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Abstract—KSG mutual information estimator, which is based
on the distances of each sample to its k-th nearest neighbor,
is widely used to estimate mutual information between two
continuous random variables. Existing work has analyzed the
convergence rate of this estimator for random variables whose
densities are bounded away from zero in its support. In
practice, however, KSG estimator also performs well for a much
broader class of distributions, including not only those with
bounded support and densities bounded away from zero, but al-
so those with bounded support but densities approaching zero,
and those with unbounded support. In this paper, we analyze
the convergence rate of the error of KSG estimator for smooth
distributions, whose support of density can be both bounded
and unbounded. As KSG mutual information estimator can be
viewed as an adaptive recombination of KL entropy estimators,
in our analysis, we also provide convergence analysis of KL
entropy estimator for a broad class of distributions.

Index Terms—KSG mutual information estimator, KL en-
tropy estimator, KNN

I. INTRODUCTION

Information theoretic quantities, such as Shannon entropy
and mutual information, have a broad range of applications
in statistics and machine learning, such as clustering [2, 3],
feature selection [4, 5], anomaly detection [6], test of nor-
mality [7], etc. These quantities are determined by the dis-
tributions of random variables, which are usually unknown
in real applications. Hence, the problem of nonparametric
estimation of entropy and mutual information using samples
drawn from an unknown distribution has attracted significant
research interests [8—15].

Depending on whether the underlying distribution is dis-
crete or continuous, the estimation methods are different. In
the discrete setting, there exist efficient methods that attain
rate optimal estimation of functionals including entropy and
mutual information in the minimax sense [10, 16, 17].
For continuous distributions, many interesting methods have
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been proposed. Roughly speaking, these methods can be
categorized into three different types.

The first type of methods seek to convert the continuous
distribution to a discrete one by assigning data points into
bins, and then estimate entropy or mutual information based
on the histograms [18]. The accuracy of a naive implemen-
tation of this method is in general not competitive [19, 20].
An improvement of this method was proposed in [12], which
uses adaptive bin sizes at different locations. Moreover, the
performance can be greatly improved using an ensemble
method [21].

The second type of methods try to learn the underlying
distribution first, and then calculate the entropy or mutual
information functionals [14, 15, 22, 23]. The probability den-
sity function (pdf) can be estimated using Kernel or k nearest
neighbor method. It has been shown that local linear or local
Gaussian approximation can improve the accuracy [14, 15].
Moreover, using von Mises expansion, a correction term can
be developed to improve the performance [23, 24]. These
methods also involve non-trivial parameter tuning when the
dimensions of the random variables are high, as the kernel
may be anisotropic and thus we may need to tune the
bandwidth for every dimensions of the kernel.

The third type, which is the focus of this paper, estimates
entropy and mutual information directly based on the k-
th nearest neighbor (kNN) distances of each sample. A
typical example is Kozachenko-Leonenko (KL) differential
entropy estimator [8]. Since the mutual information between
two random variables is the sum of the entropy of two
marginal distributions minus the joint entropy, KL estimator
can also be used to estimate mutual information. However,
the KL estimator is used three times, and the error may
not cancel out. Based on KL estimator, Kraskov, Alexander
and Stogbauer [11] proposed a new mutual information
estimator, called KSG estimator, which can be viewed as an
adaptive recombination of three KL estimators. [11] shows
that the empirical performance of KSG estimator is better
than estimating marginal and joint entropy separately. Com-
pared with other types of methods, KL entropy estimator and
KSG mutual information estimator are computationally fast
and do not require too much parameter tuning. In addition,
numerical experiments show that these k-NN methods can
achieve the best empirical performance for a large variety



of distributions [19, 20, 25]. As the result, KL and KSG
estimators are commonly used to estimate entropy and
mutual information.

Despite their widespread use, the theoretical properties
of KL and KSG estimators, especially the latter, still need
further exploration. Some previous works [25-28] derived a
bound of the convergence rate of the bias and variance of
KL estimator for distributions with bounded support. If the
assumption about the boundedness of support is removed,
then the analysis becomes harder since the tail of distribution
can cause significant estimation error. Other works, includ-
ing [29-32], analyzed the KL estimators without requiring
that the support is bounded, under some tail assumptions.
In particular, [29] analyzed the convergence of a truncated
KL estimator with & = 1, for one dimensional random
variables with unbounded support, under a tail assumption
that is roughly equivalent to requiring that the distribution
has exponentially decreasing tails, and [31] designed an
ensemble estimator and proves it to be efficient.

For KSG mutual information estimator, the analysis is
even more challenging, as KSG is actually an adaptive
recombination of KL estimators. This adaptivity makes
the problem much more difficult. [25] made a significant
progress in understanding the properties of KSG estimator.
In particular, [25] showed that the estimator is consistent
under some mild assumptions (In particular, Assumption 2
of [25]). Furthermore, [25] provided the convergence rate
of an upper bound of bias and variance under some more
restrictive assumptions (Assumption 3 of [25]). However,
although not stated explicitly in [25], one can show that, for
a pdf that satisfies Assumption 3 of [25], its support set must
be bounded. Moreover, its joint, marginal and conditional
pdfs are all bounded both from above and away from zero in
their supports. As a result, the analysis of [25] does not hold
for some commonly seen pdfs, e.g. ones with unbounded
support such as Gaussian. Therefore, it is important to extend
the analysis of the properties of kNN information estimators
to other types of distributions.

In this paper, we analyze kNN information estimators
that holds for variables with both bounded and unbounded
support. In particular, we make the following contributions:

Firstly, we analyze the convergence rate of KL entropy
estimator. Our assumptions allow the distribution to have
unbounded support, for which the original KL estimator
is not always accurate. In particular, we show that the
original KL estimator is not necessarily consistent under our
assumptions. Therefore we use a truncated KL estimator. We
derive a bound of the convergence rate of bias and variance,
and provide a rule to select the truncation parameter so
that the convergence rate is optimized. Our assumptions
follow [29], which requires that the pdf is second-order
smooth and has a exponentially decreasing tail. Our result

improves [29] in the following aspects: 1) Using a different
truncation threshold, we achieve a better convergence rate
of bias; 2) We generalize the result to arbitrary but fixed
k and dimensionality. Moreover, we extend the analysis to
distributions with heavier tails, such as Cauchy distribution.
Some techniques in [29] can not be directly used to analyze
the scenario addressed in this paper. Hence, we use a new
approach for the derivation of bias and variance of KL
estimator. Furthermore, we show a minimax lower bound
of the mean square error of entropy estimator among all
possible estimators. The result shows that the truncated KL
estimator is nearly minimax optimal, up to a log polynomial
factor.

Secondly, building on the analysis of KL estimator, we
derive the convergence rate of an upper bound on the
bias and variance of KSG mutual information estimator for
smooth distributions that satisfy a weak tail assumption.
Our results hold mainly for two types of distributions.
The first type includes distributions that have unbounded
support, such as Gaussian distributions. The second type
includes distributions that have bounded support but the
density functions approach zero. This type is different from
the case analyzed in [25], which focus on distributions with
bounded support but the density is bounded away from zero.
To the best of our knowledge, this is the first attempt to
analyze the convergence rate of KSG estimator for these two
types of distributions. Our technique for bounding the bias
is significantly different from [25]. In [25], the distribution
is assumed to be smooth almost everywhere, but has a non-
smooth boundary, which is the main cause of the bias. To
deal with the boundary effect, the support of density was
divided into an interior region and a boundary region, and
then the bias in these two regions were bounded separately. It
turns out that the boundary bias is dominant. On the contrary,
in our analysis, by requiring that the density is smooth, we
can avoid the boundary effect. However, we allow the density
to be arbitrarily close to zero in its support. In the region on
which the density is low, the kNN distances are large. As a
result, larger local bias occurs in these regions. To deal with
this situation, we divide the whole support of the density into
a central region, on which the density is relatively high, and
a tail region, on which the density is lower. We then bound
the bias in these two regions separately, and let the threshold
dividing the central region and the tail region decay with
respect to the sample size with a proper speed, so that the
bias in these two regions decay with approximately the same
rates. Then the overall convergence rate can be determined.
In our analysis, we let k be an arbitrarily fixed integer.

The remainder of the paper is organized as follows. In
Section II, we provide our main result of the analysis of KL
entropy estimator, and then compare with [29]. In Section
III, we analyze KSG mutual information estimator, and then



compare with [25]. In these two sections, we show the basic
ideas of the proofs of our main results and relegate the
detailed proofs to Appendices. In Section IV, we extend
our analysis to heavy tailed distributions. In Section V,
we provide numerical examples to illustrate the analytical
results. Finally, in Section VI, we offer concluding remarks.

II. KL ENTROPY ESTIMATOR

As KSG mutual information estimator depends on KL
entropy estimator, in this section, we first derive convergence
results for KL estimator.

Consider a continuous random variable X € R% with
unknown pdf f(x). The differential entropy of X is

h(X) = —/f(x) In f(x)dx.

Given N i.i.d samples {x(i),s = 1,..., N} drawn from
this pdf, the goal of KL estimator is to give a nonparametric
estimation of h(X). The expression of KL estimator is given
by [8]:

i
WX) = =¢(k) + $(N) + Inca, + 21116(@')7

0]

in which v is the digamma function defined as ¥ (t) =
with

F(t):/ u' e v du,
0

and €(4) is the distance from x(%) to its k-th nearest neighbor.
The distance is defined as d(x,x’) = ||x — x/||, in which ||-]|
can be any norm. {5 and /, are commonly used. cq, is the
volume of corresponding unit norm ball.

If some samples are very far away from the most of the
other samples, then the kNN distances of these samples
can be very large, which may significantly deteriorate the
performance of the original KL estimator. To address this
problem, we use a truncated estimator. Similar approach was
proposed in [25, 29]:

N
B(X) = (k) + $(N) + e, + 23 Inp(i), @
i=1

in which
pli) = min{e(i), ax’}

with a being a truncation radius that depends on the sample
size N. A smaller an can make the estimator more stable.
However, if a is too small, then additional bias will occur.
Therefore, to obtain a desirable tradeoff, a proper selection
of ap is important. In [29], ay is chosen to be 1/\/N In

this paper, in order to achieve a better convergence rate, we
propose to use a different truncation threshold:

ay = AN7, 3)
in which A, are two constants. The choice of S can
affect the convergence rate of KL estimator. In the following
theorem, we optimize (3, to make convergence rate of the
truncated KL estimator as fast as possible. We will show
that, with the optimal choice of [, the proposed truncated
KL estimator is minimax optimal.

Theorem 1. Suppose that the pdf f(x) satisfies the following
assumptions:
(a) f € W2, and the second order weak derivative of f
is bounded by M,
(b) There exists a constant C' such that
/f(x) exp(—bf(x))dx < cb! 4)

for any b > 0.

For sufficiently large N, if we let B = 1/(dy + 2), then
the bias of truncated KL estimator is bounded by:

‘]E {B(X)} - h(X)‘ 0 (N—ﬁ 1nN) . )

The above bound holds for arbitrary but fixed k.

Proof. (Outline) As discussed in [11], the correction term
—1(k) in (2) is designed for correcting the bias caused by
the assumption that the average pdf in the ball B(x,¢) is
equal to the pdf at its center, i.e. f(x), which does not
hold in general. Hence, the bias of original KL estimator
(1) is caused by the local non-uniformity of the density.
If ¢ is large, the average pdf in B(x,¢) can significantly
deviate from f(x). By substituting € with p, which is upper
bounded by ap, we can control the bias caused by large
kNN distances. This type of bias is lower if we use a small
an. However, the truncation also induces additional bias,
which can be serious if ap is too small. Therefore we need
to select ay carefully to obtain a tradeoff between these two
bias terms.

First, using results from order statistics [27, 33], we know
E[ln P(B(X,¢))] = ¢(k) — ¥(N). Hence

BAX)] = ~0() +(N) +Inca, + > Bl pli)

= —-E[lnP(B(X,¢€))| +1Incq, +d.E[lnp|. (6)

We then divide the support of f(x) into a central region
(called S7, which have a relatively high density) and a tail
region (called S5, which have a relatively low density). The
exact definitions of S; and S are shown in (37) and (38) in



Appendix A. and decompose the bias of the truncated KL
estimator (2) into three parts:

(B(X,¢))

E[h(X)] — h(X) = —E |In g(;{p))
B(X

_ 1X e Sl)_

aela~]iae)

(
(B(X,p))
In WI(X € Sl)

(B(X,¢))
f(X)ca, pt=

All of these three terms converge to zero. The first term
in (7) is the additional bias caused by truncation in the
central region. Note that ¢ and p are different only when
p > an, thus if ay does not decay to zero too fast, then
P(e < ay) happens with a high probability. Hence the
first term converges to zero. The second term is the bias
caused by local non-uniformity of the pdf in the central
region. Recall that p = min{e,ay} < ay = AN, p
will converge to zero, hence the local non-uniformity will
gradually disappear with the increase of N. The last term is
the bias in the tail region. We let the tail region to shrink
with the increase of IV, and let the central region to expand,
then the third term can also converge to zero. These three
terms are bounded separately, and the results depend on the
selection of truncation parameter 3. The overall convergence
rate is determined by the slowest one among these three
terms. In our proof, we carefully select 3 to optimize the
overall rate.

For detailed proof, please refer to Appendix A. O

-E

1(X € 8y)| .(7)

U=
o)

—E |In

Our assumptions (a), (b) in Theorem 1 are almost the
same as assumptions (A0)-(A2) in [29], except that now
we no longer require f(X) to be positive everywhere, as
was required in [29]. As a result, our analysis holds for
distributions with both bounded and unbounded support.

Assumption (a) is the smoothness assumption. As a pdf,
[ f(x)dx = 1, under which we can show that the bounded-
ness of Hessian or the second order weak derivative implies
the boundedness of f(x) and V f(x).

Assumption (b) is the tail assumption, which is roughly
equivalent to requiring that the density has exponentially
decreasing tails [29]. To be more precise, we now show some
examples that satisfy Assumption (b):

¢ (b) holds if the pdf has a bounded support. Note that

f(x)exp(—bf(x)) is maximized when f(x) = 1/b,
therefore f(x)exp(—bf(x)) < 1/(eb) always holds.
Denote S as the support set of f, and m(S) = [ dx
as the support size, then

[ eoes-biooix < [ Sax="0

hence for any distributions with bounded support, as-
sumption (b) holds with C' = m(S)/e.

e (b) holds if d, = 1 and f(x) ~ exp(—alz|?) for some
constant &« > 0, and 6 > 1, and sufficiently large x.
This was mentioned in [29].

o Moreover, as discussed in [29], many distributions
with exponentially decreasing tails also satisfy our
assumption (b). For example, this assumption holds
for Gaussian distribution with d, < 2 and exponential
distribution with d, = 1.

We remark that the above conditions are only sufficient but
not necessary conditions for assumption (b) to hold. In fact,
assumption (b) also holds for other distributions, even if X
does not have any finite moments. In this case, the original
KL estimator without truncation may not be consistent, but
the truncated one is still consistent, and the convergence
rate can be bounded using Theorem 1. One such example is
constructed in Appendix B, see random variable X5 there.

Furthermore, we extend our results to distributions with
heavy tails in Section IV. As a byproduct of such extension,
we also show that for all sub-Gaussian or sub-exponential
distribution, such as Gamma distribution, even if (b) is
not satisfied, the convergence bound in Theorem 1 still
approximately holds.

The result in Theorem 1 holds for truncated KL estimator.
In the following, we illustrate that the truncation is necessary
by showing that the original KL estimator is not necessarily
consistent for pdfs satisfying our assumptions. In particular,
we have the following proposition.

Proposition 1. Under Assumption (a), (b) in Theorem 1,
with sufficiently large M and C, there exists a pdf f(x),
such that

lim E[ho(X)] = h(X) # 0, ©)

N—oc0

in which iLO is the original KL estimator without truncation.

Proof. (Outline) The basic idea of the proof is to construct
two distributions whose entropy are the same, but the
difference of the expectation of the estimated result using
the original KL estimator does not converge to zero. As a
result, for at least one of these two distributions, the original
KL estimator is not consistent. Please refer to Appendix B
for details. O

The next theorem gives an upper bound of variance of

h(X).

Theorem 2. Assume the following conditions:
(c) The pdf is continuous almost everywhere;
(d) 3rqg >0,

/f(x) (ln inf{ f(x,7)|r < ro})2 dx < oo, (10)
and

/f(x) (lnsup{f(x, r)|r < 7"0})2 dx < o0, (11)



in which f(x,r) = P(B(x,r))/V(B(x,
pdf over B(x,7).

Under assumptions (c) and (d), if 0 < 8 < 1/d,, then the
variance of truncated KL estimator is bounded by:

Var[h(X)] = O <J1V) :

Proof. (Outline) Our proof uses some techniques in [27],
which proved O(1/N) convergence of variance of KL
estimator with £ = 1 for one dimensional distribution with
bounded support. We generalize the result to arbitrary fixed
d, and k, and the support set can be both bounded and
unbounded, as long as the distribution satisfies assumption
(c) and (d) in Theorem 2. However, since our assumptions
are weaker, we need some additional techniques to ensure
that the derivation is valid. For detailed proof, please see
Appendix C. O

r)) is the average

12)

Our assumptions (c) and (d) are weaker than the corre-
sponding assumptions (B1) and (B2) in [29]. To show this,
we provide a sufficient condition of (c) and (d). In particular,
conditions (c) and (d) are both satisfied, if S1): the pdf is
Lipschitz or a-Hoélder continuous with 0 < o < 1; and S2):
[ f(x)(In f(x))%dx < oo. We now compare S1) and S2)
with condltlons in [29]. (B1) in [29] requires that the pdf is
Lipschitz, and (B2) requires that

[ @

for j = 0,1,2,3. We observe that sufficient condition S2)
mentioned above only requires it to hold for j = 0. Note that
our assumptions (c), (d) are very weak and hold for almost
all common distributions. If assumptions (a) and (b) are
satisfied, then assumptions (c) and (d) must hold, since (c)
is implied by (a), and from (b), it is straightforward to prove
that [ f(x)(In f(x))?dz < oo. This property combining
with (a) 1mply that (d) holds for sufficiently small r. We
provide detailed proof of this argument in Appendix G-A.
Under these assumptions, our bound of variance is exactly
the same as the result in [29].

From Theorem 1 and Theorem 2, under assumptions (a)
and (b), the convergence rate of the mean square error of
KL estimator is bounded by:

J

(In f(z))?*dz < oo

sup  f(2')

|z—z'||<a

f(z)

E[(h(X) — h(X))?] = O (N+ In N + Jif) .(13)

In the following theorem, we provide a minimax lower
bound on the convergence of mean square error, under
assumptions (a) and (b) in Theorem 1.

Theorem 3. Define

{f|Assumptions (a),(b) in Theorem 1 are
satisfied with constant M and C'}, (14)

Fuc =

then under assumptions (a), (b) in Theorem 1, for sufficiently
large M and C,

inf sup E[(h(X) — h(X))’]
h feEFm,c
4 4dgt+4
= Q (NW(lnN) LA 4 N)' (15
Proof. Please refer to Appendix D for the proof. O

Theorem 3 shows that the gap between the convergence
rate of the derived upper bound of the mean square error
of KL estimator and the minimax lower bound is a log-
polynomial factor, which implies that the truncated KL
estimator is nearly minimax rate optimal.

We now compare our results with related work [28, 29,
31, 34]. We generalize the result in [29] to arbitrary fixed &
and dimensionality, and obtain a tighter bound of the bias
by selecting a different truncation parameter. Moreover, our
upper bound of the mean square error (13) is the same
as the result of [28], if the Holder parameter s in [28]
is 2. Actually, if s = 2, then the assumptions in [28]
can be viewed as a special case of our analysis, since
according to (8), assumption (b) in Theorem 1 is satisfied
for all distributions with bounded support. We note that
the convergence rate derived is slower than the result in
[31]. However, in [31], the partial derivatives of the pdf are
required to decay almost as fast as the pdf itself in the tails of
the distribution, while we only have a overall bound on the
Hessian of the pdf. Moreover, we do not assume a bound
on the moment of the distribution. Consider that the gap
between upper bound (13) and minimax lower bound (15)
is only a log polynomial factor, we believe that our bound
can not be significantly improved further in general, although
it is possible that for some specific distributions, the actual
convergence rate of KL estimator is faster than the bound
we derived. Moreover, we note that [34] also provides a
minimax analysis of entropy estimation. The bounds in (13)
and (15) are consistent with the minimax bound in Theorem
6 in [34], for the special case when the smoothness index
s = 2. The main difference between our work and [34] lies
on the assumptions: Theorem 6 in [34] focuses on the case
in which f is compactly supported within [0, 1]¢, while our
upper and lower bound do not require the support set to be
bounded.

III. KSG MUTUAL INFORMATION ESTIMATOR

In this section, we focus on KSG mutual information esti-
mator. Consider two continuous random variables X € R4



and Y € R?% with unknown pdf f(x,y). The mutual
information between X and Y is

IX;Y) =h(X)+h(Y) - n(XY). (16)
Define the joint variable Z = (X,Y) € R% with d, =
d, + dy, and define the metric in the Rd= space as

d(z, ") = max{[x — x'||, |y = ¥'[I}. (17)
[11] proposed two KSG mutual information estimators. In

this paper, we analyze the first one, which can be expressed
as

N
YY) = (V) + () = 1 Y o) +1)
1 N | =1
—N;zp(ny(z)ﬂ), (18)
with

N
na (i) = Y 1(Ix() = x(@)]| < (),

I
WE

1y (1) (ly(4) = y@)I < @),

<.
Il
—

in which €(2) is the distance from z(i) = (x(¢),y (%)) to its
k-th nearest neighbor using the distance metric defined in
am.

Recall that the original KL estimator is not consistent for
some distributions satisfying our assumptions, and thus we
use a truncated one instead. However, the situation for KSG
estimator is different. From (18), we observe that unlike
the original KL estimator, KSG estimator avoids the In (%)
term, therefore the effect caused by large kNN distances is
limited. Note that n,(¢) and n,(7) can not be less than k
or more than N, therefore 1(ny(¢) + 1) and ¥(n, (i) + 1)
are both always in [In(k + 1),In(N + 1)]. Hence, if n, (i)
and n,(¢) for a sample 7 differ significantly from others,
the influence on the accuracy is at most (In(N + 1))/N.
This ensures the robustness of KSG estimator. Therefore, in
the following analysis, we use the original KSG estimator
without truncation.

Our analysis of the bias of KSG estimator is based on the
following assumptions:

Assumption 1. There exist finite constants C,, Cy, C,, C?,
Cq, C) and C., such that

(a) f(x,y) < C, almost everywhere;

(b) The two marginal pdfs are both bounded, i.e. f(x) < Cy,
and f(y) < Cy;

(c) The joint and marginal densities satisfy

/ (. y)exp(~bf(x,y))dxdy < Cufb, (19)
/ f(x) exp(~bf(x))dx < CLfb,
/f(Y)exp(—bf(Y))dy < Cl/b

for all b > 0;

(d) The Hessian of joint distribution and marginal dis-
tribution are bounded everywhere, i.e. |[V?f (z)”op <
Cd’ Hva(X)Hop < C;]’ and Hvzf(y)Hop < C(/]’

(e) The two conditional pdfs are both bounded, i.e. f(x|y) <
C. and f(y|x) < C..

It was proved in [25] that under its Assumption 2, KSG es-
timator is consistent, but the convergence rate was unknown.
Note that the distributions that satisfy the Assumption 2 of
[25] may have arbitrarily slow convergence rate, especially
for heavy tail distributions. Our assumptions are stronger
than Assumption 2 of [25], in which (a)-(c) were not
required. In [25], the convergence rate was derived under
its Assumption 3, which also strengthens its Assumption 2.
The main difference between Assumption 3 of [25] and our
assumptions is that [25] requires

/ f(x,y) exp(=bf(x,y))dxdy < C.e™ 0P, (20)
One can show that a joint pdf satisfying assumption (20)
is bounded away from 0O and the distribution must have
bounded support (For completeness, we provide a proof of
this statement in Appendix G-B). On the contrary, we only
require this integration to decay inversely with b, see (19).
This new assumption is valid for distributions whose joint
pdf can approach zero as close as possible, thus our analysis
holds for distributions with both bounded and unbounded
support. This assumption roughly requires that both the
marginal density and the joint density have exponentially
decreasing tails. For example, joint Gaussian distribution
satisfies this assumption. Another difference is that we
strengthen the Hessian from bounded almost everywhere to
everywhere, to ensure the smoothness of density, and thus
avoid the boundary effect. Figure 1 illustrates the difference
between [25] and our analysis. [25] holds for type (a), such
as uniform distribution, while our analysis holds for type (b)
and (c), such as Gaussian distribution. In addition, we do not
truncate the kNN distances as in [25].

To deal with these assumption differences, our derivation
is significantly different from those of [25]. Theorem 4 gives
an upper bound of bias under these assumptions.

Theorem 4. Under the Assumption 1, for fixed k > 1 and
sufficiently large N, the bias of KSG estimator is bounded
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Fig. 1: Comparison of three types of distributions. The
convergence rate of KSG estimator for type (a) was derived
in [25], while we analyze type (b) and (c).

by
E[[(X;Y)] - I(X;Y)|
min{dg,dy}

- O(N*dfﬁlnN)jLO(N* = ).(21)

Proof. (Outline) Recall that KSG estimator is an adaptive
combination of two adaptive KL estimators that estimate
the marginal entropy, and one original KL estimator that
estimates the joint entropy. We express KSG estimator in
the following way:

1 N
NZT N;[T i

T, (1) — T (4)),

in which

T(i) == Y(N) + (k) = ¥(na (i) + 1) — ¥(ny (i) + 1),
and

T.(1) = —¢k)+9(N)+1Incs, +d.1npi),

T.(i) = —9(ng(i)+1)+9(N)+Incy, +dy1Inp(i),
Ty(i) = —(ny(i) +1) +(N) +Incq, +dyInp(i),

in which we p(i) = min{e,an}. Note that although we
analyze the original KSG estimator without truncation, we
can decompose it to truncated KL estimators for the con-
venience of analysis. We bound the blas of these three KL
estimators separately. Note that 3; Zz 1 T (1) is actually the
KL estimator for the joint entropy. Therefore the bias of joint
entropy estimator E[T,] — h(Z) can be bounded using The-
orem 1. For the marginal entropy estimators 4 Zfil T.(7)
and + Zf\il T, (i), we only need to analyze T}, and then
the bound of T}, can be obtained in the same manner. Note
that

E[T:] = h(X) = E[E[T;|X] + In f(X)],

E[T,|X]+1n f(X) the local bias. The pointwise
convergence rate of the local bias is O(N~ o ). However, the
overall convergence rate is slower than the pointwise con-
vergence rate. In the setting discussed in [25], the boundary

and we call

bias is dominant. In our case, by dividing the whole support
into a central region and a tail region, with the threshold
selected carefully, we let the convergence rate of bias at
these two regions decay with approximately the same rate.
For detailed proof, please see Appendix E. 0

The following theorem gives a bound on the variance of
KSG estimator, which holds for all continuous distributions,
even if Assumption 1 is not satisfied.

Theorem 5. If (X,Y) has pdf f(x,y), then the variance
of KSG estimator is bounded by

Var[ (X; Y)] o <(ln]ffv)2>.

Proof. We refer to Theorem 6 in [25] for the proof. Although
the bound in [25] is derived for truncated KSG estimator, it
can be shown that the steps in [25] actually also hold for the
original KSG estimator. Details are omitted for brevity. [

(22)

IV. EXTENSION TO HEAVY TAILED DISTRIBUTIONS

In previous sections, we have derived bounds of the
convergence rates of bias and variance of KL and KSG es-
timators. We do not have any tail assumptions for bounding
the variance (Theorem 2 and 5). However, the convergence
rate of bias is related to the strength of tails, thus it is
necessary to add some tail assumptions. The assumption
(b) in Theorem 1 and the assumption (c) in Assumption
1 follow assumption (A2) in [29]. It was discussed in [29]
that these assumptions are roughly equivalent to requiring
that f(x) or f(x,y) has exponentially decreasing tails. In
this section, we extend the results in Theorem 1 and Theorem
4 to distributions with polynomially decreasing tails.

Theorem 6. Suppose the pdf f(x) satisfies assumption (a)
in Theorem 1, and

P(f(X)<t) < pt” (23)

for some constant ;. > 0, T € (0,1], and arbitrary t > 0.
Let 8 =1/(d, +2), then the bias of truncated KL estimator

is bounded by:
h(X)| =0 (N

Theorem 7. Assume that the joint distribution of X and Y
satisfies Assumption 1 (a)-(e), except that the assumption (c)
is changed to the following one:

(c’) The joint and marginal densities satisfy

E[R(X)] — ~TF In N) . (24)

PAXY)<t) < b, (25)
P(f(X)<t) < p'tm,
Pf(Y)<t) < pt



Sfor some constant pu, ' > 0, 7 € (0, 1], and arbitrary t > 0.
Then the bias of KSG estimator is bounded by

IE[[(X;Y) - I(X;Y)]

- O(N*ﬁlnjv)jLo(N* 7 ).(26)

Proof. (Outline) For the proof of Theorem 6 and Theorem 7,
recall that 7 € (0, 1]. The case with 7 = 1 is already proved
in Theorem 1 and 4. Note that (23) with 7 = 1 is equivalent
to (4). In particular, (31) shows that (4) implies (23) with
7 = 1, while (32) with m = 1 shows such equivalence at
the reverse direction. As a result, the bounds in Theorem
1 and 4 still hold for 7 = 1. If 0 < 7 < 1, there are
several details in the proof that are different from the case
of 7 = 1. Nevertheless, the basic ideas are still the same.
In Appendix F, we provide a brief proof of Theorem 6 and
7. We only show some important steps, in which the proof
with 0 < 7 < 1 and that with 7 = 1 are different. We omit
other steps that are very similar to the proof of Theorem 1
and Theorem 4. O

Now we discuss the new assumptions (23) and (25).
These two assumptions are generalizations of (4) and (19).
If 7 < 1, then (23) holds for many common distributions
with polynomially decreasing tails. We have the following
proposition to determine 7.

Proposition 2. For one dimensional random variable X
with dimension dy, if E[|X|%] < oo, then for any T <
af(a+dy), there exists a constant 11 such that P(f(X) <
t) S ultT.

The proof of Proposition 2 is shown in Appendix F. The
boundedness of moment, i.e. E[|X|*] < oo, is a sufficient
but not necessary condition of (23). (23) can still hold for
some distributions that do not have any finite moments.
However, for most of common distributions, there exists
some « such that E[|X]|®] is finite. Proposition 2 shows
how our assumption (23) is related to the boundedness
of moments. Note that 7/ can be arbitrarily close to 7.
Combining Proposition 2 with Theorem 6 and Theorem 7,
we have the following corollary.

Corollary 1. (1) Bias bounds for KL estimator: If
E[||X||*] < oo, and the Hessian of f satisfies |[V2f|| < M
for some constant M, then

ER(X)] - h(X)| =0 (N"m==m ) en)
for arbitrarily small 6 > 0.
(2) Bias bounds for KSG estimator: If Assumption 1
(a),(b),(d) and (e) holds, E[||X|“] < oo, E[||Y|*] < o,

and sup, E[||Y]|” |X = x| < oo, then the bias of KSG
estimator is bounded by

E(X;Y) = I(X;Y)]
min{dg,dy}

— O(N*ﬁﬁ”)JrO(N* I )7(28)

for arbitrarily small 6 > 0. In (28), d, = dy + d,,.

Now we show some examples. For Cauchy distribution,
E[|X|*] < oo for any « < 1, hence the convergence rate of
bias of KL estimator is O (N~ (4=+2+%) for arbitrarily
small § > 0. For all sub-Gaussian or sub-exponential
distributions that are second order smooth, E[|X|*] <
oo for all @ > 0, hence the convergence rate becomes
O(N~2/(da42)+9) for arbitrarily small § > 0. For KSG
estimator, the convergence rate can also be derived similarly
from (28).

V. NUMERICAL EXAMPLES

In this section we provide numerical experiments to
illustrate the analytical results obtained in this paper.

A. KL estimator

We conduct the following numerical experiments. Firstly,
we calculate the convergence rates of bias and variance
of KL entropy estimator for distributions with different
dimensions. Secondly, we compare the performance of KL
estimator for different k.

In the simulation, the bias and variance is estimated by
repeating the simulation many times and then calculate the
sample mean and sample variance of all the estimated values.
We do not need to run too many trials to obtain an accurate
estimation of variance. But the estimation of bias is much
harder, if the dimension of X is low. In this case, the bias can
be much lower than the square root of variance, as a result,
the sample mean may deviate seriously from the expectation
of estimated value E[1(X)]. Hence a large number of trials
is needed. If the dimensionality is higher than 2, then the
bias converges slowly comparing with the variance, and thus
we do not need to run too many trials. We select the number
of trials in the following way: run simulations until relative
uncertainty of bias falls below 0.05, in which the relative
uncertainty is defined as the ratio between the length of the
99% confidence interval of bias and the estimated value of
bias.

Fig. 2 (a), (b) show the convergence of bias and variance
of KL estimator under Gaussian distribution with dimensions
from 1 to 6. In Fig. 2, we fix & = 3. These figures are
log-log plots with base 10. We observe that for d, < 3,
with log;, N > 2, i.e. N > 100, the bias of KL estimator
decays monotonically with sample size IN. However, for
distribution with higher dimensions, the bias increases with



N before the subsequent decay. We explain this phenomenon
as follows. According to (6), the bias of KL estimator can
be expressed as E[h(X)] — h(X) = —E[ln P(B(X,¢€))] +
E[In(f(X)ca, p%)]. In the regions where Hessian is pos-
itive, P(B(x,¢€)) > f(x)cq,p?s, which causes negative
bias. If Hessian is negative in B(x,¢), then if p < ay,
which happens with high probability, then p = € and thus
P(B(x,€)) < f(x)cq, p%. This causes positive bias. When
sample sizes is not large, the positive and negative bias terms
can cancel out. However, the positive bias occurs where the
Hessian is negative, which occurs around x = 0 for standard
Gaussian distributions, and thus converges faster to zero than
the negative bias, which occurs at the tail of distribution.
Therefore, with a larger sample size, the negative bias is
dominant over the positive bias, and thus the total bias
becomes more serious. If we continue to increase the sample
size, then the negative bias term also converges to zero.

We then calculate the empirical convergence rates by
finding the negative slope of the curves in Fig. 2 (a), (b)
by linear regression. Considering that in Fig. 2 (a), (b), the
bias of KL estimator decays with stable speed only when
the sample size is large, we perform linear regression using
the segment of curves where the sample size is larger than a
certain threshold. For the convergence rate of variance, the
linear regression is conducted over the whole curve since
the variance always decay smoothly. These results are then
compared with the theoretical convergence rates, which are
obtained from Theorem 1 and 2. The results are shown in
Table I, in which we say that the theoretical convergence
rate of bias or variance is +y if it decays with either O(N~7),
or O(N~7+9) for arbitrarily small § > 0, and two ‘Sample
Size’ columns refer to the interval of sample size we use for
the computation of the convergence rate of bias and variance,
respectively.

? oam™ " Mloatn”” ’

loa(N)

(a) Convergence of (b) Convergence of (c) Convergence of
bias for different di- variance for differ- mean square error
mensions, with & = ent dimensions, with for different k, with
3 k=3 de =2

Fig. 2: Empirical convergence of KL entropy estimator for
Gaussian distribution.

Fig. 2 (a), (b) and Table I show that for d, > 2,
the above empirical convergence rates basically agree with
the theoretical prediction. We find that for d, = 1 and
d, = 2, the empirical rate is faster than the theoretical
convergence rate. As discussed in previous sections, our

bound holds for all distributions that satisfy our assumptions,
and the actual convergence rate can be faster for some
specific distributions. For Gaussian distributions, the Hessian
of the pdf decays almost as fast as the pdf itself, while our
assumptions only have a bound of Hessian over R%.

Moreover, we compare the performance of KL estimator
for different k. The result is shown in Fig. 2 (c¢) for fixed
d, = 2, which shows that for different k, the convergence
rate of KL estimator is approximately the same, but the
constant factor can be different. For standard Gaussian
distribution with d, = 2, the performance of KL estimator
with & = 5 is better than that with £ = 1,10, 20. If the
dimension of random variable is low, then the squared bias
usually converges faster than the variance, thus we can use
large k. On the contrary, with higher dimension, it may be
better to use small k.

B. KSG estimator

Now we evaluate the performance of KSG estimator using
joint Gaussian distribution. In this numerical experiment, we
let (X,Y) ~ N(0,K), in which K is a d, dimensional
square matrix, K; ; = p+ (1 — p)d;;, and §;; = 1 if i = j,
otherwise 0. In this numerical simulation, we use p = 0.6.

Similar to the experiments on KL entropy estimator,
to ensure the accuracy of estimation of the bias of KSG
mutual information estimator, we still use adaptive number
of trials. We continue to run simulations until the relative
uncertainty is lower than 0.05. For both experiments, we use
fixed k = 3 and then plot log,,(Bias) and log,(Variance)
against log,(N) separately. The result is shown in Figure
3. The empirical convergence rates are compared with the
theoretical convergence rates from Theorem 4 and 5, and
the results are shown in Table II. For simplicity, we still
use the same notation as those used for KL estimator. The
value of theoretical convergence rate of bias and variance
in Table II is + if the bound in Theorem 4 or 2 is either
O(N~7) or O(N~—7*9) for arbitrarily small § > 0. Unlike
the curve for KL estimator, for KSG estimator, with this
example, the curve of both bias and variance appear to be
close to a straight line. Therefore, the empirical convergence
rates of bias and variance are calculated by linear regression
over the whole curve. The ‘Sample Size’ column in table II
is used for the calculation of both bias and variance.

From Fig. 3, we observe that the bias and variance of KSG
mutual information estimator for d, = 1, and d, = 1,2,3
basically agree with the theoretical prediction. The bounds
in Theorem 4 and 5 are general bounds that consider the
worst cases satisfying our assumptions. For some specific
distributions, the empirical convergence rates can be faster
than our theoretical prediction. In addition, in our derivation,
we bound the total bias of KSG estimator by bounding the
bias of its three components separately, and then use the sum
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Fig. 3: Empirical convergence of KSG mutual information
estimator for Gaussian distribution.

of these three bounds as the bound of total bias. However, as
was discussed in [25], the bias of the decomposed marginal
entropy estimator and the joint entropy estimator may cancel
out. As a result, the practical performance of KSG estimator
can be better than the theoretical prediction.

VI. CONCLUSION

In this paper, we have analyzed the convergence rates of
bias and variance of truncated KL entropy estimator and
KSG mutual information estimator for smooth distributions,
under a tail assumption that is roughly equivalent to re-
quiring the distribution to have an exponentially decreasing
tail. Our assumptions allow distributions with heavy tails,
for which the original KL estimator without truncation may
not be accurate. In particular, we have shown that there
exists a distribution under which the KL estimator without
truncation is not consistent. To solve this problem,we have
analyzed a truncated KL estimator. By optimally choosing
the truncation threshold, we have improved the convergence
rate of bias in [29], and have extended the analysis to any
fixed k£ and arbitrary dimensions. Moreover, we have derived
a minimax lower bound of the convergence rate of all
entropy estimators, which shows that truncated KL estimator
is nearly minimax optimal. Building on the analysis of KL
estimator, we have then provided a bound for KSG estimator.
Our analysis has no restrictions on the boundedness of the
support set. Finally, we have extended the analysis of KL and
KSG estimator to distributions with polynomially decreasing
tails. We have also used numerical examples to show that
the practical performances of KL and KSG estimators are
consistent with our analysis in general.

In terms of future work, it is of interest to analyze the
convergence rate of KSG estimator in Sobolev and Orlicz
type spaces. In this regard, [35] will be useful. As the
tail assumption given by the norm in Sobolev space (i.e.
(1) in [35]) has different form comparing with our tail
assumption (Assumption 1), new proof techniques will need
to be developed.

APPENDIX A
PROOF OF THEOREM 1: THE BIAS OF KL ENTROPY
ESTIMATOR

In this section, we analyze the bias of truncated KL
estimator

N
H(X) = (k) + (V) + e, + 23 In p(i),

i=1

under Assumptions (a), (b) in Theorem 1, in which

p(i) = min{e(i),an}, (29)

and the truncation threshold is set to be ay = AN—?, in
which 8 < 1/d,. We hope to select a 3 to optimize the
convergence rate of bias.

We begin with deriving three lemmas based on Assump-
tions (a) and (b) in the theorem statement.

Lemma 1. Under Assumption (a) in Theorem 1, there exists
constant C1, such that

|P(B(x,7)) = f(x)eq, | < Crr®=*2, (30)
in which B(x,r) := {u||[u — x| <r}.

Proof.

"

/ (f(u) — f(x))dul.
ueB(x,r)

Using Taylor expansion, we have

[ = feoydu

ueB(x,r)

= |/ @) e
ueB(x,r)

(- %)V £(E(u))(u — x))dul

- / (1 — 3TV f(E(w)(u - x)du
ueB(x,r)

‘P(B(x,r)) — f(x)cq,

< v Ju - x| du
ueB> (x,r)
< Clrdm+27
for some constant Cj, in which B*(x,r) denotes the

smallest Lo, ball (i.e. a cube) that contains B(x,r). In
the steps above, we enlarge the domain of integration from
B(x,r) to B*¥(x,r) for the convenience of calculation. [J

Assumption (b) controls the tail of distribution. We can
show that the following lemma holds:



Lemma 2. (1) Under Assumption (b) in Theorem 1, There

exists (> 0 such that
P(f(X) <t) < put, vt > 0; (31)

(2) Under (31), for any integer m > 1, there exists a constant
K,,, such that

K’”l
[ e expl-bp0)ix < (2)
Proof. Proof of (31):
_ ) 1
P(fX)<t) = P(e > )
< ek {e‘f fxq
< eCt, (33)

in which the last inequality comes from Assumption (b) in
Theorem 1. Hence (31) holds with y = eC.

Proof of (32): Note that for all u > 0, u™~! < (2(m —
1)/e)™ 'e*/2, hence

/ £ () exp(—bf (x))dx
= B (b ()
- L Eprx)m 1exp< bF(X))]

m )ml
e brnl

E { Xp( fX >6Xp bf(X))}
( m — 1))
Based on Lemma 2, we can show another lemma. Define

V(t) =m ({x[f(x) > }), (34)

in which m denotes Lebesgue measure. From (34), V(t) is
the volume of the region in which the pdf is higher than ¢.
Under Assumption (b) in Theorem 1, we have the following
bound.

| o

IN

O

Lemma 3. Under Assumption (b) in Theorem 1, for suffi-
ciently small t,

1
< —
V(t) <p <1+ln ut> 7

in which p is the constant in (31).

Proof. (Outline) Here we provide an intuitive explanation.
As discussed in [29], roughly speaking, assumption (b)
requires the distribution to have an exponential tail. For
exponential or Laplace distribution, it is obvious that V' (¢) =
O(In(1/t)). Therefore it is reasonable to assume that this

bound holds generally for any distributions that satisfy
assumption (b). The detailed proof is shown in Appendix
A-A. O

Now we analyze the convergence rate of KL estimator in

Q).

S
\./
_|_
<
=
+
=
=
—
)

&
b
~—
I
=
>
~—

—~
o
=

+E [ln (cd, p? )] = h(X)
+E[In(f (X)c_dzpdw)]
L (P B())g,@)) 1(X € 8)

> 1(X e Sp)

[ [ P(B(X,e)
—E _ln <W> 1(X S 52)

= —11—12—[3.

oMl
|
=
=
)
/\E
lellte!
&

ol
|
&
=
3
oy

(35)

Here, (a) uses the fact that p(i)’s are identically distributed
for all 7, thus

[ Zlnp ] Eld, In p(2)], Vi.

From now on, we omit ¢ for convenience. In (b), we use the
fact from order statistics [33] that P(B(x,¢€)) ~ B(k, N—k),
in which B denotes Beta distribution. Therefore

Elln P(B(x, €))|x] = 1 (k) = (N).

(c) holds because h(X) =
are defined as:

(36)
—E[ln f(X)] In (d), Sl and SQ

Sy = {Xf(x) 2 2= ”} (37)
Sy = {xf(x) 2 g2 ”} (38)
in which v is defined by
v =min{28,1 - 5d,}, (39)
and
k+1
)\:2max{ o +2} (40)

Roughly speaking, S; is the region where the f(x) is
relatively large, while Sy corresponds to the tail region.
Regarding the two regions S; and S5, we have the following
lemma.



Lemma 4. Under Assumptions (a) and (b) in Theorem I,
there exist constants Co and C3, such that for N > k,

Ple>ay,X € 8)) < CyN~(1-Ade) (41)
Ple>ay) < CyN-mn{l-fdeals} 42

Proof. Please see Appendix A-B. O

From (35), we know that the bias of KL estimator can
be bounded by giving an upper bound to I;, I and I3
separately. Recall that p = min{e, ay }.

1) Bound of I;:

E[(In P(B(X, ¢)) ~ In P(B(X, p)))L(X € 5)]
P(B(X,¢))
(X e S, e>an
PB(X, ) | &5 o)
E[-InP(X,p)1(X € S1,€ > an)]

E[— lnP(X,aN)l(X € 5S1,e> GN)]

| 11]

s
S

E |In

—
INes

—~
O
N

IN&

—In[(k + )N~ 0+ P(X € Sy, e > an)
O(N~—(1=Fde) 1y N),

—~
)
-~

Here (a) uses the definition of p in (29), which implies that p,
e are different only when € > ay. (b) uses P(B(X,¢)) < 1.
(c) uses the definition of p again, which says that p = ay if
€ > apn. (d) uses the lower bound of P(B(x,ay)) derived
in (60). (e) uses (41) in Lemma 4.

2) Bound of I:

[ (i) 1005

(a) [ dy dy+2
2 5 [ (L)
L f(X)ca, p=

h

(f(X)CdIPd” - C1Pdm+2>
f(X)ea, p=
. I f(X)cq, Pd”” - Clpd“'Jrz
-k _’ln ( f(X)cq, pie
® E L Cip?
L1€(X) f(X)ca,

< 2E L,gé)p;l(x € Sl)}

= O(N?mN).

|la] =

)

—

} 1(X e Sl)]
>’1(X € Sl)}

1(X e Sl)]

(43)

Here, (a) uses Lemmazl. (b) uses Lagrange mean value
theorem, and 1 — f(()j(li)pc% < ¢(X) < 1. (c) holds because
from the definition of S; in (37) and the choice of «y in (39),
we have
Clp2 C’la?v . ClAQN_2ﬂ
f(x)ca, — f(x)ca, f(x)ca,

for x € S;. Hence, we have {(X) > 1/2.

1

3) Bound of Is:

P(B(X,e¢
= E[ln(P(B(X,€)))L(X € S3)] — E[ln(f(X))1(X € S2)]

—E[In(cq, p®)1(X € Sy)]. (45)
The first term of (45) can be bounded using (36).
E[ln(P(B(X,¢)))1(X € S3)]
= E[n(P(B(X,¢)))|X € S3]P(X € Ss)

(V(k) = (N))P(X € 52)
= —O(N""InN),

(46)

in which the second step holds because according to (36),
E[ln P(B(x,¢))|x] = ¥(k) — ¥ (N) for any x.

For the second term of (45), we define a random variable
T = f(X), with cdf Fp, and a constant T = A0 A2 N7,

C

According to (31), Fr(t) = P (f(X) < t) < ut, therefore
[Elln f(X)1(X € S2)]|

To
fr(t) Intdr
0

= [ETL(T < Tp)]| =

To 1
InrEFrt)|3o— | Fr(t) —dt
0

< uTo(|InTp| +1) = O(N~ InN). (47)

For the third term of (45), recall that p = ay if € > ap,
then
E[ln(cq, p?)1(X € S, € > ay)]
= In(cg,a%)P(X € Sa,¢ > ay)
= —ow M in i N) 48)
On the other hand, if € < ap, then for x € Sy,

P(B(x,p)) f(x)cq, pt + Crphet?
ACy AN pl= 4 Cy p=t?
(ACLA N + Cra%)p
(A +1)C1 AN~ pe,

VAN VAN VAN VAN

Therefore

E[ln(p%)1(X € Sa, € < ay)]

> E[nP(B(X,p)1(X € So,¢e < ay)]
~E[ln((\+1)C1A2N")1(X € S9)]
E[ln P(B(X,€))1(X € Sa,¢e < ay)]
—In((A+1)C1A2N" ) P(X € S)
E[ln P(B(X,€))1(X € Sy)]
—In((A+1)C1A2N™)P(X € Sy)
= —ON"7"InN)—-O(N"7"InN).

Y

(49)



Combine (48) and (49), and note that for sufficiently large
N, In(cq, p%)1(x € S2) < In(cq,a%) < 0 because ay =
AN—P <1, we have

0 < —E[ln(cq, p%)1(X € S2)] = O(NYInN).  (50)
Plug (50), (46) and (47) into (45), we have
|[Is] = O(N"7In N). (51)

The bound of bias of KL entropy estimator can be obtained
by combining I;, I, and I3. Recall that v is defined as
~v = min{23,1 — Bd, }. We can then adjust 5 to optimize
the convergence rate:

E[R(X) — h(X)]]

< ||+ [I2] + [13] (52)
= O(N U IN) + O(N I N)
+O (N— min{26,1-pds } 1) N) . (53)

Select 5 = 1/(d, + 2), then the overall convergence rate of
KL estimator is:

ER(X) - h(X))| <O (N"T= InN) . (54)
A. Proof of Lemma 3

In this section, we prove Lemma 3 under tail assumption
(a) in Theorem 1. Define a random variable T' = f(X), with
cdf Fr. From Lemma 2, Fr(t) < ut for all ¢ > 0. Define
another random variable U = Fp(T'). Recall the definition
of function V. For any § > 0,

Fr(t+0) — Fr(t)
— P(t<f(X)<t+9)

_ / Fx)dx € [tV (t) = V(t +6)),
t< f(X)<t+0
(t+8)(V(£) = V(t+ ).

The above equation can be converted to differential form by
letting § — 0:

(55)

—tdV (t) = dFr(t). (56)
Moreover, V(oo) = 0. Therefore
oo 1 1
V)= [ SdFp(€) = — 57
) NS () /FT(t) ar(w)"" oD

in which qr is the quantile function of 7, so that
qr(Fy(t)) =t. Fr(t) < pt implies gr(u) > u/p. Therefore

//u‘, 1 ut 1
du < / ——du
Pr(t) 9r(u) pr(t) 9r(Fr(t))

1
St = Fr(t)
p (58)

A

IN

and

1 1
/ Ldug/ Py = pin L (59)
ut QT(U) ut W p’t

Combine (58) and (59), the proof is complete.

B. Proof of Lemma 4

The proof is based on Lemma 2, as well as Assumption
(a) in Theorem 1.

Proof of (41). Recall that v = min{23,1 — 8d,}. For x €

S1,
P(B(x,an)) > f(x)cdmaj'l\'f—C'la‘]i\}”'2
(@ 1
> S f()ca, al. (60)
Moreover,
1 ®  AC _
5/ Keaay = JAINeq,a

x

© k1
(k4 )N > 7]‘\; . (61)

In equations above, (a) comes from (44), (b) comes from
the definition of Sy in (37), (c) comes from (40).

Given the condition that one of N samples (sample ) falls
at x, the number of points that falls in the ball B(x,an)
from the other (N — 1) sample points follows binomial
distribution Binomial(N — 1, P(B(x,an))). Denote

n(x,ay) = Z 1(x(j) € B(x,an))

J#i

(62)

as the number of points that fall in the ball B(x,ay) except
point x itself. Based on Chernoff inequality, for all x € Sy,
denote N/ = N — 1, then according to (61), if N > k, then
N'P(B(x,an)) > k. Hence

P(e > an|x)
< P(n(x,an) < k))

k
o~ V' P(B(x.an) (QN’P(B(X’GN))>
2

IN

1 eN' k
exp [—2N'f(X)Cdma7\?] (m{f(X)Cdma‘fG”) ;

in which the last step comes from (60), and the fact that
e t(et/k)* is a decreasing function over ¢ if t > k.



Therefore

P(6 >ayn,X € Sl)

[ 1
< /exp —2N'f(x)cd$a§l\}”]

, k
("’N )‘fv) F(x)dx

f% f(x)eq, A N’Nﬁdz]

E/)
o

k
X)cq, AN~ ’Bd} f(x)dx

N)M—l

a

—~
N

(f) 2Kk11

k/ cq, Ade N'N—Pds
in which (a) uses (32) in Lemma 2, with m = k + 1 and
b= %cdmAdN’Nfﬂdw.

Proof of (42):

IN

< Oy N~(7Fd) 1 (63)

P(E>GN,X€SQ) < P(XES2)
—p (f(X) A A2N 7)
< MO g2y (64)
Cd,,

in which we use (31) in Lemma 2 for the last step.
Based on (63) and (64), as well as the definition of v in
(39), we have

Ple>ay) < CyN—min{l=fds20}

for some constant C's.

APPENDIX B
PROOF OF PROPOSITION 1

In this section, we prove that there exist distributions that
satisfy Assumptions (a), (b) in Theorem 1, such that the
original KL estimator without truncation is not consistent.
We will construct two distributions whose entropy are the
same, but the difference of the expectation of the estimated
result using original KL estimator does not converge to zero.
For simplicity, we first discuss the case of k = 1 and d = 1.

To begin with, we pick an arbitrary function g that satisfies
the following conditions:

(1) g(z) is supported on [—1/2,1/2], i.e. g(x) = 0 for
x ¢ [-1/2,1/2);

(2) 19" (z)| < M, Yz € R, in which M is the constant in
Assumption (a) of Theorem 1;

3)

(65)

1
2

4) g(x) > 0 everywhere.

Let X; be a random variable with pdf

1
=D 3390 —a;), (66)
j=1"17
in which j € N,
n—1 9
an = Z N T (67)
j=1
and
A; = j3. (68)

The choice of a, here guarantees that regions S; :=
(a; —1/(2N;),a; +1/(2)\;)) for j =1,...,n are mutually
disjoint. Using (65) and (68), it is easy to check that f; is
a valid pdf. We now verify that it satisfies assumptions (a)
and (b) in Theorem 1.

For (a), we need to show that f; (z) < M. With the
selection rule of a,, specified in (67), g(\j(z — a;)) can be
non-zero only for one j. As a result, for any z, there exist
J € Ny such that

1 d?
|f{’($)‘ = )\*?ﬁg(kj(z—aj))
= 1¢"(\j(z—ay))| < M.

Therefore Assumption (a) in Theorem 1 holds.
For (b), we need to show that there is a constant C' such

that
/ fi(z —bhi(

Note that g(z)e%9(®) < L with equality when g(z) = 1/b.
Recall that ¢ is supported at [—1/2,1/2], thus

e 1

“b9(@) gy < —

[ _ g(w)e v o

From (66), for any x € R, g(A;(z —a;)) is nonzero only
for one j. With this observation, we have

) dz < C/b.

j=1 J
= 1
=355 [ 9o |~ za)| ae
j=1"1J

LA LK s
< i A -3
_Z A3 eb esz

j=1"17 j=1

Since Zj’;l J -5 < 00, there exists a constant C, such that

/ fi(@)e @ dy < Cb1,



Hence Assumption (b) holds.
We then define another random variable Xo:

X2:X1+6j, ileesj,j€N+

in which 0; = 23" Then h(X3) = h(X;), since the
probability mass for X» is just being moved around, but
otherwise the distributions are the same.

Now we compare ho(X3) and ho(X;). Here we as-
sume that Xi1,...,X3n5 are N samples generated from
fi(z), and Xoy,..., Xon are generated by Xo = X; +
Z;’;l 0;1(X1; € S;). Recall the expression of original KL
estimator in (1), we have

N
A 1 ;
ho(XQ) ho X1 E IHEQ 11161(2)) s
z:l

in which €(¢) and ez(i) are the 1-NN distances of Xi;
among {Xi1,...,X 5} \ {X1:}, and that of X5; among
{Xo1,..., Xon} \ {X2;}, respectively.

Note that €2(i) > €1(i) always holds. As a result,
ho(X2) > hO(Xl) In particular, if Xy; is the unique point
in S], then 62(i) — 61(i) > 63' — (Sj_l > 5J/2

Then for any positive integer m,

%mgfmx)
(a) i
>

2~
(] -
—_
=
™ )
= [\
—~|—
ENIGE
~—

@
Il

-
r

1(X1i € Sm,nm = 1>:|

IV
==
.MZ
/\

N
Il
—

PNE )) 1(X1; € Sy, = 1)}

+ 1(Xy; =1
- ( L) 1i € Smynm ):l

Om _

In (a), n,, = Zi\;l 1(X;x € S,,) is the number of samples

in S,,. In (b), we define L = lim a,, which is finite
n—oo

according to the definition of a, in (67), thus € (i) < L.

Then

o
Il

|
Z\H =]~
&MZ

(69)

Elf0(X2)] — Elho(X1)]
57)’1

1
> Nln (1 + 2L) P(ng, =1).

Define p,,, as the probability mass of set S,,, then
Am+Am

am+Am
/a

)\TQ()‘m(x = am))dx
m—Am m

1 90

(70)

Pm = fl(x)d:lj

Let

(]

then Np,, — 1 as N — oo, thus

NPl =1

= lim Np,,(1—p,,)V !
Jim DPm (1 — Dm)

N-1 _ -1

= NP (= pm)
Since we have assumed that §,,, = 2""4, from (70), we know
that

lim E[ho(X5)] — Elho(X1)] # 0,

N—o0
However, the real entropy are equal, i.e. h(X2) = h(X7).
Therefore for at least one pdf out of f; and f2, the original
KL estimator is not consistent.

The above result can be generalized to any fixed k. For any
fixed k, €2(7) > €1(4) always holds, and €2(7) — €1(2) > 0;
if there are less than or equal to k points in .S;. We can then
follow similar steps above to obtain the same result.

APPENDIX C
PROOF OF THEOREM 2: THE VARIANCE OF KL ENTROPY
ESTIMATOR

In this section, we prove Theorem 2 under Assumptions
(c) and (d). Recall that in (2), p(i) = min{an,e(i)},i =
., N, in which €(7) is the distance between x(i) and

its k-th nearest neighbor. In order to obtain a bound of
the variance of KL entropy estimator, we let x’(1) be
a sample that is independent of x(1),...,x(N) and is
generated using the same underlying pdf. Denote p'(i) =
min{ay,€'(i)},4 = 1,...,N, in which € (i) is the k-th
nearest neighbor distances based on x’'(1),x(2),...,x(N),
i.e. the first sample is replaced by another i.i.d sample,
while other samples remain the same. Furthermore, denote
p" (1) =min{an, €’ (i)}, = 2,..., N, in which €”(4) is the

nearest neighbor distances based on x(2),...,x(N). Then
denote
PR
7 _ T /
h'(X) = —(k) +(N) +Incq, + ﬁZmp (7)

i=1
which is the KL estimator based on x'(1),x(2),...
Then according to Efron-Stein inequality,

,X(N).

Var[h(X)]
< TE(h— iy

N _|(de & d, :
= SE| [ mel) - =S
= 3 E (N 2 In p(7) N 2 Inp (z))



Denote

U(i) =In (N( (z))d“”ch) yi=1,...,N;
U/() = I (N(9 () e, i = L.,V
U"(i) =1n (N(p”(z))d“”cdz) ,i=2,...,N,

then
Var[h(X)]
N 1 N N N
< SE|4m (Z U(i) =Y _U"(6)+ Y U"(i)
i=1 i=2 i=2
N
- ZU’(z’))
@ 1 N N 2
< E (Z LORDY U"(z)) ]
1 N N 2
+E (Z U'(i) — Z U”(i))
®) 2 z . Z "y i
< LE <; Uli) - ;U <z>) ,

in which (a) is based on Cauchy inequality, (b) uses the fact
that x(1) and x’(1) are i.i.d. Note that p(i) and p” (i) are
equal if x(1) is out of the k-th nearest neighbor of x(7).
Denote

S ={i € {2,...,NYp(i) # " (D)},
then we use the following lemma:

Lemma 5. (Lemma 20.6 in [27] and Lemma 11 in [25]) If
Ix(2) — x(1)|| are different for i =2,..., N, then

in which ~gq,, is the minimum number of cones of angle /6
that cover R%.

For continuous distribution, ||x(i) — x(1)|| are different
for different 7, with probability 1. As a result, we can claim
that |S| < kg, with probability 1.

Var[h(X)] 2
< 2B |U0)+ Y06 - U 6)
icS
< S ISI+ DB |UA0) + 3 U0 + Z<U"<i>>2] ,
€S €S

(71)

in which the last inequality is based on Cauchy inequality.
Now we bound the right hand side of (71).

N
E\> UG = E ZU%)WGS)}
€S 1=2
N
@ Z]E[UQ(i)]P(iES)

—~
=
=

(N — DE[U?(1)]P(i € S)

—
INe

EE[U?(1))].

In (a), we need to show that 1(¢ € S) is independent with
U (7). Since U (i) is totally determined by p(i), it suffices to
show that P(i € S|p(i)) = P(i € S) for i =2,..., N. For
simplicity, we only show that P(N € S|p(N)) = P(N €
S). For other points (i = 2, ..., N — 1), the proof is similar.
We denote x(/)(N) as the j-th nearest neighbor of x(IV).
Since x(1),...,x(N) are iid, xD(N),...,xNV=D(N)
are actually a random permutation of x(1),...,x(N —1).
Denote o : {1,...,N—1} — {1,..., N —1} as the random
permutation rule, such that x(i) = x(°(D)(N). Also note

that
p(N) = min{Hx(’“)(N) —x(N) ,aN} ;

L xNED(N) [x(N), xR (V)
= E[Z(o(l) € {L,...,k})Ix(N),x" ()]

Find expectation over X(N), we then get P(N € S|p) =
k/(N — 1), which does not depend on p. The proof is
complete.

In (b), we use the fact that U (%) are identically distributed
for all 7. In (c), we use (72).

We can get similar result for E [Zies U”Q(i)] Hence,
Var[h(X)] <

2

<@k, +1) [(k+ DEUA(1)] + KEU(1)]]

Now it remains to bound E[U2(1)] and E[U”?(1)]. From
now on, we omit the index for convenience. According to



the definition of U in (71),

E[U?]

=E[(In Np%cq,)?]
E P(B(X,¢))
f(X)ca, p=

(ln(NP(B(X, €)) —In

- 1nf<x>)2]

+E[(In f(X))Z]] :

IN

3 [E [(In(NP(B(X,¢))))?]

We have the following lemma:

+E

Lemma 6. The following equation holds generally, without
any assumptions:

Jim E[(In NP(B(X,€))*] = v'(k) + v*(k).  (73)
—00

Lemma 7. Under assumption (c) and (d) in Theorem 2, with
0<pB<1/d,,

lim E

N—o00

(74)

Proof. Please see Appendix C-A for the proof of Lemma 6,
and Appendix C-B for the proof of Lemma 7. O

With these two lemmas, we can bound E[U?]. Similar
result holds for E[U/""?]. Therefore according to (73),

lim N Var[h(X)] < 6(2kvyq, +1)(2k + 1) [/ (k)

N —oc0

w2+ | f(X)(lnf(X))QdX} |

According to Assumption (d), [ f(x)(In f(x))*dx < oc.
Therefore the right hand side is a constant, hence

Var[h(X)] = O(N1).

A. Proof of Lemma 6
Define V = NP(B(X,¢)). Since P(B(x,¢)) is equal in
distribution to the k-th order statistics of uniform distribution

for any x, we can derive the pdf of V' when the sample size
is NV [33]:

fN(lz) = )
N —1)! v\ k-1 v\N—-k-1 1
= DIN —k—1)! () (-%) N

As a result,

Therefore
]\}i_I)I(I)O]E[(an)2] = ]Vli_lgo/(lnv)zf]v(v)dv
@ /(1nv)21\}i_r>noofN(v)dv
, vhl
= /(lnv) (k—l)!e dv
k) o
T )+ ).

In (a), we exchange the order of integration and limit based
on Lebesgue dominated convergence theorem. Note that

pF—1 v\ N—k—1

< (-2

Inw) s G ( N)
< k-1 N—-k—-1
= k-0 N )
thus for sufficiently large N, fn(v) < g(v), in which
vk=1 1
g('l}) = m exp |:—2’U:| .

Obviously [(Inv)?g(v)dv < oo. Therefore the condition of
Lebesgue dominated convergence theorem is satisfied.
In (b), we use the definition of digamma function v (t) =

%. The proof is complete.

B. Proof of Lemma 7

The proof is based on Assumptions (c) and (d) in Theorem
2, using monotone convergence theorem. We begin with
Cauchy’s inequality:

P(B(X,6)\>
E (ln JW) ] <
P(B(X.p))? P(BX,9)
2E <lnw) +2E <1nP(B(X7P))> ]

Therefore it suffices to prove

P&\

GG R
and

_ (. PBX,)\]

dm® (e mmeem) |00

We define the following two functions:
gn (x) = inf{f(x,7)|r < an},
hy(x) = sup{f(x,r)|r <an}.

in which ||-|| is the same norm used in the KL estima-
tor. For sufficiently large N, ay < 7¢. According to



assumption (c),(d) in Theorem 2, E[(In gy (x))?] < oo and
E[(lnhy(x,7))?] < oco.
Proof of (75): Since p < ay, we know that

gn (%) < inf{f(x)][}x — x'|| < p} < hn (%),

hence for any x with f(x) > 0,

gn(x) _ P(B(x,p) _ hx(x)
o) = F®ear® = f60)
Therefore
P(B(X,p))’
e | (n fee)y ]
gn(X)\* hy (X))
=k max{(ln i) () H

< 2|(m55) + (255 |
— 0as N — oo,

in which the last step holds, because according to assumption
(c), (d) in Theorem 2, f is continuous, thus both gy (x) and
hx(x) converges to f(x). Moreover, E[(In gn(x))?] < oo
and E[(In hy (x))?] < oco. Therefore we can use monotone
convergence theorem.

Proof of (76): To prove (76), we need the following lemma.

Lemma 8. Under Assumptions (c) and (d) in Theorem 2,
with 0 < 8 < 1/d,, there exist two finite positive constants
C1 and Cy, such that

_ P(B(x,0)) 2 N Lo ()2
E (1 P(B(x,p))) <Cr+Cy(lngn(x))”. (77
Proof.
P )\ |
5| (" mic) ]
2
= Pe>an[x)E (lnfm> X,e>aN]
< P(e > anlx)(In P(B(x,an)))?. (78)

According to the definition of gy, P(B(x,an)) >
gN(x)cdwa?\?. For N > 2, define

(N = 1)gn(x)eq, afy

1
> §NgN(x)cha(Ii\}”

u =

1
§Ad’cdng(x)N1_Bd”.

Recall that in Theorem 2, we have assumed § < 1/d,, i.e.
1— Bd, > 0. Thus

P(B(x,ay)) > gn(x)cq, N7

dg
2 ) T 1-Bdg
At cq, g (x)

Bda
= Csu 758 g7 (x),

> gn(x)cq, A% <

for some constant Cs. If u < k, then
(78) < (In P(B(x,an)))?

) 2
< {ln (Cgk_lfzﬁm g (x))] . (79)

If w > k, then according to Chernoff inequality, P(e >
an|x) < (eu/k)* exp(—u). Hence

2
(11’103— pd. Inu+ lngN(x)> . (80)

1
1— pd, 1— pd,

Consider that (eu/k)*(Inu)? and (eu/k)* Inu are bounded
function over wu, there are two universal constants C; and
(', such that for both v < k£ and v > k,

(78) < C1 + Cy(In gy (x))%

The proof is complete. O

We now prove (76). According to Lemma 8 and Assump-
tion (d), for sufficiently large N, ay < r¢, thus

[2|(-FEm)

< /(Cl + Co(Ingn (%)) f(x)dx < 00.

x] f(x)dx

According to Lebesgue dominated convergence theorem,

, P
am B Kln P

(B(X,p
= im nP<B(X7€)) i x| f(x)dx
=[5\ (n5) ]f )
B . L P(B(x,0)) 2 | o —
= [ | (m Hizecy) ]f () =0,

in which the last step is because (80) converges to 0 as
u — oo, which is the same as N — oo.



APPENDIX D
PROOF OF THEOREM 3: MINIMAX LOWER BOUND OF
ENTROPY ESTIMATORS

In this section, we prove the minimax lower bound for
entropy estimators under Assumptions (a), (b) in Theorem
1. Minimax lower bound for functional estimation is usually
calculated using Le Cam’s method [36]. Define

R(N) = i%ffes;:lp E[(h(X) — h(X))?].

In our proof, we show the following two results separately:

1
> .
R(N) Z 81)
and
R(N) > N~ @72 (In N)~ 32 . (82)

Proof of (81).

(81) is the parametric convergence rate. Let a be an
arbitrary vector such that |lal] > 2. We construct two
distributions:

) = 2900+ 300 a)
R0 = 22000+ 5 0gx - a).

in which g satisfies three conditions:

(G1) g(x) is supported at B(0, 1), i.e. g(x) = 0 for ||x]|| >
L;
(G2) The Hessian of g is bounded, i.e. ||V29H0p < M;

(G3) fB(O,l) g(x)dx = 1.

(G4) g(x) > 0 everywhere.

If M is sufficiently large, then such g exists. As a result,
B(0,1) and B(a, 1) are disjoint. For these two distributions,
we have HV2f1| o S M and HV2f2HOp < M. Moreover,
since te =" < 1/(eb) for all ¢, and the volume of the support
sets of f1 and fy are no more than 2V (B(0, 1)) = 2¢,4,, we
have

2

/ filx)e M ax <

Therefore, for sufficiently large M and C, we have f; €
Fm,c and fo € Faqc. The entropy functionals are

nh) = ho+ i (3).

h(g) + H (?) ;

in which H(p) = —plnp — (1 — p) In(1 — p) is the entropy
function for discrete binary random variable.
From Le Cam’s lemma [36],

Cd, .
i =1,2.
eb b )

h(f2)

R(N) > =(h(f1) = h(f2))?e” NPUill72),

B~ =

Note that H'(p) = In((1—p)/p), H'(1/3) = In2, thus there
exists an dg, such that for all § < g,

h(f2) — h(f1) > ln725~

In addition,
2 2 1 1
D(f:llf2) = glnm + glnm < 6.

Let 0 = 1/ V/N, then for sufficiently large N, § < 8y, we
have

1/1 2
> (2 2 —1
R(N)_4 (21112) 521,

thus
R( N ) > i

Proof of (82).

The proof of (82) follows [10] closely. [10] derived the
minimax convergence rate of entropy estimation for discrete
random variables with large alphabet size. Motivated by the
proof in [10], we provide a minimax lower bound for entropy
estimation for continuous random variables. The basic idea
is to convert the minimax bound of continuous entropy
estimation to a discrete one.

In the following proof, we still let g be a function that
satisfies condition (G1)-(G3), but f; and fo are defined
differently comparing with the proof of (81). The notations
in the following proof are basically consistent with those in
[10], although some of them are changed to avoid confusion.

To begin with, we define a set Fy:

Fa={1] 10—~ gt + i (X5

0<a<l,

1 m
—Zui:a,l<de“ < (Cy,
m

i=1
u;

mDdx+2 < 1} ’
in which C1 is a constant, @ and m increase with sample
size N, D decreases with N. a;,i = 1,...,m are selected
such that ||a;|| > 1 forall i € {1,...,m}, and ||a; — a;|| >
D for all 4,5 € {1,...,m}. Note that for any f € Fo,
J f(x)dx = 1, therefore F; can be viewed as a set of pdfs.
Moreover, for any f € Fj, we have

(83)

Cbf(x 1 1+C
/f(x)e b5 dx < %(14—de”)ch < o Leq, -
Therefore, if C > ¢4, (1 + C1)/(eb), f € Fur,c, and thus
Fo € Fuc.
Define
Ry(N) = inf sup E[(h(N) — h(X))?], (84)

h feFo



in which A(N) denotes the estimation of h(X) with N
samples. Since Fo C Far,c, we have

R(N) > Ry(N). (85)

To derive a lower bound to R;(N), we still use Le
Cam’s method [36]. This method requires a bound of the
total variation between two distributions, which is hard to
calculate directly. To simplify this problem, we use Poisson
sampling technique here. Such a method has been used in
[10, 16] for the minimax lower bound of entropy estimation
for discrete random variables. Define

Ry(N) = H;fbupE[(h(N)—h(X))z],

€Fo

(86)

in which N’ ~ Poi(N). Comparing with the definition of
Ry in (84), we use N’ to replace N, such that the number
of samples is random. Ry(N) is easier to calculate than
R;1(N), because N’ follows Poisson distribution, hence for
any disjoint intervals Iy and I, denote n(Iy), n(l2) as the
number of samples falling in [; and I5, then both n(/;) and
n(I3) follows Poisson distribution with parameter N P(I;)
and N P(I5), respectively. Moreover, n(Iy) and n(ly) are
independent. Such independence significantly simplifies the
calculation of total variation distance. However, we need to
show that Ry(N) is a reasonable approximation to R; (),
so that the convergence rate derived for Ro(N) can be used
to bound R;(N) too. Intuitively, for large N, N’ concen-
trates around N, therefore R;(N) and Ry(N) converges
with the same rate. The formal statement is provided in the
following lemma.

Lemma 9.

1
Ri(N) > Ro(2N) = £(1+In Cy)2e”(-m2N —(g7)

Proof. Please see Appendix D-A for detailed proof. [

The second term in (87) converges exponentially to zero
as N increases, hence we can claim that Ry (N) and Rg(N)
converges with same convergence rate.

Now define F., which depends on € > 0:

o Uj X —aj;

e e (5.
0<a<l,

1 m

—Zui—a <e,1<mD% < Cy,

mia

Us
s < 1} (88)

Comparing the definition of Fy in (83), now we allow
(3o, u;)/m to deviate slightly from a. As a result, f €
Fe is not necessarily a pdf, since it is not normalized.
However, we can extend the definition of entropy h(f) =

20

— [ f(x)In f(x dx to an arbitrary function f, without the
constramt J f(x)dx = 1. Define
R3(N, 6) inf sup E[(h(N') = h(f))?],

h feFe

in which A(N') is the estimation of functional h(f) with
N’ samples, N’ ~ Poi(N [ f(x)dx). As a result, for any
interval I, let n(I) be the number of samples in I, we have
n(I) ~ Poi(NP(I)), in which P(I) = [, f(x)dx. For two
disjoint intervals I; and I, n(1Iy) and n(Iy) are 1ndependent.

Lemma 10. There exists a constant Cs, such that
Ry(N(1—¢)) >

éRg(N, €) —e2C2 — (1+¢)?In(14¢). (89)

Proof. Please see Appendix D-B for detailed proof. O

This lemma shows that Ry (N) and R3(N) have the same
convergence rate if € is carefully selected. With Lemmas 9
and 10, the problem of finding R(/N) can be converted to
giving a bound to R3(N,¢). Using Le Cam’s method, we
can get the following result, which is similar to Lemma 2
in [10].

Lemma 11. Let U, U’ be two random variables that satisfy
the following two conditions:

(1) U, U’ € [0, \], in which
X\ < min {@, dew“} : (90)
e
(2)E[U] =E[U'] =a < 1.
Define
A—lE|UmE|—E|0/m 2 1)
- i v

Let € = 4\/\/m, then

R3(Na 6)
m\2
- 16 |32 mA?2

o (s (22)] & o (B2])

16)\2
— 5 (d.n D+ h(g)) ] (92)

in which TV denotes the total variation distance.

Proof. The proof follows the proof of Lemma 2 in [10]
closely, but since we are dealing with continuous distribu-
tions, there are several different details. The most important
difference is that the bound in [10] holds for all discrete
distributions without constraints, while we have to construct
two functions f1, fo € F. We provide the detailed proof in
Appendix D-C. O



In the following proof, we use some steps from [10]
directly.

To use Lemma 11, we construct a particular pairs of
(U, U"). Our construction follows [10]. Given 7 € (0, 1), and
any two random variables X, X’ € [, 1] that have matching
moments to L-th order, construct U and U’ in the following
way:

7 o
Py (du) (1 _E [Y]) B0(du) + = Py (du),
n o
Pyi(du) = (1 ) [?D Bo(du) + = Py (du),
in which 09 denotes the distribution such that if 7" ~ &g,

then P(T = 0) = 1. Define A = a/n. These distributions
are supported on [0, A]. Then from Lemma 4 in [10],

1 1

o (e[nd] -2 [u])

and E[U7] = E[U"]. In particular, E[U] = E[U’] = a.
When X and X' are properly selected, according to eq.(34)
in [10],

(93)

1 1
E{ln—|—-E|ln—||=2inf Inx — 94
|:an| [HX/:H pIGI%JLIZI[;I’)l]‘ nz —p(x)], (94)
in which Py, is the set of polynomials with degree L.

According to Lemma 5 in [10], there are two constants c,
¢, such that for any L > Ly,

inf  sup |Inz—p(x)>"c. 95)

PEPLgelcL~2,1]
Based on the definition of A in (91), as well as (93), (94)
and (95), let n = cL ™2, then

A = 2ac, (96)

in which ¢, ¢’ are constants in (95).

Recall that we have lower bounded R3(V,¢) in (92) in
Lemma 11. To calculate the total variation distance in (92),
we use the following lemma.

Lemma 12. ([10], Lemma 3) Let V and V' be random
variables on [0, A]. If E[V7] = E[V"], j =1,...,L, and
L > 2eM, then

L
TV(E[Poi(V)], E[Poi(V")]) < (26‘4> . 97)

L

Substitute V', V' in (97) with NU/m and NU'/m. Let
A = N)/m, then recall that = cL?,

e (e e (5)] 2 e (50))

< 2eN A\ L_ 2eN« L_ 2eNaL\*
“\ mL — \UmnL N cm '
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Let L, o changes with m, N in the following way:

L = 2|lnm], (98)
cm
T 2enNr ©9)
then as long as
(Inm)*(In N)?

— 00 as N — oo,
m

the second, third and fourth term in the bracket in (92)
converges to zero. For the second term,

o (In22)?

m(2ac’)?

1 (In 2¢2n 2
@ n? L
N m(2¢)?

~ (ln;”)4 ((m hfvm>2+1>

— 0 as m — oo.

Here (a) uses (96) and A = /7. (b) comes from (99).
For the third term,

o (s (22 s ()]

= me 2™ 5 0as m — .

22 (m2)’ W
mA?2 o

In addition, it is straightforward to show that the fourth term
in the bracket of (92) also converges to zero. Using these
bounds for each term, we have

R3(N,e) > A% ~ a2 ~ ( (100)

m
N lnm) ’
in which € = 4\/\/m, according to Lemma 11.
Note that m can not be arbitrarily large. According to (88)
and (90), we have two constraints: 1 < mD% < C; and
A < mD%*2_ The first constraints yield m ~ D~%_ For
the second one, we have
A Q@
1 m

mDd4=+2 Nlnm
Inm

NDd=+2"
Hence we can let D ~ N~ @2 (InN) Tz, and m ~

_da _da .
D=9 ~ N.+2(In N)~ 7+2, then these two conditions are
satisfied, and (100) becomes

(Inm)?

R3(N,¢) > N~ %% In~ 4232 N.

Note that
. AN « mL? Vmlnm
ym  nym  Nymlnm N 7



in which we use A = a/n, n = cL=2, as well as (98) and
(99).

From (89), it can be shown that R2(N) converges with
the same rate as R3(V,¢). In addition, consider (87) and

(85), we get
R(N) > N~ % In~ 457 N,

The proof of (82) is complete.
Combine (81) and (82), we get

4 _ddgtd 1
R(N)Z N @+2In” 4+ N + N
The proof of Theorem 3 is complete.
A. Proof of Lemma 9
Let N/ ~ Poi(2N), then
Ry(2N) = inf sup E[(h(N') — h(X))?
h fe€Fo
< infE | sup E[(h(N') — h(X))*|N']
h feFo
— E |inf sup E[(A(N) — h(X))?|N']
h feFo
= E[Ri(N')]
— E[Ri(N)|N' > NIP(N' > N)
+E[R;(N")|N" < N]P(N' < N). (101)
R;(N) is a non-increasing function of N, because if N; <

Ny, given Ny samples, one can always randomly use N;
samples for entropy estimation, thus R;(N3) < R;(NVp)

always holds. Therefore
E[R,(N)|N" > N] < Ry(N). (102)

For the second term in (101), recall that N’ ~ Poi(2N), use
Chernoff inequality, we get

P(N' < N) < e~ (172N (103)
From the definition of Fy, we know that
fh(f)=nh 1 d
i () =hig) =~ [ gx)mglx)ax.
and
sup h(f) = h(g) + H(a) + aln(mD%)
f€Fo
< h(g) +1+InCy. (104)
Therefore for any N,
1
Ri(N) < Z(1+1ncl)2, (105)

22

(sup h(f)+ inf h(f))/2.

since we can always let h(N) =
fEFo fe€Fo
Based on (102), (103), (105) and (101),

R2(2N) < Ry(N) + i(1+1n0)2 ~(A-l2)N

The proof is complete.

B. Proof of Lemma 10

For any f € F., which is not necessarily normalized,

- [ 160w i
= ([ reoa)n (7o)
~(f reaax) n [ seax

Based on the definition of F,., we have

‘/f(x)dxl‘ <e.

For any estimator h,

h(f)

E|(h(N') = h(f))?]
- (i - oo )

Jrof o]
- 2| (- (77im)

(1 [ dX) (rr0m)
- [ #eixn [ sz ]
(i (7))
- o) )
#3( [ 160ix) (i [ reoix)

in which the last step uses Cauchy inequality. Define f* =
f/ [ f(x)dx, then f* is a valid pdf, and we can check
that f* € Fo. Recall that N’ ~ Poi (N [ f(x)dx), and

IN




ff(x)dx >1—¢,
RB(Nv 6) .
= infsup E[(R(N') — h(f))?]
h feF.
< 31nf SEI}OE[ (N ) }
+3fs;1]13 (1 /f dx) h2 f)

+3 sup

s (f ) (i )

< 3Ro((1 —€)N) +3¢2C2 +3(1 + €)?(In(1 + ¢€))?,

in which
Coy = sup h(f*) = sup h(f*) <h(g)+1InCy + 1, (106)
fEF. f*€Fo

with the last step in (106) comes from (104). The proof is
complete.

C. Proof of Lemma 11

Define
filx) = (1-a)g +Zde ( ),(107)
fao(x) = (1—a)g +Z 7 g<x ),(108)

in which U;, i = 1,...,m are i.i.d copy of U, and U are
corresponding i.i.d copy of U’.

Since U; € [0,)\] and we have restricted A in (90), so
that U; < mD% %2 always holds. Recall the definition of
Fe in (88), f1, f2 satisfy all the requirements of F, except
(", Un)jm—al < € and | (S, U2)/m —a] < e.

Note that now A(f1) and h(f3) are both random variables
because U; and U/ are random. We define the following
random events:

1 m
1 m
E=|=) U -«
(>

< e, In(f) ~ Elh(f)]| < ﬁ} 7

<& lh(f2) -

Then by Chebyshev’s inequality,

(i )
<2 (In(r) - Bl > )

Var[U] 16

o) 3 Varln(),

P(E°)

IN

(109)
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For the first term, recall that we have the constraint 0 <
U < X < m/e. Hence

Var[U] < iv. (110)

Moreover, €2 = 162 /m, therefore

VarlU) _ X 1

~ dme2 64

For the second term, note that

h(f1)
- _ /(1 —a)g(x)In[(1 — a)g(x)] dx

_i/ U; X — a; n U; X —a; dx
2< | mp=?\ "D mD%7\ "D

= —Z—l —i(lnDldm —h(g)) E

=1

me2

Since U; < A < m/e, U;/m < 1/e, therefore
Ui, Ui\’
m  m
()
< —In—) ,
m m

, 2
Var [UZ} < A

m| ~ 4m?’

IN

U; U»] E

Var {Z In =
m

m

and

Then using Cauchy inequality,

m

U; . U
ZEIHH

=1

Var[h(f1)] <2Var

m

U;
>

=1

1 2
<1n D +h(g)> Var

/\2

4m
(112)

2/\2 (1 /\>2 +2(d, In D + h(g))*

m m

Plug (110) and (112) into (109), we get

P(E°) <
1 32x2

TR

A\ 82

The same bound can be proved for P(E ©):

P(E*) <
13222 [ A\°  8A2 )
51 " maz <1“m)  az (e n D+ h(g))”



Construct two prior distributions: 7] is the distribution of

samples according to f; conditional on E, and 7} is the

distribution of samples according to f> conditional on E’.
Recall (111), we can get similar result for h(f3):

U U & 1 U’
Mm:_zémé_ZO%m_WOA'

i=1 i=1

Consider that E[U] = E[U’], we have

)] - B > & |0 ]~ |07

By the definition of 7] and 73, as well as the definition of
E and E’, under 7} and 73,

|h(f1) — h(f2)| >

| >

Now calculate the total variation distance between these
two distributions. Total variation distance satisfies triangle
inequality. Hence

TV(”T? ﬂ-;) < TV(WT7 71-1) + TV(TH) 7T2)a TV(W% ﬂ-;)
< P(E®) +TV(my,ms) + P(E')
1 64X2 [/ A\
< 4 S
s TVm,m) + 55+ DAz <ln m>
162 9
+W(dm InD + h(g))*.

Now we bound the total variation distance between 7; and
mo. Recall that f; is constructed in (107). Then

U; X —a; U;
dx = dx = —
[ mo= [ (Y5 =T

and thus the number of samples in B(a;, h) follows Poisson
distribution with mean nU;/m. Therefore, TV (7, m3) can
be expanded as

!

TV(m,m5) < mTV (IE [poi (”Uﬂ E {Poi (nU )D |

m m
According to Le Cam’s lemma,
A? [31 (U
16 {32 —mTV (E [POI (mﬂ ,

(U’ 642 A\ 2

oo (22)]) - 22 (12

1672
nmﬂ%mD+M”ﬂ'

Rg,(]\/v7 6) 2

The proof of Lemma 11 is complete.

> Al
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APPENDIX E
PROOF OF THEOREM 4: THE BIAS OF KSG MUTUAL
INFORMATION ESTIMATOR

In this section, we analyze the convergence rate of the bias
of KSG mutual information estimator, under Assumption 1.
In the following proof, constants C7,C5,... are different
from those in Appendix A. Define B(z,r) = {u| |lu —z| <
r}. According to Assumption 1, the joint pdf is smooth
everywhere. We have the following lemma, whose proof is
the same as Lemma 1.

Lemma 13. Under Assumption 1(d), there exists constant
C4, C4, so that

|P(B(z,7)) — f(z)cq.r%| < Crd=t2,
|P(Bx (x,7)) — f(x)cq,r*| < Cird=T2,
|P(By (y.7)) — f(y)ea,r| < Cirivt2.

(113)
(114)
(115)

For KSG estimator, we fix 8 = 2/(d, + 2), therefore the
definition of ay in (3) becomes

any = AN~ @=Fz. (116)

. Recall that the KSG mutual information estimator is
I(X;Y) =& 3N, J(i), in which

J(@) = Y(N) + (k) — P(na(i) + 1) — P (ny (i) + 1).(117)

Since J(7) are identically distributed for all 4, we only need
to analyze |E[J ()] — I(X;Y)| for one i. Hence, from now
on, we omit ¢ for notation convenience.

We conduct the following decomposition based on e:

[E[(J = I(X;Y))]]
< [E[(J - I(X;Y))1(e > an)]
FE[(J = I(X;Y))1(e < an)]

. (118)

To bound the first term of (118), note that n.,(i) > k,
therefore J < ¢(N) + (k) — 2¢(k + 1). According to
the property of digamma function, )(N) < In N. Therefore
J <In N. Then

[E[(J = I(X;Y))1(e > an)]|

< (InN+I(X;Y))P(e > an). (119)

P(e > ay) can be bounded using Lemma 4 with § =
2/(d, + 2). According to (42), we have

Ple > ay) < CoN™ @73, (120)

With (120) and (119), we know that

2

E[(J — I(X;Y)1(e > an)]| = O (N_dz+‘2 In N) .(121)




To bound the second term of (118), we define J,, Jy, J. as

J. = —¢k)+¢(N)+1Incq, +d.lnp, (122)
Jy = =Yg +1)+¢(N)+Incq, + dy1np,(123)
Jy = —Y(ny +1)+9(N)+1Incq, +dy,Inp,(124)

in which ¢4, is the volume of unit norm ball in the X space,

cq, is for the Y space, and cq, is for the joint space Z. p

is defined in the same way as (29), i.e. p = min{e, an}.
Recall the definition of J in (117), we have

J=Jp+Jy—J,
therefore the second term of (118) can be decomposed as:
E[(J - I(X;Y))1(e < an)]|

< |E[(J> = h(Z))1(e < an)]| + [E[(Jz — h(X))1(e < an)]]
(125)

HE[(Jy — h(Y))1(e < an)]l.

Intuitively, here we design three truncated estimators for
h(X), h(Y) or h(Z). To give a bound of the first term,
we apply the result of Theorem 1 to random variable Z:

E[J, — h(Z)]| = O (N—ﬁ In N) .
In addition, recall that p = ay if € > an, we have
[E[(J. — h(Z))1(e > an)]]
=|—(k)+¥(N)+1Incg, +d.lnay — h(Z)|P(e > an)
=o(N"==mN),
Hence using the triangular inequality,
IE[(J. — h(Z))1(e < ay)]| = O (N—ﬁ In N) .

The following lemma gives a bound on the second and third
term.

Lemma 14. Under Assumption 1 (a)-(e),
[E[(J — h(X))1(e < an)]|
2 dy
-0 (N—m 1nN) +O (N—@) . (126)
[E[(Jy — h(Y))1(e < an)]|
- 0 (N‘ﬁ mN) +0 (N—*) .
Proof. Please see Appendix E-A for detailed proof. O

(127)

Plugging these three bounds in Lemma 14 into (125), we
know that

IE[(J — I(X;Y))1(e < an)]|
5 min{dg,dy}
- 0 (NTH 1nN) o) (N’idz ) .(128)

Combining (128) and (121), and recall that E[I(X;Y)] =
E[J], we can conclude that

E[[(X;Y) - [(X;Y)]
-0 (N—dfﬁ In N) +o (N—i’“i“{if ’d“) .

25

A. Proof of Lemma 14

The proof is based on Assumption 1. (126) and (127) can
be proved using the similar steps. Here we only prove (126),
and omit (127) for brevity.

We decompose the left hand side of (126) as following.

[E[(Jz — h(X))1(e < an)]

|
< [E[(In f(X) + h(X)))1(e < an, X € 57)]
+HE[(Js — M(X))1(e < an, X € S50)]|
+[E[(J: +In f(X))1(e < an, X € 57)][,(129)

in which S{¥ is defined as

SX = {X (x) >
with O] is the constant in (114), and S5¥ = R% \ S{¥ is the
complement set of S;*. According to (31),

607 A2
cd

1 A2 5
WN_dz+2} (13())

Cd

P(X e &) < 2L N-

d+2'

(131)

We now analyze these three terms separately.

1) The first term of (129): Intuitively, the first term
describes how accurate it is to only estimate the expectation
of In f(X) when ¢ is not very large and x is not in the tail.
We decompose this term in the following way:

[E[(In f(X) + A(X))1(e < an, X € S]]
< [E[(n £(X) + A(X))1(X € S7)]]
+|E[(In f(X) + h(X))1(e > an,X € S7)]|.
The first term can be bounded using (47), with v = min{1—
Bd., 2B} =2/(d. + 2):
[E[(In £(X) + H(X))L(X € ST
= |E[(In f(X) + A(X))1(X € 53]

-0 (N*ﬁ 1nN), (132)

in which the first step holds because E[ln f(X)+h(X)] = 0.
For the second term, from Assumption (f) and the defini-
tion of S¥ in (130), we have the following upper and lower
bound of f(x) in Si:
CuN™T7 < f(x) < Cy.
Hence
[E[(In f(X) + h(X))1(e > an, X € 57)]]
—O@NP(e>ay)) =0 (N’ r 1nN) .(133)

Combine (132) and (133), we get
[E[(In f(X) + h(X))1(e < an, X € S7)]]

—0 (N—ﬁ 1nN). (134)



2) The second term of (129): The second term describes
the accuracy of estimation in the tail region. Recall that n, >
k, thus

E[(J; — h(X))1(e < an, X € 53)]]
< WIN 1)~ $(k+ 1)P(X € 5)
+HA(X)|P(X € 55)
+ |E[ln(cdmpdw)1(e <an,X € 8]
6uC’{A2N_

Cdm

2
d,+2

< (In N+ |M(X)])

dy
+ 2 BlIn(ca,p™)1(e < ax, X € 53]

6uC) A2

Cd,,

dy

d-

According to (48) and (49), we use v = 2/(d, + 2), then
the second term in (135) is bounded by

2
N~ 2%z,

+|lncq, — Incq, (135)

%\E[ln(cdzpdz)l(e <ay,Xe S =0 (N—dfﬁ 1nN> .

Plugging the equation above into (135), we have

[E[(J2 — h(X)1(e < an,x € S3)]]

-0 (N*ﬁ 1nN) Lo (N’ﬁ 1nN) ) (N*ﬁ>

— O(N_ﬁln]\O.

3) The third term of (129): The remaining part of this
section focuses on the third term. We begin with the follow-

ing lemmas:
Lemma 15. For Vz(i) € {z|||Hf(z)|,, < Ca}, the distri-
bution of n, (i) satisfies n; (i) —k ~ Binom(N —k —1,p)
with p being
_ P(Bx(x,¢€)) = P(Bz(2,¢))
1—P(Bz(Z,€)) '

Proof. We refer to Theorem 8 in [25] for detailed proof. [

(137)

From (137), we can give an upper and lower bound of p:
P(Bx(x,€)) — P(Bz(z,¢)) <p < P(Bx(x,¢)). (138)

Lemma 16. For any z and ¢, from n, — k ~ Binom(N —
k—1,p), there exists two constants a and b that depend only
on k, such that

a

Elp(ne + iz, =Im(pN)| < T+ 55 (139

in which p is the parameter of the binomial distribution
defined in Lemma 15.

Proof. Please see Appendix E-B for detailed proof. O

(136)

26

Lemma 17. Under Assumption 1 (d) and (e), for sufficiently
large N, for all x € S and r < ay, in which S* is defined
in (130),

3

1
§f(x)cdw7”dm <p< §f(X)derd‘T7

in which p is defined in Lemma 15.

Proof. To avoid confusion, here we use fz(z) to denote the
pdf of Z.

p = f(x)ca, %

[p = P(Bx(x,7))| + |P(Bx (x,7)) = f(x)ca,r|
P(B(z,r)) + Cjr=t?

fz(z)cq.r% + Cyr®=t2 4 Cyrdat?,

IANIACIA

Using this, we have

lp — f(x)ca, r|

f(x)eq,r
d.+2 1,.2
= fZ(Z)cdyrdy—i—Clr + Cir
flx) f(x)ea, — f(x)eq,
C de+2 O’ a2
< C’ecdya}i\}’—i- 10N 3 LN 7 s
601 A2N~ %7 6| A2N~ @

(140)

in which we use Assumption 1 (e) that gives a bound of the
conditional pdf, and the definition of S;* in (130).

Recall the definition of a in (3), the third term in (140)
equals 1/6. In addition, the first and second term converges
to zero with the increase of N. Hence for sufficiently large
N, these two terms will also be less than 1/6. Then the right
hand side of (140) can not exceed 1/2. Therefore Lemma
17 holds. O

The third term of (129) can be further expanded as
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following For sufficiently large N, Cecq,ay dy § =, then according to

138),
IE[(J, +In f(X1)1(0 < € < an, X5 € Sy)]| (138)
@ [BEE,, [(~6(ng + 1) + (V) + In(carp™) P(B(z,7)) P(B(z,7))
+11’1f( 1))1(0<6<CLN,X1 S Sl)“ p o P(BX(X7T))—P(B(Z,T‘))
dy
< E.E B, [(—9(ng + 1) + 9(N) + In(ca p) < _Cecar :
+1In f(X1))1(0 < € < an, Xy € 51 1 —Cecq,r
an d < 2Cecdyrdy.
S1
+lnf(x1))| fe\z( r)f(z)drdz The proof of Lemma 18 is complete. O
anN dT
= /51/0 |—1n(pN) N +In(carr™) Lemma 19. Under Assumption 1 (a),(c) and (d), for any
+10 f(X1)| fela(r) f (2)drdz d <d,
an
Bt + 1)+ o) +0() Bl =0 (V).
1 0
—In N| f5(r) f(z)drdz (141)
(b) an Proof. Please see Appendix E-C for detailed proof. O
< / / |— Inp+In f(xl)cdlrdw)| fez(r) f(z)drdz
Sl 0
a+ anN p With these two lemmas, the first term in (142) can be
/ / N fela(r) f(2)drdz bounded by:
(142)

in which (a) uses the definition of .J, in (123); (b) gives a /S . /0 |=Inp +In f(x)eq, 7% | foia(r) f(z)drdz

bound to the second term of (141) using Lemma 16, as well o) ! an 1 1

as the following property of digamma function: In N — % < < / / | p— f(x)eq, | ( + >
sx Jo 2p  2f(x)

(N) < In N, in which ~y is the Euler-Mascheroni constant. x)cq, v
Now we bound the first term in (142), and then bound the f€|z( r)f(z)drdz
third term (b) ) diso
Bound of the first term in (142): < / . / )+ Crd=t?)
We need the following two additional lemmas. 5 )
Lemma 18. Under Assumption 1(e), for sufficiently large ( % W) fez(r) f(z)drdz
N and r < ap, © an
P(B < / Cir Iz z)drdz
P(B(z,1)) < 2C.cq,r, 0 2f( ) f‘ (n1(z)
D :
in which C, is the bound of the conditional pdf in the /SX/ felz( r)f(z)drdz.

Assumption 1 (e).

Proof. According to the Assumption 1 (e), the conditional For each term, we have
pdf is bounded by C..

P = [ ey /S e pn s

3

_ / <! 13! < Cla f z)dz
= / B B x ) f(y'|x")dy' dx /SX 1N2f( Yo (2)

max{[|x’—x|,[ly’ —y||<r}
< / f(x)Cody'dx' = / . ClaNidX

masc{ 5’ x|, |y’ —y | <r} “ 57 2¢q

d 2
< Cecq,r™ / F(x)dx’ = CiEAQN =Rmx (S))
[|x’—x||<r

= Cuca,r™ P(Bx(x,7)). © O(N‘ﬁlnzv). (143)



Furthermore, using Lemma 18,

Ll
B /SX/ 5 Ceca, r Y fe12(r) f(2z)drdz

5CecdyE o] 2o (N‘E).

fe\z( )f(z)drdz

IN

(144)

Here, (a) uses the inequality |Inz—Iny| < |z —y] ’% + 2%/
for z,y > 0. This inequality comes from logarithmic mean
inequality [37]:

T—y 1 1
ne—Iny < — < (z — — 4+ — .
nr—Iny < N <(x—y) (2x+2y>

(b) uses Lemma 13 and Lemma 15:

Ip— f(x)cq, 7|
lp — P(Bx(x,7))| + |[P(Bx(x,7))
< P(B(zr))+ C{rd“'Q.

IN

— f(x)ca,r®|

(c) uses Lemma 17. In (d), mx (S;¥) is the volume of
S3iX. (e) comes from Lemma 3:

601 A?
x(55) = v( i N>
Cdz
< 141 L
= M\ T e
de
= O(lnN).
(f) comes from Lemma 19.
Combine (143) and (144), we have
an
/ / |—1np—|—ln x)cq, |f6|z f(z)drdz
sx Jo
dy
0 (N—ﬁ lnN> e (N_E) . (145)

Bound of the third term in (142).
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We bound the third term of (142) using Lemma 18 again.

/ /aN ’ ~—Jfelz(r) f(z)drdz
5X
: ~/SIX /0 WZC@Cdyrdy fe\z(r)f(Z)dT‘dZ
an b y
= ~/Slx/0 WQCECdde fe\z(r)f(Z)dT‘dZ

+/S1X /azv W?Cecdyajv felz(r) f(z)drdz

_ ZCeCdyb 1 dy
- B [P(B(z,e»” }

N
(a) QCECd b 1
< 8 ) E[p%
< | oty B
2 o(n®) (146)
To show (a), we need to prove that m and p

are negatively correlated. According to the law of total
covariance,

oo (")

= = | ( gy 12|
1

+ Cov (E [P(B(Z’g))z} .E [pdv|z]) .(147)

Recall the definition of p in Lemma 19, p is a non-decreasing
function in r, and for any given z, m is a non-
increasing function in 7. Thus Cov (m7 pv \Z) <0.
For the second term, recall that according to order statistics
[33], condition on all Z = z, P(B(Z,¢)) ~ B(k,N — k),
thus

1 N -1
El=———Z=2|=—— 148
Frr Ik B =
which is a constant with respect to z. Thus

COV( {P(B(zg))|z} [de|Z}) = 0. Plug this into

(147), we have that Cov (ﬁ,pdo < 0, therefore (a)
holds.

In (b), we calculate two expectations separately, according
to (148) and Lemma 19.

Combining (145) and (146), we get

IE[(J2 — h(X))1(e < an,x € 5]
-0 (N—dfﬁ 1nN> +O (N‘%) . (149)

Substituting the three terms in (129) with (134), (136)
and (149) respectively, the proof of (126) in Lemma 14 is



complete, i.e. we have

[E[(Jo — A(X))1(e < an)]|

o) (N*dfﬁ 1nN)

+O (N*%‘).

B. Proof of Lemma 16

In this section, we prove Lemma 16 with n, — k ~
Binomial(N — k — 1,p).
(1) Upper bound.

E[¢(ng +1)|z, €] E[ln(n, + 1)|z, €
In(E[n,|z, €] + 1)
(

In((N —k—1)p+k+1).

IAIA

(2) Lower bound. Use Taylor expansion,

E[¢(ng + 1)|z, €] > Ellnn,|z, €
1
e

Here ¢ is between n, and E[n.|z, ¢]. Thus

(ne — Elng|z, €])?|z, €| .

1
= InE[n,|z,¢€ — §]E {

E [;2(7% — E[n,|z, e])2|z, e]
< 1
~  E[ng|z,¢€?

+E | L, ~ Bfuala.dPlae].

T

E [(ne — E[n.|2, €])?|2, ]

Since n, — k ~ Binomial(N — k — 1,p), we have

Var[ng|z,e¢] = (N — k — 1)p(1 — p) and Var[l/n,|z, €] =

O(1/Np). Combine the upper and lower bound, there exist
two constants a and b such that

IE[¢(ns + 1)z e] — In(Np)| < % 4+ 2

* ’ - N Np

The proof is complete.

C. Proof of Lemma 19

In this section, we give a bound to E[p?], d’ < d., under
Assumption 1 (c), (d). To begin with, we prove the following
lemma.

Lemma 20. Under Assumption 1 (c), for any integer d' <
d,

(150)

for some constant .
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Proof. Similar to the Lemma 2, we can prove that P(f(Z) <
t) < pt for some constant p and all ¢ > 0, based on
Assumption 1 (c¢). Thus

E[f*%(zﬂ /Ooop(fffl(Z) >t) dt

I
o\
=
Q.
n
Y
oumnN
=
N
S~—
AN
N
e
N——
W
~

INA
=

&
+

Now bound E[p?]:

2" = [ Bl |2 = 2)f ()

Here we divide the support into z € S7 and z € S). S7 and
S% are defined as following:

(151)

S = {z|f(z) > —2001 a?\,}, (152)
d

Sy = {zlf(z) < iclaﬁv} (153)
d

in which ay = AN, 8 =2/(d. + 2). According to (31)
in Lemma 2,

P (f(Z) < 2ClA2N25)

Cdz
< 2 ey,
< =

P(ZesS)) =
(154)

For z € S}, from order statistics [33], conditional on any

z, P(B(z,¢)) ~ B(k, N — k), in which B denotes the Beta
distribution. Hence
E[P(B(Z,0))Z = 7) < B[P(B(Z,0))|Z = 7] = 1. (155)

Moreover, from the definition of S7 in (152) and Lemma
13, we have P(B(z,p)) > f(z)cq, p? /2, thus

2%
E[pb|Z = 2] < —— .
e )
Therefore for all d’ < d,
ok \ i

Ep?|Z=2]< [—2 ). (156)

12 =2 (chzf(Z))

For z € S,

Ep?|Z = 2] < a¥, = AV N~7F2 (157)



Plugging (156) and (157) into (151),

E[p"]
<ch ) /f

- O(N—@)+O(N—W)ZO(N—%), (158)

2)dz + AV N"T= P(Z € Sb)

IN

The proof of Lemma 19 is complete.

APPENDIX F
PROOF OF THEOREM 6, THEOREM 7 AND PROPOSITION 2

In this section, we analyze KL estimator and KSG esti-
mator under heavy tail conditions (23), with 7 < 1.

A. Proof of Theorem 6 and Theorem 7

Since the proof steps are very similar to the case of 7 = 1,
which is proven in Appendix A and Appendix E, we only
show some important steps where the proof is different from
the previous sections. 1. Lemma 3 is replace by: for all £ > 0,

V(t) < 17,1“57 .
Proof. Under original assumptions, ¢r(u) > p/u. Under
new assumption, we can similarly get g (u) > (u/p)/7)

Then
1
1
v =
(U)
1 1
< L&
Fr(t) U
< T t'rfl
- 1- T‘u
The remaining steps are the same. O

2. (32) in Lemma 2 is replaced by:

s

- bm+T pmAr—1"
Proof. Divide the support into two regions, with f(x) > ¢

and f(x) <t
/fm(x)e_bf(x)dx

= / fm(x)e*bf(x)dx—k/ fm(x)e X ax
F)>t F<t

< / <T> efmdx—&—/ t™=1 f(x)dx
f(x)>t b F(x)<t

_ T m —-m m—1 T

= V(@) ( b) e Mt

5 - ' +t7+m 1

bm
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Note that the above derivation holds for arbitrary ¢ > 0. Let
t = 1/b, then the proof is complete. O

3. Lemma 4 is replaced by: there exist constants Cy and
Cs, for sufficiently large IV,

Ple>an,X€S)) < CoN T(1-Fda)
Ple>ay) < CyN - 7minll=fdegiz)

The proof follows the same steps as the proof of original
Lemma 4 in Appendix A-B.
4. Lemma 19 is replaced by:
E[p?] = O (N_@) +0 (NEHE mN).
Proof. We define S7, S} in the same way as (152) and
(153). Define C' = 201 A? /¢4, . Then (150) in Lemma 20 is
replaced by:

fotde = E[f~F(Z)1(f(Z) > CN~%)]
st

’ ’
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cdz NP )
:/O P(f’E(Z)>t>dt

v o 4z N*Pd; ,
< uds +/d7, pt= a7 dt
=
o) if 7d,>d
_ O(In N) if 7d,=d
0) <N2B(527)> it rd. <d.

= 0()+0 (NQB(‘?;T) 1nN> :

The remaining steps follow Appendix E-C.

B. Proof of Proposition 2

We now derive the range 7 such that assumption (23)
holds under moment assumption E[|X]|*] < oo. Using
Holder inequality,

[ £ xgax
1

a\1—7 ¢l1—7 X
[ )

(Josrmm) (f (reee) o)

IN



The first factor is finite because E[|X]|*] < oco. If 7 <
af(o+ dy), then a(l — 7)/7 > d, the second factor is
also finite. Then [ f177(x)dx < oo. As a result,

P(f(X)<t) = P(f7(X)>177)
< E[fT(X)]
= /,thT,

in which p is a constant. The proof is complete. O

APPENDIX G
PROOF OF SOME STATEMENTS

A. Proof that Assumption (a), (b) in Theorem 1 implies
Assumption (c) (d) in Theorem 2

In this section, we prove that Assumption (a), (b) in
Theorem 1 implies Assumption (c) (d) in Theorem 2. It is
obvious that (a) implies (c). Now we prove (d) using on (a)
and (b).

We first show that f(x) must be bounded From Lemma
1, we have P(B(x,7)) > f(x)cq,r% —Cyr?=+2, Moreover,

P(B(x,7)) < 1 always holds. Hence for any r > 0,
1+ Cyrdet?
f(x) < et

Therefore f must be bounded. We then show that

E[(In f(X))?] < oc:
E[(In £(X))*1(f(X) < 1)]

/OOP(lnf(X) < Vi)t
OOO

/ P (f(X) <e”
0

in which P(f(X) < e~V?)dt can be bounded using Lemma
2. Since f is bounded, we also have E[(In f(X))?1(f(X) >
1)] < co. Therefore E[(In f(X))?] < oc.

Based on the above fact, we now prove Assump-
tion (d) in Theorem 2. For any x, define r.(x) =
Vd: f(x)ca, [(d; +2)C1. We discuss two cases:

(1) If » < r,, then according to Lemma 2,

fx)ear (1‘ f&)rcl)
> f(x)cq,r (1_ f(C;)Z)

2 d
i Zf(X)CdJ

‘/Z) dt < oo,

P(B(x,r)) =

>

Therefore, we have f(x,r) > (2/(d, +2))f(x) in this case.
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@) If r. < r < rg, then
P(B(x,r)) > P(B(x,rc))

> (x)eq,ree

dy + 2

2 dy f(x)ca, T
32/ e ((dm n 2)01>

,7) > Cf'*4/2(x). Combine case

Therefore we have f(x
(1) and (2), we have

ieff(x,r) > min {dizf(x),CfHd“m(x)} .

Hence

[0 (

2
lnmff x r)) dx

<[00 (i 25500 o
+ [ 160 (mertr29) ax < o,

which holds since [ f(x)(In f(x))? < oco. Moreover, from
Lemma 1, we also have P(B(x,7)) < f(x)cq, % +
Cyrd=*2_ Therefore supf(x r) < f(x)+(C1/ca,)r3, which

ensures that

/f(X) (msgpf(xm))Q dx < oco.

The proof is complete.

B. Proof of properties of joint pdf satisfying (20)

In this section, we show that under the Assumption 3 in
[25], the joint pdf f(x,y) is bounded away from zero, and
must have a bounded support. Recall that z = (x,y), the
Assumption (c) in [25] says that for any b > 1,

/f(z) exp(—bf(z))dz < C.e” 0P,
With (159), for any ¢ > 0, we have

P(f(Z) <t) = P(exp(=bf(Z)) = exp(—bt))
th[ bf(Z)]

<
< CetGmh),

(159)

in which the first inequality comes from Markov’s inequality.
Note that the above steps hold for any b > 1, we can let b
to be arbitrarily large. Hence, if 0 < ¢t < Cj, then

P(f(Z) <t)=0.

For any random variable U, P(U < t) is left continuous in
t. Hence we have

P(f(Z) < Cy) = (160)



For all the points on which f(z) is continuous, we have
f(z) = 0 or f(z) > Cy. Otherwise, if 0 < f(z) < Co,
there must be a neighbor B(z,r) on which the pdf is in
between 0 and Cj, which violates (160). According to the
Assumption (d) in [25], the Hessian of f(z) is bounded
almost everywhere, which implies that f(z) is continuous
almost everywhere, and thus f(z) = 0 or f(z) > Cj almost
everywhere. As a result, f(z) is essentially bounded away
from zero, and must have a bounded support.
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TABLE I: Convergence rate of KL estimator for standard Gaussian distributions

dy | Bias(Empirical) | Bias(Theoretical) | Sample Size | Variance(Empirical) | Variance (Theoretical) | Sample Size
1 0.97 0.67 10% ~ 107 1.00 1.00 10% ~ 107
2 0.66 0.50 102 ~ 10° 1.00 1.00 102 ~ 10°
3 0.43 0.40 102 ~ 10° 1.01 1.00 102 ~ 10°
4 0.33 0.33 10% ~ 10° 0.99 1.00 102 ~ 10°
5 0.29 0.28 10% ~ 106 1.01 1.00 102 ~ 108
6 0.25 0.25 105 ~ 107 1.03 1.00 102 ~ 107

TABLE II: Comparison of convergence rate of KSG estimator

de | dy | Bias(Empirical) | Bias(Theoretical) | Variance(Empirical) | Variance(Theoretical) | Sample Size
1 1 0.50 0.50 0.99 1.00 10% ~ 10°
1 2 0.35 0.33 0.96 1.00 102 ~ 10°
1 3 0.27 0.25 0.98 1.00 102 ~ 10°
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