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Abstract

The inference via simultaneous confidence band is studied for stationary covariance function of dense functional
data. A two-stage estimation procedure is proposed based on spline approximation, the first stage involving es-
timation of all the individual trajectories and the second stage involving estimation of the covariance function
through smoothing the empirical covariance function. The proposed covariance estimator is smooth and as effi-
cient as the oracle estimator when all individual trajectories are known. An asymptotic simultaneous confidence
band (SCB) is developed for the true covariance function, and the coverage probabilities are shown to be asymp-
totically correct. Intensive simulation experiments are conducted to demonstrate the performance of the proposed
estimator and SCB. The proposed method is also illustrated with a real data example.
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1. Introduction

Since [1] first coined the term “functional data analysis” (FDA), recent years have seen numerous publica-
tions emerging in the FDA theory, methods and applications, making it an important area in statistics research.
Motivated by specific problems and complex data collected in modern experiments, such as [2], [3], considerable
efforts have been made to analyze functional data. The estimation for population mean function and principal
component in functional data has been extensively studied, for instance, [4—8] and so on.

Related to the smoothness, the second-order structure of random functions can be depicted by the covariance,
thus the covariance function is another indispensable ingredient in many areas, such as longitudinal analysis,
spatial statistics, and Bayesian hierarchical modeling, see [9-13]. In this sense, [14] proposed a simultaneous
confidence envelope of covariance function for functional data; [15] proposed a consistent estimator for the
long-run covariance operator of stationary time series; [16] considered the estimation of integrated covariance
functions, which is required to construct asymptotic confidence intervals and significance tests for the mean vector
in the context of stationary random fields. Since the covariance function measures stronger association among
variables that are closer to each other, the employment of covariance function is considerably highlighted in spatial
data analysis when the geometric structure of the surface is rough and self-similar. A common situation is that the
observations are specified via a Gaussian process whose finite-dimensional joint distributions are determined by
a valid covariance function; see, for instance, [9].
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Let {n(x), x € x} be a stochastic process defined on a compact interval y, with E fx 7(x)dx < +oo. It is
covariance stationary if G(x, x’) = C(|x — x’|), where

G(x,x") = Cov {n(x),n(x"H}, x,x" €y. )

Consider a collection of n trajectories {r;(x)}\_,, which are i.i.d realizations of n(x), with mean and covariance
functions, say m(x) = E{n(x)}, G(x,x") = Cov {n(x),n(x")}, respectively. The trajectories {r;(x)}_, are decom-
posed as n;(x) = m(x) + Z;(x), where Z;(x) can be viewed as a small-scale variation of x on the ith trajectory, and
is assumed to be a weakly stationary process with EZ;(x) = 0 and covariance G(x, x') = Cov {Z;(x), Z; (x")}.

According to classical FDA settings, for G (-,-), there exist eigenvalues 41 > A, > --- > 0 and cor-
responding eigenfunctions {4}, the latter being an orthonormal basis of L?(y), such that Y;2 4 < oo,
G(x,x') = 22, A0y (x), and f G (x, x") Y (x")dx' = Axp(x). The standard process n(x), x € y, then
allows the well-known Karhunen-Loéve L? representation 7(x) = m(x)+ 2ire1 Ek¢i(x), in which the random coeffi-
cients &, called functional principal component (FPC) scores, are uncorrelated with each other of mean 0 and vari-
ance 1. The rescaled eigenfunctions, ¢, called FPC, satisfy that ¢, = Ay and f {n(x) — m(x)} pp(x)dx = k&,
for k > 1. The ith process n;(x), x € x, is written as n;(x) = m(x) + X2, £x¢i(x), in which the FPC scores
{€ikdeey, @ € {1,...,n}, are i.i.d copies of {&}; ;. Although the sequences {Ai},~;, {¢x (D)o, and {&i}re, exist
mathematically, they are either unknown or unobservable.

The actual observed functional data are noisy sampled points from trajectories {r;(x)}\_,. Let {(Y;;, X;;), 1 <
i <n, 1< j< NJjbe repeated measurements on a random sample of n experimental units, where Y;; is the
response observed on the ith unit at value X;; of the variable x. The observed data can be modeled as

Yi; = ni(Xij) + o(Xijei; = m(X;)) + Zi(X;)) + o(Xipeij, i €{1,...,n}, je{l,...,N},

where &;;, independent of Z;(-)’s, are i.i.d random errors with mean 0 and variance 1, and 0% (-) is the variance
function of the measurement errors. For the data considered in this paper, without loss of generality, n;(-) is
assumed to be recorded on a regular grid in y = [0,1], and X;; = x; = j/N, 1 < j < N. This type of functional
data was considered in [17], [18] and [14], among others. Consequently, our observed data can be written as

Yij=m(j/N)+Z; (jIN) + o (j/N)&ij, i€{l,....n}, je{l,...,N}. 2)

It would not be a far stretch if the sample points for the ith subject Y;; admit the structure of a nonstationary
or locally stationary time series, as in [19, 20]. One may further ask if these random observations at regular grid
points would even admit the structure of stationary time series. [14], for instance, concluded that the Tecator near-
infrared spectra data is nonstationary based on the simultaneous confidence envelope for the covariance function.
There are, however, interesting functional data for which the covariance function exhibits stationarity, because a
closer relationship between the geometric structures and covariance function relies on the stationary assumption.
In particular, the stationary random processes or fields are prominent in the analysis of 1D and 2D signals; see,
for instance, the important spatial covariance model studied in Matérn random fields, stationary multivariate time
series and the stationary spectral-space statistics studied in physics such as [21]. As a fundamental issue, the
study of covariance structure in stationary stochastic processes can be applied to a wide range of areas such as
hydrosciences and geostatistics.

Typically, it is difficult to interpret the covariance function in the case of FDA and longitudinal data anal-
ysis. The estimation strategies of the covariance function generally fall into two categories: direct smoothing
and mixed-effects type of approaches. The direct smoothing is typically pointwise and nonparametric, while the
mixed-effects type usually involves parametric models and hence approximates covariance functions with analyt-
ical expressions. For functional data, FPC analysis has become one of the first-line methods; see, for instance,
the nonparametric estimation of covariance functions: [8, 14, 17, 22], among others. For longitudinal data, [23]
considered reduced rank spline mixed-effects models to describe the modes of the variation; [24] proposed a ge-
ometric approach within the framework of marginal maximum likelihood estimation by requiring the trajectories
are i.i.d. Gaussian processes.

In this paper, we consider a nonparametric estimation of the stationary covariance structure, which is useful
either as a guide to the formulation of a parametric model or as the basis for formal inference without imposing
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parametric assumptions. Our estimation procedure is carried out by spline approximation, where the first step
involves the estimation of the ith trajectory and the mean function, based on dense observations (a vital feature for
us to borrow strength); the second step estimates the covariance function through smoothing using the residuals
of the first step. The proposed covariance estimator is smooth and as efficient as the oracle estimator constructed
from true 7;(-) and the mean m(-).

After estimating the covariance function, our next concern is to provide an inferential tool to further examine
the covariance structure. Although a straightforward way is to conduct a hypothesis test, it is not well developed
as other FDA methods, due to the difficulty of the infinite-dimensionality of the functional space. The existing
methods mainly focus on testing of the mean functions for functional data, such as the pointwise t-test provided by
[2]. However, the hypothesis test for covariance receives relatively little attention even though a global conclusion
is often more desirable in real data analysis. In this line, [25] proposed a supremum-norm based test for the equal-
ity of several covariance functions. However, it is a general-purpose smoother that is not designed specifically for
covariance operators and it ignores the smoothness of trajectories in FDA setting, hence the simple averaging of
the observations is insufficient to meet the manifold needs in reality.

To surmount these challenges, we develop an asymptotic simultaneous confidence band (SCB), which can
be used to test the adequacy and validity of certain covariance models. Specifically, the null hypothesis is H :
C(h) = C(h;0) for some 8 € ®. An SCB is an intuitive and theoretically reliable tool for global inference
of functions. For example, in the FDA framework, [14] proposed SCBs for the covariance functions, and [7]
derived a corrected SCB using principal component. The contribution of this paper is twofold. First, it provides
the methodology and asymptotic theory for the estimation of the covariance C(-) in the framework of stationary
dense functional data under mild assumptions; second, the estimator of C(-) is accompanied by a procedure for
constructing asymptotically exact SCBs.

The rest of the paper is organized as follows. In Section 2, we introduce the two-stage B-spline estimation
procedure for the covariance function. Section 3 shows that the proposed estimator is as efficient as if all the n
trajectories 7;(-) and the mean function m(-) are known over the entire data range. Section 4 presents the asymptotic
SCB for the covariance function, and describes the implementation of the SCB. Section 5 carries out intensive
simulation studies to evaluate the finite sample performance of the proposed SCB. The methodology is verified
by a real data example in Section 6. Technical lemmas, proofs of the main theoretical results and additional
simulation results are presented in Appendices A and B. The full version of the paper can be found in [26].

2. B-spline covariance function estimation

In this section, we describe the estimation procedure for the covariance function C(-). If the small-scale
variation of x, Z;(x) = ni(x) —m(x), 1 < i < n, x €[0, 1], on the ith trajectory could be observed, one would
estimate the covariance as

. 1 1-h 1 n
Ch) = -7 \fo p ; Zi{(X)Zi(x + h)dx, hel0,hy], 3)

where hy € (0, 1) is a pre-specified upper limit. Since {Z;(x)}?_,, x €[0, 1], are unobserved, the above estimator
C(h) is “infeasible” in practice. In this paper, we propose to estimate the covariance function based on the
following residuals

Zi(x) =) —m(x), iefl,...,n), xe[0,1], 4

where 7;(x) and m(x) are the estimators of 7;(x) and m(x), respectively.

In such case, a sample-based consistent estimator can be employed, such as the spline smoother proposed in
[5]. Denote by {l‘[};;l a sequence of equally-spaced points, t; = €/ (Js+ 1), L € {l,...,J},0<t, <--- <ty <1,
called interior knots, which divide the interval [0, 1] into (J; + 1) equal subintervals Iy = [0,11), Iy = [tz, tr+1),
tef{l,...,J;— 1} I; =[t;,,1]. For any positive integer p, lett;_, =--- =t =0and 1 =, 4, =--- = t;, be
auxiliary knots. Let SP=2 = 8»-2 [0, 1] be the polynomial spline space of order p on I, £ € {0,..., Jg}, which
consists of all (p — 2) times continuously differentiable functions on [0, 1] that are polynomials of degree (p — 1)
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on subintervals I, £ € {0, ..., J;}. Following the notation in [27], we denote by {B,(x),1 < £ < J; + p} the pth
order B-spline basis functions of S~ hence S¥~? = {ZZ:IP /lg,pBg,p(x)‘ Aep € R, x €0, 1]}.

The ith unknown trajectory 7;(x) is estimated by using the following formula

N

7i () = argmin ) {¥;; - g(x))}

g()eSP 5

2

&)

One can then estimate the unknown mean function m (-) as m(x) = n™! > mi(x), and obtain the covariance

estimator
1 1-h n

— 1 — —
Chy = y— - ; Z(0)Zi(x + hdx, hel0,h]. (©6)

3. Asymptotic Properties

This section studies the asymptotic properties for the proposed estimators.

3.1. Assumptions

To study the asymptotic properties of the two-step spline estimator C(-), one needs some assumptions.
Throughout the paper, for sequences a, and b,, denote a, =< b, if a, and b, are asymptotically equivalent.
For any function ¢(x) defined on a domain y, denote ||¢||, = SUP e, lo(x)l, and @ (x) its gth order derivative
with respect to x. For any L? integrable functions ¢(x) and ¢(x), x € y, define their theoretical inner product as
(B, ) = fx #(x)@(x)dx, and the empirical inner product as (¢, )y = N~} szv: L9 (j/N) ¢ (j/N). Correspondingly
and respectively, theoretical and empirical norms are ||¢||§ = (¢, 9), I|¢||§VN ={),P)y-

For a non-negative integer ¢ and a real number u € (0, 1], write H @m[0, 1] as the space of y-Holder contin-
uous functions, i.e.,

H@[0,1] =3¢ :[0,1] > R "
xyel0,1],x#y lx =yl

[ - ¢ )]
llell,, = sup —————— <+o0.

We next introduce some technical assumptions.

(C1) There exists an integer ¢ > 0 and a constant y € (0, 1], such that the regression function m (-) € H' @ [0, 1].
In the following, one denotes p* = g + u.

(C2) The standard deviation function o(-) € H®"[0, 1] for positive index v € (0, 1] and for some constants M,
My > 0, SUP,0.1] o(x) < M, SUPe[0.1] |C(h)| < M.

(C3) There exists a constant > 0, such that as N — co, n = n(N) — oo, n = O(N?).

(C4) The rescaled FPCs ¢ (+) € H@ [0, 1] with Y ||¢k||q’” < 400, 202 llgilloe < +o0; for increasing positive
integers {k,},2, as n — 00, 3 lIdxllee = o(n~'%) and k, = O (n*) for some w > 0.

(C5) There are constants ¢y, ¢ € (0,+00), y1, v2 € (1,+00), By, B2 € (0,1/2), and i.i.d N (0, 1) variables
{U,»,-,g}fjj:l, {Uik,f}:.ikln ., such that min {2(3 +(A+B)p) A =B)p52(1+B) (v - /32)} > @ for the

index v in Assumption (C2), p* in Assumption (C1), and

2 Eix — 2 Uiz
P P

1

t
Z&‘j - Z Uije

I<k<k, 1<t<n -
j=1 j=1

1<i<n 1<t<N

Pr{ max max

> nﬁ‘} <cn M, Pr {max max
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(C5’) Thei.i.d variables {8,- } _are independent of {£;;};- 1>- The number of distinct distributions for all FPC
Hiz1,j21 i21k>1
scores {&it};1 4> 1S finite. There exist constants r; > 4 + 2w, r2 > 4 + 26, for w in Assumption (C4) and 6

in Assumption (C3), such that E|e;;|? and E|£ |7, k € {1, 2,.. .}, are finite.

(C6) The spline order p > p*, the number of interior knots J;<N7?dy for some 7 > 0 with dy + dz_vl =O0(n"N)
as N — oo, and for p* in Assumption (C1), v in Assumption (C2), 8 in Assumption (C3), 81,82 and y; in
Assumption (C5)

56 0+(y1+1+a)) 89,81 0 0
max{4 -, e v}<7<1—§—ﬁg—§ﬁ1.

Assumptions (C1)—(C2) are standard in the literature, see [5] for instance. In particular, (C1) and (C4) control
the size of the bias of the spline smoother for m(-) and ¢;(-). Assumption (C2) ensures the variance function is
a uniformly bounded function. Assumption (C3) regulates that sample size n grows as a fractional power 6 of
N, the number of observations per subject. The bounded smoothness of the principal components is guaranteed
in Assumption (C4). Assumption (C5) provides a strong approximation of estimation errors and FPC scores.
Assumption (C5’) is an elementary assumption guaranteeing the high-level Assumption (C5). It is noteworthy
that the smoothness of our estimator is controlled by the knots of the splines. Assumption (C6) specifies the
number of knots for the B-spline smoothing.

Remark 1. These assumptions are mild conditions that can be satisfied in many practical situations. One simple
and reasonable setup for the above parameters g, y, 6, p, y can be as follows: g+ u=p* =4, v=1,6 =1,
p = 4 (cubic spline), y = 3/8, dy =< Inln N. These constants are used as defaults in implementing the method; see
Section 4.

3.2. Oracle efficiency

We now show that the proposed two-step estimator 6(-) defined in (6) is oracle-efficient, i.e., it is as efficient
as if all trajectories 7,(-) are known over the entire data range. To begin with, we first investigate the asymptotic
property of the infeasible covariance estimator C(h). Denote by A(h) = C(h) — C(h), h € [0, ho].

By the definition of C(h) and 5(h) in (1) and (3), it is easy to show that C(h) = (1—h)"! fOH' Yy Gk(X)Pr(x+
~ N oo 1-h
hydx, and C(h) = n~'(1 = h)™' 2, Zk,krzl Eib [) ¢r(X)dr (x + hydx. Thus,

1-h

A(h) = Z Ewe —0ur) | du0)ge (x+ W) dx,
kk'=

0

where £ = n! 2y i, and S = 1 for k = k" and O otherwise.
Then the asymptotic mean squared error of the infeasible covariance estimator C(-) is provided in Theorem
1 below. Let

00 1 1-h 2 o0 1 1-h 2
By =)’ {T G h)dx} + > (B8, - 3){m G dx}
kk'=1

k=1

> 1 1-h . "
+ k;l {—1 ), Pr(X)pr (x + h)dx} {m ; G (O)r(x + h)dx} , 7

Theorem 1. Under Assumptions (C1)~(C6), supjeo,) IN"E (AR = Eh)| = o(1).
Remark 2. By rewriting Z(%), one has

1 1-h 2
{ T=hJ, ¢k(x)¢k(X+h)dX}

[I]
M
rrj
:1

1-h

1=h 2
{ Pr(X)i (x + h)dx + G (X)yc (x + h) dx}] .
0

5
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From (3.2) in [14],

oo

V(x4 h) = ) G0 (X + 1) + g (O + WY + ) 10 (x+ ) (BEY, - 1),
k<k’ k=1

thus, (1 =)~ fol_h V(x,x+h)dx > Z(h), h € [0,hy]. Therefore, if the covariance function is stationary, the
infeasible estimator C (+) is more efficient than the covariance estimator given in [14].

Proposition 1. Under Assumptions (CI1)—(C6), as N — oo, \[nA(-) —p £(-), where () is a Gaussian process
defined on [0, hy] such that E{(h) = 0, EC*(h) = Z(h), with covariance function

[eS]

1-h 1-n
Q (h, 1) =Cov (¢(h), £ () = (1 = by (1 = )" { fo fo S G () e (x + Wi (¥ + ) dd
kk =1

(o]

1-h 1-n
+ f f Z G ()P (X" + 1) P (x + h) g (&) dxdx’
0 0 1

kk'=

1-h 1-i/
+ j(; fo Z (Ef?k - 3) Ok()Pr(x + M) (X') r (x" + 1) dxdx’},
=1

Sfor h, b’ € [0, ho].

The proof of Proposition 1 is deferred to Section A.3 in Appendix A. Although the oracle smoother C()
enjoys the desirable theoretical property, it is not a statistic since Z;(x) = n;(x) — m(x) is unknown. According
to Proposition 2 below, the price for using Z(x) = 77}({2 — m(x) in place of Z;(x) in the covariance estimator
is asymptotically negligible, that is, two-step estimator C(-) is as efficient as the infeasible estimator C(-). See
Section A.4 in Appendix A for the proof of Proposition 2 .

Proposition 2. Under Assumptions (C1)~(C6), Supjco s, |5(h) - 5(h)| = op(n‘l/z).
Combining the above two propositions, we obtain the following result.

Theorem 2. Under Assumptions (CI)—(C6), SUPe(0.10] |5(h) —C(h) — A(h)| = Op(n‘l/z).
Theorem 2 indicates that A(h) is the leading term of E(h) - C(h).

4. Simultaneous confidence band

In this section, we construct the SCB for the covariance function C(-).

4.1. Asymptotic SCB

The next theorem presents the asymptotic behavior of the maximum of the normalized deviation of the
covariance estimator C(-), which sheds the lights on how to construct the asymptotic SCB for C(:). It is a direct
result of Propositions 1, 2 and Theorem 2, thus the proof is omitted.

Theorem 3. Under Assumptions (C1)—(C6), for any a € (0, 1),

lim Pr{ sup n'/2 |E(h) — C(h)
N—eo hel0,ho]

E(h)? < Ql_a} =1-a,

lim Pr {nlﬂ Gy~ iy

N—ooo

2007 < 21apf = 1- 0, VhEOol,

where Q1_, is the 100 (1 — )t percentile of the absolute maxima distribution of {(W)ZE~%(h), while Zi—q/2 IS
denoted as the 100 (1 — /2)" percentile of the standard normal distribution, and ¢ (h) is the mean zero Gaussian
process defined in Proposition 1.

Corollary 1. Under Assumptions (C1)—(C6), an asymptotic 100 (1 — @) % exact SCB for C(-) is given by é’: (h) =
n20,_,EY2(h), h € [0,hy). While an asymptotic pointwise confidence band for C(-) is given by C(h)
n12z1_0pEV2(h), h € [0, ho).



175

180

185

190

195

200

4.2. Knots selection

In spline smoothing, the number of knots is often treated as an unknown tuning parameters, and the fitting
results can be sensitive to it. Though in the literature there is no optimal method to choose J;, we recommend
the following two ways. One is criterion-based selection strategy such as Generalized Cross-Validation (GCV),
where the candidate pool for J; is all the integers between 1 and J-, where J; = min {10, |n/4]}. Specifically, the
GCV is given as

N Y-8, (B]B))" Bﬁ”2

GCV(J) = o
[1 ~N-ltr {B, (B]B,)" B}}]

where Y = (V1,...,Y)", where ¥, = n7' 52, ¥y, By() = {Biy().....Brapp@) . J = 1,....J%, and
B; = (B, (1/N),...,B;(N/N)}" is the N x (J + p) design matrix for spline regression. Then the number of knots
selected is J; = argminy GCV(J). The second method to choose J; is the formula based selection strategy as
stated in Remark 1, specifically, we seek J, that satisfies Assumption (C6) such that J; < N?dy. In practice, the
smoothness order (g, i) of m () and ¢ (-) are taken as default (3, 1) or (4,0) with a matching spline order p = 4
(cubic spline). Therefore, we suggest J, = [¢N? {Inln (N)}” | for some positive constant c¢. Note that the default
of parameter y = 3/8 satisfies the condition given in Assumption (C6). In our extensive simulation studies, we
find that ¢ = 0.8 is a good choice for the tuning parameter. Both methods give very similar estimators and SCBs
in our numerical studies.

4.3. FPC analysis

_ We now describe how to obtain the covariance function G (-, ), and its eigenfunctions ak(-) and eigenvalues
Ay in the FPC analysis. We estimate G(-, -) by

Js+p Js+p

6()(?, x') = l’l_l Z Z(X)Z(x,) = Z Zﬁss’Bs,p(x)Bs’,p (x/) ’ (8)
i=1

s=1 s'=1

where Z is defined in (4) and ,Essl ’s are the coeflicients.
In FPC applications, it is typical to truncate the spectral decomposition at an integer  to account for the some
predetermined proportion of the variance. For example, in our numerical studies below, « is selected as the number

of eigenvalues that can explain 95% of the variation in the data. Next, let B(x) = {qup(x), ...,B J‘y+p,p(x)}T, and
the Nx(Js + p) design matrix B for spline regression is B i{B (1/N),...,B(N/N)}7. Thenforany k € {1,...,«},
we consider the following spline approximation for ¢ (-): ¥y (x') = Z{{;p YeBep (x), where yy’s are coefficients

of B-spline estimator subject to ] B'By; = 1 with; = (’)71,;(, ... ,’37jx+p,k)T. The estimates of eigenfunctions and
eigenvalues correspond ¥, and 4, can be obtained by solving the eigenequations,

fg(x, X')’lﬁ\k (x")dx' =//fk’¢7k(x), kel{l,... k. )

According to (8), solving (9) is equivalent to solving the following: BT()C)EBTB%< = ’/kaT(x)')'?k, kell,... k},
where BT = @v,s’)jj;i .

By simple algebra, one needs to solve BBTBy, = A7, for any k € {1,...,«}. _Consider the following
Cholesky decomposition: B'B = LgLj. Therefore, solving (9) is equivalent to solving AL ;yx = LLBLgL Yk,
that is, Ax and L}, k € {1,...,«}, are the eigenvalues and unit eigenvectors of L;BLg. In other words, Yy
is obtained by multiplying (L;)71 immediately after the unit eigenvectors of LEELB, hence ¥ () is obtained.
Consequently, 5;( ) = ’/f}(/ 2{/;;( (x"). Then, the kth FPC score of the ith curve can be estimated by a numerical
integration: &; = N™! Z?’zl’/i;' {Yij - n?(j/N)}gk(j/N).
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4.4. Estimating the variance function Z(h) and the percentile Q_,

Notice the fact that (7) inspires us to estimate the variance function Z(-) by merely computing E‘l‘k, 5(~) and
& In practice, the following estimator is employed

— K 1 I-h__ 2 K 1 I-h 2
a(h):kkzl{m e (x+h)dx} +62(h)+;(ﬁ’§i‘k—3){m i ¢k(x)¢k(x+h)dx}.

Next, to derive the percentile Q;_,, the Gaussian process is simulated as follows

K

— 1 1-h . . K 1 -h _ N
£ = Z 1-h fo S Pe(X)y (x + h)dx + kz_; T-h fo e (V)pe(x + h) (EE, - 1)1/2 dx,

k#k!

where € and €, are independent standard Gaussian random variables. Hence, {(4) is a zero mean Gaussian
process with variance function Z(4) and covariance function

. . . 1-h 1-n K
Q(h,h") = Cov {§(h),§(h’)} _h—f f { Z ()i (X)) P (x + Wy (X + 1)
kk'=1
+ Z E£, - ¢k(x)¢k A+ () (X + I )} dxdx' + C(h)C (K'),

forany h, i’ € [0, ho]. A large number of independent realizations of { Z(h) are simulated, then the maximal absolute
deviation for each copy of { (h)_‘l/ 2(h) is taken. Eventually, Q,_, is estimated by the empirical percentiles of these
maximum values.

5. Simulation Studies

To illustrate the finite-sample behavior of our confidence bands, we conduct simulation studies to illustrate
the finite-sample performance of the proposed method.

5.1. General study

The data are generated from the following model: Y;; = m (j/N)+X -, it (j/N)+0(j/N)eij, j€{l,...,N},
i € {l,...,n}, where m(x) = sin{2n (x — 1/2)}, &;; are i.i.d standard normal variables, ¢;(x) = \/ﬂ_kx//k(x) with
A = (1/4)'k/ 2l Yor_1(x) = V2 cos knx), Your(x) = V2 sin (2knx), k > 1. We consider both homogenous errors
with o(x) = o and strongly heteroscedastic errors with o(x) = o {5 + exp(x)} " {5 — exp(x)}, where the noise
level oc = 0.1, 0.5. Since Assumption (C5) is satisfied, following [14], we truncate Y ;- , &k (j/N) at 1000. The
number of curves n = [¢cN?] with ¢ = 0.8 and 6 = 1, and the number of observations per curve N is taken to be
50, 100 and 200, respectively. Each simulation is repeated 500 times. Throughout this section, the mean function
is estimated by cubic splines, i.e., p = 4, with the number of knots selected using the formula and GCV given in
Section 4.2.

First, we examine the accuracy of the proposed two-stage estimation procedure. The average mean squared
error (AMSE) is computed to assess the performance of the covariance estimators C( ) and C(-) defined in (6) and
(3), respectively. The AMSE of G( -), the eigenvalue /lk s and the eigenfunction ¢k s are defined as

500 N
AMSE(G) = SOONzgj; (G.GIN.J IN) = G GIN.J IN)] .
1 500 « 500 N « 5
AMSE(D) = 250 > ) (s = 407, AMSE() = ZZ (@ =00 GV
s=1 k=1 =1 j=1 k=1
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where 55, //fks, aks represent the values of the s-th replication of 5(-, ), ’/l\k, ak in (9), respectively. Our simulation
results based on homogeneous and heteroscedastic variance functions are listed in Tables 1 and 2, respectively.
One concludes that a lager noise level leads to a higher AMSE over all, and the AMSEs of the two estimators C “)
and C(-) are very similar in each scenario. Moreover, the AMSE() is getting smaller when N is increasing in
each scenario. The GCV method has smaller AMSE(’/l\) and AMSE(E) than the formula method does. The value
of the AMSE for avaries in each of the scenarios. When N = 50, the AMSE(E) based on the formula method is
smaller than that based on the GCV method, while a converse phenomenon is observed when N = 100, 200.

Tables 1 and 2 also present the empirical coverage rate (CR), i.e., the percentage of the event that the true
curve C(-) is entirely covered by the SCB among all 500 replications, respectively. As the sample size increases,
the CR of the SCB becomes closer to the nominal confidence level, which shows a positive confirmation of
Theorem 3. In addition, the average widths (WD) of the bands are calculated and presented in columns 9 and 11
of Tables 1-2. It is obvious that the width tends to be narrower when the sample size becomes larger and noise
level o smaller.

Table 1: Average mean squared errors (AMSEs) of C,C,1,G, ?, _coverage rates (CRs) of the proposed SCBs (outside/inside of the parentheses
is based on C, C) and average widths (WDs) of SCBs based on C. The standard deviation of the errors o-(x) = ¢ = 0.1,0.5. The number of
knots for the splines are determined by the formula (Formula) and the GCV described in Section 4.2. Results are based on 500 replications.

AMSE SCB

O N ~ ~ - —~ — 95% 99%
¢ ¢ A G ¢ CR WD CR WD
0.1 50 0.068 0.065 0.014 0.130 0.661 0.866(0.892) 1.25 0.926(0.942) 1.51
Forl'nula 100 0.034 0.035 0.006 0.051 0.871 0.910(0.922) 0.92 0.970(0.970) 1.11
200 0.016 0.016 0.003 0.025 0.845 0.958(0.962) 0.67 0.992(0.992) 0.80
01 50 0.065 0.065 0.009 0.095 0.806 0.868(0.894) 1.25 0.940(0.948) 1.51
GéV 100 0.035 0.034 0.005 0.048 0.790 0.914(0.920) 0.92 0.968(0.970) 1.11
200 0.016 0.016 0.002 0.025 0.769 0.960(0.960) 0.67 0.992(0.994) 0.80
05 50 0.070 0.065 0.014 0.133 0.651 0.864(0.892) 1.26 0.920(0.938) 1.53
Forr.nula 100 0.035 0.035 0.006 0.052 0.876 0.910(0.922) 0.93 0.966(0.970) 1.11
200 0.016 0.016 0.003 0.025 0.845 0.956(0.960) 0.67 0.992(0.992) 0.80
05 50 0.070 0.065 0.012 0.107 0.871 0.858(0.896) 1.27 0.918(0.940) 1.53
GéV 100 0.036 0.035 0.006 0.052 0.826 0.898(0.920) 0.92 0.958(0.964) 1.11
200 0.017 0.016 0.003 0.026 0.798 0.946(0.960) 0.67 0.988(0.992) 0.80

Overall, the performance of the SCB based on estimator C is indistinguishable from the infeasible SCB

25 based on estimator C; and they approximate the nominal level as N increases. The knots number selected by the

240

245

GCV yield similar results as those of the formula. For visualization of actual estimation, Fig. 1 depicts the true
covariance C(-), the spline covariance estimators 6(-), as well as the 99% SCB for C(-). They are allkased on a
typical run under the setting N = 50, N = 200 and o = 0.1. It is clear from Fig. 1 that the estimator C(-) is very
close to the true covariance function C(-) and the true covariance function is entirely covered by the SCB.

5.2. Spatial covariance models

In order to compare the finite-sample performance of the proposed estimator to that of [14], we consider the
following spatial covariance models:
e Spherical model (M1): C(h; 02,6,) = o>{1 — 1.5h/6; + 0.5(h/6,)*}H {h < 6,};

e Matérn model M2): C(h; 0' ,05,v) = %{F(v)}_
tion, f , is the modified Neumann function;

L1V (2 \Wh/6,)" F (2 \vh/8,), where T is the gamma func-

e Gaussian model (M3): C(h; 0' 6;) = exp(—hz/é’f).

9
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Fig. 1: Plot of true covariance function (thick solid line), oracle estimator c (dashed line) and the 99% SCB (dotted-dashed line), infeasible
estimator C (dotted line) for the covariance function with ¢ = 0.1.

Table 2: Average mean squared errors (AMSEs) of C.C.1,G, a, coverage rates (CRs) of the proposed SCB (outside/inside of the parentheses
is based on C, C) and average widths (WDs) of SCBs based on C. The heteroscedastic errors are based on standard deviation function:
o(x) = 05 — exp(x)}/{5 + exp(x)}, o = 0.1,0.5. Results are based on 500 replications.

AMSE SCB
o N = — = 95% 99%

¢ c A G ¢ CR WD CR WD

o 50 0068 0065 0014 0130 0650  086208%) 125  09300.942) 151

ot 100 0034 0035 0006 0051 0870 09120922 092  0966(0.970) LII

200 0016 0016 0003 0025 085  0.954(0.960) 0.67  0.988(0.990) 0.80

o 50 0065 0065 0009 0095 0808 08680896 125  0938(0.948) 151

Gey 100 0034 0035 0005 0048 0772 091809200 092  0970(0970) 111

200 0016 0016 0002 0025 0772  0.960(0.960) 0.67  0.992(0.994) 0.80

05 S0 0070 0065 0014 0133 0651  08640890) 126  0926(0.940) 152

Fopo 100 0035 0035 0006 0051 0879 09160.9200 092 0.9660.970) 111

200 0016 0016 0003 0025 0847  0960(0.964) 0.67  0.988(0.990) 0.80

05 50 0067 0065 0010 0098 0857  08680.898) 126  09300.942) 151

Gy 100 0035 0034 0005 0049 0817 09120922 092  0.962(0968) 111

200 0016 0016 0003 0025 0783  0954(0.962) 0.67  0.992(0.994) 0.80

10
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In the parameterization (following [28] page 29) of the covariance structure, o-? is the sill and 6, is the
range parameter. In the simulation, we set o-f = 2 for M1, M2 and M3, and choose 6, = 1 for M1 and M2,
0s; = 3 for M3, while for M2, v = 3. Since C(h) — 0 as h — oo, in practice, we only numerically evaluate
the covariance C(h) over the “effective range” defined as the distance beyond which the correlation between
observations, p(h) = C(h)/C (0), is less than or equal to 0.05. In such sense, we choose the compact interval
[0, 5] to represent the “effective range”, where s is the largest & satisfying p(h) < 0.05. An exception of this
phenomenon is the spherical model that has an exact range [0, 6], i.e., C(h) = 0 when h = 6,. To be consistent in
our evaluation of the methods, we apply the “effective range” to the spherical model as well.

Our data are generated from Y;; = m(x;) + Zi(x;) + o(x;)e;;, where m(x) = sin{27 (x — 1/2)}, {xj}jy:l are
equally spaced grid points over “effective range” [0, s], &; ~ N(0, 1) are i.i.d variables, and the process Z(-) is
generated from a zero mean Gaussian process. We examine the performance of models containing homogeneous
errors with o(x) = o and heteroscedastic errors with o-(x) = o {5 + exp(x)}_1 {5 — exp(x)} for M1, and o(x) =
oe{30 + exp (x/2)}_1 {30 — exp (x/2)} for M2 and M3. The results are similar to each other, so we only present
the results with homogeneous errors. The number of curves n = [0.8N ] with N = 50, 100 and 200, and the noise
levels are o = 0.1, 0.5. The mean function is estimated by cubic splines, i.e., p = 4, with the number of knots
selected using the formula given in Section 4.2. The GCV selected knots yield similar results but it is more time
consuming, hence they are not summarized here.

The AMSE of the covariance estimators C and C are reported in columns 4-5 of Table 3. The performance
of the two estimators is very similar. Columns 6 and 8 present the empirical coverage rate CR, i.e., the percentage
of the true curve C(-) entirely covered by the SCB, based on 95% and 99% confidence levels, respectively. As the
sample size increases, the coverage probability of the SCB becomes closer to the nominal confidence level. In
addition, the WDs of the bands are calculated and presented in columns 7 and 9 in Table 3. It is obvious that the
width tends to be narrower when the sample size becomes larger or o is smaller.

Table 3: Average mean squared errors (AMSEs) of C,C 110G, ?J, coverage rates (CRs) of the proposed the SCB (outside/inside of the
parentheses is based on C, C) and average widths (WDs) of SCBs based on C. Results are based on data generated from models M1-M3 in
Section 5.2, and 500 replications, in which the standard deviation of the errors o-(x) = o = 0.1,0.5.

AMSE SCB
o Model N ¢ c 95% 99%
CR WD CR WD

50 0.082 0.081 0.910(0.918) 137  0.960(0.966) 1.68

Ml 100 0.040 0.040  0.920(0.926) 099  0.974(0.978) 121
200 0.019 0018  0.946(0.952) 0.72  0.980(0.986) 0.87

50 0.096 0.095 0.904(0.008) 1.44  0950(0.954) 1.78

0.1 M2 100 0.048 0049  0.926(0.924) 1.05  0.978(0.978) 1.30
200 0.022 0022  0.9580.958) 0.76  0.992(0.994) 0.94

50 0.109 0.109  0.906(0.910) 150  0.954(0.958) 1.86

M3 100 0.055 0.055 0.922(0.928) 1.09  0.976(0.978) 1.35
200 0.025 0.025 0.960(0.958) 0.79  0.988(0.990) 0.98

50 0.082 0.080 0.896(0.912) 1.38 0.952(0.964) 1.70

M1 100 0.040 0.040 0.920(0.928) 0.99 0.980(0.980) 1.21

200 0.019 0.018 0.938(0.946) 0.72 0.988(0.988) 0.88

50 0.097 0.096 0.896(0.908) 1.46 0.946(0.958) 1.80

05 M2 100 0.048 0.049 0.914(0.930) 1.06 0.978(0.980) 1.30
200 0.022 0.022 0.954(0.958) 0.77 0.990(0.994) 0.94

50 0.111 0.111 0.908(0.916) 1.51 0.952(0.962) 1.88

M3 100 0.055 0.055 0.912(0.924) 1.10 0.974(0.978) 1.36

200 0.025 0.025 0.958(0.956) 0.79 0.988(0.990) 0.98

When the covariance structure is not necessarily stationary, [14] proposed a tensor-product bivariate B-

11
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spline estimator G\”’S(x, x") and a SCB for the covariance function G(x, x") = Cov {Z;(x), Z; (x")}. Follovling the
suggestion of one referee, to assess the accuracy of recovering G(-, -), the covariance function estimators C is also
presented in 2D to make a comparison, say, GPROP (x,x') = Cl (Ix = x’]). In addition, the simultaneous confidence
envelops (SCE) is constructed by using G* ROP (. x’) and ETPS(X, x") are compared, named SCE-I and SCE-II,
respectively.

Columns 4-5 of Table 4 present the AMSEs of GPROP(x, x’) and G™S(x, x’). The results of AMSEs indicate
that GPROP is more accurate than G™S, while G™S usually gives larger AMSE. Columns 6-13 of Table 4 report
the CR and WD of SCE-I and SCE-II. One sees that the CRs of SCE-I are much closer to the nominal levels than
those of SCE-II, and increasing the sample size helps to improve the CR of the SCEs to their nominal levels. One
also observes the widths of the SCE-I are much narrower than those of the SCE-II. These findings indicate our
proposed SCE-I is more efficient than SCE-II when the true covariance function is stationary.

Table 4: Average mean squared errors (AMSEs) of GP ROP(. .y, GT PS(.,.), coverage rates (CRs) and average widths (WDs) of SCE-I and
SCE-II. Results are based on data generated from models M1-M3 in Section 5.2 and 500 replications, where the standard deviation of the
errors o7(x) = 0¢ = 0.1,0.5.

AMSE SCE-I SCE-II
cc Model N " mor s 95% 99% 95% 99%
CR WD CR WD CR WD CR WD

50 0.079 0.123 0910 1.40 0960 1.71 0.744 2.08 0.840 2.55

M1 100 0.039 0.063 0920 1.01 0974 1.24 0.852 1.64 0944 2.02

200 0.018 0.031 0946 0.73 0980 0.90 0904 1.19 00964 1.47

50  0.096 0.148 0904 150 0.950 1.86 0.682 2.09 0.816 2.56

0.1 M2 100 0.048 0.072 0926 1.10 0978 1.35 0.780 1.62 0.898 2.00
200 0.022 0.036 0958 0.79 0.992 0.98 0926 1.16 0976 1.43

50 0.114 0.153 0906 157 0954 1.95 0.724 215 0.824 2.65

M3 100 0.057 0.074 0922 1.15 0976 1.42 0.852 152 0942 1.86

200 0.026 0.039 0960 0.83 0988 1.21 0.882 1.09 0956 1.33

50 0.079 0.133 0.896 141 0952 1.73 0.740 2.10 0.858 2.58

M1 100 0.039 0.064 0920 1.02 0980 1.25 0.814 1.64 0924 2.03

200 0.018 0.032 0938 0.74 0988 0.90 0.896 1.19 0968 1.46

50 0.097 0.146 0.898 151 0946 1.87 0.666 2.13 0.780 2.60

05 M2 100 0.048 0.071 0914 1.10 0978 1.35 0.768 1.62 0.906 2.00
200 0.022 0.036 0954 0.79 0.990 0.98 0928 1.16 0970 1.43

50 0.115 0.161 0908 158 0952 197 0.694 216 0.792 2.65

M3 100 0.057 0.075 0912 1.15 0974 1.42 0.814 153 0928 1.87

200 0.026  0.037 0958 0.83 0988 1.03 0.864 1.09 0956 1.33

6. Real data analysis

To further illustrate our methodology, we first consider the modeling of the Gait Data collected by the Motion
Analysis Laboratory at the Children’s Hospital in San Diego, CA. We focus on the “Hip Angle” functional dataset,
which consists of the angles formed by the hip of each boy over his gait cycle. See [29] for the details. In the
study, the cycle begins and ends at the point where the heel of the limb under observation strikes the ground,
which has been translated into values over [0, 1]. There are measurements on n = 39 samples (boys), where for
each sample N = 20 hip angles were recorded every 0.05 second with time being measured on [0, 1]. Denote by
Y;; the hip angle of the ith boy at the time x;, j € {1,...,N}andi € {1,...,n}. Fig. 2 (a) shows hip curves together
with their estimated mean curve, and Fig. 2 (b) describes the 3D shape of all curves, where “time” is plotted on
one axis and sample index on the other.

12



Hip Angle

Fig. 2: (a) Hip angle data (dotted lines) with its mean function estimator (solid line); (b) 3D plot of the data; (c): unsmoothed sample
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correlation 3D plot for the hip angle data; (d): unsmoothed sample correlation contour plot for the hip angle data.
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Fig. 2 (c) and (d) display the 3D and contour plots of the sample correlation of the hip data. From the
plot, the contours are almost parallel to the main diagonal, indicating that the variation of the hip angles can
be considered as an approximately stationary process. Fig. 3 (a) shows a 3D plot of the proposed covariance
matrix estimator G¥ ROP(y x') = C (Ix—x’|) with its asymptotic SCE. For comparison, the nonstationary covariance
function estimator G™ and its SCE are also presented; see Fig. 3 (b).

As mentioned in Section 1, SCB is a very insightful and useful tool to examine the adequacy of certain
parametric specifications of a covariance function. Now we make use of the proposed SCB to test if this hip data
has a parametric covariance form like M1, M2 or M3. We set the null hypothesis Hy for M1, M2 and M3 in the
following:

M1 Hy: C(h) = C (h;32,0,) = 32{1 — 1.5(h/6,) + 0.5(h/6,)*} {h < 6,}, (10
M2 Hy: C(h) = C(h;32,05,v) = 32{T ()} 272 \Wh/6,)" F ,(2 \vh/6,), (11)
M3 Hy: C(h) = C(h;32,6;) = 32 exp(—h*/6?), (12)

where 6, = 1.12 for M1 and M2, v = 1.2 for M2 and 6; = 2.19 for M3. In Fig. 4, the thick solid line is the
covariance function C(h) under Hy, the center dashed line is the B-spline estimator , and the dotted-dashed lines
are the SCBs. From Fig. 4 (a), one observes that even the 99% SCB cannot contain C (h;32,1.12), hence the
null hypothesis in (10) is rejected with p-value < 0.01. Fig. 4 (b) and (c) indicate that the 80% SCB contains
C (h;32,1.2,1.12) and C (h;32,2.19), the null hypothesis in (11) and (12) is not rejected with p-value > 0.2.

100

covariance
covariance

Time 0 o0 Time

Fig. 3: (a): Covariance matrix estimator based on GP ROP(x, x') (middle) with 95% SCE (up and below); (b): covariance matrix estimator
G™PS(x,x’) (middle) of [14] with 95% SCE (up and below).
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Appendix A

This section provides technical lemmas and detailed proofs of the main asymptotic results. Throughout this
section, O, (or 0,) denotes a sequence of random variables of certain order in probability. For instance, Op(n‘” 2
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Fig. 4: Covariance function C(4) under H, (thick solid line), B-spline covariance estimator c (dotted line), and the SCB based
on C (dotted-dashed line) for the hip angle data.

means a smaller order than n~'/2 in probability, and by O, . (or 0,,.) almost surely O (or 0). In addition, U,

denotes a sequence of random functions which are O, uniformly defined in the domain.

For any vector a = (ay,...,a,) € R", denote the norm |[a||, = (ja;|" + --- +|a, /)", r € {1,2,....}, ||alle =
max (|ay],...,la,]). For any matrix A = (aij);ri’;l,j:]’ denote its L, norm as ||A|l, = maXacrnazo |Aall, |lall;!, for
r < +oo and [|A|, = max<i<, Z;zl la;jl, for r = co.

A.1. Decomposition

LetY; = (Yi1,...,Yiy)", then the spline estimator 77;(x) in (5) can be represented as 77;(x) = B(x)T(B"B)"'BTY;,

where B is the design matrix defined in Section 4.3. Define the empirical inner product matrix of B-spline basis
Js+p
(B, as

Js+p

Vi = {(Beps Bo)ylory = N'BTB,

and, according to Lemma A.3 in [5], for some constant C,, > 0, we have ||V;,'p||oo <CpJs.
Denote 53; = {; (1/N),....,n:(N/N)}", m = {m(1/N),....,m(N/NW}', Z; ={Z;(1/N),...,Z;(N/N)}", & =
(c(/N)&j,...,o (N/N)gn)T. According to model (2), i7; = m + Z,;, then the approximation error 77;(x) — 17;(x)

can be decomposed into the following:

7:(x) — 7:(x) = 7i(x) — mi(x) + €:(0), (Al)
where

7:(x) = N B() "V, B n; = m(x) + Zi(x),
m(x) = N"'B(x)TV,)B'm, Zi(x) = N"'B(x)"V, B"Z;,

&(x) =N"'Bx)"V, Bs;,
Thus, one has 77;(x) — ni(x) = Z(x) — Zi(x) + m(x) — m(x) + €;(x). Therefore, by (4) and (A1), the approximation
error of Z;(x) in (4) to Z;(x) can be represented by

— — _ I (= —
Z(x) = 2i(x) = Zi(x) = () + 5 = — > {Zo() + E(@)]. (A2)
=1
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A.2. Technical Lemmas

In this section, we provide some technical lemmas. For the sake of saving space, we only state the lemmas
and refer to [26] for the proofs of these lemmas.

Lemma A.1. Under Assumptions (C1)—(C6), as N — oo, one has
max |7 = Nille, = Ous {57 (nInn)?/"),
1<i<n
max ||Z = Zille = Oas 1J;” (nInm)?/"),
1<i<n

max [|Zillo = Ops (2 In n)*").
1<i<n
Lemma A.2. Under Assumptions (C1)—(C6), as N — oo, one has
max [Eil = O.s{Js" N~ (In )2},
<i<n

Lemma A.3. Under Assumptions (C1)—(C6), as N — o
-p’ 2r 12 n7-1/2 172
max [7; = 1, = Op {17 (1Inm)®" & JIANTI2 (n )2},

max 1Z: = Zilleo = Op {17 (nInn)?'" + JY2N12 (In N2} (A3)
<i<n

Lemma A.4. Assumption (C5) holds under Assumptions (C4) and (C5’).
Lemma A.5. Under Assumptions (C1)—(C6),

=0,(n"'?).

1-h n
5 | Dzt n(Zem -z}
i=1

Lemma A.6. Under Assumptions (C1)—(C6),

sup
hel0,ho]

max max - Ou.s.(N_l/zls_l/z lnl/z N),

1<i<n 1<(<Js+p

1 N
~ 2. BesGINIG GIN) Ui
j=1

where Ujj., 1 <i<n, 1 < j< N, arei.i.d standard normal random variables.

Lemma A.7. Under Assumptions (C1)—(C6),

nN Z U’kf{z pr( )O'(J/N) (811 ij,g)}

max max
1<k<ky 1<0<T+p

= O (2N I N,

where 0 < 8, < 1/2.
Lemma A.8. Under Assumptions (C1)—(C6), one has

n N . .
max max (nN)_IZ(fik—U[k,g)ZBg,,,(%)O'(]) ije| = Oa. (P 1/2N_1/21_1/21 12 N,
i=1 =

1<k<k, 1<b<T+p

where 0 < 8 < 1/2.
Lemma A.9. Under Assumptions (C2)—(C6),

£ S0 S (el
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max max
1<k<k, 1<0<T+p

=0, (PN,
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Lemma A.10. Under Assumptions (C2)~(C6), Sup;.e(o ) SUPxefo.] |2 Sy ZiCx + WE(x)| = 0,(n™'12).
Lemma A.11. Under Assumptions (C2)—(C6), one has

1 <& 1 &~
- lZme +h)- ;me)

i=1

sup sup = op(n‘”z).

he[0,hy] x€[0,1]

Lemma A.12 (Theorem 1.2 of [30]). Let {i,...,{n be independent real valued random variables with E{; =
O,Eg’jz. = 0'3 < +oo, je{l,...,N}andlet Sy = 21;1:1 ' VZ%, = Z?’zlo'i. If there exists ¢ > 0 such that for r > 3,

E|{j|r < c"zr!(r? < +oo, j€{l,...,N}, then for each N > 1, t > 0,

12 1
2t <2expi—Fr———7¢-
41+ctVN /2

Lemma A.13 (Theorem 2.6.7 of [31]). Suppose that&;, 1 < i < narei.i.dwith E(¢;) =0, E(.ff) =land H(x) > 0
(x = 0) is an increasing continuous function such that X2 YH(x) is increasing for some y > 0 and x™' In H(x) is
decreasing withEH (|€]) < co. Then there exist constants Cy, Cy, a > 0 which depend only on the distribution of &
and a sequence of Brownian motions (W, (m)}",, such that for any {x,}," | satisfying H'(n) < x, <Cy(nlnn)'?

and S, = Y7, &, then Pr{maxicmen IS m — W, (m)| > x,} < Con{H (ax,)} ™" .

N

Pr(S
\%

N

Lemma A.14. Let Wi ~ N(0,0%),0:> 0, i € {1,....n}, fora >2

Pr ({rﬁllas)fl |\W; /o > a \/E) < 7r/2n1’”2/2.
Hence, (maxi<icy IWi]) / (max<i<, o) < maxi<izy Wi/l = Ogs.(Vinn).
A.3. Proof of Proposition 1

Let 7 = 0'(5.11,5.12,...,E.I,,E.zz,...,E.t_],,,é,,), so that 7, € F3 C F4 C --- is an increasing sequence of
o-fields. Denote

_ 1 1-h
Sihy= NnAO) =Nn Y Ewr—r | e+ dx
I<k#k'<t
_ 1 1-h
t Y (B 1) B b,
1<k<t

fort e{l,...,k,}, where k, satisfies Assumption (C4). We show that S,(h) is a martingale process in & € [0, hg].
Define D;(h) = S;(h) — S,_1(h), thus,

Nm
—-h

1-h

Dy(h) =

1 ()P (x + h)dx} )

-1 1-h
{ Eu fo (B0, + ) + e+ W)+ (Eo 1) |
1

k=
which is F;-measurable. While notice that for any ¢,
E (D(W)| F1-1)

t—1 1-h 1-h
- Vg DEu f (B¢, (x + h) + $()e(x + W dx +(E = 1) | g + h)dx

k=
\n
= 1—hE{ 77[—1}

1-h
+ «/ﬁE{(én— 1) fo i)y (x + hydx

)

n t—1

1 1-h
SVE Y [ B0 D+ 00+ )y
n 0

i=1 k=1

7‘?—1} =0,
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as  which implies that {D,(h),t = 2,3, ...} is a martingale difference process with respect to {F;-1,¢ = 2,3,...}.

Next denote
(A4)

E(D}W)| Fier) = V() + V() + VP (h),

in which

n -1 1 1-h 2
V" () =nE {n“ D ) bt fo (D), (x + 1) + G (X (x + ) dx} T,_ll :

i=1 k=1

5 B 1 1-h 2
Vi (h) =nE [{(f.n ) | e h)dx} ﬁ_l] :
- 0
1-h
V() =2nE { Z & Z by fo ($eCOB(x + ) + G (OBiCx + D)) dx}
i=1

Fr-1]-

1-h
X (5.,,—1)m fo G (0):(x + h)dx

Moreover, one can show that

2
1 n 1-h
V() = E {; Z i f (1) (x + h) + ,(Bix + )} dx} ﬁ_ll
=1 1 n 1 1-h 2
=E). [; >é i(m fo (OB (x + h) + G Iex + 1)) dx) ﬁl]
k=1 i=1
t—1 _ 1 1-h 2
=B&, ) Eu [ — fo (B0 + 1)+ (i (x + ) dx] :
k=1
therefore, one has when n — oo,
o0 _ 2
Z UROEDY { — s h)dx}
=2 kk! 0
s 1 1-h
+>) { " e+ h)dx} {ﬁ Gu(x + W) (x)dx} <
k#k 0 - 0
Note that
1-h

2
v§2><h>=(Efi‘t—1){<1—h>-‘ ¢f<x>¢,<x+h)dx} < oo,

so one has that ) 5
n © 1-h
DvPm - ) (Bl - 1) {(1 —h)”! fo B (OPi(x + h)dx} < .
t=2 k=1

Similarly,

t—1 1 1 1-h
{Z S [ 600+ b0 ) dx}
n 4 1-h 0

1-h

x(l f?—l]L ¢,<x>¢,(x+h>dxﬁ_l}.
n= 0

18



Thus,

-1 1-h
V() =2 (Eg], - kal - f (GG x + 1) + G (D)e(x + )} dx

1 1-h
X — &1(x)pi(x + h)dx| Fr_1 |,
=% Jo
where &, = n~' Y| &. Next, notice that
sup — {Br(0)d:(x + ) + ¢ (X)Pr(x + h)} dx < o0.
mw;;Iho ’ ’
Therefore, one has
kn kn 0o 1
DV -2 (g, - 1) > B(&|Fi) T
=2 =2 =1

1-h 1-h
X fo {dr(0):(x + h) + ¢ (X)Pr(x + h)} dx X fo ¢1(0)¢(x + hydx —, 0,

asn — oo,
According to (A4), as n — oo, one has

k, o | 1-h 2
ZE (D,z(h)| 7";—1) —p Z {m f ()P (x + h)dx}
=2 k#k!

1-h

1-h
+ Z { — f B (P (x + h)dx} { f $e(x + W)y (x)dx}
k#k’

1 1-h 2
+(E§;‘,—1){m fo ¢,(x)¢,(x+h)dx} .

Denote by E (D} ()| Fi-1) = d"(h) + 3d>(h) + 3d (h) + d{” (h), where

d(l)(h) n3/2E

=1 _ 1 1-h 3
{Z Eu fo (BB (x + B) + Gi(X)pi(x + ) dx} 7;_1] :
k=1

=1 2
{ é_:kz f {0 (x + 1) + ¢ (X)Pr(x + h)} dX}

ftt - 1 f &:1(x)pi(x + h)dx 7::—1} s

{z’

k=1

d(h) =n*E ¢k<x>¢t<x +h) + ¢(X)pe(x + W)} d }

Tm},
] 1 :
{(f.,, -1 fo ¢f(x>¢,(x+h)dx}

19

1 1-h

N 2
X (En - 1) {m . () (x + h)dx}

d¥(n) =n*E ?,_1] )




350

Applying similar arguments in Lemma 6 of [14], one has Zf;z E{dﬁi)(h)|7’t_1} —, 0, for i = 1,2,3,4. Hence, for
any € > 0, SUp,cjo 2o, E{Df(h)l (D2n) > e)| TH} -, 0.

By the uniform central limit theorem, one has VrA(-) = S;(h) —p £(-), as n — oo, where £(h) is a Gaussian
process such that E¢(h) = 0,

2

s 1 1-h
2h) = B = Y (Bgh - 1) (m RRIOICS h)dx)
k=1

= 1 1-h =k 5
+ ]; {m (j; G (X)p (x + h)dx + j(: G ()P (x + h) dx)} ,

and covariance function

1 1 1-h 1-
Q(h, 1) =Cov ({(h), ¢ (1)) = —{ fo fo‘ Z GO (x) P (x + M)y (X' + 1) dxdx’
K

T—h1-I 2
I=h L=k
+ f f Z O (X" + 1) e (x + h) g (X7) dxdx’
0 0 kr=1

1-h 1-h"
* fo fo D (Bel = 3) )il + i (x) i (x + 1) dxdx’},
k=1

for any h, i’ € [0, ho]. The proposition is proved.

A.4. Proof of Proposition 2
We decompose the difference between C(h) and C () into the following three terms:

C(h) — C(h) = I(h) + IL(h) + II(h),
where

1

=07

I-h _
I 2120 =z} o -z s )

n

| 1-h _
i =~ [ X At i 70 - ),

1 1-h n .
Ii(h) = - T fo ; Zi(){Zi(x + h) = Zi(x + )} dx.

Note that by (A2), supj,g ., 1) < max; i<, ||Z — Zi|%,. According to (A3),
max \Z: = Zilleo = o, {J;p*nlnn +JI2NTY2 (lnN)l/z} ,
<i<n

By (A2), one has

n

1-h
1(h) = 1_ m fo ZZ,-(x + ) {Zi(x) - Zi(x)} dx
i=1

n(1

1 1-h n . 1-h n N
=0 N Z; h)iZ; -7 d Z; he(x)d
n(1 - h) UO Zl (xr+ W {Ziw) - Zi() x+f0 Z; (x + h)gi(x) x}

1 1-h n no_ 1-h n n _
S Zix+h) Y Zy(x)d Zi(x+h) Y E(x)dx|.
n2(1—h)lf0 ; (x+h) , (x) x+f0 ;: (x +h) :ls(x) X

i’ 4

SR —
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Similar to the proof of Lemma A.10, it is easy to see

1-h n n
f Z Zix+h) Y Er(x)dx
0 = =1

i’

1
sup = op(n‘”z).

hef0g] M2(1 — h)

Consequently, by Lemmas A.5, A.10 and A.11, one has

sup |II(h)| = sup =0p(n‘1/2).

hel0,ho] hefo,hg] P(1 = 1)

1-h n _
J; ; Zi(x+h) {Zi(x) - Zi(x)} dx

Similarly, one can show that sup;,c(o 5,1 LA = supyg(q 4, IH(2)]. Consequently,

sup |C(h)— C(h)l = sup [|I(h) + (k) + MI(R)| = 0,(n""/?).
hel0,h] he[0,ho]

Appendix B

This section presents more results and findings from additional simulation examples.

B.1. A simulation study to evaluate the knots selection methods

In this section, we conduct a simulation study to evaluate the performance of the knots selection methods
proposed in Section 4.2. The setting of the simulation is the same as in Section 5.1. For model fitting, the
mean function is estimated by cubic splines, and the number of knots of the splines, Jy, is selected using either
the formula-based method (Formula) and the GCV method (GCV) described in Section 4.2. Each simulation is
repeated 500 times.

Fig. B.1 below shows the frequency bar plot of the GCV-selected J,; over 500 replications, where the black
triangles indicate the number of knots suggested using the formula given in Section 4.2. From Fig. B.1, one
sees that on average the GCV method tends to select a slightly larger number of knots than the formula method
does, but both methods provide similar results as shown in Tables 1 and 2. The GCV method is indeed more
time-consuming than the formula method. For example, in scenario N = 50 and o = 0.1 of Table 1, it takes 50
seconds for the formula and 9 minuses for GCV selected method, respectively.

B.2. More results for spatial covariance models

Tables B.1-B.2 report some simulation results based on the spatial covariance model presented in Section 5.2.
Specifically, we report the simulation results based on the data generated from the model with the heteroscedastic
errors: o(x) = 0 {5+ exp(x)}_1 {5 — exp(x)} for M1, and o(x) = o {30 + exp (x/2)}_l {30 — exp (x/2)} for M2
and M3. The number of curves n = |0.8N| with N = 50, 100 and 200, and the noise levels are o = 0.1, 0.5.
The mean function is estimated by cubic splines, i.e., p = 4, with the number of knots selected using the formula
method.

The AMSE of the covariance estimators C and C are reported in columns 3—4 of Table B.1. The performance
of the two estimators is very similar. Columns 5 and 7 present the empirical coverage rate CR, i.e., the percentage
of the true curve C(-) entirely covered by the SCB, based on 95% and 99% confidence levels, respectively. As the
sample size increases, the coverage probability of the SCB becomes closer to the nominal level. Columns 3—4 of
Table B.2 present the AMSEs of GP ROP(x, x’) and GTPS()C, x"). The results of AMSE:s indicate that GPROP j5 more
accurate than G™S, while G™S usually gives larger AMSE. Columns 5-12 of Table 4 report the CR and WD of
SCE-I and SCE-II. One sees that the CRs of SCE-I are much closer to the nominal levels than those of SCE-II,
and increasing the sample size helps to improve the CR of the SCEs to their nominal levels. One also observes
the widths of the SCE-I are much narrower than those of the SCE-II.
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Fig. B.1: The histogram of the GCV selected number of knots in 500 replications with (a) homogeneous and (b) heteroscedastic errors. Black
triangles indicate the number of knots suggested by the formula. The GCV selection method is given in Section 4.2.
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Table B.1: Average mean squared errors (AMSEs) of a 5, coverage rates (CRs) (outside/inside of the parentheses is based on a 5),
and average widths (WDs) of the asymptotic SCBs based on C. The standard deviation function for the heteroscedastic errors o(x) =
o {5+ exp(x)}_] {5 — exp(x)} for M1, and o (x) = 0 {30 + exp (x/2)}_I {30 — exp (x/2)} for M2 and M3. The details of models M1, M2 and
M3 are given in Section 5.2. Results are based on 500 replications.

AMSE SCB
o Model N ol c 95% 99%
CR WD CR WD

50 0.082 0.081 0.916(0.920) 1.37 0.958(0.966) 1.68

M1 100 0.040 0.040 0.922(0.926) 0.99 0.974(0.978) 1.21

200 0.019 0.018 0.940(0.952) 0.72 0.980(0.986) 0.87

50 0.095 0.096 0.906(0.904) 1.44 0.950(0.954) 1.78

0.1 M2 100 0.048 0.049 0.922(0.926) 1.05 0.980(0.976) 1.30
200 0.022 0.022 0.958(0.958) 0.76 0.992(0.994) 0.94

50 0.109 0.109 0.904(0.908) 1.50 0.954(0.956) 1.86

M3 100 0.055 0.055 0.922(0.928) 1.09 0.976(0.978) 1.35

200 0.025 0.025 0.960(0.958) 0.79 0.988(0.990) 0.98

50 0.082 0.081 0.898(0.918) 1.38 0.962(0.970) 1.69

05 Ml 100 0.040 0.040 0.918(0.924) 0.99 0.976(0.980) 1.21
200 0.019 0.018 0.948(0.952) 0.72 0.982(0.986) 0.88

50 0.096 0.096 0.904(0.908) 1.45 0.948(0.958) 1.79

M2 100 0.048 0.049 0.916(0.926) 1.06 0.974(0.980) 1.30

200 0.022 0.022 0.960(0.956) 0.77 0.990(0.994) 0.94

50 0.110 0.109 0.904(0.908) 1.51 0.948(0.958) 1.87

M3 100 0.055 0.055 0.910(0.924) 1.10 0.976(0.976) 1.36

200 0.025 0.025 0.960(0.958) 0.79 0.988(0.990) 0.98
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Table B.2: Average mean squared errors (AMSEs) of P ROP(. ), GT PS(., 0, coverage rates (CRs) and average widths (WDs) of SCE-
I and SCE-II. The standard deviation function of the heteroscedastic errors o(x) = o {5+ exp(x)}’1 {5 —exp(x)} for M1, and o(x) =
0 {30 + exp (x/Z)}_1 {30 — exp (x/2)} for M2 and M3. Details of models M1, M2 and M3 are given in Section 5.2. Results are based on
500 replications.

AMSE SCE-I SCE-II
cc Model N " mor  Gs 95% 99% 95% 99%
CR WD CR WD CR WD CR WD

50 0.079 0.121 0916 140 0958 1.71 0.722 2.07 0.838 2.55

M1 100 0.039 0.061 0922 1.01 0974 124 0.850 1.64 0952 2.03

200 0.018 0.032 0.940 0.73 0.980 0.90 0.880 1.19 0964 1.46

50  0.097 0.150 0906 150 0.950 1.86 0.710 2.08 0.830 2.56

0.1 M2 100 0.048 0.071 0922 1.10 0980 1.35 0.786 1.63 0.900 2.00
200 0.022 0.036 0958 0.79 0992 0.98 0930 1.16 0976 1.43

50 0.114 0.153 0904 157 0954 1.95 0.720 215 0.816 2.64

M3 100 0.057 0.074 0922 1.15 0976 1.42 0.856 152 0944 1.86

200 0.026 0.039 0960 0.83 0988 1.03 0.878 1.09 0.956 1.33

50 0.079 0.129 0902 141 0964 1.73 0.730 2.10 0.834 2.57

M1 100 0.039 0.064 0920 1.02 0980 1.25 0.810 1.65 00918 2.03

200 0.018 0.035 0942 0.74 0984 0.90 0914 121 0980 149

50  0.097 0.143 0904 151 0948 1.86 0.674 2.10 0.802 2.57

0.5 M2 100 0.048 0.071 0916 1.10 0972 1.35 0.774 1.63 0.894 2.01
200 0.022 0.036 0960 0.79 0.990 0.98 0924 1.16 0970 1.43

50 0.114 0.149 0900 1.58 0948 1.96 0.696 2.12 0.820 2.60

M3 100 0.057 0.075 0910 1.15 0974 1.42 0.830 152 0930 1.87

200 0.026 0.038 0960 0.83 0988 1.03 0.876 1.09 0944 1.33
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