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Scientific Significance Statement

Marine debris is a worldwide ocean pollution problem and evidence suggests that the tiniest pieces of plastic in the ocean,
microplastics, may be the most abundant forms of plastic pollution in the ocean; however, the smallest microplastics have yet
to be accurately quantified due to methodological limitations. We successfully developed and tested a new method for collect-
ing and counting the smallest microplastic pieces in seawater and ingested inside the guts of salps, a planktonic species at the
base of food webs and key to transport of carbon and particles from the sea surface to the deep sea. We determined that the
true abundance of these tiniest microplastics far outnumber previously reported counts, and that every salp we examined had
ingested plastic.

Abstract

Microplastics (< 5 mm) have long been a concern in marine debris research, but quantifying the smallest micro-
plastics (< 333 pm) has been hampered by appropriate collection methods, like net tows. We modified standard
epifluorescence microscopy methods to develop a new technique to enumerate < 333 ym microplastics (mini-
microplastics) from filtered surface seawater samples and salp stomach contents. This permitted us to distin-
guish mini-microplastics from phytoplankton and suspended particles. We found seawater mini-microplastic
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concentrations that were 5-7 orders of magnitude higher than published concentrations of > 333 ym micro-
plastics. Mini-microplastics were the most abundant in nearshore waters and more evenly distributed from the
California Current through the North Pacific Subtropical Gyre. Every salp examined had ingested mini-micro-
plastics, regardless of species, life history stage, or oceanic region. Salps ingested significantly smaller plastic par-
ticles than were available in ambient surface seawater. The blastozooid stage of salps had higher ingestion rates

than oozooids.

Marine debris is a worldwide ocean pollution problem,
with plastics found in virtually all aquatic environments
(Goldstein et al. 2013; GESAMP 2016). The majority of marine
debris analyzed to date has been microplastic, plastic < 5 mm
(Hidalgo-Ruz et al. 2012; Goldstein et al. 2013). However,
findings suggest even smaller plastics (<333 ym) are both
under-sampled due to the inappropriate mesh size of common
sampling nets (Van Sebille et al. 2015) and far more numerous
because plastic particles physically degrade over time into pro-
gressively smaller pieces (Gilfillan et al. 2009).

Such small debris can be consumed by, and deleterious to,
suspension-feeding marine organisms (Wright et al. 2013),
including salps (Madin and Deibel 1998). Salps are pelagic tuni-
cates that possess the highest per-individual filtration rates
among marine zooplankton, ingesting particles from < 1.0 ym
to 1.0 mm (Madin and Deibel 1998; Sutherland et al. 2010).
They primarily feed in the upper water column, where micro-
plastics are abundant (GESAMP 2016). Once plastics are
ingested by zooplankton, they have the potential to
bioaccumulate in the food web into larger organisms (Dawson
et al. 2018), along with adsorbed persistent organic pollutants
and harmful chemical additives (Ogata et al. 2009; Jang et al.
2016), with unknown physiological consequences.

Although many zooplankton species consume microplastic
in a laboratory setting (Cole et al. 2013), the ecologically sig-
nificant question lies in whether they are ingesting such parti-
cles in situ. Although the measured abundance of surface
seawater microplastics is high (Law et al. 2010, 2014; Cobzar
et al. 2014; Eriksen et al. 2014), it is 1-3 orders of magnitude
below model predictions of plastic inputs (Cézar et al. 2014;
Jambeck et al. 2015). Smith et al. (2014) reported a consider-
able influx of both salp tunics and fecal pellets to ~ 4000 m
depth following a bloom of Salpa spp. Thus, salps could be a
key link explaining the discrepancy between modeled and
measured abundances of buoyant plastics, because fast-
sinking salp fecal pellets and carcasses may be a vector mov-
ing ingested surface microplastics to the deep sea.

We aimed to isolate, identify, and quantify microplastics
5-333 um in size, a subgroup of microplastics which we ter-
med mini-microplastic. This is a difficult task in the ocean
due to their small size and irregularity. Here, we took advan-
tage of the well-documented autofluorescence of many plas-
tics (Langhals et al. 2015) and modified an epifluorescence
microscopy approach normally used to enumerate planktonic
microorganisms (Kemp et al. 1993; Taylor et al. 2012), to
quantify oceanic mini-microplastics in surface seawater and
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salp gut contents. Specifically, we asked: What are the distri-
bution and abundances of these mini-microplastics in surface
seawater? Are salps ingesting mini-microplastics in situ? And,
does the size distribution of ingested particles reflect that of
available plastic particles?

Methods

Sample collection at sea

Surface seawater samples and salp specimens used in this
analysis came from the following cruises: SEAPLEX (02-21
August 2009), R/V Falkor (21-30 October 2013), SKrillEx I
(26-31 July 2014), and SKrillEx II (11-17 June 2015)
(Supporting Information Fig. S1). Surface seawater samples
(1-2 m) were collected in metal buckets, immediately filtered
onto 5 ym pore polycarbonate filters, and frozen. We sorted
salps from sodium borate-buffered 1.8% formaldehyde pre-
served plankton samples. These were collected via a 202 ym
mesh bongo net at a tow depth of approximately 200 m or a
surface-dwelling 333 ym mesh manta net. We tested for air-
borne plastic contamination during sample collection on a
separate cruise in January 2017 by separately filtering both
surface seawater samples and ultra-filtered Milli-Q water (see
Supporting Information).

Salp identification and dissections

We sorted, measured, and identified salp species and life
history stage from preserved specimens from each sampling
location, located in three open ocean regions: North Pacific
Subtropical Gyre (NPSG), California Current (CC), the transi-
tion region (TR), and a nearshore region. Life history stage was
designated as blastozooid, the sexual chain-forming genera-
tion, or 0ozooid, the asexual solitary generation. Salp guts were
dissected; however, any existing mucous nets and gill bars
were not analyzed to avoid artifacts of net feeding (see
Supporting Information).

Epifluorescence microscopy to identify plastics

Traditional epifluorescence microscopy techniques add
fluorochromes to stain the DNA and proteins of plankton so
that identifying features appear under different reflected wave-
lengths of light (Kemp et al. 1993; Taylor et al. 2012). Because
our target was identification of plastics, not living organisms,
we did not add any fluorochromes. We left prepared slides at
room temperature for at least 24 h to diminish chlorophyll
a autofluorescence of plankton before visualization. This
ensured the most fluorescent particles on microscopy images



Brandon et al.

were likely microplastics, bacteria, or transparent exopolymeric
particles (TEP) (Samo et al. 2008). We tested multiple plastic
and nonplastic reference materials, such as cotton and wool,
under the four light excitation channels of our microscope to
determine their autofluorescence (Supporting Information -
Table S1). Filtered surface seawater samples and salp gut con-
tents were prepared for microscopy according to Freibott et al.
(2014), using an all-glass filtration apparatus (see Supporting
Information).

Enumeration of plastic and fiber particles

We created a decision tree to determine if a particle was plas-
tic (Supporting Information Fig. S2). Generally, plastics appeared
as long, thin fibers or flat fragments with sharp edges. Plastic par-
ticles fluoresced uniformly and did not have inner striations, col-
oration patterns, or features suggestive of biological particles,
such as spines, nuclei, or organelles. Not all plastics fluoresce,
so this was not used as a diagnostic feature (Supporting
Information Table S1). Particles that were invisible under trans-
mitted light but fluoresced under another light channel were
determined to be TEP (Supporting Information Figs. S2, S3; Samo
et al. 2008). Particles identified as likely diatom frustules, includ-
ing chain-formers and pennates like Pseudo-nitzschia, were not
counted as plastics. When in doubt, particles were not counted
as plastic, so our estimates are conservative and most likely
underestimate total mini-microplastic abundance.

Particles were categorized as short or long fibers and frag-
ments (Supporting Information Figs. S5, S6). The lengths, wid-
ths, areas, and fluorescence were recorded for every fragment
and short fiber (<300 ym) in automated images. Long fibers
(> 300 um) were enumerated in separate, manual visual tran-
sects at lesser magnification to eliminate the possibility of
double-counting single large fibers that were not visualized in
their totality in automated images. Fibers < 200 ym in length
were not counted in manual transects; however, there may be
some overlap between the short fibers counted in automated
images and long fibers counted in manual transects, due to the
200-300 ym overlap. We recorded long fiber color, length, and
width with an ocular micrometer (see Supporting Information).

We analyzed plastic particles in filtered salp gut contents
via epifluorescence microscopy. Because salp gut walls and
ingested biogenic material can fluoresce, fluorescence was
considered a secondary characteristic of ingested plastic over
particle shape and reflectivity under transmitted light. How-
ever, fluorescence was checked to visualize inner striations or
patterns characteristic of diatom chains. When in doubt, par-
ticles were not counted as plastic. The thick gut walls of salps
and ingested biogenic material most likely occluded some
plastic, so our data underestimate total plastic ingestion.

Ingestion rates

To calculate salp ingestion rates of plastic, mini-microplastic
counts were divided by gut clearance times. We adapted the
methods of Huskin et al. (2003) to calculate gut clearance times
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Fig. 1. Total plastic mini-microdebris concentrations, measured across
the open ocean (Falkor; A), and the nearshore (SKrillEx II; B and SKrillEx
I; €). The mean concentrations from each sampling region, that is, the
NPSG, the TR, the CC, and the nearshore were also compared (D).
Small fibers and fragments were counted by digital image surveys, long
fibers by visual counts. Green = open ocean (Falkor), gray = nearshore
(SKrillEx I and SKrillEx I1). (A—C) No significant spatial heterogeneity in
concentrations within any one cruise (p > 0.05, Kruskal-Wallis). (D) Aster-
isk means nearshore samples are significantly different from all other
regions (p<0.05, Dunn’s posthoc test with Benjamini-Hochberg
adjustment).
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for each species we identified, which ranged from 2.5 to 6.25 h
(see Supporting Information).

Results

Epifluorescence and contamination

We found different patterns of fluorescence between plastic
and biological materials, and when in doubt, particles were
not counted as plastic. Using a controlled test, we determined
that the vast majority of mini-microplastic materials in these
filtered seawater samples were not from contamination during
processing (Supporting Information Fig. S4).

Abundance and distribution of microplastics

Figure 1 combines all three plastic categories—short fibers,
long fibers, and fragments—into total filtered plastic concentra-
tion at each station. We detected no significant spatial heteroge-
neity in seawater plastic concentrations across the Falkor
transect (at 12 h intervals, Fig. 1A) for three open ocean regions:
NPSG, CC, and the TR (p > 0.05, Kruskal-Wallis). Nearshore
samples from SKrillEx I (Fig. 1B) and II (Fig. 1C) were collected
at ~ 15 km intervals, and showed no significant spatial hetero-
geneity (p > 0.05, Kruskal-Wallis), possibly due to small sample
sizes. Mean open ocean mini-microplastic concentrations

Suspended and salp-ingested microplastic debris

compared to nearshore demonstrated significant heterogeneity
between regions (Fig. 1D, p < 0.001, Kruskal-Wallis). Nearshore
mini-microplastic concentrations differed from all other regions
(p<0.05, Dunn’s posthoc test with Benjamini-Hochberg
adjustment).

Open ocean mini-microplastic concentrations were on the
order of 103 L™! for short fibers and fragments (Supporting
Information Fig. S5A,B), with lower long fiber concentrations
(102 L) (Supporting Information Fig. S5C, p < 0.0001,
Kruskal-Wallis). In contrast, the fluorescent long fibers were
3.5-6.5 times more abundant than mean concentrations of
nearshore short fibers and fragments on SKrillEx I (Supporting
Information Fig. S6A-C), and almost eight times more abun-
dant on SKrillEx II (Supporting Information Fig. S6D-F).

Almost every open ocean fragment and short fiber was
<333 ym in length and would have been missed by previous
studies using larger mesh nets (Fig. 2). Long fibers were usually
> 333 um, but thin enough to easily slip through 333 ym mesh.
The minimum lengths of fragments and short fibers were
between 14 and 50 ym for all locations, approaching the 5-um
pore size of the filters. For long fibers, both surface area and
length were significantly different among regions (p < 0.01,
Kruskal-Wallis), with significantly shorter fibers in the TR
(p<0.0001, Dunn’s post hoc test with Benjamini-Hochberg
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Fig. 2. Linear and areal dimensions of micro- and mini-microplastics sampled from sampling stations in the NPSG (green), the TR (purple), and the CC
(yellow). The black line and asterisk indicate a region that is significantly different from the other two regions (p < 0.01, Kruskal-Wallis; p < 0.001, Dunn’s

post hoc test with Benjamini-Hochberg adjustment).
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adjustment). Similarly, in the nearshore samples (SKrillEx I and
1), every measured fragment and short fiber length was
< 333 ym (Supporting Information Figs. S7, S8). Spatial hetero-
geneity among stations is further discussed in the Supporting
Information.

Individual particle surface area ranged from 3 x 107> to
0.71 mm?, compared to Goldstein et al. (2013)’s findings,
using a 333 um net, which detected particles 0.01-565 mm?.
Goldstein et al. (2013) found plastic particle lengths ranging
from 0.34 to 65.7 mm, while we found lengths from 0.01 to
16.27 mm (including long fibers). Ultimately, the most pro-
nounced difference between our findings was not the size
range of particles, but rather their concentrations. Mini-
microplastics in this study were five orders of magnitude more
abundant than the > 333 ym microplastics from Goldstein
et al. (2013). However, when concentration was multiplied by
surface area (log yum? of plastic m~* water), we found that the
> 333 ym microplastics had significantly higher areal concen-
trations than the <333 ym mini-microplastics (Fig. 3,
p <0.0001, Kruskal-Wallis).

Ingestion by salps

Every single salp gut analyzed contained plastic. Blasto-
zooids had higher ingestion rates than oozooids. In general,
nearshore salps were larger than open ocean salps (Fig. 4,
Supporting Information Fig. S9). The CC salps were the

(B) Nearshore blastozooids
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Fig. 4. Ingestion rate of microplastics plotted against body length of salps, obtained from epifluorescence microscopy of salp gut contents, and sepa-
rated by salp life history stage and sampling region. For the nearshore oozoid (A) and blastozooid (B) salps, all species are Cyclosalpa affinis except one
Salpa aspera (circle). For the open ocean oozoid (C€) and blastozooid (D) salps, TR = transition region, CC = California Current, and NPSG = North Pacific
Subtropical Gyre.
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Fig. 5. Box and whisker plots of surface area of salp-ingested particles
compared to surface area of ambient surface seawater particles. Gray: near-
shore, measured in this study. Green: open ocean, measured in this study.
Blue: microplastics > 333 um, sampled in the open ocean (Goldstein et al.
2013). Circles are outliers beyond 3/2 outer quartiles. Asterisk indicates
when a region is significantly different from all other regions (p < 0.05,
Dunn’s post hoc test with Benjamini-Hochberg adjustment).

smallest and had the lowest plastic ingestion rates (Fig. 4C,D).
Excepting the NPSG and TR oozooids, there was no detectable
relationship between body length and plastic ingestion rate
for dissected salps. Although we found regional differences in
mini-microplastic concentrations in the water column, there
was no significant effect of region on salp plastic ingestion
rate (Supporting Information Fig. S9, p > 0.05, Kruskal-Wallis).
Fibers made up 91% of the total ingested particles. The surface
area and lengths of fibers and fragments differed significantly
between most regions (see Supporting Information).

We compared the size of ingested mini-microplastics with
that of ambient mini-microplastics in surface seawater, both
from our data and Goldstein et al. (2013) (Fig. 5). Most of the
net-collected particles from Goldstein et al. (2013) fell within
the size range of potential salp food particles (Vargas and
Madin 2004). At all sample locations, the average size of parti-
cles consumed by salps was significantly smaller than the size
of ambient seawater plastic (Fig. 5, p < 0.05, Dunn’s post hoc
test with Benjamini-Hochberg adjustment).

Discussion

We successfully used epifluorescence microscopy to identify
mini-microplastic particles in natural seawater samples and salp
gut contents. This method required careful judgment and exper-
tise to distinguish biotic from plastic materials. Furthermore,
autofluorescence of salp gut walls and biogenic materials made
ingested plastic fluorescence only a secondary identification
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characteristic. This method allowed us to distinguish plastic
from nonplastic particles and fluorescent from nonfluorescent
plastic, but not to identify specific plastic types. Isolating
plastic-type autofluorescence patterns under specific emission
wavelengths may permit such differentiation in future work.
However, our ultimate goal was to use standard epifluorescence
microscopy techniques to differentiate plastics from nonplastic
particles in order to obtain accurate bulk measurements of plas-
tics < 333 pm, which the method accomplished.

This study may be one of the first to estimate the abundance
of the smallest mini-microplastics in surface seawater, which
are consistently under-sampled (Wang and Wang 2018). We
found a mean plastic concentration across all locations of
8277 particles L™' (8.3 x 10° particles m™). Our particle con-
centrations averaged 5-7 orders of magnitude higher than previ-
ous studies (Law et al. 2010, 2014; Goldstein et al. 2012; Wang
and Wang 2018). This highlights the previously unquantified
significance of mini-microplastics in marine debris counts.

Nearshore samples had higher plastic concentrations than
open ocean samples. This agrees with published findings that
have recorded similar spikes in plastic concentrations near-
shore, close to populated areas, with a decline in plastic mov-
ing offshore (Law et al. 2010; Goldstein et al. 2012; Van Sebille
et al. 2015). The difference in plastic concentrations between
SKrillEx I and II may be explained by annual differences in
rainfall and watershed input to these nearshore waters.

Many estimates of macro- and microdebris (Law et al. 2010,
Goldstein et al. 2012, Van Sebille et al. 2015), including modeled
debris trajectories (Maximenko et al. 2012; Eriksen et al. 2014),
agree that the highest concentrations of open ocean marine
debris occur in convergence zones of subtropical gyres. However,
we did not detect a significant increase in mini-microplastic con-
centration in the NPSG and our open ocean samples were not
significantly different across regions. Many possible sinks of
mini-microplastics could account for this. Plastic below 5 ym in
size presumably degrade beyond the detection limit of our
method. Plastics can also be biofouled and sink out of surface
water, or ingested and removed from the water. As plastic accu-
mulates in the NPSG and breaks down into progressively smaller
pieces, our data suggest that plastic < 333 ym is removed from
the gyre through biofouling, ingestion, or degradation at the
same rate it is being supplied. In the nearshore zone, however,
mini-microplastics, especially long fibers (200 ym-17 mm range),
likely have a higher rate of input than loss. All of these sources
and sinks require further research to be better parameterized.

Goldstein et al. (2013) sampled almost no particles smaller
than 0.333 mm x 0.333 mm (0.11 mm?), due to the mesh size
of the sample collection net, while we detected many particles
below that limit (minimum size 3 x 10~ mm?). Our results
show the majority of plastic concentrations occur between
<333 ym and 0.11 mm?. Although the mini-microplastics we
measured were more numerically abundant, they did not
comprise the majority of the plastic surface area in the water.
Organisms that colonize surface substrates in the ocean are
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more likely to find surface area on micro- and macroplastics
rather than mini-microplastics, despite the numerical abun-
dance of mini-microplastics.

This is the first record of salp ingestion of microplastic in
situ. Every salp dissected had plastic in its gut, regardless of
species, life history stage, or region of the ocean sampled. Salp
gut clearance times are on the order of 2-7 h (Huskin et al.
2003), so we are confident that by only analyzing the gut, we
avoided artifacts of net feeding or other contamination. Air-
borne contamination is a major concern in modern micro-
plastic work (GESAMP 2016), especially when samples are
dominated by fibers, as in this study (91% of the salp-ingested
particles). However, our processes of seawater filtration, slide
preparation, and salp dissection limited contamination (see
Supporting Information). Compared to filtered control sam-
ples, most of the plastics in our surface seawater samples were
not contamination (Supporting Information Fig. S4).

We detected no regional differences in plastic ingestion by
salps, excluding the much lower values of the CC salps. This
finding is likely attributable to the very small body size of
those salps. The CC salps had the lowest ingestion rate of any
region, whereas for surface seawater, concentrations of mini-
microplastics in the nearshore environment were significantly
higher than the entire open ocean. Overall, however, both
salp ingestion and surface seawater plastic concentrations had
limited regional differences.

Salps are predominantly generalist suspension feeders
(Vargas and Madin 2004) with ingestion based primarily on par-
ticle size, typically from < 1 m to 1 mm (Sutherland et al. 2010).
All seawater mini-microplastic measured, and almost all the
plastic in Goldstein et al. (2013), fall within their possible inges-
tion range. Yet, the salps sampled here ate significantly smaller
pieces of plastic than were available in the ambient surface
water. This may be explained by the fact that salps can effi-
ciently collect down to submicron particles (Sutherland et al.
2010) and feed throughout a greater area of the water column
than the surface, where larger, more buoyant plastic is retained.

Salps are of ecological importance due to several factors:
their notoriously rapid growth and opportunistic reproductive
rates that can lead to extremely high population densities or
“blooms,” higher filtration rates per individual than any other
zooplankton grazer, and production of dense fecal pellets that
can result in high vertical fluxes of this material to deeper
depths (Madin and Deibel 1998). The large fecal pellets of
salps have proven to possess rapid sinking and slow decompo-
sition rates such that they can reach the deep ocean relatively
intact (Caron et al. 1989), transporting organic carbon and
potential microplastics with them. Our evidence for the wide-
spread and universal consumption of microplastics by salps
leads us to believe that salps may be an important vector of
marine debris transport from the surface ocean to deep-sea
communities. The transport of microplastics via salps may be
critical to incorporate into microplastic export calculations as
an overlooked output from surface waters.
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