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The recently discovered flat electronic bands and strongly correlated and superconducting phases in 

magic angle twisted bilayer graphene (MATBG) [1,2] crucially depend on the interlayer twist angle �. 

Although control of the global � of about 0.1° has been demonstrated [1–7], little information is 

available on the distribution of the local twist angles. Utilizing a scanning nanoSQUID-on-tip [8], we 

attain tomographic imaging of the Landau levels in the quantum Hall state [9] and map the local � 

variations in hBN encapsulated devices with relative precision better than 0.002° and spatial 

resolution of a few moiré periods. We find a correlation between the degree of � disorder and the 

MATBG transport characteristics quality. However, even state-of-the-art devices, exhibiting correlated 

states, Landau fans, and superconductivity, display significant � variations of up to 0.1° with 

substantial gradients and a network of jumps, and may contain areas with no local MATBG behavior, 

highlighting the importance of percolation physics. The correlated states are found to be particularly 

fragile with respect to twist-angle disorder. The � gradients generate large gate-tunable in-plane 

electric fields, unscreened even in the metallic regions, which drastically alter the quantum Hall state 

by forming edge channels in the bulk of the sample and may significantly affect the phase diagram of 

the correlated and superconducting states. We establish � disorder as a fundamentally new kind of 

disorder, calling for band structure engineering utilizing twist-angle gradients and gate-tunable built-in 

planar electric fields for novel correlated phenomena and applications. 

Strong electronic correlations arise in twisted bilayer graphene when the low energy bands become 

exceedingly narrow in the vicinity of the magic angle �� ≈ 1.1° (MA) [1–7]. The initial estimates of the 

bandwidth of these flat bands assumed a rigid and uniform rotation between the two graphene sheets 

leading to a moiré pattern [10–13]. Recent band structure calculations have shown, however, that twist 

angle relaxation within a single supercell (~13 nm for �~1.1°), results in electronic reconstruction that 

significantly modifies the band structure [14,15]. Since the band structure of the flat bands is determined 

on a scale of several supercells, similarly to the predicted strong effects of heterostrain [16,17], twist 

angle gradients should modify the single-particle band structure and induce symmetry breaking, possibly 

leading to properties that have not been considered so far. Moreover, since correlated phenomena may 

occur due to electronic interactions on distances larger than the supercell, the twist angle variations may 

affect the stability of the competing orders, enriching the phase diagram of the correlated states.  
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Scanning tunneling microscopy studies have shown that the local twist angle can vary substantially 

between different places in the same sample and have resolved stacking faults and structural defects 

[18–24]. Large inhomogeneities and extensive networks of stacking faults in bilayer graphene have also 

been observed by transmission electron microscopy (TEM) [15,25–27]. In this work, we provide high-

resolution maps of �(�) in hBN encapsulated MATBG devices. The results reveal significant twist angle 

gradients that constitute a new type of disorder that strongly affects both the stability of the correlated 

phases and the magneto-transport characteristics. 

Our samples, fabricated using the tear-and-stack technique [28,29], show characteristic MATBG features 

[1–7], including superconductivity, correlated insulator states at integer fractions of 
� (four electrons 

per moiré supercell), and Landau fans, from which a global twist angle � = 1.06˚ is derived (device B, Fig. 

1b). We derive the local maps of �(�) by imaging the structure of the Landau levels (LL) throughout the 

sample. In a conventional quantum Hall (QH) state, alternating compressible and incompressible strips 

are formed near the sample edges where the Fermi energy 
� resides correspondingly either within the 

LLs or in the energy gaps between them. These strips carry counterpropagating nontopological, ���, and 

topological, ��, equilibrium currents respectively, as demonstrated recently in graphene [9]. In MATBG, 

in contrast, these strips are found surprisingly in the bulk of the sample rather than along the edges (Fig. 

1a).  

We image these currents by utilizing a superconducting quantum interference device fabricated on the 

apex of a sharp pipette (SQUID-on-tip, SOT, Fig. 1a) [8,9]. The Pb SOT, with a typical diameter � ≈ 200 

nm, is scanned at a height of ℎ ≈ 30 nm above the sample surface at � = 300 mK in out-of-plane 

magnetic field, �� ≈ 1 T. We apply a small ac excitation onto the dc backgate voltage ���, which causes 

a small ac displacement ��� of the position of the �� strips along the direction of the twist angle 

gradient, ��(�) (Fig. 1a). The corresponding ac Biot Savart magnetic field ����, is directly proportional to 

the local current density, eliminating the need for current reconstruction (see Methods). It shows a sharp 

peak whenever the narrow (~50 nm width) incompressible strips pass under the tip (Fig. 1a and 

Extended Data Fig. 4), providing very sensitive means for nanoscale imaging of the LLs. 

Figure 1d shows a sequence of such ���� peaks vs. 
� for device B, acquired at a fixed SOT position, in 

comparison with the corresponding trace of ��� (Fig. 1c), at �� = 1.08 T. The positions and the 

magnitudes of these peaks provide wealth of information. An incompressible QH strip appears at 

location � in the sample when the local carrier density 
�(�) matches an integer number   of full LLs, |
�(�)| = " |��|/$%, where " is the LL degeneracy. Hence the spacing, ∆
�, between adjacent peaks 

reveals the degeneracy " of the LLs. The height of ���� peaks is proportional to �� = '(�∆
)/*  ('(� =+*,/ℎ is QH conductance, * – elementary charge, + – integer filling factor, and ℎ is Planck's constant), 

and thus reflects the energy gap between the adjacent LLs,  ∆
) = 
|)|-. − 
|)| (see Methods). 

We start by inspecting high dopings, |
�| > 
1, for which the Fermi level 
� resides in the dispersive 

bands (yellow in Fig. 1e). Figure 1f presents a zoom-in on the four lowest LLs in the electron-like (n) and 

hole-like (p) dispersive bands for device A at �� = 1.19 T. The spacing between neighboring peaks is ∆
� = 1.15×1011 cm-2 which equals 4��/$%, showing that these LLs are fourfold degenerate ($% = ℎ/*). The spacing between the corresponding p and n LLs equals 2(
1(�) + 4 |��|/$%) as illustrated in 

Fig. 1f. Since the �� peaks are very sharp, high-accuracy determination of the local 
1(�) and thus of the 

local twist angle �(�) = 67√3
1(�)/8 (6 = 0.246 nm is the graphene lattice constant) is attained with 

absolute accuracy of ±0.005° and relative accuracy between different locations of ±0.0002° (see 

Methods). In 2D scanning mode described below, we attain sensitivity of 0.007°/Hz1/2 and provide �(�) 

maps with relative accuracy better than ±0.001°.  
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Rather than parking at a fixed location, Fig. 2a shows ���� in device A acquired upon scanning the SOT 

along the white dashed line in Fig. 3a and sweeping ���, revealing that the LLs vary strikingly in space 

forming rich patterns. Moreover, the degeneracy of the higher LLs toggles between 4-fold and 8-fold as a 

function of position, and a pronounced asymmetry between the LL structure in the n and p dispersive 

bands is observed.  

As in Fig. 1f, by tracing the spacing between the lower LLs we derive the local 
1(<) = =(�)1(<) −�>)1(<))/2, where �)1(<) and �>)1(<) are the backgate voltages corresponding to the local filling of the 

flat bands |
�(<)| = 
1(<) (dashed yellow curves in Fig. 2a), and = is the backgate capacitance (see 

Methods). The attained 
1(<) (Fig. 2b) varies by about 2.4×1011 cm-2 corresponding to the local variation 

in �(<) of 3.9% from 1.124° to 1.169° over the 2.7 µm long path (Fig. 2c). In addition to the twist-angle 

disorder, which shifts the p and n LLs antisymmetrically, we also derive the local charge disorder 
?(<), 

which shifts all the LLs symmetrically through variation of the local charge neutrality point (CNP), 
?(<) = =�@�A(<) = =(�)1(<) + �>)1(<))/2. The derived charge disorder B
?(<) = 
?(<) − 
C?  (Fig. 

2d) has standard deviation of 0.8×1010 cm-2 which is substantially smaller than 
1(<) variation, showing 

that the dominant source of disorder in this MATBG device arises from �(�) variations, as evident in Fig. 

2a by the antisymmetric bending of the dispersive p and n LLs.  

To derive full maps of the local twist angle �(�) and charge disorder B
?(�), we acquired 

Supplementary Videos 1 to 4 of ����(�) upon incrementing ��� through the bottom of the dispersive 

bands. Figure 3a displays one frame from Supplementary Video 2 showing a large-area scan of device A 

(dashed rectangle in the AFM inset), while Supplementary Video 1 presents zoomed-in imaging of the 

central region (dashed rectangle in Fig. 3a). The red stripes reveal incompressible regions carrying �� 

while the dark blue mark the compressible areas carrying counterpropagating ���. As ��� varies, the QH 

states move and change their shape in an intricate manner. Surprisingly, the quantum Hall edge states 

are present in the bulk of the sample and do not flow parallel to the sample edges as expected. 

Moreover, large parts of the sample do not show LLs at all. These are the regions that are either highly 

disordered or may have a very different twist angle, with � either close to zero or � > 1.5° such that the 

dispersive bands are reached at ��� outside our range. Thus, the MA physics appears only in a limited 

central region of the sample and does not fully extend to the edges. Figure 3e shows a larger area ���� 

image of device B displaying QH states over most of its area. Supplementary Videos 3 and 4 were 

acquired in the central part of the Hall-bar structure (dashed rectangle in the AFM inset) probing p and n 

dispersive bands respectively.  

Using these data we generate 3D tomographic rendering of the LLs throughout the samples (see 

Methods) that can be inspected interactively [30]. Figure 3d shows a slice of the tomographic data of 

device A (see Supplementary Video 5), revealing the layered structure of incompressible (light blue/red) 

and compressible (dark blue) QH regions. Strikingly, the LLs display steep slopes and numerous small 

jumps in the bulk of the sample, revealing that at any value of ��� (horizontal tomographic plane) 

several different LLs cross 
� in the bulk of the sample never forming a well-defined single QH state. This 

observation explains the absence of clear conductance oscillations and quantization in the global ��� 

data in the dispersive bands in Fig. 1c despite the presence of fully developed LLs observed locally in Fig. 

1d. 

Applying the procedure of Fig. 1f to the tomographic data, we derive 2D maps of the charge disorder 

(Fig. 3h, see discussion in Methods) and of the twist angle �(�) in devices A and B (Figs. 3b,f). The grey-

blue color in Fig. 3b reflects areas where no QH states were detected within the measured span of ���. 

These regions correlate with the locations of bubbles (black outlines) as revealed by AFM of device A 

(Fig. 3a inset). The magic angle physics is apparently absent within the bubbles as well as in their 
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surrounding areas up to 0.5 µm from the bubble edges. The LLs are absent also in additional regions 

where no particular features were observed in the AFM. The map in Fig. 3b also shows that the MA 

regions in device A do not create a percolation path between the contacts. This is consistent with our 

transport measurements that do not show fully developed superconductivity, although correlated 

insulating states are present in this device. In device B, in contrast, four-probe transport measurements 

showed high quality correlated insulator states at multiple integer filling factors, and a zero resistance 

superconducting state (see Methods) consistent with the observation that the MA area extends over the 

entire length of the central part of the device and shows a more uniform �(�) (Fig. 3f).  

The MA regions show significant twist-angle disorder (Fig. 3i histogram). The �(�) spans a range of 0.13° 

(1.05° to 1.18° with standard deviation 0.025°) in device A (Fig. 3b) and 0.10° in device B (0.98° to 1.08°, 

standard deviation 0.022°, Fig. 3f). Moreover, the topography of �(�) is nontrivial with numerous peaks 

and valleys, as well as saddle points. Since the LLs in the dispersive band follow the bottom of the band, 
1 = 8�,/D√36,E, the LLs first appear at the minimum of �(�) landscape, which for device A occurs in 

the lower-right corner (dark brown in Fig. 3b). This behavior is clearly visible in Supplementary Video 1 

where arc-like incompressible strips (bright) first appear at this corner and upon increasing F���F “climb” 

the amphitheater-like �(�) landscape following the equi-�(�) contours. Similar behavior is observed in 

other regions with particularly interesting dynamics occurring at the saddle points as described in 

Methods. 

The �(�) derived in Figs. 3b,f appears to be rather smooth with typical gradients of ~0.05°/µm. 

Remarkably, Figs. 3c,g presenting the gradient, |��(�)|, reveal that variations in �(�) partially occur 

through a network of small steps of variable sizes reaching 0.01°. The derived pattern strongly resembles 

the stacking fault networks in bilayer graphene observed by TEM [15,25–27]. These steps cause the 

stepwise jumps in the LLs visible in the tomographic view in Fig. 3d and Extended Data Figs. 8a,c. This 

finding implies that the smooth variations in �(�) are accompanied by occasional small abrupt changes 

across stacking faults that relax the tensile and shear stress. 

The revealed twist-angle disorder and gradients ��(�) may have significant implications on the phase 

diagram and transport properties of MATBG. Connecting regions of different � (Fig. 4a) is akin attaching 

materials with different work functions (Fig. 4b), resulting in band bending and creation of internal 

electric fields (Figs. 4c-e). The backgate ��� imposes essentially uniform carrier density, 
C� ≅ =���. 

Locations with different �(�), and hence different density of states (DOS), translate this 
C� into different 

chemical potential H(�). Since at thermal equilibrium the Fermi level has to be uniform, 
� = H + I� =0, (the last equality reflects the grounding of the device) variations in chemical potential H(�) impose 

band bending, i.e. variations in electric potential �(K) = −H(�)/I (I = ±* is the carrier charge), and 

creation of in-plane electric field L∥ = −∇� that cannot be screened. Utilizing the DOS derived from 

band structure calculations (see Methods), Figs. 4c-e present a self-consistent numerical calculation of �(<), L(<), and B
�(<) = 
�(<) − 
C�  at �� = 0 for the case of linearly varying �(<) with ∇� = 

0.025°/µm comparable to the measured average gradients in Figs. 3c,g. A significant electric field L ≅ 

0.4 kV/m is formed in the region of varying �(<), while the accompanying charge redistribution remains 

negligible, B
�/
C� ≅ ±3×10-5. Note that for ��� = 0, the twist-angle disorder has essentially no effect 

(∆H(�) = 0 and L∥ = 0) and its impact grows with increasing |
C�|. 
In presence of magnetic field, the DOS variations induced by �(�) give rise to gradients in the LL energies 
) as depicted by the blue lines in Fig. 4f (see Methods). As a result, a highly unusual QH state emerges in 

which instead of being restricted to the edges, the QH edge states are formed in the bulk creating 

interlaced compressible and incompressible strips with different integer filling factors (Figs. 4g-i). This 
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absence of well-defined QH state provides an explanation of the fact that MATBG magnetotransport 

commonly shows SdH oscillations without displaying full conductance quantization [1–7].  

In contrast to the conventional QH, in which the edge states must form closed loops, here they seem to 

terminate in the bulk upon reaching apparently disordered metallic regions (Supplementary Videos 1-4). 

Moreover, instead of the usually required constant carrier density in the incompressible regions, in 

presence of a � gradient the density varies following the variation in 
1(�) (Fig. 4i).  The ��(�) also 

causes accidental LL crossings (red circle in Fig. 4f) giving rise to occasional eight-fold degenerate LLs in 

the dispersive bands as observed in Figs. 1d, 2a and Extended Data Fig. 6. Figure 4g also shows large 

electric fields (105 V/m) formed in the incompressible strips giving rise to very narrow channels of 

persistent current  �� (Fig. 4h) consistent with the experimental data (Extended Data Fig. 4g). The typical 

width of ~50 nm of the channels along with the local |∇�(�)| determines the spatial resolution of our �(�) mapping (see Methods).  

Finally, we discuss the rich structure observed in the flat bands in Figs. 1 and 2. In contrast to transport 

measurements that resolve SdH oscillations at high fields where some of the degeneracies may be lifted, 

we probe the LLs locally at relatively low fields. The 0th LL at CNP is apparently eight-fold degenerate 

followed by four-fold degenerate LLs on both sides (Fig. 1d). It has been argued that such degeneracy 

indicates breaking of =O symmetry [31,32], which may in turn be triggered by the observed � gradients. 

Figures 1d and 2a show that these LLs are sometimes observed to extend beyond 
1/4 on both p and n 

sides, while at other locations new irregular LLs seem to emerge for n doping above 
1/4, as visible in 

Fig. 1d. The LLs clearly reappear above 
1/2 for both dopings, showing degeneracy of 2 (Figs. 2a and 

Extended Data Fig. 7). We occasionally observe single-fold LLs above 3
1/4 for both dopings as seen in 

Figs. 1d and Extended Data Fig. 7. We also observe that the amplitudes of the �� peaks, which are 

proportional to energy gaps ∆
), emanating from different integer fillings, often follow a smooth 

envelope. This indicates that the energy gaps between consecutive LL are of similar, rather than 

alternating, magnitudes, indicating full lifting of a degeneracy. Importantly, Figs. 1d, 2a, and Extended 

Data Fig. 7 show that LLs near 
1/4 and 
1/2 are discontinuous and those above 3
1/4 appear only at a 

few locations, indicating the extreme fragility of the correlated states to twist-angle disorder. 

The twist-angle disorder is a new type of disorder, which is fundamentally different from the more 

common kinds due to the fact that it changes the local band structure, induces large unscreened electric 

fields, and its effect grows with carrier density |
�|, explaining the higher visibility of the Landau fan near 

CNP in transport. The charge disorder in graphene is commonly characterized by the width of the 

resistance peak at CNP. This width, however, bears essentially no information on twist-angle disorder. 

Instead, our results suggest that the twist-angle disorder should be quantified by analyzing the width of 

the resistive peak at 
1 and the visibility of the Landau fans at |
�| > 
1. Our finding that the QH state is 

profoundly altered by the twist-angle gradients suggests that other correlated phases in MATBG, 

including magnetism and superconductivity, may also be fundamentally transformed by the twist-angle 

disorder. The gate-tunable intrinsic in-plane electric fields generated by the twist-angle gradients may 

also be of practical importance for photovoltaic and thermoelectric applications of atomically thin 

twisted van der Waals materials. 
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Fig. 1. Comparison between the global and local quantum Hall signatures in flat and dispersive bands 

in MATBG. (a) Experimental setup schematics with SOT scanning over MATBG (blue) encapsulated in 

hBN (light blue). Voltage ���?� + ����� is applied between the PdAu backgate and the grounded MATBG. 

Twist angle gradient �� induces internal electric field and counterpropagating equilibrium QH 

topological �� and nontopological ��� currents in narrow incompressible (red) and wider compressible 

(blue) strips respectively, flowing along equi-� contours and detected by ����. (b) Global ��� vs. electron 

density 
� and �� of device B showing insulating states at integer fillings 
�/(
1/4), Landau fans and 

superconductivity. (c) ���(
�) at �� = 1.08 T (extracted from (b) along the dashed purple line). (d) ���� 

measured at a point in the bulk of device B vs. 
� at �� = 1.08 T. The sharp ���� peaks reflect �� in 

incompressible strips with sign determined by '(�, magnitude by LL energy gap, and separation by LL 

degeneracy (red bars). The dispersive bands are shaded in yellow, the signal in the flat bands is amplified 

3 times, and the P-bands signal is multiplied by minus sign for clarity. (e) Calculated band structure with 

flat and dispersive bands. Blue and red represent the two valleys. (f) Zoomed-in ���� peaks in the 

dispersive bands for device A at �� = 1.19 T, illustrating the procedure for determining the local 
1 and 

the corresponding local � (p-band signal is multiplied by minus sign). 
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Fig. 2. Structure of the Landau levels and derivation of the twist angle along a line scan. (a) ����(<) vs. ��� for device A acquired along the dashed line in Fig. 3a. The top axis denotes 
�/(
1(<)/4) for < = 0 

and the separation between the yellow dashed lines describes the evolution of 
1(<). The dispersive 

band regions are marked in yellow. The signal in the flat bands is amplified 7 times and multiplied by 

minus one for p-doping such that incompressible strips are bright. (b-d) The derived position-dependent 
1(<) (b), �(<) (c), and the charge disorder B
?(<) (d). 
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Fig. 3. Mapping the twist angle and Landau levels in MATBG. (a) ���� image of the dashed area in the 

AFM inset at ��� = −16.4 V. Incompressible (compressible) QH regions are visible as bright blue to 

yellow (dark blue). Inset: AFM image of hBN encapsulated MATBG device A with edges outlined in white, 

light brown area indicating the underlying PdAu backgate, and bright spots showing bubbles. (b) 2D map 

of the twist angle �(�) derived from tomography of Supplementary Video 1 in the dashed region in (a). 

Grey-blue indicates regions which do not display MATBG physics due to disorder (bubbles outlined in 

black) or due to a very different twist angle. The dashed area is presented tomographically in (d). (c) 2D 

map of |��(�)| showing patches of slowly varying �(�) and a network of abrupt � jumps. (d) Slice from 

the tomography of device A showing disordered LLs in the bulk of the sample in the p dispersive band 

(see Supplementary Video 5 and [30] for interactive interface). The x-axis is flipped for clarity. (e-g) Same 

as (a-c) for device B with (e) acquired at ��� = −15 V and (f) derived from tomography of 

Supplementary Videos 3 and 4. (h) Charge disorder map B
?(�) of device B. (i) Histogram of local � in 

devices A and B with dashed lines marking the global � derived from transport. 
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Fig. 4. Internal electric fields, unconventional QH state, and equilibrium currents induced by twist-

angle gradients. (a) Cartoon of a MATBG sample with two connected regions of different twist angle 

giving rise to internal electric field L∥. (b) Schematic DOS in the two regions having different 
1. The 

backgate voltage ��� imposes nearly the same electron density 
C� (blue areas) in the two regions, 

however, the difference in 
1 results in different chemical potentials HQ and HR, giving rise to L∥ = ∇H/I. 

(c-e) Finite element calculation of the potential �(<) = −H(<)/I (c), electric field L�(<) (d), and carrier 

concentration B
� = 
�(<) − 
C� (e) for the case of linear change in � from 1.10° to 1.15° with 

0.025°/µm gradient and average carrier density 
C�= 3.25×1012 cm-2 at �� = 0. (f-i) Single particle 

calculation of LL energies 
)(<) in the electron-like dispersive band and self-consistent calculation of 

chemical potential H(<) (f), L�(<) (g), S�(<) (h), and B
�(<) (i) at �� = 1.22 T. Sharp peaks in L� and S� 

correspond to narrow (~50 nm wide) incompressible strips (shaded red) that are observed 

experimentally as peaks in ����.  
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Methods 

Device fabrication 

The MATBG devices were fabricated using previously reported 'tear & stack’ technique [28,29,33]. We 

first exfoliate monolayer graphene and hBN of 10 to 50 nm thickness on SiO2/Si substrates, annealed at 

350° C (for hBN only) and selected using optical microscopy and atomic force microscopy. Only flakes 

without wrinkles and bubbles are used. PC/PDMS polymer stack on a glass slide mounted on a micro-

positioning stage is used to pick up a ~10 nm thick hBN flake. The edge of the hBN flake is then used to 

tear a graphene flake. The substrate is rotated by 1.1° to 1.2°, followed by pickup of the other piece of 

graphene. The resulting stack is encapsulated with another hBN flake of thicknesses of 30 to 70 nm 

which has been put onto a metallic gate made of evaporated Cr/PdAu. The device geometry is defined by 

electron-beam lithography and reactive ion etching, only keeping relatively clean regions. Electrical 

contacts to the MATBG were made by one-dimensional edge contact method [34]. 

Optical images of devices A and B are shown in Extended Data Figs. 1a,b respectively. Device A was 

fabricated on a degenerately doped Si substrate with 300 nm SiO2. The MATBG resides partly on SiO2 and 

partly on the evaporated metallic backgate (light brown in Extended Data Fig. 1a). In this work, only the 

metallic backgate has been used for varying the carrier concentration 
� and a constant voltage ���TU = 

50 V was applied to the Si backgate for keeping the rest of the sample conductive in the transport 

measurements. Device B was fabricated on an intrinsic Si substrate with a metallic backgate extending 

over the full size of the device (light blue in Extended Data Fig. 1b). 

Transport characteristics 

Four-probe resistance measurements of the samples at � = 300 mK are shown in Extended Data Figs. 2 

and 3. Both devices exhibit the common transport characteristics of correlated physics in MATBG [1–3,5–

7], including ��� peaks at 
1 and its integer fractions, and Landau fans at elevated magnetic field. The 

slopes of the Landau fans in Extended Data Figs. 2a,b were used to extract the backgate capacitances = 

of 3.07×1011 cm-2 V-1 (49.23 nF/cm2) in device A and 2.31×1011 cm-2 V-1 (37 nF/cm2) for device B consistent 

with the evaluated dielectric thickness of the underlying hBN. The origins of the Landau fans were used 

to derive the global 
1 and the corresponding global � = 1.15˚ for device A and � = 1.06˚ in device B, in 

good correspondence with histograms of the local twist angle in Fig. 3i. In device A the global � 

correlates with the average of �(�) distribution, whereas in device B it is close to the upper end of the 

distribution function. This is consistent with the fact that the four-probe transport measurements in 

device B probe the central part of the Hall bar structure (Extended Data Fig. 1b) where �(�) is the 

highest and significantly more uniform (Fig. 3f), while the low end tail of �(�) distribution arises from 

regions that are not probed by transport. 

In addition, in device B we observe the superconducting state in the vicinity of p-doped 
1/2 with zero ��� which becomes suppressed by small magnetic field (Extended Data Fig. 3b). The critical current in 

the superconducting state reaches about 100 nA, as determined by the differential ��/�� characteristics 

(Extended Data Fig. 3c), and depends sensitively on the carrier density 
�. The observation of a fully 

developed superconductivity in device B is consistent with the finding of a continuous region of MA 

between the voltage contacts in Fig. 3f. Suppression of the resistance was also observed in device A 

(Extended Data Fig. 3a), but the lowest ��� was 328 Ω, suggestive of the presence of some 

superconducting regions but absence of a percolation path between the voltage contacts, consistent 

with the � map in Fig. 3b. 
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SOT fabrication and characterization 

The Pb SOTs were fabricated as described in Ref. [8] with diameters ranging from 220 to 250 nm and 

included an integrated shunt resistor on the tip [35]. The SOT readout was carried out using a cryogenic 

SQUID series array amplifier (SSAA) [36–38]. The magnetic imaging was performed in a 3He system [39] 

at 300 mK at which the Pb SOTs can operate in magnetic fields of up to 1.8 T. At fields �� ≈ 1.2 T used in 

this study, the SOTs displayed flux noise down to 250 n0/Hz1/2, spin noise of 10 µB/Hz1/2, and field noise 

down to 10 nT/Hz1/2. For height control we attached the SOT to a quartz tuning fork as described in Ref. 

[40]. The tuning fork was electrically excited at the resonance frequency of ~33 kHz. The current through 

it was amplified using a room temperature home-built trans-impedance amplifier, designed based on 

Ref. [41] and measured using a lock-in amplifier. The scanning was performed at a constant height of 20 

to 100 nm above the top hBN surface.  

Direct current imaging technique and evaluation of the current in the incompressible strips 

In order to avoid the 1 W⁄  noise of the SOT that is present at frequencies below ~1 kHz, an ac signal due 

to backgate modulation was acquired instead of measuring the local dc ��(�). We applied a small ac 

excitation to the backgate (Fig. 1a), ��� = ���?� + ����� sin(2\W]), where W ≅ 3 kHz, and the 

corresponding ���� =  �����^��/^��� was then measured by the SOT using a lock-in amplifier. Another 

major advantage of this modulation is that it provides a convenient method for direct imaging of the 

local current density S(�). To demonstrate its principle, consider a � gradient in the <_ direction that gives 

rise to a narrow strip of current of width ∆<, positioned at <%, and carrying a current density S( in the _̀ 

direction with a total current �( = ∆<S( (Extended Data Figs. 4a and 4h). The magnetic field ��(<) 

generated by the current and measured at height ℎ above it, is described by the Biot Savart law 

(Extended Data Fig. 4b). For heights ℎ > ∆< the ��(<) is essentially governed only by the total current �( 

in the strip, independent of ∆<. The ��(<) is an antisymmetric function with a steep slope above the 

current strip. Its spatial derivative ^��/^< has a sharp peak at the strip location (Extended Data Fig. 4c) 

with a height proportional to �( and thus can provide a good means for direct imaging of the current 

density distribution S((<) if the latter can be modulated in space in the <_ direction. The backgate voltage 

����� provides such spatial modulation as follows. In the presence of potential gradients, the QH edge 

channels flow along equipotential contours (given by equi-� contours in absence of charge disorder). A 

small ����� thus shifts the location of the channel by <%�� = �����^<%/^��� in the direction parallel to the 

gradient and perpendicular to the current flow. So regardless of the gradient direction <_, the measured 

signal will be given by ���� = −<a��^��/^< ∝ <a��S((<), thus providing direct imaging of the local current 

density. Extended Data Figs. 4d-f present a simulation of three counterpropagating current strips 

demonstrating the ���� imaging for this case. 

The sharpness of the  ���� peak is determined by ∆<, ℎ, <%��, and the SOT diameter. In Fig. 2a, the 

scanning height above the MATBG is ℎ = 70 nm (including hBN) and effective SOT diameter is 220 nm; 

hence the spatial resolution is essentially determined by the SOT diameter. For these parameters and <%�� = 54 nm rms, Extended Data Fig. 4c shows that a current strip that is narrower than ~150 nm will 

result in resolution limited ���� peak (compare solid and dashed lines). 

We now use this numerical procedure to analyze the data in Fig. 2a that presents ���� signal along the 

white dashed line in Fig. 3a, which is aligned along the twist-angle gradient in a region of relatively 

smooth �(�) behavior (light-brown region in the top-left corner of Fig. 3b, see also Supplementary Video 
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1). Extended Data Fig. 4g presents an example of the ���� data from Fig. 2a at ��� = −10.54 V displaying 

the ���� peak (blue). The data at consecutive ��� values show that the peak position <% shifts with ��� at 

a rate of 
c�dcefg = 1.54 μm/V, corresponding to a twist-angle gradient 

ch
c� = =/ i c�dcefg

c)jch k = 0.0374 /μm 

(where 
c)jch = .l

√O
h

�m). The data was acquired with ����� = 35 mV rms, inducing  <%�� = ����� c�dcefg = 54 nm 

rms. The red curve in Extended Data Fig. 4g shows a numerical fit to the data using these experimental 

parameters and current strip width of ∆< = 50 nm, resulting in �� = 1.3 μA. The good fit shows that the 

experimental results are consistent with COMSOL simulations in Figs. 4f-i, although the exact value of ∆< 

cannot be determined since the experimental ���� peak is resolution limited by the SOT diameter.  

The extracted value of �� = 1.3 μA is not sensitive to precise ∆<. Since �� = '(�∆
)/* = +∆
)*/ℎ, and 

+ = −12 in Extended Data Fig. 4g, we attain ∆
) = 2.8 meV comparable to the values derived from band 

structure calculations (Extended Data Fig. 10a). Using  ∆< = 50 nm we attain in-plane electric field in the 

incompressible region of L∥ = ∆
)/(*∆<) = 56 kV/m comparable to the simulation values in Fig. 4g.  

Topological and nontopological currents in the incompressible and compressible QH strips 

Gradients in the twist angle ∇� give rise to gradients in the chemical potential ∇H and to alternating 

compressible (when H resides within a LL) and incompressible (H in the energy gap between LLs) QH 

strips (Figs. 4f-i). Both regions carry current [42], however, usually only the currents in the 

incompressible strips, n� = 'o, which are of topological nature, are considered, while the 

nontopological currents in the compressible strips, n�� = H�∇ × |
�|p̂, are commonly ignored (here H� = rs/� is the magnetic moment of the orbiting electron and rs is its kinetic energy [43]). The 

following semiclassical picture is instructive in describing S� and S��. Under strong magnetic fields and in 

the absence of in-plane electric fields, the charge carriers follow cyclotron orbits which can be described 

semiclassically as an array of circles, resulting in zero average bulk current (Extended Data Fig. 5a). 

Applying an external in-plane electric field along the <-direction, L� = −^�/^<, to an incompressible 

state, causes the circular orbitals to convert into spirals drifting along the ` direction, generating a 

current S(� = '(�L� (Extended Data Fig. 5b). On the other hand, applying the same external electric field 

to a compressible strip will result in carrier redistribution which screens the in-plane electric field. As a 

result the drift current vanishes, but at a cost of a non-zero gradient in the carrier density ^
�/�< 

(Extended Data Fig. 5c). Since each orbital carries a magnetic moment t� = H�p̂ which gives rise to local 

magnetization u = |
�|t�, the induced ^
�/^< causes gradients in u, and hence produces equilibrium 

currents through n�� = ∇ × u  [42]. This accounts for a non-zero S(�� = H�^|
�|/^< (cyan arrows in 

Extended Data Fig. 5c), which flows in the direction opposite to the topological current S(� in Extended 

Data Fig. 5b. Since a full band does not contribute to current, 
� in the above expression refers only to 

carriers in a partially filled band. Alternatively, S(�� can be understood as arising from uncompensated 

contributions to the current from neighboring orbitals in the presence of a gradient in the orbital density 

(Extended Data Fig. 5c). 

The total current carried by the drifting orbitals in an incompressible strip residing between two 

compressible regions is given by ��̀ = ∫S�̀�< = '`<∆

/*, where ∆
) = 
|)|-. − 
|)| is the LL energy gap 

between the adjacent compressible states and '(� = +*,/ℎ is QH conductance of the incompressible 

state (see Fig. 4). For a more extensive description of S� and S�� see Ref. [9]. 
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Determination of twist angle measurement accuracy and spatial resolution 

� accuracy. The local twist angle is determined by the local 
1(�) through �(�) = 67√3
1(�)/8. The 

incompressible �� current and the corresponding peak in the ���� signal appear at specific locations 

where   LLs in the dispersive bands are exactly fully occupied, corresponding to a density |
�| ==F���� − ���@�AF = 
1 + 4 |��|/$% for 4-fold degenerate LLs, where ����  is the backgate voltage that 

corresponds to the  wx peak. Measuring the  > and  - peaks in the p and n dispersive bands 

respectively, allows derivation of 
1(K) = =DF���-�F + F���>�FE/2 − 4 |��|/$% and therefore of �(�). 

The absolute angle accuracy is thus determined by the accuracy of =, ��, and ���±�. Determination of = is 

possible through global transport measurements and more accurately through local measurement of the 

spacing between any two incompressible peaks ����-. − ���� = "|��|/($%=), where " is the degeneracy 

of the Landau level considered. From this we estimate our overall absolute accuracy of determining 
1 to 

be about ±1%, and thus absolute � accuracy of B� = ±0.005°.  

In this study, however, we are particularly interested in the relative accuracy of �(�) for comparing 

different locations � and deriving the angle gradients ∇�, which is determined essentially only by the 

measurement precision of ���±�. The sharpness of the �� peaks and the good signal to noise ratio of the 

���� signal allow high precision measurement of ���±� as demonstrated in Extended Data Fig. 6. In the 

stationary measurement in Extended Data Fig. 6a (zoom-in of Fig. 1f), ��� was swept with increments Δ��� = 4.7 mV demonstrating that the ���>O and ���>z peak positions can be determined to an accuracy 

better than ± one step size Δ���, corresponding to B���>z/���>z ≈ 4 × 10>z. Since � ∝ {
1 we have B�/� ≈ 2 × 10>z, or relative � accuracy of B� = ±0.0002°. In Supplementary Video 1, that was used to 

construct the full �(�) map of device A (Fig. 3b), larger increments Δ��� of 40 mV were used (Extended 

Data Fig. 6b), corresponding to � accuracy B� = ±0.002°. Supplementary Videos 3, 4 used B��� = 45 

mV constructing the �(<, `) map of device B (Fig. 3f) with similar accuracy. Supplementary Videos 3, 4 

contain 87 frames of 68×184 = 12,512 pixels each, that were acquired over a total of 42 hours. The ��� 

trace of each pixel therefore took ] = 12 seconds to acquire. The B� ≲  ±0.002° accuracy, normalized by 

the pixel acquisition time provides the relative � sensitivity per pixel in the imaging mode is better than 

~h./, = √]B� = 0.004°/Hz1/2. 

Spatial resolution of �(�) mapping. Our electrostatic simulations show that the typical width of the 

incompressible �� strips is about 50 nm (Figs. 4f,h) and should be smoothened by the wavefunction 

width, of the order of magnetic length �� = {ℏ/*�  ≅ 25 nm. Since the position � of the incompressible 

strip provides a very accurate determination on the local 
1(�) and �(�), the width of the strip 

essentially determines the spatial resolution which can be smaller than the SOT diameter. The actual 

spatial resolution BK is determined by the accuracy B��� with which the ��� value can be assigned to the 

�� peak at a location �, BK = B���^K/^���, where ^K/^��� is the change in position of �� per change in 

���. Since �� appears at ���(�) = (
1(�) + 4 |��|/$%)/=, the space dependence enters only through 


1(�) = 
1D�(�)E, therefore ^K/^��� = =(^�/^K)>.(^
1/^�)>., where ^
1/^� = 16�/√36,. Using 

characteristic values = = 2.5×1011 V-1 cm-2, B��� = 45 mV in the scanning mode, and ^�/^K = 0.05˚/μm 

gives a resolution BK = 50 nm. Lower ^�/^K gradients result in higher BK. In such case, however, since � 

varies slowly in space, a lower spatial resolution is required. The estimated BK is comparable to the pixel 

size in the videos (57 nm in Supplementary Video 1 and 43 nm in Videos 3, 4). We thus conclude that the 

spatial resolution BK of the attained �(�) maps is of the order of 4 to 5 moiré supercells (13 nm each).  
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Local quantum Hall measurement in device A 

Extended Data Fig. 7 presents the local ���� measurement, with SOT parked at a fixed position, along 

with the global transport ��� measurement in device A at �� = 1.19 T. Alternating compressible and 

incompressible states in the region under the tip lead to a series of peaks in ����, with sharp peaks 

corresponding to incompressible strips carrying ��. The sign of the incompressible peaks is determined 

by the sign of '(�, with ���� > 0 (< 0) for electron (hole) doping. In Figs. 1d and 2a the ���� signal for p 

doping was multiplied by minus one for clarity. The spacing between adjacent peaks reflects the 

degeneracy of the LL. The dispersive band (shaded yellow), exhibits a sequence of 4-fold and 8-fold 

degeneracies. In the flat band we find 4-fold degenerate levels around 
� = 0, 2-fold degeneracy near 
� = ±
1/2, and 1-fold degenerate levels near 
� = −3
1/4 (see Fig. 1d for 1-fold degenerate levels 

near 
� = +3
1/4). Evaluation of the local 
1 allows the extraction of the local twist angle, � = 

1.136±0.005˚ as described below. In contrast to the sharp ���� local peaks, oscillations in ��� are hardly 

visible due to �(�) disorder and the fact that the MA regions in device A do not extend over the entire 

device area. 

Landau level tomography and twist-angle mapping 

In order to map the local twist angle, a series of ����(�) area scans were performed upon varying ���. 

This results in a 3D dataset with two spatial dimensions and one ��� (or equivalently 
�) axis. Each LL 

energy gap forms a 2D manifold in this 3D space with a peak in ���� signal (bright in Extended Data Fig. 

8). The manifolds of the lowest LLs in the dispersive bands trace the manifold of the bottom of the 

dispersive band, 
1(K), and are displaced vertically from it by the degeneracy of the LLs, thus providing 

the means for mapping the local 
1(�) and hence the local �(�) = 67√3
1(�)/8. The 3D space was 

mapped with pixel size of ~50 nm and ��� spacing between successive scans, Δ��� ≅ 40 mV, which 

allows mapping �(�) with accuracy B� = ± 0.001° (see Methods).  

For device A, the tomographic imaging was acquired for the p dispersive band for ��� spanning −8.58 V 

to −11.50 V with Δ��� = 40 mV (Supplementary Video 1). The spacing between adjacent 4-fold levels at �� = 1.22 T was 0.39 V ≅ 10Δ���. In this device, the spatial variation of the charge neutrality voltage ���@�A(K) was found to be very small (Fig. 2a) and therefore 
1(�) was derived from the 3D data 

assuming a constant ���@�A. Representative slices of the 3D dataset are shown in Extended Data Figs. 

8a,b. At ��� = −8.5 V, the Fermi level resides in the flat band for all points in space, and at ��� = −11.5 

V, 
� is in the dispersive band. As 
� moves through the bottom of the dispersive band, it crosses four 4-

fold degenerate LLs above 
1 followed by an 8-fold degenerate LL. The black line in Extended Data Fig. 8a 

traces the  = −4 incompressible �� peak revealing �(�) gradients with occasional small jumps in the 

twist angle. Note that at the jump positions, the intensity of the ���� signal is suppressed due to pinning 

of the LLs at the �(�) steps, which reduces the amplitude of the spatial ac displacement <%�� and hence 

the intensity of ���� (see Methods).    

Note that at any value of ��� several different LLs cross  
� in the bulk of the sample. Thus despite the 

fact that fully developed LLs are present locally, no well-defined QH state can be observed globally, 

explaining of the fact that MATBG magnetotransport commonly shows SdH oscillations without 

displaying full conductance quantization [1–7]. At high enough field, the QH quantization should be 

recovered as the LL degeneracy 4��/$% exceeds the 
1(�) variations. 

Device B exhibited stronger charge inhomogeneity and hence the 3D tomographic imaging was acquired 

for both p and n dispersive bands (Supplementary Videos 3 and 4) and 
1(�) was derived from the 
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separation between the corresponding LLs in the two bands as described schematically in Fig. 1f. The 

tomographic data of both samples is available on [30]. 

The observation of correlated physics in devices with twist-angle disorder of ~0.1° may be explained by 

either a tolerance of MA physics to the exact � or by percolating paths along very specific ��. The fact 

that both of our devices show global MATBG physics including superconductivity, while having only a 

small overlap in their histograms in Fig. 3i, supports the former. Figure 2a shows, however, that LLs near 
1/4 and 
1/2 are quite discontinuous and those above 3
1/4 appear only at a few locations, indicating 

the extreme fragility of the correlated states to twist-angle disorder.  

Mapping of the charge disorder  

Similarly to the mapping of the twist angle disorder through 
1(�) = =(�)1(�) − �>)1(�))/2, the 

tomographic imaging also allows mapping of the charge disorder B
?(�) = =D�)1(�) + �>)1(�)E/2 −
C?, as presented in Fig. 3h for device B. Extended Data Fig. 9 shows the histogram of B
?(�) along with a 

Gaussian fit exhibiting standard deviation ∆
? = 2.59×1010 cm-2, which is comparable to high-quality 

hBN encapsulated monolayer graphene devices [44] and significantly lower than in graphene on SiO2 

[45]. Note that in contrast to hBN encapsulated graphene, MATBG fabrication process is currently 

incompatible with thermal annealing procedures for disorder reduction. We observe that the charge 

disorder in device B is notably larger than in the MA regions in device A (Fig. 2d), which we ascribe to the 

fact that in contrast to the latter, device B did not undergo surface residues cleaning by AFM. 

Note that the tomographic method allows mapping of the twist angle and charge disorders only in the 

MA regions where LLs are present. In device A, a significant part of the sample did not show MA physics 

(Supplementary Videos 1, 2 and Figs. 3a,b) while the regions of MA revealed very low charge disorder 

with an estimate standard deviation ∆
? ≈ 1.3×1010 cm-2 as attained by several 1D scans like e.g. Figs. 

2a,d. We therefore performed tomographic imaging of only the p dispersive band which does not allow 

extracting the full 2D map of B
?(�) in device A. Neglecting this low level of charge disorder introduces 

an error in the derived �(�) map of device A of B� ≲ 0.0015°, which is negligible compared to the span 

of �(�) in Fig. 3b. 

Band structure calculations and Landau level crossings 

The band structure of twisted bilayer graphene can be computed from an effective continuum 

Hamiltonian, which reads [11,12,46–48] 

�(�) = ��.(�) ��
� �,(�)�, 

where �U(�)
 is the valley dependent monolayer graphene Hamiltonian for layer �,  

�U(�) = −ℏ�� �� − �U(�)� ∙ D�'�, '(E, 
with Fermi velocity �� and � = ±1, indicating the positive and negative valleys, �U(�)

 is the k-space 

location of the respective Dirac points in layer �, and � is the interlayer coupling, which reads [48–51] 

� = � � �′�′ � � + � � ���∗
��� � � *U����∙� + � � ������∗ � � *U�(���-�m�)∙�. 

Here, � = 0.0797 eV and �� = 0.0975 eV [49] are coupling constants that give the strength of the 

interaction between like (� ↔ �, � ↔ �) and opposing (� ↔ �) sublattices in the two layers, the 
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difference of which accounts for out-of-plane corrugation, and � = *,�U O⁄ . The Moiré reciprocal lattice 

vectors, � � = 6 (.) − 6 (,)
, are given by the difference between the reciprocal lattice vectors in the 

upper (6 (.)
) and lower (6 (,)

) layers. 

Magnetic field effects can be included by making the substitution � → � + *�/ℏ in the effective 

Hamiltonian. Here, � is the vector potential which is related to the static magnetic field via � = � × �. In 

general, the band structure in a magnetic field cannot be computed because the addition of a spatially 

dependent vector potential breaks translational invariance. However, at certain values of the magnetic 

field – specifically when (~�/ℎ)/* = P/I, where P and I are co-prime integers and ~ is the area of the 

unit cell – a “magnetic” unit cell can be introduced whereupon it becomes possible to solve the 

Schrödinger equation using the corresponding “magnetic” Bloch conditions [50]. One is then able to 

construct a Hamiltonian matrix in the basis of the monolayer graphene Landau levels [51,52]. Although 

the Landau levels basis is unbounded, one can truncate the Hamiltonian matrix at an energy where the 

higher energy LLs only weakly affect the low energy spectrum. This cut-off energy must be significantly 

larger than the interlayer coupling characterized by the coupling constants � and �′. The resulting finite 

matrix can then be diagonalized. This results in a band structure diagram in terms of P/I, which is 

directly related to the strength of the magnetic field and indirectly related to the twist angle as the 

Moiré unit cell area, ~ = √36,/(8sin,(� 2⁄ )), is proportional to the twist angle �. For varying magnetic 

field or twist angle the bands are computed for each individual parameter value assuming that these 

values are homogeneous throughout the material. 

Level crossings in the band structure are observed as one varies the magnetic field or the twist angle. 

This is owing to the “Rashba-like” splitting of the dispersive bands. In general, this type of splitting leads 

to two Landau level series, largely overlapping in energy, which cross as a function of magnetic field 

(Extended Data Fig. 10a)  [53]. Similarly, LL crossings are also observed as a function of � (Extended Data 

Fig. 10b) as is the case in the experimental data. This is owing to the evolution of the “Rashba-like” 

splitting with � (Extended Data Figs. 10c-e). 

Origin of the internal in-plane electric field and numerical electrostatic simulations  

The origin of the internal electric field in presence of twist-angle gradients can be understood intuitively 

as follows. An external in-plane electric field applied to graphene (e.g. by charge disorder in the 

substrate) exerts a force on the electrons. Since thermal equilibrium conditions require zero net force on 

the carriers, charge redistribution will occur that will create an opposing electric field, leading to 

screening of the external field and thus achieving the required zero net force. This is the common 

situation in metals. In the case of MATBG, the backgate induces a uniform carrier density and thus no in-

plane electric field is present initially. However, the twist-angle disorder renders a variable chemical 

potential H(�) which exerts an in-plane force on the carriers ¢∥ = −∇H. To attain zero net force in 

thermal equilibrium, an in-plane electric field o∥ = ∇H/I therefore must be generated by carrier 

redistribution. Thus in contrast to the common charge disorder in which the system tends to screen 

external electric fields, in the case of twist-angle disorder, counterintuitively, the system spontaneously 

generates internal electric fields in order to counterbalance the force produced by the variable chemical 

potential. These internal fields do not generate current at zero magnetic field, however, in finite 

magnetic field transverse topological and nontopological currents will be induced in the ground state.  

For results presented in Fig. 4, COMSOL simulations were used for solving electrostatic equations for the 

potential � and charge density £ = −*
� at �� = 0 and in the QH state at �� = 1.22 T. The simulations 

included a backgate at a constant electric potential ��� and a grounded MATBG in a 3×0.5 μm2 <-p box, 
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assuming translation invariance along the ` axis, with boundary conditions of L¤ = 0 on the box’s 

external surfaces. An iterative self-consistent solution for �(<, `, p) and £ was obtained, satisfying the 

following conditions: (1) The electric potential �(<, `, p) depends on £ through ∇ ⋅ o = £ 
¦
%⁄  and o =−∇� with given ���, where 
¦ is the relative permittivity (we took 
¦ = 4 for hBN) and 
% is the vacuum 

permittivity. (2) £ depends on � through the integrated density of states §�(H; �), where H(<, `) =−I�(<, `) and I = ±* is the carrier charge (negative sign for H > 0). The integrated density of states §�(H; �) was calculated for � = 0 and � ≠ 0 as described in Band structure calculations section. 

Once �(<, `, p = 0) and £(<, `) were found in the plane of the MATBG, the incompressible surface 

currents were calculated using n� = −'∇�, where '�((<, `) = −'(�(<, `) = −+(<, `)*,/ℎ and '�� ='(( = 0 are the components of the conductivity tensor '. 

Measurement parameters 

All the measurements were carried out at � = 300 mK in out-of-plane applied magnetic field ��. 

Figs. 1b and Extended Data Fig. 2b: Device B,  ��� = 10 nA, ��� = −15 V to 15 V. 

Fig. 1d: Device B, �� = 1.08 T, SOT diameter 250 nm, scan height 40 nm, ����� = 20 mV rms, Δ��� = 6.25 

mV, acquisition time 6 s per point, total acquisition time 8 hours.  

Fig. 1f and Extended Data Figs. 6a and 8: Device A, �� = 1.19 T, SOT diameter 220 nm, scan height 100 

nm, ����� = 15 mV rms, Δ��� = 4.7 mV, acquisition time 6 s per point, total acquisition time 12 hours.  

Fig. 2: Device A, �� = 1.22 T, SOT diameter 220 nm, scan height 60 nm, ����� = 35 mV rms, pixel size 26 

nm, 160 ms per pixel, total acquisition time 21.4 hours. 

Fig. 3a and Supplementary Video 2: Device A, �� = 1.16 T, SOT diameter 220 nm, scan height 110 nm, ����� = 80 mV rms, pixel size 60 nm, 60 ms per pixel, acquisition time 60 minutes per frame. 

Supplementary Video 1 and Extended Data Figs. 6b and 8a,b: Device A, �� = 1.22 T, SOT diameter 220 

nm, scan height 60 nm, ����� = 35 mV rms, pixel size 57 nm, 60 ms per pixel, acquisition time 30 minutes 

per frame. 

Fig. 3e: Device B, �� = 1.08 T, SOT diameter 250 nm, scan height 140 nm, ����� = 60 mV rms, pixel size 50 

nm, 60 ms per pixel, acquisition time 33 minutes. 

Supplementary Videos 3, 4 and Extended Data Figs. 8c,d: Device B, �� = 1.08 T, SOT diameter 250 nm, 

scan height 70 nm (M3) and 80 nm (M4), ����� = 60 mV rms, pixel size 43 nm, 60 ms per pixel, acquisition 

time 25 minutes per frame. 

Extended Data Fig. 2a: Device A, ��� = 10 nA, ��� = −17 V to 17 V. Silicon backgate 50 V.  

Extended Data Fig. 3a: Device A,  ��� = 5 nA, ��� = −6 V to −3.5 V. Silicon backgate 50 V. 

Extended Data Fig. 3b: Device B,  ��� = 4 nA, ��� = −7 V to −4 V. 

Extended Data Fig. 3c: Device B,  ��� = 10 nA, ��� = −6.5 V to −4.7 V, �� = 0 T. 
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Extended Data Fig. 1. Optical image of MATBG devices. (a) Optical image of device A showing 

hBN/MATBG/hBN (green), the underlying PdAu backgate (light brown), and the marked electrodes used 

for four-probe ��� measurements. (b) Optical image of device B (cyan) on the PdAu backgate (light blue) 

with marked electrodes. 
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Extended Data Fig. 2. Transport measurements at ª = 300 mK. (a) Four-probe measurement of ���(���) vs. �� in device A using excitation current of 10 nA with the corresponding traces of the 

Landau fan diagram at the bottom. The green solid lines show the segments that can be traced in the 

data and the dotted lines indicate their extrapolation to the origin. (b) Same as (a) for device B. The 

purple color marks the regions where the ��� signal was slightly negative. 
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Extended Data Fig. 3. Transport measurements in the superconducting state at ª = 300 mK. (a-b) Color 

rendering of ��� measured in the vicinity of −
1/2 vs. �� and 
� at low fields using excitation current of 

5 nA rms in device A (a) and 4 nA rms in device B (b). A zero resistance superconducting state (black) is 

observed in device B. (c) ��/�� vs. �?� characteristics at various carrier concentrations 
� in the 

superconducting state in device B at �� = 0 T using ac excitation ��� = 10 nA rms. 
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Extended Data Fig. 4. Numerical simulation demonstrating current imaging by measuring «¬­®. (a) 

Current distribution S((< − <%) of a  ∆< = 50 nm wide channel carrying �( = 1 µA in the _̀ direction. (b) 

Calculated ��(< − <%) at a height of 70 nm above the sample convoluted with a 220 nm diameter SOT 

sensing area. (c) Calculated ����(< − <%) for <%�� = 54 nm rms spatial modulation of the channel 

position. The dashed profile corresponds to a current strip of width ∆< = 150 nm carrying the same 

current, showing that the spatial resolution is limited by the SOT diameter. (d-f) Same as (a-c) but for 

three counter-propagating currents spaced 150 nm apart. (g) Analysis of the ���� peak of an 

incompressible strip. ����(<) signal (blue) acquired along the line indicated in Fig. 3a for ��� =  −10.54 V 

(a single vertical line from Fig. 2a) showing the + = −12 incompressible peak, along with a numerical fit 

(red). The fit uses the experimental values of �����, ℎ, and SOT diameter with a single fitting parameter of 

the total current in the incompressible strip resulting in �� = 1.3 μA. An incompressible strip width Δ< = 

50 nm was used for the fit. The mean value of the ����(<) was subtracted from the data. The asymmetry 

in ����(<) away from the peak is caused by the presence of counterflowing nontopological currents ��� 

of lower density in the adjacent compressible strips. 
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Extended Data Fig. 5. The origin of equilibrium currents in the compressible and incompressible QH 

states. (a) Semiclassical picture of cyclotron orbits of holes with mutually canceling neighboring currents 

resulting in zero bulk current. (b) In the presence of an in-plane electric field L� (+ and – signs represent 

external charges) the cyclotron orbits acquire a drift velocity resulting in a non-zero S(� in the 

incompressible state. (c) In the compressible regime the external in-plane electric field is screened by 

establishing a charge density gradient, giving rise to S(�� flowing in the opposite direction (cyan arrows).  

 

Extended Data Fig. 6. Determination of twist angle measurement accuracy. (a) Traces of ���� vs. ��� in 

device A (from Fig. 1f) acquired with step size Δ��� of 4.7 mV and ����� = 15 mV rms. The positions of the 

���>O and ���>z peaks can be determined to an accuracy better than ± one step size Δ���, corresponding 

to relative � accuracy of B� = ±0.0002°. (b) Same as (a) taken from Supplementary Video 1 at a pixel 

position (<, `) = (2.53, 5.9) μm with step size Δ��� of 40 mV and ����� = 35 mV rms resulting in relative 

� accuracy of B� = ±0.001° in the imaging mode. The larger ���� signal and the broader �� peaks in (b) 

compared with (a) is due to higher ����� excitation (see Measurement parameters section). 



27 

 

 

Extended Data Fig. 7. Resolving the local quantum Hall states in flat and dispersive bands in device A. 

Global ��� (right axis) and local ���� (left) measured at a point in the bulk of device A vs. electron density 
� at �� = 1.19 T. The sharp ���� peaks reflect �� current in incompressible strips with sign determined 

by the sign of '(�, magnitude by the LL energy gap, and separation by the LL degeneracy (red bars). The 

dispersive bands are shaded in yellow and the signal in flat bands amplified 6 times for clarity.  
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Extended Data Fig. 8. Landau level tomography. (a) Slices of the 3D dataset ����D<, `, ���E along various 

planes for device A. The bright signals denote the 2D manifolds tracing the incompressible states. The 

black lines trace the  = −4 incompressible manifold used to determine 
1(<, `) and �(<, `). It 

separates 4-fold degenerate LLs below it from an 8-fold degenerate LL above it (wide dark blue band). 

The region in the center of the sample showing no LLs corresponds to the grey-blue area in Fig. 3b where 

no MATBG physics is resolved. (b) Representative horizontal slices of the data from Supplementary Video 

1 showing the evolution of the LLs with ���. (c) Same as (a) for device B. For the range of gate voltages 

shown, r� lies in the p dispersive band for the entire sample. The black lines show an example of trace of 

the incompressible manifold lying above an 8-fold degenerate LL. (d) Representative horizontal slices of 

the data from Supplementary Video 3.  Interactive interface for tomographic visualization of the data is 

available on [30]. 
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Extended Data Fig. 9. Histogram of the charge disorder in device B. Histogram of B
?(�) data from Fig. 

3h along with a Gaussian fit (black) with standard deviation of ∆
? = 2.59×1010 cm-2. 
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Extended Data Fig. 10. Dispersive bands Landau level crossings. (a) Numerically calculated LL energies 

as a function of magnetic field for a fixed � = 1.05°. An example of level crossing is highlighted in red. (b) 

Numerically calculated LL energies as a function of � for a fixed �� = 1.22 T. An example of a level 

crossing is highlighted in red. (c-e) The �� = 0 band structure of bilayer graphene for � = 1.05° (c), 1.16° 

(c), and 1.27° (c). The blue and red lines indicate the bands that arise from the positive and negative 

valleys, respectively. 


