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AN ADAPTIVE NESTED SOURCE TERM ITERATION
FOR RADIATIVE TRANSFER EQUATIONS

WOLFGANG DAHMEN, FELIX GRUBER, AND OLGA MULA

ABSTRACT. We propose a new approach to the numerical solution of radiative
transfer equations with certified a posteriori error bounds for the L2 norm. A
key role is played by stable Petrov—Galerkin-type variational formulations of
parametric transport equations and corresponding radiative transfer equations.
This allows us to formulate an iteration in a suitable, infinite-dimensional func-
tion space that is guaranteed to converge with a fixed error reduction per step.
The numerical scheme is then based on approximately realizing this iteration
within dynamically updated accuracy tolerances that still ensure convergence
to the exact solution. To advance this iteration two operations need to be per-
formed within suitably tightened accuracy tolerances. First, the global scatter-
ing operator needs to be approximately applied to the current iterate within a
tolerance comparable to the current accuracy level. Second, parameter depen-
dent linear transport equations need to be solved, again at the required accu-
racy of the iteration. To ensure that the stage dependent error tolerances are
met, one has to employ rigorous a posteriori error bounds which, in our case,
rest on a Discontinuous Petrov—Galerkin (DPG) scheme. These a posteriori
bounds are not only crucial for guaranteeing the convergence of the perturbed
iteration but are also used to generate adapted parameter dependent spatial
meshes. This turns out to significantly reduce overall computational complex-
ity. Since the global operator is only applied, we avoid the need to solve linear
systems with densely populated matrices. Moreover, the approximate applica-
tion of the global scatterer is accelerated through low-rank approximation and
matrix compression techniques. The theoretical findings are illustrated and
complemented by numerical experiments with non-trivial scattering kernels.

1. INTRODUCTION

When dealing with problems giving rise to very complex discretizations, one often
tacitly assumes that the numerical output represents the corresponding continuous
object reasonably well, without being, however, able to actually quantify output
quality in any rigorous sense. Often interest shifts then towards accurately solving
the (fixed) discrete problem which by itself may indeed pose enormous challenges.
Instead, the central objective of this article is to put forward a new algorithmic
paradigm warranting error controlled computation. By this we mean the deviation
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of the numerical result from the ezact continuous solution is certifiably quantified
and set to meet a given target accuracy with respect to a problem relevant norm. It
goes without saying that the ability to quantify the accuracy of forward simulations
is a necessary prerequisite of Uncertainty Quantification in general. In this article
we develop such methods for a regime of kinetic models, described below, for which
to the best of our knowledge error controlled schemes have so far not been available
yet.

1.1. Problem formulation. We consider certain kinetic models describing the
propagation of particles in a collisional medium modeling, e.g., heat transfer phe-
nomena, neutron transport, or medical imaging processes. We confine the subse-
quent discussion to simple monoenergetic radiative transfer models which never-
theless exhibit the main obstructions to the design of efficient numerical methods
for this problem class. Let D < R% be a bounded convex domain with piecewise
C' boundary dD, where d > 1. Hence, for almost all € 0D the outward normal
n = n(z) is well defined. Furthermore, let S = R¢ denote the unit (d — 1)-sphere
representing the directions in which particles propagate. Since we focus on the mo-
noenergetic case, the particles have all the same kinetic energy (which we assume
to be equal to 1) but note that more general compact sets describing the admissible
transport velocity field are possible and the subsequent developments generalize to
a correspondingly wider scope of setups. In what follows, for s e S

(1.1) ' (5) ={xedD|3s -n(zx) <0} cdD
denotes the “inflow-boundary” for the given direction § while
I ={(z,5)edD xS |5 -n(x) <0} cdD xS

denotes the inflow portion of the corresponding space-direction cylinder. The cor-
responding outflow boundary portions I'; (5), T'y are defined analogously.

Given non-negative data f: D x S - R, g: I'_ — R, a cross-section function
0:D xS — Ry, and a collision kernel K: D x S x S — R, we want to find a
function u: D x S — R, satisfying
(1.2)

3. Vu(z,3) + oz, s)u(x,3) — f K(z,8,3)u(x,8)ds" = f(z,3) V(z,3)eD x S,
S
u=g onI'_.

In the following, it will be useful to view the angular direction as a parameter and
introduce the abbreviations

(Tzu)(z) =3 - Vu(z,3) + oz, Su(x,s), (Kzu)(z):= LK(:C,?, Su(x,d)ds,

for the pure transport and collision operator, respectively. Splitting the transport
part into

Tz = As + oid, Azv:=35- Vo,
([L2) can be written, for homogeneous boundary data g = 0, as the operator equa-
tion
(1.3) (Bu)(-,3) == Tsu — Kzu = Azu + ou — Kzu = f(-,3).
There is extensive literature addressing the solvability of (L3) depending on the

interrelation of the pair (o, K) usually known as the optical parameters, see e.g.,
[51141[16,25]. One may roughly distinguish two ends of the problem scope, namely
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the case of dominating scattering near the diffusive limit (see, e.g., [20]), and the
case of dominating transport. Here we restrict the subsequent considerations to
the latter regime that is governed by at least weakly dominating transport and
possibly anisotropic scattering. The precise conditions on corresponding pairs of
optical parameters are discussed in a later section.

Note that when the kernel K vanishes the pure transport problems

(14) 7%“ = f7 u|F7(§) =9, se Sa

may be viewed as a parametric family of PDEs giving rise to the corresponding
family of fiber solutions ugz, s € S. Alternatively—and this is necessary for the full
problem ([L3)—we can view solutions u(x,3) as functions of the spatial variable
z € D c R? and the parametric variable 3 € S < R%!. It will therefore be
important to identify a function space U consisting of functions over D x S for
which (L.3) is well-posed in a sense to be made precise in Section 2.1]

1.2. Common approaches and main obstructions. There are at least two
major groups of numerical strategies for approximately solving (L.3), namely the
method of moments and the discrete ordinates method (DOM); see, e.g., [24] and
[41[1712326], respectively. The method of moments builds on (low order) polynomial
projections in the parameter domain and can be viewed as a model reduction.
It seems to be rather difficult though to quantify the incurred model bias and
develop rigorous error bounds for the deviation of the approximate solution from
the exact one. Also, the accuracy of polynomial expansions suffers severely from
low regularity. DOM hinges on transport solves for sufficiently many direction
parameters. These can serve as quadrature nodes for the approximate application
of the integral operator in combination with Jacobi-type iterations to approximately
solve the very large densely populated linear systems. However, the convergence of
this iteration in the discrete setting typically degrades with increasing dominance
of the scatterer [23].

The common approach is to first discretize the (continuous) problem and then
address the two—at first unrelated—issues: a) how to solve the (fixed) discrete
problem efficiently; b) how to assess the accuracy attained by the solution of the
discrete problem.

Modern strategies to face the complexity issues posed by a) concern the devel-
opment of preconditioners or multigrid strategies or employ sparse tensor methods
based on sparse grid or hyperbolic cross approximations. The former issue is im-
peded by the the fact that on a fixed discrete level it is hard to respect intrinsic
problem metrics which play a central role in the current approach. Moreover, the
distinct lack of sufficiently strong stability notions accounts, in particular, for in-
creasing recent efforts to incorporate additional structure preserving properties into
discrete concepts. Simple examples are non-negativity or mass conservation.

The viability and performance of sparse tensor methods, in turn, requires suitable
a priori regularity assumptions such as the validity of a certain order of mizred
smoothness, see, e.g., [2,Bl[1722], which are then also invoked to address b).

In general, variational formulations for parametric transport problems like (L.4))
or (LL.3) are far less common than for elliptic problems. For instance, [17] considers
least squares formulations minimizing residuals in Ly(D x S). Corresponding trial
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spaces require anisotropic regularity of the solution depending explicitly and sensi-
tively on the transport direction. This may cause stability problems when the so-
lution exhibits shear discontinuities. Alternatively, [15] proposes a mixed Galerkin
formulation based on splitting the solution into symmetric and asymmetric parts.
This still fails to tightly relate errors to residuals which is a key prerequisite for
rigorous a posteriori error estimates.

We summarize now some of the intrinsic obstructions to an efficient and accuracy
controlled numerical solution of such problems.

(1) The solution u of ([L.3) is a function of 2d — 1 variables (or even more in
non-stationary cases and realistic models involving energy levels). Hence,
the problem is high-dimensional and standard schemes become possibly
prohibitively inefficient.

(2) A non-trivial scattering kernel K would give rise to densely populated very
large system matrices when using standard discretizations based on local-
ization only.

(3) These obstructions are aggravated by the fact that solutions exhibit in
general only a low degree of regularity, in particular, when dealing with
highly concentrated and non-smooth boundary data. Standard a priori
error estimates involving classical isotropic Sobolev regularity scales, often
derived under unrealistic assumptions, are therefore not very useful for
controlling accuracy.

The primary objective of this paper is to address the above issues and develop
accuracy controlled schemes and corresponding stability notions. We confine the
discussion to stationary problems but remark that the concepts carry over to time-
dependent problems. In fact, unsteady problems become conceptually easier as it
will become clear later (aside from having to deal with even more variables).

The numerical results in Section [ indicate that the proposed stability concept,
closely intertwining the continuous and discrete setting, produces meaningful phys-
ical results without explicitly imposing additional structure preserving measures.

1.3. Conceptual roadmap. The approach proposed in this paper is based on the
following steps:

(I) Identify a pair of Hilbert spaces U, V over D x S for which (L.2)) permits
a stable variational formulation (see Section R.1] for the precise meaning)
where the (infinite-dimensional) trial space is to accommodate the solution
of (1.2). Stability means that this variational formulation identifies the
operator B in ([L3) as an isomorphism from U onto the dual V' of the
(infinite-dimensional) test space V.

(ITI) Contrive an “ideal outer iteration”

(1.5) Uns1 = Up + P(f — Bup), n=0,1,2,...,

that converges in U to the unique solution u of (L.2).

(III) Realize each iteration step approximately within dynamically updated error
tolerances that are judiciously chosen so as to guarantee convergence of the
perturbed iteration to the exact (infinite-dimensional) solution u of (L.2]).

Steps (I) and (II) require analytic preparations which the numerical method is
based upon while numerical aspects only enter in Step (III). The contributions of
this paper culminate in Theorem [4.1] which we informally state here as follows.
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Main contribution. We contrive and theoretically justify a numerical algorithm
that realizes Step (I11) of the roadmap and prove that for any target accuracy e > 0 it
generates an approrimate solution ue of (L3) that deviates from the exact solution
in L2(D xS) by at most . Since the algorithm progresses from coarse to successively
finer accuracy levels termination at any stage comes with a current error certificate.

This program relies on two points that guide the subsequent discussions. At no
stage is there ever formulated beforehand any fixed discrete problem but discretiza-
tions are formed adaptively at each stage of the (perturbed) outer iteration ([L3]).
For this to work it is crucial that the accuracy of a current approximate solution
can be rigorously quantified. The perhaps closest relative to the above roadmap
are adaptive wavelet methods along the lines of [10]. However, these schemes rely
essentially on symmetric variational formulations of Galerkin-type and precondi-
tioning on the infinite-dimensional level results from finding a Riesz basis for the
energy space. In the present context suitable variational formulations turn out to be
intrinsically unsymmetric. In fact, obtaining suitable a posteriori error bounds, will
be based on unsymmetric stable variational formulations of Petrov—-Galerkin-type
for (I.2) and corresponding pure transport problems (L4); see also [12]. A central
tool is the Banach—Nec¢as—Babuska Theorem that is briefly recalled in Section 2.1]

1.4. Layout. In the remainder of this section we describe the organization and
layout of the paper following Steps (I)—(III).

ad (I) Since, depending on the optimal parameters, solutions to (L3) may exhibit
discontinuities we opt to choose U := Lo(D x S) = Lo(D) ® Lo(S) as trial
space. For a variational formulation to be stable the (infinite-dimensional)
test space V must then be different from U. As shown in Sections 2.2H2.4]
for the regime of problems considered below a proper test space warranting
stability is determined by the graph norm of the pure transport operator 7.
Moreover, as a preparation for Step (II), we derive in Section [2.5] bounds
for |[T7'K| 2w,y in terms of the optical parameters.
ad (IT) With (I) at hand we identify in Section Bl (infinite-dimensional) precondi-
tioners P € L(V',U) that warrant convergence of (L5) in U and render
Step (IIT) practically viable. In particular, we identify two problem regimes
of dominating transport and dominating scattering, depending on whether
T~'K is a contraction in £(U,U) or not; see Sections B.1] and [3.21
ad (ITT) The remainder of the paper is devoted to Step (III). In Section 4l we identify
core routines needed for the approximate realization of ([L.3]) as well as error
tolerances these routines need to meet in order to guarantee convergence
of the perturbed outer iteration to the exact solution. Again we have to
distinguish first the two regimes of dominating transport or scattering in
Sections [4.1] and [4.2] respectively, in order to formulate then the main
algorithm in Section [4.3] that covers both regimes.

We stress that one never has to invert a dense system involving a discretization of
the global operator K. Instead an error-controlled application of C is needed. While
most numerical studies treat either local problems or simple kernels like constants
we make a point on including non-trivial scatterers. In Section [ we present a
scheme based on Alpert wavelet representation of K and low-rank approximations;
see Section [5.21
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As shown in Section [3] the application of the preconditioner P in (3] is ulti-
mately reduced to the error-controlled approximate inversion of the “lifted” pure
transport operator 7 (acting on functions on D x S; see (2.11)), discussed in Sec-
tion[dl This makes essential use of recent results from [7,[13] where rigorous sharp a
posteriori error bounds for linear transport equations are derived for Discontinuous
Petrov-Galerkin (DPG) schemes.

Remark 1.1. When progressing with the (perturbed) outer iteration, target ac-
curacies decrease step by step so that one starts initially with very coarse DPG
discretizations. The only linear systems to be solved in the course of such a nested
iteration are the symmetric positive definite sparse DPG systems for the spatial
problems which are always kept as small as possible depending on the current tar-
get tolerances. The size of systems that need to be inverted is always significantly
smaller than the number of overall generated degrees of freedom.

Finally, we present in Section [ some first numerical experiments as a proof of
concept. They demonstrate, in particular, the crucial role of adaptivity in the trans-
port solver. In fact, the number of degrees of freedom shown in Figure [7 already
for two spatial dimensions indicate that realizing the required error tolerances with
uniform spatial grids would be infeasible.

When the specific value of a constant does not matter we frequently employ
the notation a < b to express that a is bounded by a fixed constant multiple of
b independent of all parameters a and b may depend on, that are not explicitly
mentioned.

2. STEP (I)—VARIATIONAL FORMULATIONS AND WELL-POSEDNESS

2.1. Stability. Our approach relies on appropriate wvariational formulations of
(L3) which allow us to interpret (L.3) as an operator equation

where B is induced by this variational formulation as a linear mapping from an
infinite-dimensional trial space U to the dual V' of some (infinite-dimensional) test
space V (see Section [L3] (I)). Here the spaces U, V host functions of both the
spatial variables x and the parametric variables s.

Denoting by £(X,Y) the space of all bounded linear operators from X to Y,
the objective is then to establish well-posedness of (2.1) which means bounded
invertibility of B or, more precisely, boundedness of the condition number

kv (B) = Bl w1 B™ oo o-
Specifying the precise mapping properties is therefore the central objective of this
section. The choice of the (Hilbert)spaces U, V tells us under which assumptions
on the data a unique weak solution exists and in which norm the accuracy of
approximate solutions is measured.
A well-known tool to be used in this context is the following result by Banach—
Necas-Babuska which we recall for the convenience of the reader.

Theorem 2.1. Assume that q(-,-): X x Y — R is a bilinear form on the Hilbert
spaces X, Y (with norms || - |x, || - |v). The validity of the following properties:

(1) q(-,-) is continuous, i.e., there exists a C < o0 such that

la(w, 2)| < Clwlx|zly, weX, zeY;
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ADAPTIVE SOLUTION OF RADIATIVE TRANSFER EQUATIONS 1611
(2) there exists a ¢ > 0 such that

(2.2) inf sup _a(w.2) >
weX zey [wlx|z]y
(3) for each z € Y\{0} there exists a w € X such that ¢(w, z) # 0;

is equivalent to the solvability of the problem: given f €Y’ find u e X such that
q(u,v) = v, f), veY.

Moreover, one has the stability relation

=

Julx << Sy

Note that condition ([B) can be replaced by a second inf-sup condition (2.2]) with
the roles of X and Y interchanged.

Denoting by Q the operator from X to Y induced by ¢(,-), the above theorem
says in particular that

In.| Q)

kx,y(Q) <

2.2. Variational formulations of the pure transport problem (2.3). As in-
dicated under ad (I) in Section [L.3] a crucial role is played by a suitable weak
formulation for the pure transport equation

(2.3) 5 Vu(z,3) + o(z,5)u(z,3) = f(z,3) for almost all (z,5) e D x S,
defined on the phase space D x S, where, in the following:
(2‘4) o =0, HUHLOQ(DXS) < o0.

We consider first corresponding fiber problems obtained by freezing the transport
direction s € S. In favor of possibly low regularity requirements on the solution, we
follow [12]. Formally applying integration by parts yields the variational problem

25) s =

DU(U('7§)U—§-VU)dm: _f

n-§uvdx—|—‘[ fode
oD D

for test functions v from a suitable space yet to be determined. In fact, the left
hand side is now well-defined for u € Ly(D) and v € H(3; D), where
(2.6) H(3;D):={ve Ly(D)|3-Vve Ly(D)}
is a Hilbert space endowed with the norm
[0l @my = 1ol ) + 13- VoIl m)-

However, for v € Ly(D) the trace on D is not well-defined. Introducing the closed
subspaces

(27) HO,Fi(g) (g, D) = CIOSH,” {7) € Cl(D) | W}Fi(g) = O},

H(3;D)

and restricting the test functions to Hyr, (z)(3; D), the boundary integral on the
right hand side of (2.5) extends only over I'_(8). Thus, prescribing inflow boundary
data g € Lo(I'—(8),n-3), the weighted Lo space on I'_(3) with weight |n-3|, a weak
formulation of (2.3)) is to seek for

(28) U(g) =U := LQ(D), V(§) = H07F+(g) (3’7 ]))7
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u = u(3) € U(S) such that

a(u,v; §) = JD u(o(-,3)v —35- Vo) da

(2.9) = L " n-sgudz + (v, fy = (v, F), wveV(3).

Here (v, f) = (v, f)v,v stands for the dual pairing between V" and V'. In particular,

Dirichlet boundary conditions become natural boundary conditions which is an

advantage when the domain of the inflow boundary portion varies with s because

they need not be incorporated in U. In this setting, at least formally, the trial space

U is independent of § while the test space V = V (§) depends essentially on 3.
The operator Tz induced by a(u,v;3) through

(E"LU)(’U) = CL(’LU, v; §)’ we L2(D)7 vE HO,F+(§) (ga D)7

defines a bounded linear operator from Ly(D) to (Hor, 5 (5; D))". Accordingly, we
have for its (exact) adjoint

7;9‘* € L(HO,F+(§) (57 D)a LQ(D))a <wa 7};‘*U> = G“(wa V3 §)a
w e LQ(D), v E H0,p+(g)(§; D)

Before addressing the invertibility of the operator 7z we consider the “lifted”
versions viewed as functions of x and ; see [12]. The role of H(3; D) (see (2.6)) is
now played by the space

H(DxS)={ve Ly(D x8)|5-Vve Ly(D x S)}.
The space H(D x S) becomes a Hilbert space under the norm

(2.10) Wres = | (5 Vo@D + o) dods.
X

Likewise, the counterparts to the spaces (2.7)) are given by the closed subspaces
Ho £ (D x S) = clos|.|,; ;s {V € C'(D xS) | v|r, =0}
The “lifted” bilinear form
a(w,v) = J- a(w,v; 8) ds
S

allows us to define, in analogy to the above fiber versions, T by

(2.11) (Tw,vy =alw,v), welU, veV,
where
(2.12) U= Ly(D x S), V= Hy (D xS).
Thus, the variational problem: find u € U such that for any f € V'
(2.13) a(u,v) =<v, ), vevV,
is equivalent to the operator equation

Tu=f,

where T is viewed as a mapping from U into V'.
The invertibility of the fiber operators 73 and the lifted version 7 will be seen
to be an immediate consequence of the following norm-equivalences; see (2.10).
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Theorem 2.2. Under the assumption (2.4) one has

1750 L,y ~ [0l EED), veV(3) = Hyr, (D), 5€8,
IT*v| Ly xs) ~ vl EDXS); veV = Hy(D x8),
as well as
ITsv) L,y ~ V] z@ED) veV(3) = Hyr (5 D), 3€8,
(2.14)
ITv]z,mxs) ~ vlamDXs), veV =Hy_(D x8),

where the constants in the first line are independent of s € S and depend only on
Ominy Omax; and Z = dlam(D)

In principle, these results have been already shown in [12]. We return to a proof
in the next section in order to exhibit the dependence of involved constants from
the optical parameters which will be needed for the numerical scheme.

As a consequence of Theorem 2.2] we obtain the following results.

Corollary 2.3. Assume that (2.4) holds. Then there exist constants 0 < ¢, C' < o0
such that for U(3), U, V(3), V defined by [2.8), [212), respectively,
IRl eweveny 1Tlewyvy <C Tz ewveywe) IT e <c

Hence, the variational problems [2.9), [2.13), respectively, have unique solutions
that depend continuously on the data.

Proof. First note that Theorem [2.2] implies that
(2.15) oll7 = 1750 Loy ol = 1T*v] L, xs)

are equivalent norms on V(8) = Hor, (3 (5;D), V = Hy (D x S), respectively.
Endowing V' (5), V with these norms, observe that

sup a(w,v) _ (w, T*v)
weU |wlo  wer vl

= [T*ollor = [T*v|v = [|vll7=.
Since by ([2.14)), T is injective, and hence T* is surjective, we obtain

awo) _ (Twwy (w0l
- — —_— =
vev [Vl wev llvllrs wev vl Jwl,oxs)

= HwHLz(DXS) = |w|v,

which says that ¢ = C' = 1 and hence, by Theorem [2.1]
Ryu, vt (T) =1

for U, V as in ([2.12)). The treatment of the fiber operators 7z is completely analo-
gous. Hence, with the choice (2.13) of norms ([2.9) and ([2.13) are perfectly condi-
tioned, i.e., the operators Tz, T are even isometries between the respective pairs of
spaces. This completes the proof. O

Remark 2.4. Later, both the fact that the fiber operators Tz as well as the lifted
versions 7 have bounded condition numbers will be used in the envisaged numerical
scheme.

This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.



1614 WOLFGANG DAHMEN, FELIX GRUBER, AND OLGA MULA

It will be useful to clearly distinguish the two above variational formulations.

Variational formulation (F1): determined by the combination of the bilinear
form a(-,-) from ([2.9) with the pair of spaces U, V it is supposed to act on, namely

a(u,v) = J u(z,3)(o(x, S)v(z,3) — 3 - Vo(z,3)) de ds,
(F1) DxS

U=L2(D><S), V=H0,+(D><S).

Variational formulation (F2): determined by

a(u,v;3) = JD(§- Vu+o(-,Su)vde, alu,v) = La(u(-, 3),v(+,9);9) ds,

(F2) UG) = Hor_5(%D),  V(E) =V = Ly(D),

U= HO’,(D X S), V= LQ(D X S)

Endowing U = Hp (D x 8) with the norm ||w||7 = ||Tw|L,bxs), the same
type of argument as in the proof of Theorem [2.3] again combined with Theorem [2.2]
yields the following result; see also [12].

Proposition 2.5. For data f € La(D), La(D x S), respectively, the variational
problems

(2.16) a(u(s),v;8) =<{v, f), veV(§), se8S, a(u,v) =<{v, f), wvev,

have unique solutions in U(3), U, defined by (E2), respectively, which depend con-
tinuously on the data.

Remark 2.6. The solutions in (2.16]) are required to have more regularity than in the
first version (1)), requiring, in particular, that f € La(D x S). Moreover, boundary
conditions on I'_(3), T'_ are now essential boundary conditions that need to be
built into the ansatz. Our interest in the formulation ([2) is a duality argument to
be used later for the variational formulation of the full equation (L3).

2.3. Norm equivalences. We establish next the norm equivalences in Theorem
2.2l As indicated earlier, a main reason for revisiting the proof is to prepare for
Section [2.5] by determining the dependence of constants on the optical parameters.
We use similar arguments as in [16] (see also [12] for related discussions).
Let the time of escape of free moving particles from D be
ly(z,3) =1inf{t > 0|z + t5 ¢ D}.
Then,
(x,8) =L_(x,3) + L (x,3)
is the length of the longest line segment through z in direction § completely con-
tained in D and

/= sup {(z,3) = diam(D)
(z,8)eDxS
is the maximum time of escape. For a given § € S, we can express any z € D
in terms of characteristic coordinates as follows. Denoting x_(z,3) € I'_(3) the

intersection of the line x + t3, t € R, with I'_($), we can write

r=z_(z,3) +{_(x,3)3.
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In these terms, define for v € Ly(D x S) and almost every z = z_(z,3) +4_(z,3)5 €
D, z_(z,5) e T_(5)

w(z,3) = w(zx_(x,3) + £_(z,3)3,35)

L (z,3) 0 (2,3) N =p =
(2.17) - f VT o @R, (0 (1 3) 413, 3) dr.
0

One readily verifies that w as well as Tzw(-,3) = v(-,3) belong to La(D x S).
Moreover,

I TwlZ0xs) = L | Tzw (-, 3)IZ, ) 45 < CilwlFps),

where C7 depends on oy,ax, where we abbreviate

Omin = inf  o(z,3), Omax = sup o(z,3).
(@,8)eD xS (x,3)eD xS

We first derive a bound on 7! as an operator mapping Lo(D x S) into itself.

Lemma 2.7. If 0 < 0 € L®(D x S), then T~ ! is a continuous operator from
L?(D x S) to L*(D x S) and

~ 2 R
(2.18) |7 1H£(L2(D><S),L2(D><S)) < ZT < min {f, A/ 5/2Umin}-

Defining the formal adjoint of T, by §i,  «(T*v)wdzds = {, ((=35-Vv+ov)wdzds,
the same bound holds for |T~*||z(r2(Dxs),L2(DxS))-

Proof. For v e Ly(D x S), we consider w as defined in (2.17). One readily checks
that w satisfies ([2.13]) for v = f. For (x,3) = (z— +¢_(x,5)$,3) and 0 < £_(z,3) <
l(x_,3), it follows from (2.17) and the Cauchy-Schwarz inequality

, 0z ,3) o - oz 3)
|w(z,3)|” < J e 20 o(2-+65.5)dd ;. f v(z_ +73,3)%dr | .
0 0

Since
L(x—,3) (e ,3) L(z_,3) t(z_,3) _ p—26(x—,3)0min
J e—2ST o(x_+03,5)do dr SJ 6_2XT Omin d6 dr = 1 e
0 0 20 min
1 — ¢ 2¢omin
~ b
2Umin
we derive
_ _Zéa'min e(m—>§)
) l1—e N
(2.19) |lw(z,3)|" < ——— |v(x_ +r$,3)|*dr.
2Umin 0

Integrating (2.19) over D x S,

(x3)
- N2 |=
|\w”%2(st) = J Jt |lw(z_ +t3,3)|" |3 -n|dtdl'

(z_.,3)er_ Ji=0
1— 6—220,,,“, 0(x_,3) pl(xz_,3)
< —J J J |v(z_+78,3)[?dr|s-n|dtdl_
20 min (w_,)er_ Jt=0 r=0
1 — 672tfamin
Y —T
20 ”v”Lz(DxS)a
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1616 WOLFGANG DAHMEN, FELIX GRUBER, AND OLGA MULA

where we have used that SZ(L’S) dt < 7 for all (z_,3) € I'_ to derive the last

bound. This yields the first bound for |7 z(z2(bxs),22(Dxs)) given in (2.18).
The second bound follows directly from the fact that /(1 — e~ 27min)/(20:n) <
min {22,2/(2011“)} since 1 —e™® < min{1, 2} for any 2 > 0. The argument for 7*

is the same. O

Proof of Theorem 2.2l The inequality (2.18]) says that

o ITvllL,xs), ve Ho—(DxS),
(220) HvHLz D><S) < min { 3 6/2amin}
IT*v||L,xs), v € Ho (D xS).

Integrating (2.19) only over x € D leads to analogous statements for the fibers Tz,
T2*, namely

| Ts0]Lym),  veEHor (D),
HUHLQ( < mln{ 6/ Umln} seSs.

|5 v L), ve Hor,s(8D),
We infer from ([2.20) that, for instance,

I T5vlza o) < 13 Vol m) + Tmaxlvl o) < (1+ 0ha) 0] 1 s:0)-

Conversely, one has

v 5Dy < 15 Voll,my + [vll,m) < [T3vlln,m) + (14 omax) 0] L, )

< (1 + (1 + Omax) min {g, \/5/2@:}) I T50] 25 (p)

The remaining assertions of Theorem [2.2] are derived analogously. ]

Remark 2.8. | T £(z2(bxs),L2(Dxs)) is small when either diam(D) is small or when

Omin 18 large relative to £.

2.4. Variational formulation of the radiative transfer problem (L.3).
Throughout this section we let g = 0, i.e., we treat homogeneous inflow boundary

conditions. Also, we assume that the kernel K satisfies

(2.21)

K(2,3,3)>0, (2,3,8)eDxSx8S, KeLyD;LySx8))cLyDx8Sx8S),

so that we have
(2.22) K, K* e L(La(D x S), La(D x S)).

Following the same lines as before for the pure transport operator 7 we can define
the operator B by

(2.23)  b(w,v) = Bw,v) = J a(w(-,3),v(-,3);3)ds — k(w,v) YweU veV,
S
where k(w,v) = (Kw,v), and the spaces U, V are chosen according to the formu-

lations ([1), (E2)), respectively.
A key property in what follows is accretivity of B. In the present context this

means that there exists some positive a such that

(2.24) (Bv,v) = O‘HUH%Q(stw ve Hy_(D x S).
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We postpone for a moment listing conditions on the optical parameters which imply
([2.24) but present first the central result in this section.

Theorem 2.9. Assume that (2.21) and [224) hold. Then, for either one of the
two formulations (1), (F2) and any f € V' the problem: find we€ U such that

(2.25) b(u,v) = (fyv), veV,
has a unique solution satisfying
lulo < 1f]v,

with constants depending only on the optical parameters.
The operator B, defined by [2.23)) is in either setting a linear norm-isomorphism
from U onto V', i.e., has a finite condition ky v/ (B) < 0.

The proof makes use of the following norm-equivalences.

Lemma 2.10. Let T, B’ denote the formal adjoints of T, B, respectively. Then,
under the assumptions ([2.28), (2.21) on o and K one has

(2.26) lwlamxs)y ~ 1Bwlr,mxs)y ~ [Twlr,wxs),  w e Ho—(D x S),
lwlamxs) ~ 1B'wr,mxs) ~ IT'w|rymxs), we Hoy (D xS),
where the constants depend on the optical parameters.
Proof of Lemma 210l By (2.22), we have for some constant C
|Bw|r,mxs)y < | Tw|r,xs) + Cillw|r,mxs) < (14 C102) [ Twll L, mxs),
where we have used (2.20) in the last step. Conversely, again by ([2.22), ([2.24), and
using Young’s inequality yields
ITwl ryoxs) < 1Bw|pymxs) + IIKw] L, mxs)
< [Bw|z,mxs) + Crlw]r,mxs)

C
< |Bw|p,mxs) + \/—%(Bw;w)m

C1 (|Bw|r,mxs
< 1Bulzaoxs) + = (g2 + 8wl )

Va

4 <||BWHL2(st)

< |Bw|p,mxs) + 7o % + 5C2HTU)HL2(D><S)),

where Cy = min {é, A/ f/amin} is the constant from (2.20). Choosing ¢ small enough

to ensure that C1Ca0/a < 1, the relation |Bw| ,pxs) ~ [|Tw| 1, nxs) follows. The
first line in (2.26]) follows then from Theorem [2.2] proving the assertion for B. The
argument for B’ is analogous. |

We are now in position to prove Theorem [2.91

Proof of Theorem 2.9 First, under the given assumptions we clearly have for either
formulation (ET) or (E2) with respective pairs U, V, that B is bounded

Be L(UV").
Then, it follows from Theorem 2.1l and (2.24) that under the above assumptions

(2.27) 1B~ £(L2(Dxs),L2Dxs)) < @'
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To prove the last statement of the theorem note that in view of (2.26), injectivity
of T and T’ implies injectivity of B and B’. Suppose B were not surjective. Then
there exists a wg # 0 in Ly(€2) such that (Bw,wpy = 0 for all w € Hy_(£2). By
boundedness of B and denseness of Hy _ () in L2(2), this leads to a contradiction
to (2.24). We can argue in the same way for B’ to conclude that B and B’ are
bijections for their respective pairs of spaces. This holds by duality, since (B')*
agrees with B as a mapping from Lo (Q) to (Hy —(2))’. In view of Lemma[2.10] the
proof of Theorem 2.9 can now be completed with the aid of Theorem [2.1]in exactly
the same way as the proof of Corollary [2.3] |

When the specific choice of the settings (E1) or (E2) is clear from the context,
we view (2.28]) as an operator equation

Bu=f

with data f in the respective dual space V.
We discuss next two general conditions on the optical parameters that entail
[2.24). Defining the kernel averages

- =/ -/ — —/
a(x,38) JK ,3,8)d3" and &'(x,3) fKa;ssds7

a first frequently studied general class of optical parameters is signified by the fact
that there exist 0 < a, M,, < o0 such that for all (z,5) e D x S,
(2.28)

o(z,3) —a(z,3) >, o(x,3) -0 (2,3) >, &(x,35)<M,, 7' (x,3)<M,.

Note that this implies that the absorption coefficient ¢ is not allowed to vanish in
D. For this class we recall the following well-known result (see, e.g., [14, Chapter
XXI, §2, Theorem 4]).

Proposition 2.11. If o and K satisfy assumptions (2.21) and 2.28), then the
operator B is accretive, i.e., for any v e Hy_(D x S),

(B’U,’U) = aH’UH%Q(DxSV
where the constant a is the one appearing in (2.28)).

For the convenience of the reader we sketch the simple argument. It follows
from conditions (2.28), .21) that (v — Kv,v) > afv|], g on L2(D x 8),
which, combined with the accretivity of A on Hy (D x S) , defined by (Aw,v) =
Spus 8- Vw(z,3)v(z,8) dzds, ie., (Av,v) = 0 for all v € Hy (D x S), yields the
conclusion.

We emphasize that condition (2.28) is not necessary for (2.24)) to hold as can be
seen from the following class of frequently used kernels with slightly more specified
structure. Consider
(2.29)

K(2,3,3)=r(2)G(,3), GE,5)=GE,35), GE§)=0, 5,5€S, w=kre>0,

with the normalization

JG d*’—JG(g,g’)dgzl, 3,7 es.
S
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Once the integral over one argument is a constant, this latter relation can always
be realized by rescaling x. Assuming always that ds is the Haar measure, it also
follows that {¢ < G(3, §)dsds’ = 1. Moreover, we split

0 =04 *+K,

where o, > 0 is the so-called absorption coefficient. Hence in this case o(x,3) —
g(x,38) = o(x,3) — d'(x,3) = 04(x,3) so that (2.28) does not hold whenever o,
vanishes somewhere in D. On the other hand, let C; < La(D x S) be the cone of
non-negative functions in Lo(D x S) (in the weak sense) and define

Kov = L G(-,3)v(F)ds.
Under the above conditions the largest eigenvalue of Ky is one, it is simple and has
the constant as the corresponding eigenfunction. Therefore,
sup { (v, Kov) | v € C4 n Ho—(D x S), [v]r,mxs) = 1} = B < 1.
Thus, the accretivity condition (2.24]) holds with
a = (04)min + Ko(1 — ),

which is strictly larger than zero even if the absorption coefficient vanishes in D.

In principle, one could base a numerical method on both formulations (ET), (E2),
where the latter one would seek approximations in a stronger norm. However, in
what follows we focus on the setting (1) where the solution is sought in U =
Ls(D x S) and where boundary conditions are natural ones.

Remark 2.12. There is of course an alternate way of establishing bounded invert-
ibility of B € L(U, V') whenever the condition

(2.30) 1T Kl ey <p<1

holds. While continuity of B is immediate, a straightforward Neuman-series argu-
ment shows that then

1B ey < (L=p) T e o)

We refer to the regime of problems where (2.30) is valid as the weakly transport
dominated case.

In addition, condition (2.30) will be seen to be crucial for the identification
of preconditioners P in the idealized iteration (LA). We therefore address the
derivation of bounds for [B~!| .1y in the next section.

2.5. Contractivity of 7 1K. We begin with the following result taken from [14}
Chapter XXI, §2, Lemma 1].

Proposition 2.13. Assume that 221) and [2.28) hold. Then K maps Ly =
Ly(D x S) boundedly into itself, with

(2'31) HKHL(L27L2) < (MaMtlz)l/Q’

where M,, M. are the constants from ([2.28). Moreover, K maps Ly (D x S), the
cone of non-negative functions in Ly(D x S), into itself.
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To specify bounds for the operator norm |7 1K| c(u,v) we introduce the quan-
tities

(2.32) v:i= sup {
(x,8)eDxS

o0 7o) o Ao

U(x,§)7 U(xag) Omin

Lemma 2.14. Under assumptions (2.28)) on the optical parameters,
(2.33)

HT_IICHg((LU) < min {Cv (Umax - O‘)/Umina (]\Ia‘]w(/z)l/2 min {g’ M}} ’

Proof. Combining (2.31) and (2.18)) yields that

I Kl < (oM min {1.7/0/20 )

To prove that |T'K|zw,uy < min{¢, (0max — @)/0min}, we proceed as follows.
For any ¢ € Lo(D x S) we have Kp € Ly(D x S) so that there exists a unique
w e Ho, (D x S) such that Tw = KCp. Thus, it suffices to prove that ||[w]z,pxs) <
min{(, (0max — @)/Omin}|@[ £, (D xs)- Since A is accretive on Hy (D x S), we have

(2‘34) (lCcp,w) = (Aw>w) + (Uwvw) = (Uwvw) = UminHwH%Q(DxS)'
Furthermore,
Kpw) < [ Ju@ DK@ F Dol )] dedsds
DxSxS

1/2 1/2
< ( J lw(z, 3)[25" (x, 3) da:d§> ( J <p(x,§')|20(:c,§')dxd§')
DxS DxS

< min{omax — &, Yomax Hw| L2(0xs) 1) L2 (D)5

where we have used Cauchy—Schwarz’ inequality. Combining this with (2.34]) yields
the desired inequality ||w]z,pxs) < min{¢, (0max — @)/Fmin} @] LoD x$)- a

It follows from (2.33) that having

min {C, (0max — @)/Cmin, (MaM(;)l/2 min {é, A/ é/2o’min}} <1

is a sufficient condition for 7!/C to be a contraction. From this we can distinguish
two different “physical regimes” that ensure contractivity:

e having ¢ < 1 or (0max — @)/0min < 1 can be interpreted as quantifying the
dominance of transport with respect to scattering with o(z,3) not varying
too much in its arguments. This condition is a quantification of the well-
known fact that DOM converges at a slower rate when collisions become
more and more significant with respect to transport.

e having (M, M!)"? min {l?,«/l?/%fmin} < 1 happens when ¢ = diam(D) is

sufficiently small or oy,in/M, M/, sufficiently large, which is another expres-
sion to quantify how much transport effects dominate with respect to the
scattering.
Of course, these conditions cannot be expected to hold in all relevant application
scenarios. However, they are going to play a crucial role in what we call precon-
ditioning on the continuous level, ensuring convergence in the infinite-dimensional
continuous case.
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3. STEP (II)—IDEALIZED ITERATIONS

We are now prepared to identify viable outer iterations of the form
(3.1) Upt1 = Up + P(f — Buy), n=0,1,2,...,
(see Step (II) in Section [L.3). In the following, we will work with the pair of trial
and test spaces U, V, given in (E)), that is,
U= LD x8S), V =Hy (D x9S),

where we abbreviate in what follows |[v[y = [v|gpxs). Of course, the precondi-
tioner P € L(V',U) is to be chosen in such a way that

(3.2) J3p < 1 such that |Jupy1 —ullv < plun —ulv, neN,

which holds if and only if [id — PB|w,r) < p < 1. Note that for the variational
formulation (F1) the residual f — Bv is, by Theorem [2.9] well-defined in V' for any
velU.

Recalling Remark 2.12] we consider two distinct problem regimes.

Remark 3.1. The operator equation Bu = f implies homogeneous inflow-boundary
conditions. Incorporating inhomogeneous boundary conditions could be treated
by taking any function w in the domain of B that satisfies the required boundary
conditions and subtract f, = Bw from f reducing the problem to homogeneous
conditions.

3.1. Dominating transport: |7 'K|zw,) < p < 1. If we have the contraction
1T Klewoy <p <1,

then P := T~! is an admissible preconditioner. In fact, iteration (3.I) becomes

(3.3) Ups1 = Up + T Hf = Buy) =T (Ku, + f), neNy,

and obviously satisfies (8.2)), ensuring convergence in U to the solution u of the
radiative transfer problem

Bu = (T — K)u = f.
In particular, it follows that for any initial guess ug
(3.4) lu =l < p"|u —uollu-

3.2. Dominating scattering: |7 'K|,,) = 1. Throughout this section we
continue to assume that ([2.24) holds with some a > 0.

To find a substitute for the preconditioner P = 7! of the transport dominated
regime, consider for some fixed a > 0

To =T +aid, By, =T, — K,
and take P := B, ! in (3.I)). This leads to the (ideal) iteration
(3.5) Ups1 = Un + (To — K)Hf — (T — K)uy) —aBafl(un—Fa*lf), n € Np,

where we have used that (7, — K)™ (T — K) = (T, = K) (7o — K — aid) = —id +
a(Te —K)7t

Thus, to ensure convergence we need that |a(7, — K) ™| 2w,y is a contraction.
Note that this is satisfied for any a > 0 since, by Proposition 2.11] we have that
(Bav,v) = a + a, which by Theorem [2.9] gives

— i1 <2
(3.6) la(Ta =) ewoy < o <1
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So (B.5) converges in U = L2(D x S) to the true solution w with the error reduction
rate a/(a + «) for any fixed a > 0.

Remark 3.2. Notice that P = B! can be derived from a different perspective.

a
Consider the time dependent initial-boundary value problem

ou+ Tu—Ku=f, u(0,-) = v’ in D, ul, =0,
(where f, T, K are still independent of t). Denoting by u,, the approximation of
u(ty), t, = n7, its backward-Euler semi-discretization in time reads
Upi1 — U
L Ty — Kty = f, ne N,
which gives
(T_lid+T_]C)’un+1 = T_lun +f, ne No.
This coincides with ([8.5) for a = 771

4. STEP (III)—PERTURBED ITERATIONS AND THE MAIN ALGORITHM

The practical realization of the scheme boils down to two tasks:

(T1) Formulate a perturbed version of algorithms [B.3) and [B.A) with suitable
error tolerances 1, that still guarantee convergence to the exact continuous
solution.

For this task, it will be convenient to use the following notational convention:
Given an operator G € L(U,Y), we denote for any n > 0 by [G,w;n] an element
in Y satisfying |[Gw — [G, w;n]|y < 1. Specifically, for our purposes we require a
routine to approximately apply the kernel, that is,

(4.1) [K,v;n] — 2z, such that |Kv — z,[|v <n.

Likewise the source is generally not given exactly and has to be approximated

(4.2) [f;n] — f, suchthat |[f— f,lv <n.
The approximation [f;n] of f depends on how the data are given. Finally, given a

right hand side g € V’/, we have to provide a transport solver
(4.3) [T ',9;n] = u, suchthat [u,—T 'glv <n,
where, as before, 7 is viewed as a mapping from U onto V’ with U = La(D x S),
V = H01+(D X S)
(T2) Specify how to realize the above routines in (A1), ([4.2), and (4.3).

In this section we concentrate only on (T1) and assume for the moment that the
routines (d.1)), (4.2)), and (4.3) are available. These routines are detailed later on in
Sections Bl and [6]

4.1. Dominating transport: |7 'K|u,v) < p < 1. An approximate realiza-
tion of the ideal scheme (B.3) is

(4.4) Uny1 = [T K, tnsnc] + [fing)inr], n=0.

In the following we take for simplicity ug = 0. Any other choice for ug that exploits
additional information would, of course, be possible. We choose the individual
tolerances proportional to

(4.5) M = (L+n)Pp"
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for some fixed 8 > 1 (8 = 1.5 in later numerical experiments). Specifically, we set

NK = Ki1Mn, Nf = K2Mn, N7 = K3Mn,

where the parameters k1, ko, k3 = 0 satisfy
(4.6) Cr(k1 + K2) + kK3 < 1,

with the upper bound || 7 2y vy < C7 from (2.18).
In addition we need an upper bound for |julyy. A first simple estimate that can
be obtained from (2.24) or (2.27)

(4.7) luly < 1B~ e lflv < a7 flr.m).

Since this may be rather pessimistic when « is small we take

bo(’u) = 0471”f“L2(D)

only as an initialization which is refined during the course of the iteration based
on a posteriori information. In the following, we will work with

b1 (w) = min {by (u), [@n+1lv + (pba(u) +C(8))p" 1} n =0,

which is an upper bound that converges to |u|y .

We are now prepared to present a detailed account of the perturbed iteration
(4.4) in terms of the following Algorithm [I] called Adaptive Source Term Iteration
(ASTTI). We prove in Theorem [4.1] that for dominating transport ASTI[T, K, f;¢]
computes an approximate solution u. such that |u — u.||y < e.

Algorithm 1 ASTI[T,K, ;] — ue

1: Fix k1, K2, K3 according to (4.6]), fix 8 > 1, estimate p by (2.33), and choose
bo(u), e.g., as in (A.1).

2:n<0

3: Uy, <0

4: err <« bo(u)

5: b(u) < bo(u)

6: while err > ¢ do

7 N < (L+n)"Ppn

8: w — [, Up; K110 ]

9 g < [fir2m]

10: Up+1 < [T_lu w + g; K’S”n]
e o (pb(u) + C(B))p"

120 b(u) < min {b(u), sl + (pbu) + C(8)p" 1}
13: ne—n+1

14: end while

15: Ug < Up

4.2. Dominating scattering: |7 'K|.,v) = 1. For a given a > 0, the approx-
imate realization of the scheme (B.3) takes the form

an-ﬁ-l = [aBglaan_'_[ailf;nn];nn]v ’I’LGNo,

where the stage dependent tolerances 7, are chosen as in (4.5).
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To render the approximate application of the preconditioner a3, ! practical, we
choose the parameter a in such a way that the operator B, is transport dominated,
so that we can resort to the ASTI algorithm for its approximate inversion. To
that end, recall from (2.33) that |7 K|,y is estimated in terms of quantities
¢,v from (2.32). When T is replaced by 7, these quantities depend on a and are
therefore denoted for clarity by «,, (4. Since the quantities &, ¢’ are not affected
by the parameter a, we have

(Jmax - a)(amax + a)
(Umin + (1) (Umin + a) ’

Omax — &

Ya € (o <

Omin + @’
In view of the bound B.6) for |aB; | (v, by choosing the parameter a = a* as
the unique solution of

(48) a — (Ufnax — a) (Urnax + a)’
ata  (Omin+a)(Omin + a)

one obtains simultaneously
(4.9) la*Bdlcwwy < p* and [T 'Klzww) < p* for some p* < 1.

Thus, an error controlled application of the preconditioner a"‘Baf*1 is given for any
right hand side g and accuracy 7 as

[Big;n] = ASTI[Tox, K, g; n].-

Note that the algorithm consists now in nesting the outer iteration with an inner
ASTT iteration for the application of the preconditioner. It is thus straighforward
to formulate a general Nested ASTI scheme, where N-ASTI[B, f;¢] generates an
approximate solution u. such that |u — u.||y < € even when scattering dominates
in B (see Algorithm [2]).

4.3. Convergence of N-ASTI[B, f;¢].

Theorem 4.1. For any target accuracy ¢ > 0, Algorithm [2 terminates and its
output
ue = N-ASTI[B, f;¢]
satisfies
[u—uev <e,
where u is the exact solution of (L3]) with respect to the variational formulation

(F1).

Proof. We first consider the transport dominated case where [T 'Kl s,y < 1.
The algorithm then reduces to ASTI, that is,
ue = ASTI[T, K, f;¢].

Let u,, denote the exact iterates of (B.3) and «,, the ones from the perturbed version
(4.4). By the definition of the respective routines we have for given tolerances 7y,

K, 1y
Uni1 = Uni1 =T (Kup + f) = [T 1K, @ns ] + [f3 5] 07]
=T N (K(un = 1)) + T 1Kt — [K, @n;nc]) + T = [f507])
+ TN s ] + [fimp]) = [T UG, @ns ] + [fsnp)s ]
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Algorithm 2 N-ASTI[B, f;e] — u.

1: p — Estimate |7 'K 2,1y using upper bound of (2.33).

2: if p <1 then > Dominating transport
3: ue — ASTI[T,K, f;€]

4: else > Dominating scattering
5: Estimate a* from (4.8]), estimate p* from (4.9), fix 8 > 1.

6: n <0

7 Uy — 0

8: err « bo(u)

9: b(u) <« bo(u)

10: while err > ¢ do

" M (1 +1) A (%)

12: g < Up + [(a*)_lf; nn]

13: Uy = a*ASTI[Tox, K, g; €]

" err — (p*b(u) + (1 + a*)C(8)) (p*)"

5. () — min {b(u), |1 + ((p*)b(1) + (1 -+ a*)C(8))(p*)"1})

16: n<—n+1

17: end while

18: Ue < Up

19: end if

20: return u.

By the triangle inequality, bound (2.18) on |7 |z 1), and the properties of the
routines, we obtain

|uns1 = tns1lv < plun — @nllv + Cr(ne +np) + 07
For 1y = ug and with the choice ni = k1ny, 7 = Kany,, and N7 = k31, and (L.0),
we get
|uns1 — tnsav < plun — Unllu + 70,
which, by induction, yields

HﬂﬂJrl - unJrlHU 2 p Nn—j-
Specifically, taking the same 7,, as in (4.5) for some fixed 3 > 1, we obtain
(4.10) |ttt — Un+1HU<Zp7p" I1+(n—j4)P= Z (1+5)P<C(B)p"

=0

where ((8) = >,y 4P is the ¢-function. Hence, by triangle inequality

(4.11) lu = tns1lly < p"FHullo +¢(B)p"
Thus, whenever at the nth stage of the algorithm HuHU <b ( ), we conclude that

(412)  busr(w) = min {b, (), [isa o + (pba(u) + C(8))" '}

a bound for ||ully which converges to |uly. This ylelds the computable error bound
(4.13) |u = tni1fo < (pbusa(u) +C(8))p"

which completes the proof for the transport dominated case.
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For dominating scattering, denoting by u,, the exact iterates
Upy1 = a*B;,kl(un +(a*)7'f), neNy,
we readily obtain
U1 — g1 = [a* Byt + [(a%) 7 fimalimn] — @By (@ + [(a*) 7' f5 )
+a* By (wn + [(@*) 7 fima]) — a* By (un
+ (@) 7H) + a* By (U — un).
Hence,
ltns1 — unilu < a*nn + p*nn + p* |t — unfu-

We obtain as earlier with @y = ug

n

Hun+1 - 'U'n+1HU 1 +a* Z nn—j'

Specifically, taking 7, from (435) we get, on account of (B.4),

(4.14) Ju—anlu < (p*u—uollv + (L +a*)¢(B))(p*)" ™", neN,
and hence the same type of bound as in (4.11)) for the transport dominated case. O
Remark 4.2. The recursion ([{.12]) successively mitigates a possibly over-pessimistic

initial bound bg(u). It can be further improved by using the a posteriori bound
Ju —un o < ﬁuun — Up_1]ly. We also have (for n > 2)

lu —unfv < %{Han —Un-1|v + llun — v + lun—1 — ﬁn—IHU}

< 7ol = Bl + B+ )

which is a computable bound replacing |u—u,, |r. However, the calculation of these
a posteriori quantities would require storing two consecutive outer iterates.

4.4. Complexity. We conclude with some qualitative complexity estimates. Fur-
ther quantifications depend on the realizations of the involved routines. The number
n(e) of outer iteration steps required to realize |u — )| < € is given by

|Ing| + In(pb(u) + a*((B))
ne) = { [ In p| W '

(4.15)

As detailed in the subsequent section the approximate application of the scatterer
is typically dominated by the approximate inversion of the transport operator.
As a consequence, in either version of the outer iteration the computational work
per outer iteration step n is dominated by the computational cost costp(n,) of
the preconditioner. Hence, the complexity costz-1(¢) of solving Bu = f within
accuracy € can be bounded as

n(e)

costz—1( Z costp(n,).
j=1
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Assuming that costp(n) < 7~ holds for some positive 9 (which is actually realistic
as will be seen later), this yields

n(e) n(e)
costg-1(e) £ X, p (1 +5)" < (1+n(e) ), p7”
j=1 j=0

pfn(s)ﬂ

1—p?
where C = C(8, 9, p,u) is a constant depending on f, ¥, p and a bound b(u) for
|u—wuo|u. As aresult, the cost of approximately inverting B is, up to a logarithmic
factor, of the order of the one for the application of the preconditioner with the
same accuracy, that is,

< (1+n(e)?? < Ce™?|Ine|??,

costg1(g) < |Inel??costp(e).

The cost of the preconditioner, in turn, depends on the problem regime. For
dominating transport costp(e) = costy-1(e), while for dominating scattering the
approximate application of a*B,x within accuracy e requires (in the inner itera-
tion) invoking O(| Ine|/| In p*|) times an e-accurate transport solve, i.e., costp(e) <
costr—1(g)|Ine|/|In p*|.

In summary, the overall computational complexity for a given target accuracy
is essentially determined by the cost of error-controlled transport solves (provided
that a reasonably efficient approximate application scheme for the scatterer is at
hand). A posteriori bounds for transport solvers are therefore pivotal. Moreover,
since the target tolerances 7, are gradually tightened, early stages of the outer
iteration (and its preconditioners) require only correspondingly cruder accuracy
tolerances so that (up to logarithmic factors) the total complexity is dominated by
the cost of the last outer iteration step.

The remainder of the paper is devoted to realizations of [K,v;n] and [T 1, g;n].

5. THE ROUTINE [KC,v;7]

5.1. Introductory comments. The scheme ASTI requires the application of the
global operator I within dynamically updated accuracy tolerances. We present in
this section an efficient error-controlled approximate application scheme that makes
use of wavelet-compression and low-rank approximations. Fully non-linear versions
with even better scaling are postponed to forthcoming work.

We confine the discussion to the class of kernels of the form ([2.29), that is,
K(x,8,3) = k(2)G(3,3), G(3,5) = G(F,3), with G(3,5) = 0,5,5 €8S, k = kg >
0, and the normalization

J G(3,3)ds = J G(E,3)ds=1, 3,8 eS.
s s
In the following, we adhere to the notation
Kov = J G, )o(@) 7.
S

The simplest examples are isotropic and Rayleigh-type scattering which are, respec-
tively, of the form

G(EF) =[S, GGEF)=c(1+(E-7)?).
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Another variant of interest, used in [23|, is given in terms of the similar expansion

[e¢]
G(E3) =) aTu(3-9),
n=0

with a,, = 0 and T,, being the nth Chebyshev polynomial, T}, (z) := cos (n arccos(z))
for |x| < 1. It is shown in |23] Lemmata 2 and 3] that K is positive semi-definite
with this type of kernel.

In our numerical scheme we focus on Henyey—Greenstein-type scattering repre-
sented by

1 1-9° : —
oo o 2 o~3F lf dS = 17
(5.1) G%a§r={il*YfL2 o
ir A1 2—2yse)ez Has =2

where dg = d — 1 denotes the dimension of the parameter domain. This scatter-
ing model is widely used among physicists and was introduced in [21] to describe
anisotropic effects via the parameter —1 < v < 1. When v > 0, the scattering is
called forward-peaked and Ky is positive semi-definite. Moreover, for dg = 2 one
has the expansion

1
(1+72—2v5-§)3/2

o]
= NP5 F),
n=0

where P, is the Legendre polynomial of degree n. Note that the closer v comes to
one, the slower is the decay and the larger is the model error when replacing G by
a truncated expansion in favor of an efficient application of the scatterer to a given
input.

Our focus on Henyey—Greenstein-type scattering is mainly motivated by the fact
that varying the parameter v allows us to quantitatively investigate different scat-
tering regimes guiding the search for possibly different ways of exploiting sparsity.

The specification of [K, @; -] depends on the following input format of @ € La(D x
S). As explained in Section [6] @ is the output of a Discontinuous Petrov—Galerkin
transport solver. It is a piecewise polynomial of degree m, subordinate to some
current partition 8 of the spatial domain D and whose coefficients are piecewise
polynomials in the direction parameter s € S. Thus, @ has the form

(5.2) a@,3) = >, vriEeri(a),
TeB ielr

where the spatial shape functions @7, i € Zp are an orthonormal basis for P, (T)
and each parameter dependent coefficient vy ; is an element of Py (&) where & is
a partition of S. Hence,

(Ka)(@,3) = >, (Kovr)@)r()pr(x).
Temh,ieZT
The simplest realization of [K, ;] rests on computing n-accurate approximations
wr,; = [Ko, vr,i;n] to (Kovr,;) so that (by orthonormality),
(5.3) (K.an) = > wrikers,  [Kua—[K an]l, <n.
TePn,i€Llr

We focus therefore in what follows on the approximate application of Ky in the
domain S.
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5.2. Matrix representations of Ky, Alpert wavelets. Suppose that ¥ = {1, |
A € A} is an orthonormal basis of Ly(S) where A is a suitable infinite index set.
Then, defining

GY = (G ®1x)sxs = (¥a, Kotow)s, GY = (GXx) xvenr

one has

GEF) = ) Glada(@en (),

A NEA

ie., GY is an ezact representation of the kernel G and the associated operator in
terms of an infinite matrix. By orthonormality of ¥ we have

IGY = |G| ea(n).ea(n)) = 1Kol £(L(S),12(5))-

An n-accurate application of Ky will be accomplished by identifying a “compressed”
finite submatrix G%’ of GY that reduces the approximate application of Ky to an
efficient matrix-vector multiplication.

As an appropriate choice for ¥ we advocate so-called Alpert wavelet bases of (at
least) degree M from (5.2)). For the convenience of the reader we briefly recapitulate
some basic features of Alpert wavelets and refer to [1] for further details.

Starting from some initial partition &g of S (which could be the trivial one {S})
and fixing a rule for splitting each cell C' in a given partition into a fixed number
of “children” forming the refinement C(C) of C, repeated refinements generate an
infinite “master-tree” T whose nodes are cells and whose edges connect parents
with children. We call a finite subtree of T complete if a child of a cell C' belongs
to the subtree if and only if all of C(C) is contained in the subtree. We consider
only complete subtrees. Then the set of leaves of such a finite subtree forms a
so-called “admissible” partition & of S whose “refinement history” is determined
by the subtree, i.e., there is a one-to-one correspondence between such (possibly
very non-uniform) partitions & and subtrees Tg of T. The 3-dependent coeflicients
vr i, wr,; in (@10), (5.3) will always be piecewise polynomials of degree M on such
admissible partitions. We will make use of two different representations of such
piecewise polynomials as described next.

Let Py (C) denote the space of polynomials of (total) degree at most M over
the cell C. Given an admissible partition & of S, let Py;(S) denote the space
of piecewise polynomials of degree at most M, subordinate to the partition &.
A canonical basis for Py;(&) is obtained by associating with each cell C' € & an
orthonormal basis

(I)C = {q51, = XCPC,i | V= (C,i), PC,i € PM(C), 7 EIM = {1,. .. 7dlInIP)]w}},

which gives rise to what is sometimes referred to as the orthonormal scaling function
basis

e = U o ={o, |vele}, Te:={(C,i)|Ce6, ielu}},
CeS

to be always understood with respect to the uniform Haar measure on S induced
by a convenient parametrization, i.e., {¢ds = 1 and (v, w)s = {svw ds.

Alpert wavelets provide alternative bases for such spaces of piecewise polynomials
that encode “updates” obtained by passing to a refined partition. They are therefore
better suited for meeting variable target accuracies. Since Py (C) < Py (C(C)) one
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can determine an orthonormal set of piecewise polynomials in Py (C(C)). Setting
,_7M = {1, ey dlm(PM(C(C)) - dlmP]V[(C>)},

Vo= {) | A= (C,r), re Tu} < Pn(C(C))

spanning the orthogonal complement W(C) = Py (C(C)) © Py (C) between two
successive levels of piecewise polynomials. Obviously,

U= {)|reA}, A={N=(C,r)|reTu, CeT},

is an orthonormal basis for Ly(S). Clearly, for any admissible partition & of S
one easily identifies the subset g = {5 : A € Ag} < ¥ which forms a basis for
Py (6), namely

Ag ={A=(C,r)|reJu, CeTs}.

Alpert bases are easy to construct, in particular, for domains like S. It is well
known that changing from a scaling function representation of an element in Py, (&)
to its Alpert wavelet representation (and vice versa) can be done at O(#6) cost
with the aid of the fast wavelet transform. Accordingly, one can efficiently pass from
a scaling function representation of a compressed kernel to its wavelet representation
and vice versa.

Moreover, 1y, |A| > 0, have vanishing moments of order M + 1, i.e.,

(5.4) (P,Y2)s =0 VP ePy(suppiiy).

This has two important consequences. First, whenever a submatrix Gg’ of GY is
obtained by discarding entries GY ,, with [A[ + [X'| > 0 the corresponding kernel
G, still satisfies
G,(3,8)dsds = 1.
SxS
Second, (5.4) will be shown next to imply that GY is nearly sparse which pro-

vides the basis for an error-controlled efficient application of Ky through matriz
COMPTESSION.

5.3. Compression of GY. As a guiding example, let us consider the case d = 2
(two spatial variables) such that S is the unit circle and has dimension dg = d—1 =
1. Note that the Henyey—Greenstein kernel is then of the form

no_ / — 1 N _pn_p
Go(0,0) = c(Ha 0 0)(0.0), Halp) = y— oy and 00,00 =60,
1—? 2
Wherec=le2)aHda=ﬁ.

Proposition 5.1. In the above terms one has
(5.5)
‘(GV)AJ\’

< o (M+1+%)

M+1—-4

INI=IM g (M4 1ds) ming ALIND o (dist(Sy, Sy) + 271
(<M+1 ’

x sup |[HEM*2=D9—¢")).
GESA,GIESA/
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Proof. Recall that for A = (C,r) one has Sy = supp ¥, = C. Let us denote then
by 6, the center of gravity of S\. Without loss of generality we can assume that
|A| < |N|. Taylor expansion of G., at 6y, using (M + 1)st order vanishing moments
of 1, yields for integration with respect to 6

T T

Ho (60— 0")\(0)do = f (0 —YMFLHEMFD (9, — 9")epy (0) I,

where ) is some point in Sy. Expanding Y (¢) :== (6 — 0’)M+1H(gM+l)(0~>\ -0

at Oy € Sy, yields upon integrating now first with respect to 6’ and using again
(M + 1)st order vanishing moments,

(G sj j oA (@)l (816 — [ MH1[Y 4D (G| e d.

Since |0 — 0y < 271, Al Ly (s5) < 279272 and since by Leibniz’ rule

u _ . A M+1—2¢
|Y( +1)(9/\’)| < CM ggll\%i& (dlSt(S/\’S)\') +2 | l)

< sup  [HEMFEO(9 - ).
6eSx ,Q/ES)\/

the assertion follows. O

Of course, for a < 1 the terms

N . , —A\M+1-£ @eM+2-0) g _ pt
C(M,a, \, ) : g?ﬁ}il(dISt(s/\’S)‘)+2 ) eesf,lg)esy |H} (0—0"]
are finite. The closer a (and hence ) gets to one the larger one expects the second
factor to become for small dist(Sy, Sy/). On the other hand, for larger dist(Sy, Sx)
the second factor turns out to be very small. In summary C (M, a, A, \’) is bounded
by a constant that possibly grows when 7 tends to one but for fixed v decreases
when |A[, |X| grow regardless of the distance between the respective supports.
C(M,a, A\, X) in turn becomes very small when dist(Sx, Sx) > ¢y where ¢, de-
creases when ~ tends to one. This is illustrated in Figure [ reflecting the strong
near-sparsity of the representation. Moreover, defining

. ’
d(\, N = 2mindALINE gist (S, S ),
(G foro<p N <7 (G ) for 0N < 7 (G for o< IN| < 7

o o
M=0 and 7=0.99 10 M=1 and y=0.99 10 M=4 and y=0.99

0 20 40 60 80 100 120 0 00 600

1 — 3 E ——

ot
——hﬁ
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<
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FIGURE 1. Alpert wavelet representation of G,(-,-) of degrees
M =0,1, and 4 and v = 0.99.
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and keeping in mind that dist(S), Sy/) remains uniformly bounded because of the
boundedness of S, one trivially has d(\, ') < 22N Therefore, (5.5) yields
the bounds

C(M, o, \, )2~ (15 [V
(1 + d(X,N))MA1+ds

Treating the term C'(M,a,\,\') as a constant, this format allows us to directly
invoke results on wavelet based matrix compression and corresponding adaptive
approximate application tools; see, e.g., [9]. In particular, defining s* = (M +
1)/ds = M + 1, (5.6]) ensures that for each s < s* there exist positive summable
sequences (a;)jen,, (Bj)jen, and compressed versions G of G, = G, defined by
concrete rules for replacing entries of G, by zero, such that

|G — G| < Bs27%, #(entries per row/column) < a;27, JeN.

(5.6) [(G)an] S

Here | - | = | - [lz(¢5,e,) denotes the spectral norm.

5.4. A linear compression scheme. Since Ky is compact, (unlike the operators
considered in [11]) the entries of G¥ decay uniformly with increasing level. Thus,
given any “final” target accuracy ¢, one can use (5.6]) to find a level L = L(e) e N
such that the finite matrix G} = (Gx) satisfies [GY — G} | < € and

hence

(5.7) Ko —

[ALIVI<L

which, in turn, controls the accuracy of K as pointed out in (5.3). G%’ is computed
in a preprocessing step but could later be updated due to the hierarchical nature
of U.

Then for any larger tolerance n > ¢, arising in the outer iteration, one can
combine the compression rules from [11 Section 4] with the decay estimates in
Proposition [5.1] such that the resulting compressed matrix G%’ satisfies

IGY —Gyl<n = |Ko—Koyless) <n

Roughly speaking, the computational cost for applying Ky to an element in Py, (&)
scales like #G - (log #S)? for some a > 0. A first variant of [Ky, ;-] is then given
by

(Ko, vin] = Koo, 1= n/lvlLs),
where the compressed operator Ky, is applied ezactly. In fact, since the approxi-
mations u use the same piecewise polynomial degrees as the kernel representations,

orthonormality yields for 4(x,3) = X re, iez, (ZAE,\G v;’iz/u (§)) or.i(x) the scat-
tering

(5.8) (Ko@) (@,8) = >, wri(®pri(x)

TePB €Ly

wr(3) = ) ( DGy )w,\(g)

AEA,,  NeAs

with

where A, contains the range of indices of Gg’ . Thus, the $-dependent coefficients
wr,; are obtained by compressed matrix-vector multiplication.
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In summary, the computational cost of the resulting routine [K, ;7] can be
reduced to O(#P - #6 - (log(#6))%), where of course #P and #& depend on 7,
typically in an algebraic fashion. For the Henyey—Greenstein kernel such schemes
are still effective when the parameter v gets close to one; see Figure [1l

5.5. Hilbert—Schmidt expansion of G. There is an alternative way of efficiently
applying the scattering operator when the parameter v in the Henyey—Greenstein
kernel stays bounded away from one. It uses the fact that, by our assumptions, the
kernel G possesses a Hilbert-Schmidt decomposition of the form

[oe]
G(3,3) = Z orgk(®gr(¥), ox =0, Z o = |Gl sxs) < 1,
k=1 keN

where
(9> g1)s = Ok, kL eN.
An approximate Hilbert—Schmidt decomposition of G results from the singular value
decomposition (SVD) of the matrix G} from (5.7) which we denote for simplicity
again as GY.
The singular value decomposition then yields vectors gy such that

N,
(5.9) GY = ) oigk ® gk,
k=1

where N, is the rank of GE] and gy, is the vector of expansion coefficients of g with
respect to W, i.e.,

ok = oY, gk = Z G0, = gi v, ke N.
pnev
We can then consider low-rank approzimations by further truncating (5.9)
G =) okgk ® g, G =) okgkg} -
k<r k<r
This yields
1Ko = Kol eras).Las) = 1G” = Gllea,e) = ors1-

The application of the truncated operator K for coarser accuracy tolerances, how-
ever, requires further reduction compressing the arrays g,. The coefficient vectors
gk, consisting of wavelet coefficients, can easily be compressed by thresholding pro-

viding best n-term approximations of desired accuracy. In particular, notice that
|lg — glle, < 0 implies that

leg” — 8871 = leg” — 887 | c(trtn) < 20.
Thus, thresholding for a given tolerance 7 the basis vectors g so as to obtain
approximations gy, satisfying

YEN
<o
|52 20k

with positive weights >, 7x < 1, one can verify that for the truncated kernel
Gg’r =D Jkgkmggn one has

Hgk - gk,n

G -Gy

<.
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(Updating the SVD for Gg’ " would improve stability.) As a consequence one
obtains for the corresponding operator approximation Ky and a given v(3) =

ZXEAG ONDNE)

; 1/2
1Ko = K5 lags) < {orilolias +1( 2 loaBuwy) | = @rer+mloliae).
)\GA@

Hence, choosing r such that 0,11 < 1 , with this variant we take

H HLQ(s) HU”L ()

[Ko, vs1] = K™ v

This strategy is particularly efficient when the singular values o decay rapidly.
For the Henyey—Greenstein kernel, as illustrated in Figure 4 the larger 1 — ~, the
more this is the case.

6. THE ROUTINE [T 1, F;n]

The numerical realization of the routine [7 !, ;] is based on solving fiber prob-
lems

61)  Teu—3 Vu+o(d u_JK #)dF + f = F(F), SeS,

for properly selected parameters § € S where F' € Lo(D x S) is given. Achieving a
given target accuracy depends on solving each fiber problem with sufficient accuracy
and also on solving sufficiently many of them.

The approximate solution of (6.1) will be based on the Discontinuous Petrov—
Galerkin (DPG) scheme developed and analyzed in [7[13] whose main features we
briefly recall for the convenience of the reader in Sections [6.1] and [6.2] In Section
[6.3] we explain how to use the set of solutions to the fiber problems in order to
adaptively build an approximation to v in Ls(D x S) which will be the output of
[T, Finl.

6.1. A DPG transport solver for the fiber problems. We outline the nu-
merical transport solver that is the core constituent of the current realization of
[T—1, F;n]. We denote by By, h > 0 a family of uniformly shaped regular partitions
of the spatial domain D. More specifically, in what follows we always assume that
all spatial partitions 3, are (possibly local) refinements of a hierarchy of dyadic
partitions of D. These partitions therefore induce dyadic partitions of the boundary
dD as well.

While typically h stands for a mesh size parameter in a quasi-uniform mesh,
here h is a locally varying mesh size function covering local refinements of the
above dyadic hierarchy. With a given J;, we associate the skeleton 0By, which
however depends strictly speaking on an associated convective direction s € S. In
fact, in analogy to (1)), for a given § € S we define 0T (3) for any given cell T € P;,
and set

P = 0B (3) = J{OT-(3), T+ (3) | T € B},

suppressing at times the dependence of &3, on §. Note that for polyhedral domains
I'_(3) remains the same on certain neighborhoods in S.
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Following [7], the DPG scheme is based on the infinite-dimensional mesh-depend-
ent variational formulation over the trial and test space

Us == La(D) x Hor_(5)(35;0Bn), Vz=H(EPn) = H H($T),
TePBn

endowed with the norms

HQHHO,FJ;)(g;amh)i: inf HwHH(§;D)a HUHEI(*S*;%):: Z HvH%((g;T)a
weHo r_ (z)(3;D): w‘(mhze TePy

where as before HUH%@;T) = HvH%Q(T) +[5- V3, (r)- Recall from [7] that the intro-

duction of the additional unknown field 6 € Hy p_(z)(5; @B ), living on the skeleton
OBy, is necessary because the trace terms encountered in the usual derivation of
DG bilinear forms may not exist for general elements in Lo (D).

Remark 6.1. The spaces Uz, Vz depend on the directions § and on 3, and so will
the solution [u(§),0(5)]. However, when the solution component u(s) is regular
enough, i.e., u(s) € Hyp_(z)(3; D), one can show that u(s) is the solution of (6.1)
and 0(3) is its trace on ¢Py,.

Defining

(6.2) bp(u,0,v;38) = Z J (c(3)v —3-Vo)udz + J n-36vdl,
Tep, IT oT

=:br (u,0,v;3)

and given F(8) € Ly(D), we then wish to find u(3) € La(D), 0 € Hyr_(3)(5; 0Bn)
such that

(63) b (u(3).63),:3) = | F@ode, ve Vs = HE B,

D
Remark 6.2. It immediately follows from [7l Theorem 3.1] that (6.2) is a uniformly
stable variational formulation for the transport equation Tzuz = F(3), i.e., conti-
nuity and inf-sup conditions according to Theorem [2.1] hold uniformly in § € S and

in mh.

A fully discrete scheme. The discretization of (6.3]) requires two hierarchies of
partitions P, Pp where the Py, is a refinement of (locally) constant depth of Py,
ie., Py < Pp. (In fact, practical experiments usually indicate that depth-0 suffices,
i.e., h = h.) In that sense we can write h = h(h) and h = h(h). Given Bj, B, we
fix a polynomial degree m € N and consider the finite-dimensional trial spaces

Uk = ( I1 Pm,l(z)) x (Hoff(g)(g;D) ~ ] Pm(z))

TePn TeBy P

Note that the second component consists of traces of globally continuous piecewise
polynomials of one degree higher than for the discontinuous bulk-component but
evaluated on the skeleton of the (possibly) finer mesh Dy,.

Given the finite-dimensional trial space Ugﬁ, it is critical to construct a suitable
test space that renders also the finite-dimensional corresponding Petrov—Galerkin
problem inf-sup stable, ideally with inf-sup constants independent of the trial and
test space dimensions. We follow again [7] and fix the so-called test search space as
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discontinuous piecewise polynomials of one degree higher on a subgrid LBy of Py,

namely
H ]P)m-ﬁ- 1 (T
TeBn

The actual test space VJ' is then defined as the following H(3; %) )-projection to
the test search space Vgh

(6.4) V&= {t(u,0) € VI | (E(u, 0),0)v, = bp(u,0,v;3), ve VL, [u,6] e Ul

Since the local test search spaces over each cell T' € %), have uniformly bounded
finite dimension the overall computational work still remains proportional to the
dimension of the trial spaces.

This gives rise to the Petrov-Galerkin formulation: find [u(5), 0,(5)] € Ugﬁ such
that

(6.5) br,(up(3), 0n(3), vn; 8) = JD FB)vdz = F(3)(v), ve VL,

for VI defined by (6.4). Here and below we sometimes use the shorthand notation
Up = ngh,bh = bgph,U— = UPn,

Before stating the corresponding stability result, we mention a variant where the

skeleton component 6 (3) is replaced by the globally conforming piecewise poly-

)

br(up(3),0n(3), vn; 3) from (6.2)) can be rewritten as

nomial wy in Hypr_ (3 (35;D) n HTeSBh (_)‘ . Then the local bilinear forms

br (un, On, vn; 3)

= by (up, wp, vp;8) = J (o(3)vy, — 3 - Vop)up dx + J n - Swpvp, dI'
T

oT
= J o (3)vp (up, — wp) + Ozvp(wp, — up) + (owp, + dswp)vp dz, T € Py,
T

Using [up, wp] as unknowns one obviously has [w] s, . . @op,) < |w]|a@p). We
will adopt this variant in what follows where it is now understood to use the norm

I[wn, wh] 25 = HUQH%Q(D) + HwQH%{(g;D)'

The following facts are immediate consequences of the results in [71[13].
Theorem 6.3. For a fived but sufficiently large subgrid-depth h/h, (depending on

the shape parameters of the involved partitions) the scheme ([6.3) is uniformly in
h >0, $e S, inf-sup stable, i.ce.,

b 3
(6.6) inf sup —nlU U RE) g s

[un,wrleUL ,, evh H [u@

where [ depends on the shape parameters of the wunderlying partitions, on
17 le(zam).to.r_ @Dy, and on ol L s.w (L, m))-

It is well known that the system matrices arising in (6.5) are always symmetric
positive definite despite the asymmetric nature of transport equations.

While the conforming formulation (F1) does not require incorporating bound-
ary conditions on I'_ into the trial space, the skeleton component requires an ad-
justment in the DPG formulation. To that end, following [7, Remark 3.6], let
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wo(3) € H(8;D) satisfy wo(3) = ¢(8) on I'_(5). Then, the (infinite-dimensional)
DPG formulation of the problem Tza = f — Tzwy, in D, @ = 0 in T'_(5), is given by
(6.7)

by (u(3), w(3),v;8) = {f,v) = ba(wo(5), wo(5), v; 8) = {f — Fy(wo,5),v), veV.

Now one has w|ap, = @lagp, = (u— wo)|eyp,, i-e., it suffices to discretize (6.7).
6.2. A posteriori error estimates. As an immediate consequence of the fact

that the DPG-induced transport operators 7z are norm isomorphisms, uniformly
inh>0,5€8, errors in || - are equivalent to residuals in | - [y, i.e.,

[[u(3), u(®)] = [un(3), wa(3) IIU |F) = Ten([un(3), wa(3)])]

holds with uniform constants. Thus, as soon as one can tightly estimate the dual
norm | F'(8) =Tz, ([un(3), wn(5)]) v, of the residual, one obtains efficient and reliable
a posteriori error bounds. Such tight bounds are established in [13] which we briefly
recall. Define for T' € P, the Riesz lifts Ry (up, wy,, F(3)) of the local residuals by

(RT(uﬁ, wQ,F(E)),vh)H(g;T) = by (up, wp,vp;3) — F(3)(v), wh € Vg ,

v =0, 3€e8s,

where F(3)|7 € By, is a piecewise polynomial approximation to F(3) and where V'
is the same test search space as used before for the Petrov—Galerkin scheme. Thus,
the computational cost per cell T is again uniformly bounded. Defining then

HRh(uh,wh; ( ))HH(S‘IJ’;_
= HR‘BQ(UQ’ Wh, (g))HH(s iPr) Z HRT(uh’ Wh F(g))ﬁ{(g;ﬂ’
TePn

the following holds; see [13] Theorem 4.1 and (4.4)].

Theorem 6.4. If the operators Tz, are norm isomorphisms uniformly in h = 0 and
§ €S, then for a fized mazimal subgrid depth there exist constants ¢, C, depending
on B from (6.6]), but independent of 3, B}, such that

ol Bn (up, wn, F)) s < 1[u@), u(@)lop,] — [un(3), wn(3)]]

CHRh(Uhawhv ())HH (3:%Bn)-

In the present context it is particularly important to control the dependence of
a posteriori bounds on the direction parameter s € S. In this regard, the following
further result from [13] Proposition 4.4] is relevant: there exists a constant ¢y > 0
such that the Petrov—Galerkin solution satisfies for each T" € P,

(6.8) v

Co (Huﬁ@) - w@(g)”%zm) + 8 - Vwa(3) + oun(3) — F(3) Hsz(Tf))

(6.9) < Y Rr(unwn FG) Py
Te,, T<T'

< Jun(3) = wa ()L, + 13- Vun(E) + oun() = FE)L,av)-

For d = 2, i.e., S is the circle we can identify § = (cost,sint) and the space Py, (&)
consists for a given admissible partition & of S of 27-periodic piecewise polynomials
in t € (—m,7]. Hence, the above error indicators are nearly piecewise polynomial in
t when the components up, wy, are of the form (5.2) with s-dependent coefficients
in Py (6); see Section (.21
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The above DPG scheme and the associated a posteriori error bounds form the
core constituent of the routine [7%,-;-]. We can use (6.8) to contrive adaptive
mesh refinement strategies based on so-called Dérfler marking or bulk chasing. This
means one marks those cells for subsequent refinement whose combined energy
exceeds a fixed portion of the total lifted residual. It is shown in [13] that this
entails a fixed error reduction for each refinement sweep and associated complexity
estimates.

Remark 6.5. Convergence to zero of either one of the above residual error bounds
guarantees convergence of errors in the spaces U®. The DPG output has two com-
ponents, namely a piecewise polynomial u; of degree m on the underlying mesh
B, as well as a skeleton component which can be identified with the trace of a
conforming piecewise polynomial of degree m + 1. Therefore the a posteriori error
bounds control in particular the convergence of the u-component in Lo (D). For the
realization of [T, F'; ] below we always use only the u-component for the outer
iteration.

6.3. An adaptive solver in U = Ly(D x S). We describe next how [T 1, ;7] is
realized based on approximately solving, with the aid of the DPG scheme described
above, fiber problems Tzu = F' for the elements 3 from a stage-dependent discrete
subset O, of the parameter domain S. Both O, as well as the meshes for each fiber
solution are generated adaptively.

The data: The data F = F(x,8) required by each call of [T~!, F;n] have a
piecewise polynomial representation of the type (5.8). Specifically, they are of the
form

F=w+ge LyD x8),

where w is the output of the routine [K, ;-] and ¢ is a stage-dependent approxi-
mation to the source term. More precisely, in the case of inhomogeneous boundary
conditions ¢ consists of two parts, namely g = go + g1 where gy stands for the
“lifted boundary data” needed to correct the right hand side so as to reduce the
problem to the homogeneous case; see (6.7). Both w and ¢ need to be computed
within the currently given accuracy tolerance. We omit the details concerning the
computation of g.

Output format: The output of [71,-;7] is a piecewise polynomial of degree m
of the form (see (5.2))

n(z,3) = >, Y vri(®)eri(x),

TeR, i€Llr

where the @7 ; are polynomial basis functions of degree m supported in T" € B, and
B, is a partition of the spatial domain D. The parameter dependent coefficients
vr;(3) are elements of a space Pas(&,,) of piecewise polynomials of degree M sub-
ordinate to a partition &,, of S. We describe next how to compute the vy ;(5) as
well as the partition ‘B,,.

Computation of fiber solutions: The realization of [T 1, F;;n] is based on ap-
proximately solving fiber transport problems Tzuz = F(-,3) for parameters § in a
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suitable finite subset of S, Specifically, given a partition & of the parameter domain
S, we associate with each cell C' € & a set of “quadrature points” Q¢ whose union

Qs = U Qc
CeS

is the discrete set of parameters for which we first compute error-controlled ap-
proximate fiber solutions. Before describing this in more detail, a few preparatory
comments are in order. The realization of [K, ;-] is reduced to a frequent but
efficient approximate application of a global operator acting in functions in d — 1
variables. The bulk of computation therefore lies in #Qg approximate inversions
of transport boundary value problems in d variables. It is therefore of primary
importance to keep the size of each fiber transport problem as small as possible.
In view of the inherently low regularity of the transport solutions (especially in the
presence of rough boundary and source data) we opt for employing an adaptive
DPG scheme for each fiber problem. The price to be paid is that then each fiber
solution us(+, S), § € Qg, comes with its own adaptive partition Psz; see Figure 21
We refer to [7l[13] for the details on an adaptive fiber transport solver

[T, Fyn) = (Fs, s), G5(@) = ), erispra(@).

TGmg,'L—EIT
It consists in repeating the standard cycle
MARK — REFINE — SOLVE

until the sum of squared indicators (in either (6.8]) or (6.9))) is below the current
threshold n%. Here one needs for each C' € & a good initial guess. If C € & was
already obtained in the representation of the final DPG solution of the previous
outer iteration we choose this one. Otherwise one can take the union of those fiber
meshes associated with those parameter cells from the preceding outer iteration
that intersect the current parameter cell.

For MARK we use a simple bulk criterion identifying for each selected quadrature
point § a possibly small set of cells in the current partition such that the sum of the
corresponding squared indicators exceeds a fixed portion of the full sum of squared
indicators. Hence, the adaptively generated meshes depend on the directions 3.
However, the approximate application of the scattering kernel in [K, ;] requires
an aggregated approximate solution @(z,3) as a function of the spatial and para-
metric variables which needs to be represented on a single mesh that is obtained by
merging the parameter-dependent fiber meshes. Note that even the merged mesh
involves a total number of degrees of freedom which is significantly smaller than
that corresponding to a uniform mesh with the highest required resolution; see the
rightmost picture in Figure 2l

A more detailed algorithmic description is beyond the present scope and can be
found in [18] Section 6.3.2].

Aggregating fiber solutions: We discuss first how to generate an approximate
solution 4g € L2(D x S) which is only based on approximate fiber solutions for
§ € Qg where at this point & is a given partition of G, e.g., generated by an error-
controlled approximate application of K. This can be formulated as a (preparatory)
routine

(610) [T71’F76;77] - (mevae)a I_LG(I7§) = 2 /UT,i(g)(PT,i(x)y
TeP s, ielr
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FIGURE 2. Adaptive meshes for fiber transport solutions with re-
spect to two different directions as well as the merged mesh at
iteration step 10.

that outputs a mesh Pg and a piecewise polynomial ug(z,$) in z subordinate to
Pe with parameter-dependent coeflicients vr; € Py () and a spatial mesh Pe
such that ;

HRDG (u67067 ( ))”H(s ‘Bh) < RTT), s€ Qs.

The workhorse called by [T !, F, &; 7] is therefore the following subroutine pro-
viding a parameter-dependent approximate transport solution over a given cell C'
in the current parameter partition &:

[C, Fin] — (Be, uc)

C1: For 5 € Q¢ invoke [T, 1, F;n);

C2: generate the mesh B¢ by merging the meshes Pz, s € Q¢ to obtain merged

representations Uuz(2) = Yreq . jer, €10,3PT,i(2);

C3: Determine the polynomial ve i (3) € Pp(C) that (quasi-)interpolates the

values ¢r;3, § € Q¢ and aggregate

c(x,3) = Y. Beri(3)eni().
TG‘BC

The output in (6.10) of [T 1, F, &;n] is then given by
e (z,3) Z o,y (z, ) Z v ($)er.i(z),

Ce& TGmg,iEIT
where Dg is obtained by merging the cell-dependent meshes P, C € G produced
by [C, F;n)].

Finding &,,: The accuracy requirement in [T, F;n] requires a mean square con-
trol over the parameter domain S. The output of the routine [T !, F, &;n] for a
given parameter partition & guarantees that the residual bounds satisfy the re-
quired accuracy n only at the quadrature points Qg but a priori not necessarily for
all parameter values in S. Our current approach is therefore to adaptively generate
also a further refinement &, (if necessary) of some initial partition of S (dictated
solely by the accuracy in the application of K). We then apply quadrature with
respect to Qg, to estimate the error in Ly(D x S). Here we use that by (6.9), the
true errors are rigorously sandwiched by error indicators that are piecewise defined
as products of polynomials and trigonometric functions. Specifically, we apply the
following steps:

S1: Take the partition & = Sy .., generated by [/, u; kxcn] as initial guess.
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S2: Given a partition & of S compute ug = [T 1, F, &;1n].

S3: Subdivide each cell in & to obtain a refined partition &,..

S4: Evaluate the residual bounds (e.g., (6.9)) for the current approximation
i+, §) at the new quadrature points § € Qg, \Qg and mark all cells C' €
&, containing a quadrature point for which a fixed threshold wn (w < 1
fixed) is exceeded. If no cell is marked stop and set & — &,,.

S5: The parents in & of the marked cells are refined to generate a refined
partition S,y of &.

S6: Replace G by Gpew and go to S2.

7. NUMERICAL EXPERIMENTS

We consider the radiative transfer problem (L.2) on the unit square domain
D = [0,1]? with homogeneous boundary conditions. The structure of the source
term f and absorption coefficient o is illustrated by Figure [Bl More precisely, we
take f = 0 in the white and gray areas whereas f = 1 in the black area. Similarly,
we set 0 = 10 in the gray areas and o = 2 everywhere else. Such checkerboard
structure serves as a classical benchmark in the literature of radiative transfer and
can be found in other works; see, e.g., [8].

The scattering is of Henyey—Greenstein-type (see formula (5.1)))

1 1—+2
K,33)=0GEd)=——-"1 _ vzeD.

-/

S 2m1442 - 2933

101 \

0 50 100

FIGURE 3. Geometry of the FIGURE 4. SVD of the matrix representation
checkerboard benchmark. G=, 2 € {U,d} of G for different values of ~.

Figure [ shows the decay of singular values of a highly accurate matrix repre-
sentation G=, = € {W, @}, of the scattering kernel G for different values of . For v
close to one this decay is very slow but Figure [l reveals that the wavelet represen-
tation is nevertheless extremely sparse. Here we confine the subsequent discussion
to moderately isotropic scattering v = 0.5. The singular values still decay rapidly
(see Figure M) which allows us to apply the method outlined in Section [5.5] based
on Hilbert—Schmidt decompositions. We present results with Alpert wavelets of
degree 2.
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We set € = 1.1-5.1073 as the final target accuracy. The problem is of transport-
dominated nature (p < 1) so we can solve it with the ASTI algorithm. Table [II
gives the estimated values C7, p,bo(u) and k1, ko, k3. Note that ko = 0 since we
can evaluate the source term exactly. The remaining two parameters x; and Ks3
balance the accuracy tolerances for the approximate application of the scattering
operator and the approximate inversion of 7. Specifically, k; determines on the
one hand the number of quadrature points and hence the number of fiber transport
problems to be solved and, on the other hand, k3 affects the spatial discretizations
of these fiber problems.

TABLE 1. Values of the constants required to run the ASTI Al-
gorithm [11

Cr P bo (w) K1 Ko | K3
0.594604 | 0.594604 | 1/7 | 0.2/Ct+ | 0 | 0.8

Figure 5l displays the convergence history and degrees of freedom for the above
choice of parameters. The left plot gives an approximation error of the scattering
application ||IC(t,) — [, %n; k171n]|| 1, (Dxs) (dark blue curve), the a posteriori er-
ror of the transport solves |[u,, — tn||r,Dxs) (light blue curve), and a bound for
the global error ||u — @n||1,bxs) (Purple curve) based on (A13). Recall that it is
composed of the bounds for p™||lufy and the the above two error tolerances. By
the definition (4.5) of the tolerances 7,, the interior solution accuracies need to
be somewhat finer which explains the gradual divergence between the global error
bound and the interior error tolerances. To avoid this would require total a poste-
riori bounds based on the bilinear form b(w,v) = ((T — K)(w))(v) in combination
with coarsening strategies, which is the subject of future work. The shaded blue
regions in the right plot indicate statistics about the number of degrees of freedom
that are associated for each selected angular direction.

101 \ 106
-2
10 E
T 10°
L 1073 I
g 5
-
[ o
g 10t
105 #*
—e— kn: err kernel approx
106 ty: err transport solves (a posteriori estimation) 103
a posteriori bound for ||u = Gn|| e o =
1077
1 2 3 4 5 6 7 8 9 10 2 4 6 8 10

Outer Iteration Outer Iteration

FIGURE 5. Convergence and number of DoF's for k1 = £/Cr, ko =
0, k3 = (1 —¢)/2 with £ = 0.2.
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FIGURE 6. Integrated solutions {q u,(-,5)ds and corresponding
merged grids.
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FIGURE 7. Solutions @y, $) for different directions § in final outer
iterate.

The table below gives the precise values of the a posteriori error and the total
degrees of freedom:

iteration | a posteriori error #DoFs
1| 0.0850598 6228
2 | 0.0891398 12456
3 | 0.079258 13392
4 | 0.0578653 38664
5| 0.039463 135236
6 | 0.0258249 440648
71 0.0165168 1151102
8 | 0.010397 6586094
9 | 0.00647563 16570210
10 | 0.00400132 42179602

Figure [0 shows solutions ,(-,§) with their corresponding grids for the final
iterate once the accuracy e has been reached. Finally, Figure [6] shows the final
averaged densities SS Un (-, ) ds. They are computed on the merged grids.

We note that no special structure preserving measures had to be imposed on the
numerical schemes to produce physically meaningful results.

Remark 7.1. The code to reproduce the numerical part of this article is available
online at:

https://gitlab.dune-project.org/felix.gruber/dune-dpg
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The implementation makes use of DUNE-DPG 0.4.2, a C++ based library which
is built upon the multi-purpose finite element package DUNE [6]. Details of the
DUNE-DPG library can be found in [18,19].
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