-
eters.Yin et al. [24] propose a median-based algorithm that
uses only one communication round to perform parameter
updates. Chen et al. [25] propose DRACO algorithm that uses
ideas from coding theory to determine which machines are
under attack. Damaskinos et al. [26] consider an asynchronous
distributed training scenario and propose algorithm Kardam
that leverages the Lipschitzness of the cost function to filter out
gradient information from attackers. Su et al. [27] propose an
approximate gradient descent algorithm that employs iterative
filtering for robust gradient aggregation in high dimensional
estimation. Yin et al. [28] consider the problem of defending
against saddle point attack and propose a Byzantine PGD
that uses random perturbation of the iterates to escape saddle
points and compares the performance of three ways for robust
aggregation: median, trimmed mean and iterative filtering.
These algorithms in [20]–[28] can successfully converge to
the neighborhood of the population minimizer even if up to
half of all workers are compromised. However, once more
than half of the workers are compromised, the algorithms in
these interesting work will not converge. As machine learning
algorithms are increasingly deployed in security and safety
critical applications, it is important to consider the robustness
of these algorithms in adversarial environments where we need
to make less or no assumption about the attackers (including



the assumption that less than half of the workers are attackers
in the distributed learning) [30]. These attacks may be achieved
by a variety of ways including but not limited to: vulnerable
communication channels, poisoned datasets, or virus. In 2006,
65% of companies surveyed in the CSI/FBI Computer Crime
and Security Survey [31] reported that they had been attacked
by virus. Once captured by virus, these devices can be used to
attack the network from inside. For example, Xie et al. [29]
considers the case that the number of Byzantine worker is
arbitrarily large and proposes an algorithm named Zeno that
the server first sorts the gradient by a stochastic descendant
score then averages the m− b gradients with highest score, in
which m is the total number of workers and b is an important
parameter in the algorithm. The algorithm must have at least
one good worker, it cannot solve the problem when server is
isolated. Furthermore, in order to properly set the parameter b,
Zeno must know an upper bound on the number of Byzantine
workers. In addition, if b is selected to be larger than the true
number of attackers, the algorithm may not benefit from all
good workers.

In this paper, we propose a new robust distributed gradient
descent algorithm that can converge to the neighborhood of
the population minimizer regardless of the number of com-
promised workers (i.e. even when more than half of workers
are compromised). The main idea is to ask the server to
randomly select a small subset of clean data and compute a
noisy gradient based on this small dataset. Even though the
computed gradient is very noisy, it can be used as a proxy
of the ground truth to filter out information from attackers.
In particular, once the server receives gradient information
from workers, it compares the gradient information from
each worker with the noisy gradient it has computed. If the
distance between the gradient from worker and the noisy
gradient computed by itself is small, the server accepts the
gradient information from that worker as authentic. After the
comparison step, the server then computes the average of
all accepted gradient and its own noisy gradient as the final
estimated gradient for updating. We prove that the algorithm
can converge to the neighborhood of the population minimizer
regardless of the number of compromised workers. We show
this result by proving that the distance between the estimated
gradient and the true gradient can be universally bounded. In
the analysis, we consider two different scenarios. In the first
scenario, we do not assume any knowledge about the number
of attackers. We provide a convergence proof in this case with
minimal assumption about attackers. In the second scenario,
we assume that the number of attackers is bounded from above
by a constant p. We note that, here p is an upper bound of the
number of attackers, it is not the exact number of attackers.
Hence, this additional knowledge is not too restrictive. With
this additional knowledge, we provide a modified algorithm
that has a tighter convergence bound.

The paper is organized as follows. In Section II, we describe
the model. In Section III, we describe the proposed robust
gradient descent algorithm. In Section IV, we analyze the
convergence property of the proposed algorithm. In Section

V, we provide numerical examples to validate the theoretic
analysis and show that we can benefit from the good workers
to obtain a better convergence accuracy. Finally, we offer
several concluding remarks in Section VI. The proofs are
collected in Appendix.

II. MODEL

In this section, we introduce our model. Suppose that the
data X ∈ X ⊂ Rn is generated randomly from a unknown
distribution D parameterized by unknown vector θ taken value
from a set Θ ⊂ Rd. Our goal is to infer the unknown parameter
θ from data samples. In particular, consider a loss function
f : X ×Θ→ R, with f(x, θ) being the risk induced by data
point x under the model parameter θ. We aim to find the model
parameter θ∗ that minimizes the population risk F (θ):

θ∗ ∈ arg min
θ∈Θ

F (θ) , E[f(X, θ)]. (1)

In this paper, we assume that F (θ) satisfies the following
typical assumption.

Assumption 1. The population risk function F : Θ → R is
L-strongly convex, and differentiable over Θ with M -Lipschitz
gradient. That is for all θ, θ′ ∈ Θ,

F (θ′) ≥ F (θ) + 〈∇F (θ), θ′ − θ〉+ L ‖ θ′ − θ ‖2 /2, (2)

and
‖ ∇F (θ′)−∇F (θ) ‖≤M ‖ θ′ − θ ‖,

in which ‖ · ‖ is the `2 norm and 0 < L ≤M.

When we know the distribution of X , the population risk
can be evaluated exactly and θ∗ can be computed by solving
the above problem (1). However, in a typical machine learning
problem, the distribution is unknown. To handle this, one
normally approximates the population risk F (θ) from the
observed data samples. In particular, we assume that there
exist N independently and identically distributed (i.i.d.) data
samples Xi, with i = 1, 2, · · · , N , from the distribution D.
Instead of minimizing the population risk (1) directly, we
minimize the empirical risk

min
θ∈Θ

1

N

N∑
i=1

f(Xi, θ). (3)

Fig. 1. Distributed optimization model
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Consider a typical distributed optimization model in Fig-
ure 1, there are one server and m workers in the system.
These N data samples are distributed into these m workers,
and the server machine can communicate with all workers
synchronously. Let Sj be the set of data samples that the
j-th worker receives from the server. In a system with data
shuffling, Sj changes over iterations, while in a system without
shuffling, Sj is fixed. Our algorithm and proof hold regardless
whether there is data shuffling or not.

In the classic batch gradient descent, each worker solves (3)
using distributed gradient descent. In particular, at iteration t,
each worker j ∈ [1,m] calculates ∇f (j)

(θt−1) based on local
data

∇f (j)
(θt−1) =

1

|Sj |
∑
i∈Sj

∇f(Xi, θt−1), (4)

and sends it back to the server, where |Sj | is the size of data
in j-th worker. After receiving information from all workers,
the server updates the parameter using

θt = θt−1 − η
m∑
i=1

wi∇f
(j)

(θt−1) (5)

where wi = |Si|/N and sends the updated parameter θt to
workers. Here η is the step size. This process continues until
a certain stop criteria is satisfied.

In this paper, we consider a system with Byzantine workers,
in which an unknown subset of workers might be comprised.
Furthermore, the set of compromised workers might change
over time. If a worker is compromised, instead of the gradient
calculated from local data, it can send arbitrary information to
the server. In particular, let Bt denote the set of compromised
workers at iteration t, the server receives data g(j)(θt−1) from
j-th worker with

g(j)(θt−1) =

{
∇f (j)

(θt−1) j /∈ Bt
? j ∈ Bt

, (6)

in which ? denotes an arbitrary vector chosen by the attacker.
We assume there are up to p Byzantine attackers in the

system. Note that, in this paper, p is not the exact number
of attackers, it is merely an upper bound on the number of
attackers. In this case with Byzantine attackers, if one contin-
ues to use the classic batch gradient as in (5), the algorithm
will fail to converge even if there is only one attacker [20],
[21]. As discussed above, [20], [21] designed algorithms that
converge to the neighborhood of the population minimizer if
the number of compromised machines p is less than m/2 (i.e.,
more than half of the machines are not compromised).

The goal of our paper is to design a robust batch gradient
descent algorithm that can tolerate any number of Byzantine
attackers.

III. ALGORITHM

In this section, we describe our algorithm that can deal
with an arbitrary number of Byzantine attackers under two
scenarios: p being unknown and knowing the value of p.

A. Unknown p

TABLE I
PROPOSED ALGORITHM WITH UNKNOWN p

Algorithm
Parameter server:
Initialize: Randomly selects θ0 ∈ Θ;
For t ≥ 1 :

randomly selects S0;
1: Broadcasts the current model parameter
estimator θt−1 to all workers;
2: Waits to receive gradients from the m workers;
g(j)(θt−1) denote the value received from worker j;

3: Computes ∇f (0)
(θt−1) using S0;

4: Compares g(j)(θt−1) with ∇f (0)
(θt−1); If

‖ g(j)(θt−1)−∇f (0)
(θt−1) ‖≤ ξ ‖ ∇f (0)

(θt−1) ‖,
the server accepts it and sets it to be q(l)

t (θt−1);
5: Assume the acceptable value are in Vt, then

G(θt−1)←
∑
l∈Vt wlq

(l)
t (θt−1) + w0∇f

(0)
(θt−1);

6:Updates θt ← θt−1 − ηG(θt−1);
Worker j:
For t ≥ 1 :

1: Computes the gradient ∇f (j)
(θt−1);

2: If worker j is honest,

it sends ∇f (j)
(θt−1) back to the server;

If worker j is compromised,
it sends the value determined by the attacker;

In the first scenario, we do not have any knowledge about p.
Main steps of the algorithm under the first scenario is listed in
Table I. The main idea of our algorithm is to ask the server to
randomly select a small set of data points S0 at very beginning,
where |S0| ≤ minj∈[1,m] |Sj |. Once S0 is selected, it is fixed
throughout the algorithm. Then at each iteration t, the server
calculates a noisy gradient using data points in S0:

∇f (0)
(θt−1) =

1

|S0|
∑
i∈S0

∇f(Xi, θt−1).

Different choices of the size of S0 will strike a tradeoff
between convergence speed and computational complexity.

The server then compares g(j)(θt−1) received from worker
j with ∇f (0)

(θt−1). The server will accept g(j)(θt−1) as
authentic value and use it for further processing, if

‖ g(j)(θt−1)−∇f (0)
(θt−1) ‖≤ ξ ‖ ∇f (0)

(θt−1) ‖, (7)

where ξ is a constant. The choice of ξ will impact the proposed
scheme. Roughly speaking, choosing a smaller ξ can limit
the effect of an attack, but it may also reject more correct
information from honest workers. On the other hand, a larger ξ
can increase the probability of data from honest workers being
accepted, but it will also increase the probability of accepting
information from attackers. We will discuss how to choose
this parameter in the analysis.
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Assuming there are |Vt| values (which is a random variable)
being accepted after the comparison step at iteration t, we
denote these values by q(1)

t (θt−1), ..., q(|Vt|)
t (θt−1). Then the

server updates the parameters as θt = θt−1−ηG(θt−1), where

G(θt−1) =
∑
l∈Vt

wlq
(l)
t (θt−1) + w0∇f

(0)
(θt−1), (8)

where wl = |Sl|∑
i∈Vt

|Si|+|S0| .

B. Known p

In the second scenario, we assume that we know p. We
again note that here p is an upper bound of the number of
attackers, it is not the exact number of attackers. Hence, this
additional knowledge is not too restrictive. With this additional
knowledge, we modify the algorithm at the server side above
slightly. The worker side remains the same. This modification
will allow us to prove a tighter bound in the convergence
analysis section. Main steps of the modified algorithm at the
server side is listed in Table II. The main difference with
the algorithm in Table I is that we now sort the gradient
information accepted by the server in an increasing order by
‖q(i)(θt) − ∇f

(0)
(θt)‖, then keep the first m − p gradient

value in a set (as we know the number p). We call this set
Ut at iteration t. Using this notation, the gradient used for
updating at the server can be written as

G(θt−1) =
∑
j∈Ut

wjq
(j)
t (θt−1) + w0∇f

(0)
(θt−1),

where wj =
|Sj |∑

i∈Ut
|Si|+|S0| .

TABLE II
PROPOSED ALGORITHM WITH KNOWN p

Algorithm
Parameter server:
Initialize: Randomly selects θ0 ∈ Θ;
For t ≥ 1 :

randomly selects S0;
1: Broadcasts the current model parameter
estimator θt−1 to all workers;
2: Waits to receive gradients from the m workers;
g(j)(θt−1) denote the value received from worker j;

3: Computes ∇f (0)
(θt−1) using S0;

4: Compares g(j)(θt−1) with ∇f (0)
(θt−1); If

‖ g(j)(θt−1)−∇f (0)
(θt−1) ‖≤ ξ ‖ ∇f (0)

(θt−1) ‖,
the server accepts it and sets it to be q(l)

t (θt−1);
5: After accepting, the server collects m− p gradient
information which are closest to its own.
5: Then

G(θt−1)←
∑
j∈Ut wjq

(j)
t (θt−1) + w0∇f

(0)
(θt−1);

6:Updates θt ← θt−1 − ηG(θt−1);

IV. CONVERGENCE ANALYSIS

In this section, we analyze the convergence property of the
proposed algorithm. We consider two different scenarios: 1)
In scenario 1, we do not have any knowledge about p; 2) In
scenario 2, we assume that we know the value of p.

In this section, we will prove results that hold simultane-
ously for all θ ∈ Θ with a high probability. Hence, in the
following, we will drop subscript t − 1. Before presenting
detailed analysis, here we describe the high level ideas. It
is well known that if ∇F (θ) is available, then the gradient
descent algorithm will converge to θ∗ exponentially fast. The
main idea of our proof is to show that, regardless of the
number of attackers, the distance between G(θ) and ∇F (θ)
is universally bounded in Θ in both scenarios. Hence, G(θ) is
a good estimate of ∇F (θ). As the result, we can then show
that the proposed algorithm converges to the neighborhood of
the population minimizer.

A. Scenario 1: No assumption on p

In this scenario, we assume that we do not know even the
upperbound on the number of bad workers. We first show that
‖G(θ) − ∇F (θ)‖ is universally bounded in Θ regardless the
number of attackers.

Lemma 1. For an arbitrary number of attackers, the distance
between G(θ) and ∇F (θ) is bounded as

‖G(θ)−∇F (θ)‖ ≤ (1 + ξ)‖∇F (θ)−∇f (0)
(θ)‖

+ ξ‖∇F (θ)‖, ∀θ. (9)

Proof. Please see Appendix A.

We next need to bound the two terms in the right hand
side of (9). The term ‖∇F (θ)‖ = ‖∇F (θ) − ∇F (θ∗)‖
can be bounded using the M -Lipschitz gradient assumption
in Assumption 1. In the following, we show that the term
‖∇F (θ)−∇f (0)

(θ)‖ can also be bounded. For this, we need
to present several assumptions and intermediate results. These
assumptions are similar to those used in [20], [24], [27], and
proofs of some lemmas follow closely that of [20].

Assumption 2. There exist positive constants σ1 and α1

such that for any unit vector v ∈ B, 〈∇f(X, θ∗), v〉 is sub-
exponential with σ1 and α1, that is,

sup
v∈B

E[exp(λ〈∇f(X, θ∗), v〉)] ≤ eσ
2
1λ

2/2, ∀|λ| ≤ 1/α1,

where B denotes the unit sphere {v : ‖v‖2 = 1}.

With this assumption, we first have the following lemma that
shows 1

|S0|
∑
i∈S0 ∇f(Xi, θ

∗) concentrates around ∇F (θ∗).

Lemma 2. Under Assumption 2, for any δ ∈ (0, 1), let

∆1 =
√

2σ1

√
(d log 6 + log(3/δ))/|S0|, (10)

and if ∆1 ≤ σ2
1/α1, then

Pr

{∥∥∥∥∥ 1

|S0|
∑
i∈S0

∇f(Xi, θ
∗)−∇F (θ∗)

∥∥∥∥∥ ≥ 2∆1

}
≤ δ

3
.
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Proof. Please see Appendix B.

Second, we define gradient difference h(x, θ) , ∇f(x, θ)−
∇f(x, θ∗) and assume that for every θ, h(x, θ) normalized by
‖ θ − θ∗ ‖ is also sub-exponential.

Assumption 3. There exist positive constants σ2 and α2 such
that for any θ ∈ Θ with θ 6= θ∗ and any unit vector v ∈ B,
〈h(X, θ)− E[h(X, θ)], v〉/ ‖ θ− θ∗ ‖ is sub-exponential with
σ2 and α2, that is,

sup
θ∈Θ,v∈B

E
[
exp

(
λ〈h(X, θ)− E[h(X, θ)], v〉

‖θ − θ∗‖

)]
≤ eσ

2
2λ

2/2, ∀|λ| ≤ 1

α2
.

This allows us to show that 1
|S0|

∑
i∈S0 h(Xi, θ) concen-

trates on E[h(X, θ)] for every fixed θ.
Assumption 2 and 3 ensure that random gradient ∇f(θ)

has good concentration properties, i.e., an average of |S0| i.i.d
random gradients 1

|S0|
∑
i∈S0 ∇f(Xi, θ) sharply concentrates

on ∇F (θ) for every fixed θ.

Lemma 3. If Assumption 3 holds, for any δ ∈ (0, 1) and any
fixed θ ∈ Θ, let ∆′1 =

√
2σ2

√
(d log 6 + log(3/δ))/|S0|, and

if ∆′1 ≤ σ2
2/α2, then

Pr

{∥∥∥∥∥ 1

|S0|
∑
i∈S0

h(Xi, θ)− E[h(X, θ)]

∥∥∥∥∥ ≥ 2∆′1‖θ − θ∗‖

}
≤ δ

3
.

Proof. Please see Appendix C.

Assumption 4. For any δ ∈ (0, 1), there exists an M ′ =
M ′(δ) such that

Pr

{
sup

θ,θ′∈Θ:θ 6=θ′

‖∇f(X, θ)−∇f(X, θ′)‖
‖θ − θ′‖

≤M ′
}
≥ 1− δ

3
.

Assumption 4 ensures that ∇f(X, θ) is M ′-Lipschitz with
high probability.

With these assumptions and intermediate lemmas, we are
ready to state our universal bound for ‖∇F (θ)−∇f (0)

(θ)‖.

Proposition 1. Suppose Assumptions 2-4 hold, and Θ ⊂ {θ :‖
θ − θ∗ ‖≤ r

√
d} for some r > 0. For any δ1 ∈ (0, 1),

Pr{∀θ : ‖∇F (θ)−∇f (0)
(θ)‖ ≤ 8∆2‖θ−θ∗‖+4∆1} ≥ 1−δ1,

(11)
in which ∆1 =

√
2σ1

√
(d log 6 + log(3/δ1))/|S0| and

∆2 =
√

2σ2

√
(τ1 + τ2)/|S0|, with τ1 = d log 18 +

d log((M∨M ′)/σ2), and τ2 = 0.5d log(|S0|/d)+log(3/δ1)+

log(
2rσ2

2

√
|S0|

α2σ1
).

Proof. (Outline): The proof relies on the typical ε-net argu-
ment. Let Θε = {θ1, ..., θNε} be an ε-cover of Θ, i.e., for fix

any θ ∈ Θ, there exists a θj ∈ Θε such that ‖ θ− θj ‖≤ ε. By
triangle inequality,∥∥∥∥∥ 1

|S0|
∑
i∈S0

∇f(Xi, θ)−∇F (θ)

∥∥∥∥∥ ≤ ‖∇F (θ)−∇F (θj)‖

+

∥∥∥∥∥ 1

|S0|
∑
i∈S0

(∇f(Xi, θ)−∇f(Xi, θj))

∥∥∥∥∥
+

∥∥∥∥∥ 1

|S0|
∑
i∈S0

∇f(Xi, θj)−∇F (θj)

∥∥∥∥∥ .
Then first term can be upper bounded using assumption 1.
The second term can be bounded using assumption 4, and
the third term can be bounded using Lemma 3. We can then
employ union bound over Θε to finish the argument. Please
see Appendix D for details.

Combining Lemma 1 and Proposition 1, we know that G(θ)
is a good approximation of ∇F (θ). Using this fact, we have
the following convergence result.

Theorem 1. If Assumptions 1-4 hold, and Θ ⊂ {θ :‖ θ−θ∗ ‖≤
r
√
d} for some r > 0, choose 0 < η < L/M2, then regardless

of the number of attackers with probability at least 1−δ1 that

‖θt − θ∗‖ ≤ (1− ρ1)t‖θ0 − θ∗‖+ (4η∆1 + 4ηξ∆1)/ρ1,

in which

ρ1 = 1−
(√

1 + η2M2 − ηL+ 8∆2η + ηξ(8∆2 +M)
)
.

(12)

Proof. Please see Appendix E.

This theorem shows that under an event that happens with
a high probability, the estimated θ can converge to the neigh-
borhood of θ∗ exponentially fast. However, the convergence
accuracy bound is not tighter than the bound one could obtain
if the algorithm uses gradient descent calculated from S0

only. This is because we are working with an adversarial
setup, for which we need to derive a bound that holds in
the worst-case scenario. When there is no assumption on p,
the worst-case scenario is when all workers are under attack,
which corresponds to the case where the server can only
trust the data from S0 only but it still using data from these
Byzantine workers since these data pass the comparison test.
Our numerical results in Section V will illustrate that the actual
performance of the proposed algorithm is better than the case
with using data from S0 only and it can benefit from the
presence of honest workers even when more than half of the
workers are Byzantine workers.

B. Scenario 2: Known p.

In this section, we assume that we know an upper bound on
the number of Byzantine workers. Note that p is not the exact
number of Byzantine workers, it is merely an upper bound.
Furthermore, p could be larger than m/2. Hence, this is not a
too restrictive assumption. With this additional knowledge, we
can derive a tighter convergence result. To proceed, we use Ht
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to denote the set of honest workers whose gradient information
are accepted by the server at iteration t, and At denote the set
of attackers whose information are accepted by the server at
iteration t. The values of these two sets are unknown. We only
know that |At| ≤ p. Let k = |Ht|+ |At|. Using this notation,
the gradient used for updating at the server can be written as

G(θt) =
∑

j∈Ht∩Ut

wj∇f
(j)

(θt) + w0∇f
(0)

(θt)

+
∑

j∈At∩Ut

wjg
(j)(θt), (13)

in which Ut is defined in Section III.
Similar to Section IV-A, we will prove results that hold

simultaneously for all θ ∈ Θ with a high probability. We will
show that all gradient information from all honest workers
have a high probability to be accepted, hence we will drop
the subscript t from Ht to H. By exploiting the knowledge of
p, we provide a tighter bound on ‖G(θ) − ∇F (θ)‖ than the
one presented in Lemma 1.

Lemma 4. If there are up to p attackers, at iteration t, the
distance between G(θ) and ∇F (θ) is bounded as

‖G(θ)−∇F (θ)‖

≤
∑
j∈H∩Ut |Sj |+ |S0|∑
j∈Ut |Sj |+ |S0|

‖Ct(θ)−∇F (θ)‖

+
∑

j∈At∩Ut

wj‖g(j)(θ)−∇F (θ)‖, (14)

where Ct(θ) =
∑
j∈H∩Ut βj∇f

(j)
(θ) + β0∇f

(0)
(θ) , βj =

|Sj |∑
i∈H∩Ut

|Si|+|S0| and wj =
|Sj |∑

i∈Ut
|Si|+|S0| .

Proof. Please see Appendix F.

Before further simplifying (14), we present several support-
ing lemmas.

The following lemma shows that, by choosing ξ properly,
the gradient information from an honest user will be accepted
by the server with a high probability.

Lemma 5. Suppose we set ξ as c|S0|−1/4 and |S0| sufficiently
large, then for each honest worker j and δ1 ∈ (0, 1)

‖∇f (j)
(θ)−∇f (0)

(θ)‖ ≤ ξ‖∇f (0)
(θ)‖, ∀θ ∈ Θ (15)

holds with probability (1− δ1)2 − δ1.

Proof. Please refer to Appendix G.

From Lemma 5, we can see that data sent by a honest
worker has a high probability to pass the comparison test
in the server. We can define event Υ1 such that information
from all |H| good workers satisfies (15). Using union bound,
we know that information from these |H| honest workers
will all be accepted with Pr{Υ1} ≥ 1 − δ3, where δ3 =
1− {[(1− δ1)2 − δ1]|H| − (|H| − 1)}.

We now bound the first term in (14), namely
‖Ct(θ)−∇F (θ)‖ at iteration t. Towards this goal, consider

a set NCt = {C1
t , C2

t , C3
t , ...}, each of which represents one

possibility of choosing |H∩Ut| workers from |H| at iteration
t. We have |NCt| =

( |H|
|H∩Ut|

)
.

Proposition 2. Suppose Assumptions 2-4 hold, and Θ ⊂ {θ :‖
θ − θ∗ ‖≤ r

√
d} for some positive parameter r, at iteration

t, for any δ2 ∈ (0, 1)

Pr{∀θ : ‖Ct(θ)−∇F (θ)‖ ≤ 8∆6‖θ− θ∗‖+ 4∆5} ≥ 1− δ2,

in which

∆5 =
√

2σ1

√
(d log 6 + log(3|NCt|/δ2))/|St|, (16)

∆6 =
√

2σ2

√
(τ1 + τ2)/|St|, (17)

with τ1 = d log 18 + d log((M ∨ M ′)/σ2),

τ2 = 0.5d log

(
maxClt∈NCt

(
∑
j∈Cl

|Sj |+|S0|)
d

)
+ log(3/δ2) +

log(
2rσ2

2

√
|St|

α2σ1
), and |St| = minClt∈NCt(

∑
j∈Clt
|Sj |+ |S0|).

Proof.

‖Ct(θ)−∇F (θ)‖ ≤ sup
Clt∈NCt

‖Qlt(θ)−∇F (θ)‖, (18)

where

Qlt(θ) =
∑
j∈Clt

βj∇f
(j)

(θ) + β0∇f
(0)

(θ), (19)

where βj =
|Sj |∑

i∈Clt
|Si|+|S0|. Then by union bound, at iteration

t, we need to proof

Pr{∀θ :
∥∥Qlt(θ)−∇F (θ)

∥∥ ≤ 8∆6‖θ−θ∗‖+4∆5} ≥ 1− δ2
|NCt|

.

The remaining proof is similar to the proof of Proposition 1
and hence is omitted for brevity.

For the second term in (14), each Byzantine gradient infor-
mation in Ut must follow the inequality

‖g(θ)−∇F (θ)‖ ≤ max
j∈H

∥∥∥∇f (j)
(θ)−∇F (θ)

∥∥∥ . (20)

Using this fact, we have the following proposition.

Proposition 3. Suppose Assumptions 2-4 hold, and Θ ⊂ {θ :‖
θ− θ∗ ‖≤ r

√
d} for some positive parameter r. For any δ2 ∈

(0, 1)

Pr{∀θ : max
j∈H

∥∥∥∇f (j)
(θ)−∇F (θ)

∥∥∥ ≤ 8∆8‖θ − θ∗‖+ 4∆7}

≥ 1− δ2,

in which

∆7 =
√

2σ1

√
(d log 6 + log(3|H|/δ2))(min

j∈H
|Sj |), (21)

and
∆8 =

√
2σ2

√
(τ3 + τ4)/min

j∈H
|Sj |, (22)

with τ3 = d log 18 + d log((M ∨ M ′)/σ2), and τ4 =
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0.5d log
(

maxj∈H |Sj |
d

)
+ log(3/δ2) + log(

2rσ2
2

√
minj∈H |Sj |
α2σ1

).

Proof. The proof is similar to the proof of Proposition 2 and
hence is omitted for brevity.

Using these two propositions, we now further bound (14)
from above by examining the worst-case scenario with regards
to Ut. At iteration t, the right-hand side of (14) has a high
probability to be bounded by

8∆6‖θ − θ∗‖+ 4∆5+

8(∆8 −∆6)‖θ − θ∗‖
∑
j∈B∩Ut |Sj |∑

j∈Ut |Sj |+ |S0|
+

4(∆7 −∆5)

∑
j∈B∩Ut |Sj |∑

j∈Ut |Sj |+ |S0|

(23)

When |H ∩ Ut| ≥ 1, we can find ∆8 ≥ ∆6 and ∆7 ≥ ∆5, as
∆8 and ∆7 have a smaller denominator. Hence, the coefficient
of (
∑
j∈B∩Ut |Sj |)/(

∑
j∈Ut |Sj |+|S0|) in the second term and

third term of (23) are non-negative. As the result, (23) is a non-
decreasing function of (

∑
j∈B∩Ut |Sj |)/(

∑
j∈Ut |Sj | + |S0|).

We now consider two different cases with fixed denominator.
Case 1): p < m/2. In this case, p < m − p, hence

max{
∑
j∈B∩Ut |Sj |} with setting |B ∩Ut| = p will maximize

(23) and also maximize the right-hand side of (14) in iteration
t. This implies that, when p < m/2, the worst-case scenario
is that there are p Byzantine workers and these gradients are
all in Ut all the time.

Case 2): p ≥ m/2. In this case, since |B ∩ Ut| ≤ m − p
and m− p ≤ p, max{

∑
j∈B∩Ut |Sj |} with setting |B ∩ Ut| =

m − p − 1 will maximize (23) as argued above. We need
to consider additional value when max{

∑
j∈B∩Ut |Sj |} with

|B∩Ut| = m−p, which means m−p gradient information in
Ut are all from Byzantine workers. In this case ∆8 < ∆6 and
∆7 < ∆5, since we assume minj∈H |Sj | ≥ |S0|. The obtained
bound with max{

∑
j∈B∩Ut |Sj |} by setting |B∩Ut| = m−p is

larger than the bound obtained by setting |B∩Ut| = m−p−1
in (23). This implies that, when p ≥ m/2, the worst-case
occurs when all m − p gradient information in Ut are from
Byzantine workers.

From the discussion above, we know that with a high
probability, the gradient information from all honest works
will be accepted. Furthermore, regardless of the true number
of attackers, the right-hand side of (14) is bounded by the
scenario where min{m − p, p} number of gradient in Ut are
from Byzantine workers all the time.

With these supporting lemmas and propositions, we are
ready for our main convergence result under 2 cases.

Theorem 2. If there are up to p attackers, Assumptions 1- 4
hold and Θ ⊂ {θ :‖ θ − θ∗ ‖≤ r

√
d} for some r > 0, choose

0 < η < L/M2, we have

‖θt − θ∗‖ ≤ (1− ρ2)t‖θ0 − θ∗‖+ (ηγ1)/ρ2, (24)

hold simultaneously for all θt with probability at least 1 −

2δ2 − δ3. Here

ρ2 = 1−
(√

1 + η2M2 − ηL+ ηγ2

)
, (25)

γ1 = 4(1− wmax)∆5 + 4wmax∆7, (26)

and
γ2 = 8(1− wmax)∆6 + 8wmax∆8, (27)

with wmax = max{(
∑
j∈B∩Ut |Sj |)/(

∑
j∈Ut |Sj |+|S0|)} and

|B ∩ Ut| = min{m− p, p} and |Ut| = m− p.

Proof. Please see Appendix H.

Theorem 2 shows that under the event which would happen
with highly probability, the estimated θ can converge to the
neighborhood of θ∗ exponentially fast.

From the discussion above, since
∑
j∈H∩U |Sj | + |S0| is

greater or equal to |S0|, ∆6 ≤ ∆2. Then, γ2 ≤ (8∆2+8ξ∆2+
ξM) and ρ2 ≥ ρ1, Hence, the convergence performance
benefits from knowing an upperbound on the number of
Byzantine workers.

V. NUMERICAL RESULTS

In this section, we provide numerical examples, with both
synthesized data and real data, to illustrate the analytical
results.

A. Synthesized data

We first use synthesized data. In this example, we focus on
linear regression, in which

Yi = XT
i θ
∗ + εi, i = 1, 2, · · · , N,

where Xi ∈ Rd, θ∗ is a d × 1 vector and εi is the noise.
We set X = [X1, · · · , XN ] as d × N data matrix. In the
simulation, we set the dimension d = 20, the total number
of data N = 100000, the number of workers m = 100, and
evenly distribute data among these machines. We set εi

i.i.d.∼
N (0, 1). HereN (µ, σ2) denotes Gaussian variables with mean
µ and variance σ2. Furthermore, we set |S0| = 1000, ξ =
1.5|S0|−

1
4 = 0.2667. We use N (0, 4) to independently gener-

ate each entry of θ∗. After θ∗ is generated, we fix it. The data
matrix X is generated randomly by Gaussian distribution with
µ = 0 and fixed known maximal and minimal eigenvalues of
the correlation matrix XTX. Let λmax(·) and λmin(·) denote
the maximal and minimal eigenvalue of XTX respectively.
In the following figures, we use λmax(XTX) = 200 and
λmin(XTX) = 2 to generate the data matrix X, then generate
Yi using the linear relationship mentioned above. We illustrate
our results with two different attacks: 1) Inverse attack, in
which each attacker first calculates the gradient information
∇f (j)

(θt−1) based on the its local data but sends the inversed
version −∇f (j)

(θt−1) to the server; and 2) Random attack, in
which the attacker randomly generates gradient value. In our
simulation, we compare three algorithms: 1) Gradient descent
using only data from S0, i.e., the server ignores information
from all workers; 2) Algorithm proposed in [20]; and 3) The
proposed algorithm described in Table I.
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Fig. 2. Synthesized data: 90 Inverse attack.
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Fig. 3. Synthesized data: 48 Inverse attack.

Figures 2 and 3 plot the value of the loss function vs
iteration with 90 and 48 inverse attacks respectively. When
the attacker number is 48, which is less than half of the total
number, all three algorithms can converge. However, from
Figure 2, it is clear that the algorithm in [20] does not converge
as the number of attackers is more than half of the total number
of machines. The proposed algorithm, however, still converges
in the presence of 90 attackers. Furthermore, even though there
are only 10 honest workers and the server does not know the
identities of these honest workers, the proposed algorithm can
still benefit from these workers, as the proposed algorithm
outperforms the algorithm that only relies on information from
S0.

Figures 4 and 5 plot the value of the loss function vs
iteration with 90 and 48 random attacks respectively. Similar
to the scenario with inverse attack, all three algorithms can
converge when there are less than half of the total number
attackers. However, when there are 90 attackers, our algorithm

0 50 100 150 200

5

10

15

20

25

90 random attack 

Fig. 4. Synthesized data: 90 Random attack.
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Fig. 5. Synthesized data: 48 Random attack.

outperforms the algorithm that uses S0 only, while the algo-
rithm in [20] diverges.

Figures 6 and 7 plot the value of the loss function vs
iteration with 60 random and 60 inverse attacks respectively
for the cases with and without knowledge of p. For the case
with knowledge about p, we set p = 75. From Figures 6,
we can see that the proposed algorithm without knowing p
has a lower convergence accuracy and convergence rate when
comparing with the proposed algorithm knowing p. The main
reason is that, when facing random attack, some attack vectors
can pass the comparison test. In Figure 7, since the attacks are
inverse attack, the proposed algorithm can successfully reject
all the information from attackers, then the proposed algorithm
without knowing p has more data to update the parameter.

Table III lists the running time for three algorithms under
60 inverse attacks, and we measure the number of iterations
needed for the loss function to reach 1.9. In Table III, the
simulations are produced under the same testing environment.

8



0 100 200 300
0

5

10

15

20

25
60 random attack

Fig. 6. Synthesized data: 60 Random attack.
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Fig. 7. Synthesized data: 60 Inverse attack.

From Table III, we can see that, compared with the case
of using data from S0 only, the proposed algorithms have a
higher complexity per iteration, but they reduce the number of
iterations. Both proposed algorithms have a better performance
than the gradient descent using |S0| only, since they can benefit
from the gradient information received from workers, even
though the server does not know whether the workers are
honest or not.

TABLE III
RUNNING TIME COMPARISON

loss function 1.9 time/iter iteration time
algorithm without p 1.0904× 10−4 140 0.0153
algorithm with p 1.5575× 10−4 174 0.0271
GD using S0 only 9.5889× 10−5 300 0.0288

B. Real data

Now we test our algorithms on real datasets MNIST [32]
andnCIFAR-10 [33], and compare our algorithms with various
existing work [20], [21], [29]. MNIST is a widely used
computer vision dataset that consists of 70,000 28×28 pixel
images of handwritten digits 0 to 9. We use the handwritten
images of 3 and 5, which are the most difficult to distinguish in
this dataset, to build a logistic regression model. After picking
all 3 and 5 images from the dataset, the total number of images
is 13454. It is divided into a training subset of size 12000 and a
testing subset of size 1454. The CIFAR-10 dataset consists of
60,000 32x32 images in 10 classes. For CIFAR-10 dataset, we
pick the images of car and plane, and build a training subset of
size 10000 and a testing subset of 2000. For these two datasets,
we set the number of workers to be 50 and we random pick
200 images from both subset to build S0, and set the step size
to be 0.01 for MNIST and 0.005 for CIFAR-10. Similar to
the synthesized data scenario, we illustrate our results with two
different attacks, namely inverse attack and random attack, and
compare the performance of five algorithms: Zeno [29], where
we set the cutoff number (a design parameter in Zeno) to be
5, Krum [21], median-mean [20], proposed algorithm without
known p and the algorithm that server using only data S0. The
following figures show how the testing accuracy varies with
training iteration.
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Fig. 8. MNIST: 20 Random attack.

Figures 8, 9, 10, and 11 illustrate the impact of 20 and
30 random attacks on different algorithms respectively. Fig-
ures 8, 9 are generated using MNIST, while Figures 10, and 11
are generated using CIFAR-10. Figure 8 and 10 show that
all algorithms have high accuracy when there are 20 attacks.
Gradient descent using S0 only have the lowest accuracy since
it uses a small size of data for training. The proposed algorithm
has the best performance even though less than half of the
workers are attackers. Figure 9 and 11 show the algorithm
using median-mean and Krum fail to predict if there are 30
attackers. Our proposed algorithm and Zeno still show high
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Fig. 9. MNIST: 30 Random attack.
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Fig. 10. CIFAR-10: 20 Random attack.

accuracy, and outperform the algorithm that only relies on
information from S0. Furthermore, the proposed algorithm has
better performance than Zeno.

We plot the impact of different number of inverse attacks
on real data in Figures 12, 13, 14, and 15 using MNIST and
CFAIR10 respectively. All algorithms can converge when there
are 20 inverse attacks. However, as the number of attackers
is very close to half of the total number, the algorithm in
[20] converges very slowly. Again, the proposed algorithm
has the best performance even though less than half of the
workers are attackers. Furthermore, if there are 30 Byzantine
workers, Krum and median-mean algorithm cannot properly
work. The algorithm that only based on information from
S0 still performs well, since it does not use the information
from all workers. Our proposed algorithm and Zeno can still
work well. They can benefit from the 20 good workers, and
outperform the scheme with S0 only. Our proposed algorithm
also outperforms Zeno.
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Fig. 11. CIFAR-10: 30 Random attack.
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Fig. 12. MNIST: 20 Inverse attack.

In Figures 13 and 16, we plot the impact of choosing
different cutoff values in Zeno. In Figure 16, the cutoff
value is 20, Zeno and our proposed algorithm both use all
good gradient information, so both algorithms have similar
performance. In Figure 13, the cutoff value is 5. Although
there are 20 good workers, Zeno can only benefit from 5 good
workers, but our proposed algorithm can still benefit from all
good workers and has a better performance.

Figures 17 and 18 illustrate the testing accuracy v.s. training
time under 20 and 30 inverse attacks with different algorithms.
All algorithms can converge when there are 20 inverse attacks.
Since algorithms have higher complexity, some algorithms
converges slower than the gradient descent using |S0| only. But
our proposed algorithm has a better performance in general.

VI. CONCLUSION

In this paper, we have proposed a robust gradient descent
algorithm that can tolerant an arbitrary number of Byzantine
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Fig. 13. MNIST: 30 Inverse attack.
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Fig. 14. CIFAR-10: 20 Inverse attack.

attackers. We have shown that the proposed algorithm con-
verges regardless the number of Byzantine attackers and have
provided numerical examples to illustrate the performance of
the proposed algorithm. In terms of future work, we hope
to extend the analysis to scenarios with non-convex cost
functions.
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Fig. 15. CIFAR-10: 30 Inverse attack.
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Fig. 16. MNIST: 30 Inverse attack.

APPENDIX A
PROOF OF LEMMA 1

‖G(θ)−∇F (θ)‖

=

∥∥∥∥∥∑
l∈Vt

wlq
(l)
t (θt−1) + w0∇f

(0)
(θt−1)−∇F (θ)

∥∥∥∥∥
=

∥∥∥∥∥∑
l∈Vt

wl(q
(l)
t (θt−1)−∇f (0)

(θt−1)) +∇f (0)
(θ)−∇F (θ)

∥∥∥∥∥
≤
∑
l∈Vt

wl‖q(l)
t (θ)−∇f (0)

(θ)‖+ ‖∇f (0)
(θ)−∇F (θ)‖
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Fig. 17. MNIST: 20 Inverse attack.
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Fig. 18. MNIST: 30 Inverse attack.

≤
∑
l∈Vt

wlξ‖∇f
(0)

(θ)‖+ ‖∇f (0)
(θ)−∇F (θ)‖

≤
∑
l∈Vt

wlξ‖∇f
(0)

(θ)−∇F (θ)‖+
∑
l∈Vt

wlξ‖∇F (θ)‖

+‖∇f (0)
(θ)−∇F (θ)‖

≤ (1 + ξ)‖∇f (0)
(θ)−∇F (θ)‖+ ξ‖∇F (θ)‖. (28)

APPENDIX B
PROOF OF LEMMA 2

Let V = {v1, v2, ..., vN1/2
} denote an 1

2 -cover of unit sphere
B, i.e., for fix any v ∈ B, there exists a vj ∈ V such that

‖ v − vj ‖≤ 1
2 . From [34], we have logN1/2 ≤ d log 6 , and∥∥∥∥∥ 1

|S0|
∑
i∈S0

∇f(Xi, θ
∗)−∇F (θ∗)

∥∥∥∥∥
≤ 2 sup

v∈V

{
1

|S0|
∑
i∈S0

〈∇f(Xi, θ
∗)−∇F (θ∗), v〉

}
.

(29)

By assumption 2 and the condition ∆1 ≤ σ2
1/α1, it follows

from concentration inequalities for sub-exponential random
variables [35] that

Pr

{
1

|S0|
∑
i∈S0

〈∇f(Xi, θ
∗)−∇F (θ∗), v〉 ≥ ∆1

}
≤ exp(−|S0|∆2

1/(2σ
2
1)).

(30)

By union bound and (29), we have

Pr

{∥∥∥∥∥ 1

|S0|
∑
i∈S0

∇f(Xi, θ
∗)−∇F (θ∗)

∥∥∥∥∥ ≥ 2∆1

}
≤ exp(−|S0|∆2

1/(2σ
2
1) + d log 6).

(31)

Setting ∆1 =
√

2σ1

√
(d log 6 + log(3/δ))(|S0|) in (31), we

obtain the desired result.

APPENDIX C
PROOF OF LEMMA 3

Define a set V using the same way in Appendix B. We have

‖ 1
|S0|

∑
i∈S0 h(Xi, θ)− E[h(X, θ)]‖

‖θ − θ∗‖

≤ 2 sup
v∈V

{
1

|S0|
∑
i∈S0

〈h(Xi, θ)− E[h(X, θ)], v〉
‖ θ − θ∗ ‖

}
.

(32)

By assumption 3 and the condition ∆′1 ≤ σ2
2/α2, it follows

from concentration inequalities for sub-exponential random
variables [35] that

Pr

{
1

|S0|
∑
i∈S0

〈h(Xi, θ)− E[h(X, θ)], v〉
‖ θ − θ∗ ‖

≥ ∆′1

}
≤ exp(−|S0|(∆′1)2/(2σ2

2)).

(33)

By union bound and (32),

Pr

{∥∥∥∥∥ 1

|S0|
∑
i∈S0

h(Xi, θ)− E[h(X, θ)]

∥∥∥∥∥ ≥ 2∆′1 ‖θ − θ∗‖

}
≤ exp(−|S0|(∆′1)2/(2σ2

2) + d log 6).

By setting ∆′1 =
√

2σ2

√
(d log 6 + log(3/δ))(|S0|), the proof

is complete.

APPENDIX D
PROOF OF PROPOSITION 1

Suppose assumption 2, assumption 3 and assumption 4 hold,
δ1 ∈ (0, 1) and Θ ⊂ {θ :‖ θ − θ∗ ‖≤ r

√
d} for some positive

12



parameter r.let

τ =
α2σ1

2σ2
2

√
d

|S0|
, u∗ =

⌈
r
√
d

τ

⌉
, (34)

We define Θu for any positive integer 1 ≤ u ≤ u∗. Θu ,
{θ :‖ θ− θ∗ ‖≤ τu}. Suppose that θ1, ..., θNε is an ε-cover of
Θτ , where ε is given by

ε =
σ2τu

M ∨M ′

√
d

|S0|
. (35)

Then logNε ≤ d log(3τu/ε). Fix any θ ∈ Θu, there exists a
1 ≤ j ≤ Nε that ‖ θ − θj ‖≤ ε. By triangle’s inequality,∥∥∥∥∥ 1

|S0|
∑
i∈S0

∇f(Xi, θ)−∇F (θ)

∥∥∥∥∥ ≤ ‖∇F (θ)−∇F (θj)‖

+

∥∥∥∥∥ 1

|S0|
∑
i∈S0

(∇f(Xi, θ)−∇f(Xi, θj))

∥∥∥∥∥
+

∥∥∥∥∥ 1

|S0|
∑
i∈S0

∇f(Xi, θj)−∇F (θj)

∥∥∥∥∥ . (36)

By assumption 1,

‖∇F (θ)−∇F (θj)‖ ≤M‖θ − θj‖ ≤Mε. (37)

Define event

ε1 =

{
sup

θ,θ′∈Θ:θ 6=θ′

‖∇f(X, θ)−∇f(X, θ′)‖
‖θ − θ′‖

≤M ′
}
. (38)

By assumption 4, Pr{ε1} ≥ 1− δ1
3 , and on event ε1,

sup
θ∈Θτ

∥∥∥∥∥ 1

|S0|
∑
i∈S0

(∇f(Xi, θ)−∇f(Xi, θj))

∥∥∥∥∥
≤M ′ ‖ θ − θj ‖≤M ′ε.

By triangle’s inequality,∥∥∥∥∥ 1

|S0|
∑
i∈S0

∇f(Xi, θj)−∇F (θj)

∥∥∥∥∥
≤

∥∥∥∥∥ 1

|S0|
∑
i∈S0

∇f(Xi, θ
∗)−∇F (θ∗)

∥∥∥∥∥
+

∥∥∥∥∥ 1

|S0|
∑
i∈S0

h(Xi, θj)− E[h(X, θj)]

∥∥∥∥∥ .
Define event

ε2 =

{∥∥∥∥∥ 1

|S0|
∑
i∈S0

∇f(Xi, θ
∗)−∇F (θ∗)

∥∥∥∥∥ ≥ 2∆1

}
, (39)

and event

Fu =

{∥∥∥∥∥ 1

|S0|
∑
i∈S0

h(Xi, θj)− E[h(X, θj)]

∥∥∥∥∥ ≥ 2τu∆2

}
,

(40)

where

∆1 =
√

2σ1

√
d log 6 + log(3/δ1)

|S0|
, (41)

∆2 =
√

2σ2

√
(τ1 + τ2)(|S0|), with

τ1 = d log 18 + d log((M ∨M ′)/σ2), (42)

τ2 =
1

2
d log(|S0|/d) + log(3/δ1) + log

(
2rσ2

2

√
|S0|

α2σ1

)
.

Since ∆1 ≤ σ2
1/α1, by Lemma 2, Pr{ε2} ≤ δ1/3. Similarly,

by Lemma 3, Pr{Fu} ≤ δ1/(3u∗).
In conclusion, it follows that on event ε1 ∩ εc2 ∩ Fcu,

sup
θ∈Θτ

∥∥∥∥∥ 1

|S0|
∑
i∈S0

∇f(Xi, θ)−∇F (θ)

∥∥∥∥∥
≤ (M +M ′)ε+ 2∆1 + 2∆2τ ≤ 4∆2τu+ 2∆1,

(43)

where the last inequality holds due to (M ∨M ′)ε ≤ ∆2τu.
Let

ε = ε1 ∩ εc2 ∩ (∩u∗τ=1Fcu). (44)

It follows from the union bound, Pr{ε} ≥ 1 − δ1. On event
ε, for all θ ∈ Θu∗ , there exist a u such that (u − 1)τ ≤
‖θ − θ∗‖ ≤ uτ . For u ≥ 2, u ≤ 2(u− 1), then

sup
θ∈Θr

∥∥∥∥∥ 1

|S0|
∑
i∈S0

∇f(Xi, θ)−∇F (θ)

∥∥∥∥∥ ≤ 8∆2 ‖θ − θ∗‖+2∆1.

For u = 1, since ∆1 ≥ σ1

√
d/|S0| and ∆2 ≤ σ2

2/α2, by
using τ in (34), we get

sup
θ∈Θr

∥∥∥∥∥ 1

|S0|
∑
i∈S0

∇f(Xi, θ)−∇F (θ)

∥∥∥∥∥ ≤ 4∆1.

Then on event ε, we have

sup
θ∈Θr

∥∥∥∥∥ 1

|S0|
∑
i∈S0

∇f(Xi, θ)−∇F (θ)

∥∥∥∥∥ ≤ 8∆2 ‖θ − θ∗‖+4∆1.

As ∆1 ≤ σ2
1/α1 and ∆2 ≤ σ2

2/α2, then

Pr{∀θ : ‖∇F (θ)−∇f (0)
(θ)‖ ≤ 8∆2‖θ−θ∗‖+4∆1} ≥ 1−δ1,

(45)
is proved by the assumption Θ ⊂ Θr.
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APPENDIX E
PROOF OF THEOREM 1

Under proposition 1, fix any t ≥ 1,

‖θt − θ∗‖

=

∥∥∥∥∥θt−1 − η

[∑
l∈Vt

wlq
(l)
t (θt−1) + w0∇f

(0)
(θt−1)

]
− θ∗

∥∥∥∥∥
=‖θt−1 − η∇F (θt−1)− θ∗ + η(∇F (θt−1)−∇f (0)

(θt−1))

+ η

[∑
l∈Vt

wl(f
(0)

(θt−1)− q(l)
t (θt−1))

]∥∥∥∥∥
≤‖θt−1 − η∇F (θt−1)− θ∗‖+ η‖∇F (θt−1)−∇f (0)

(θt−1)‖

+η
∑
l∈Vt

wl

∥∥∥f (0)
(θt−1)− q(l)

t (θt−1)
∥∥∥ (46)

≤‖θt−1 − η∇F (θt−1)− θ∗‖+ η‖∇F (θt−1)−∇f (0)
(θt−1)‖

+ηξ
∑
l∈Vt

wl‖f
(0)

t (θt−1)‖

≤‖θt−1 − η∇F (θt−1)− θ∗‖+ η‖∇F (θt−1)−∇f (0)

t (θt−1)‖

+ηξ
∑
l∈Vt

wl(‖f
(0)

t (θt−1)−∇F (θt−1)‖

+‖∇F (θt−1)−∇F (θ∗)‖)
≤
(√

1 + η2M2 − ηL+ 8∆2η + ηξ(8∆2 +M)
)
‖θt−1 − θ∗‖

+(η4∆1 + ηξ4∆1). (47)

Then

‖θt − θ∗‖ ≤ (1− ρ1)t‖θ0 − θ∗‖+ (4η∆1 + 4ηξ∆1)/ρ1, (48)

where

ρ1 = 1−
(√

1 + η2M2 − ηL+ 8∆2η + ηξ(8∆2 +M)
)
.

APPENDIX F
PROOF OF LEMMA 4

‖G(θ)−∇F (θ)‖

=

∥∥∥∥∥∥
 ∑
j∈H∩Ut

wj∇f
(j)

(θ) + w0∇f
(0)

(θ)

+
∑

j∈A∩Ut

wjg
(j)(θ)

−∇F (θ)

∥∥∥∥∥∥
≤
∑
j∈H∩Ut |Sj |+ |S0|∑
j∈Ut |Sj |+ |S0|

‖Ct(θ)−∇F (θ)‖

+ ‖(
∑

j∈At∩Ut

wjg
(j)(θ)−

∑
j∈At∩Ut |Sj |∑

j∈Ut |Sj |+ |S0|
∇F (θ))‖

≤
∑
j∈H∩Ut |Sj |+ |S0|∑
j∈Ut |Sj |+ |S0|

‖Ct(θ)−∇F (θ)‖

+
∑

j∈At∩Ut

wj‖g(j)(θ)−∇F (θ)‖.

APPENDIX G
PROOF OF LEMMA 5

By triangle inequality,

‖∇f (j)
(θ)−∇f (0)

(θ)‖ ≤ ‖∇f (j)
(θ)−∇F (θ)‖

+ ‖∇F (θ)−∇f (0)
(θ)‖.

(49)

From Proposition 1, we know that ‖∇F (θ)−∇f (0)
(θ)‖ can

be universally bounded. Using the same arguments, we have
that ‖∇F (θ)−∇f (j)

(θ)‖ is universally bounded. In particular,
under the same assumption as that of Proposition 1, for any
δ1 ∈ (0, 1)

Pr{∀θ : ‖∇F (θ)−∇f (j)
(θ)‖ ≤ 8∆4‖θ−θ∗‖+4∆3} ≥ 1−δ1,

(50)
in which

∆3 =
√

2σ1

√
(d log 6 + log(3/δ1))/|Sj |, (51)

and ∆4 =
√

2σ2

√
(τ1 + τ2)/|Sj |, with τ1 = d log 18 +

d log((M∨M ′)/σ2), and τ2 = 0.5d log(|Sj |/d)+log(3/δ1)+

log(
2rσ2

2

√
|Sj |

α2σ1
).

Combining Proposition 1 and equation (50), we know that
for each good worker,

‖∇f (j)
(θ)−∇f (0)

(θ)‖
≤ 8(∆2 + ∆4)‖θ − θ∗‖+ 4(∆1 + ∆3), ∀θ ∈ Θ (52)

with a probability larger than (1− δ1)2.

In the following, we provide a lower bound on ξ‖∇f (0)
(θ)‖.

By triangle inequality,

ξ‖∇f (0)
(θ)‖ ≥ ξ‖∇F (θ)‖ − ξ‖∇F (θ)−∇f (0)

(θ)‖. (53)
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The second term of (53) can be bounded using Proposition 1.
Next we bound the first term of (53). Using Assumption 1,
we have

F (θ∗) ≥ F (θ)+ < ∇F (θ), θ∗ − θ > +
L

2
‖ θ∗ − θ ‖2

≥ F (θ)− ‖∇F (θ)‖‖θ∗ − θ‖+
L

2
‖ θ∗ − θ ‖2 . (54)

Since F (θ∗) ≤ F (θ),

−‖∇F (θ)‖‖θ∗ − θ‖+
L

2
‖ θ∗ − θ ‖2≤ 0, (55)

hence,
‖∇F (θ)‖ ≥ L

2
‖θ − θ∗‖. (56)

Plugging (56) and Proposition 1 to (53), we have ∀θ ∈ Θ

ξ‖∇f (0)
(θ)‖ ≥ Lξ

2
‖θ − θ∗‖ − 8ξ∆2‖θ − θ∗‖ − 4ξ∆1. (57)

with probability larger than 1 − δ1. Then we need to choose
value of ξ to guarantee that the right-hand side of (57) will
be larger than the right-hand side of (52).

8(∆2 + ∆4)‖θ − θ∗‖+ 4(∆1 + ∆3)

≤ 16∆2‖θ − θ∗‖+ 8∆1. (58)

Since ξ ≤ 1,

(16 + 8ξ)∆2‖θ − θ∗‖+ (8 + 4ξ)∆1

≤ 24∆2‖θ − θ∗‖+ 12∆1 ≤
Lξ

2
‖θ − θ∗‖. (59)

Since |S0|−1/4 converges more slowly than
√

log(|S0|)
|S0| , we

set ξ = c|S0|−1/4, then we can choose c = (48∆2‖θ− θ∗‖+
24∆1)|S0|1/4/(L‖θ−θ∗‖), when ‖θ−θ∗‖ 6= 0. As the result,

‖∇f (j)
(θ)−∇f (0)

(θ)‖ ≤ ξ‖∇f (0)
(θ)‖, ∀θ ∈ Θ (60)

holds with probability (1− δ1)2 − δ1.

APPENDIX H
PROOF OF THEOREM 2

From Assumption 1, Proposition 1, Proposition 2 and
Lemma 4 , fix any t ≥ 1, the norm of difference between
Gt(θ) and ∇F (θ) is

‖G(θ)−∇F (θ)‖

≤
∑
j∈H∩Ut |Sj |+ |S0|∑
j∈Ut |Sj |+ |S0|

‖Ct(θ)−∇F (θ)‖+ (61)

+
∑

j∈At∩Ut

wj‖∇g(j)(θ)−∇F (θ)‖ (62)

≤ γ2‖θ − θ∗‖+ γ1, (63)

where
γ1 = 4(1− wmax)∆5 + 4wmax∆7, (64)

and
γ2 = 8(1− wmax)∆6 + 8wmax∆8. (65)

with wmax = max{(
∑
j∈B∩Ut |Sj |)/(

∑
j∈Ut |Sj |+|S0|)} and

|B ∩ Ut| = min{m− p, p} and |Ut| = m− p. Fix any t ≥ 1,

‖θt − θ∗‖ = ‖θt−1 − ηG(θt−1)− θ∗‖
≤ ‖θt−1 − η∇F (θt−1)− θ∗‖+ η‖G(θt−1)−∇F (θt−1)‖
≤

(√
1 + η2M2 − ηL+ ηγ2

)
‖θt−1 − θ∗‖+ ηγ1. (66)

Then,

‖θt − θ∗‖ ≤ (1− ρ2)t‖θ0 − θ∗‖+ (ηγ1)/ρ2, (67)

where ρ2 = 1−
(√

1 + η2M2 − ηL+ ηγ2

)
.
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