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Abstract

The inference via simultaneous confidence band is studied for stationary covariance function of dense functional

data. A two-stage estimation procedure is proposed based on spline approximation, the first stage involving es-

timation of all the individual trajectories and the second stage involving estimation of the covariance function

through smoothing the empirical covariance function. The proposed covariance estimator is smooth and as effi-

cient as the oracle estimator when all individual trajectories are known. An asymptotic simultaneous confidence

band (SCB) is developed for the true covariance function, and the coverage probabilities are shown to be asymp-

totically correct. Intensive simulation experiments are conducted to demonstrate the performance of the proposed

estimator and SCB. The proposed method is also illustrated with a real data example.
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1. Introduction

Since [1] first coined the term “functional data analysis” (FDA), recent years have seen numerous publica-

tions emerging in the FDA theory, methods and applications, making it an important area in statistics research.

Motivated by specific problems and complex data collected in modern experiments, such as [2], [3], considerable

efforts have been made to analyze functional data. The estimation for population mean function and principal5

component in functional data has been extensively studied, for instance, [4–8] and so on.

Related to the smoothness, the second-order structure of random functions can be depicted by the covariance,

thus the covariance function is another indispensable ingredient in many areas, such as longitudinal analysis,

spatial statistics, and Bayesian hierarchical modeling, see [9–13]. In this sense, [14] proposed a simultaneous

confidence envelope of covariance function for functional data; [15] proposed a consistent estimator for the10

long-run covariance operator of stationary time series; [16] considered the estimation of integrated covariance

functions, which is required to construct asymptotic confidence intervals and significance tests for the mean vector

in the context of stationary random fields. Since the covariance function measures stronger association among

variables that are closer to each other, the employment of covariance function is considerably highlighted in spatial

data analysis when the geometric structure of the surface is rough and self-similar. A common situation is that the15

observations are specified via a Gaussian process whose finite-dimensional joint distributions are determined by

a valid covariance function; see, for instance, [9].
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Let {η(x), x ∈ χ} be a stochastic process defined on a compact interval χ, with E
∫
χ
η2(x)dx < +∞. It is

covariance stationary if G(x, x′) = C(|x − x′|), where

G(x, x′) = Cov
{
η(x), η(x′)

}
, x, x′ ∈ χ. (1)

Consider a collection of n trajectories {ηi(x)}ni=1, which are i.i.d realizations of η(x), with mean and covariance20

functions, say m(x) = E{η(x)}, G(x, x′) = Cov {η(x), η (x′)}, respectively. The trajectories {ηi(x)}ni=1 are decom-

posed as ηi(x) = m(x) + Zi(x), where Zi(x) can be viewed as a small-scale variation of x on the ith trajectory, and

is assumed to be a weakly stationary process with EZi(x) = 0 and covariance G(x, x′) = Cov {Zi(x),Zi (x′)}.
According to classical FDA settings, for G (·, ·), there exist eigenvalues λ1 ≥ λ2 ≥ · · · ≥ 0 and cor-

responding eigenfunctions {ψk}∞k=1, the latter being an orthonormal basis of L2(χ), such that
∑∞

k=1 λk < ∞,25

G (x, x′) =
∑∞

k=1 λkψk(x)ψk (x′), and
∫

G (x, x′)ψk (x′) dx′ = λkψk(x). The standard process η(x), x ∈ χ, then

allows the well-known Karhunen-Loève L2 representation η(x) = m(x)+
∑∞

k=1 ξkφk(x), in which the random coeffi-

cients ξk, called functional principal component (FPC) scores, are uncorrelated with each other of mean 0 and vari-

ance 1. The rescaled eigenfunctions, φk, called FPC, satisfy that φk =
√
λkψk and

∫
{η(x) − m(x)} φk(x)dx = λkξk,

for k ≥ 1. The ith process ηi(x), x ∈ χ, is written as ηi(x) = m(x) +
∑∞

k=1 ξikφk(x), in which the FPC scores30

{ξik}∞k=1, i ∈ {1, . . . , n}, are i.i.d copies of {ξk}∞k=1. Although the sequences {λk}∞k=1, {φk (·)}∞k=1 and {ξik}∞k=1 exist

mathematically, they are either unknown or unobservable.

The actual observed functional data are noisy sampled points from trajectories {ηi(x)}ni=1. Let {(Yi j, Xi j), 1 ≤
i ≤ n, 1 ≤ j ≤ N} be repeated measurements on a random sample of n experimental units, where Yi j is the

response observed on the ith unit at value Xi j of the variable x. The observed data can be modeled as

Yi j = ηi(Xi j) + σ(Xi j)εi j = m(Xi j) + Zi(Xi j) + σ(Xi j)εi j, i ∈ {1, . . . , n}, j ∈ {1, . . . ,N},

where εi j, independent of Zi(·)’s, are i.i.d random errors with mean 0 and variance 1, and σ2 (·) is the variance

function of the measurement errors. For the data considered in this paper, without loss of generality, ηi(·) is

assumed to be recorded on a regular grid in χ = [0, 1], and Xi j = x j = j/N, 1 ≤ j ≤ N. This type of functional35

data was considered in [17], [18] and [14], among others. Consequently, our observed data can be written as

Yi j = m( j/N) + Zi ( j/N) + σ ( j/N) εi j, i ∈ {1, . . . , n}, j ∈ {1, . . . ,N}. (2)

It would not be a far stretch if the sample points for the ith subject Yi j admit the structure of a nonstationary

or locally stationary time series, as in [19, 20]. One may further ask if these random observations at regular grid

points would even admit the structure of stationary time series. [14], for instance, concluded that the Tecator near-

infrared spectra data is nonstationary based on the simultaneous confidence envelope for the covariance function.40

There are, however, interesting functional data for which the covariance function exhibits stationarity, because a

closer relationship between the geometric structures and covariance function relies on the stationary assumption.

In particular, the stationary random processes or fields are prominent in the analysis of 1D and 2D signals; see,

for instance, the important spatial covariance model studied in Matérn random fields, stationary multivariate time

series and the stationary spectral-space statistics studied in physics such as [21]. As a fundamental issue, the45

study of covariance structure in stationary stochastic processes can be applied to a wide range of areas such as

hydrosciences and geostatistics.

Typically, it is difficult to interpret the covariance function in the case of FDA and longitudinal data anal-

ysis. The estimation strategies of the covariance function generally fall into two categories: direct smoothing

and mixed-effects type of approaches. The direct smoothing is typically pointwise and nonparametric, while the50

mixed-effects type usually involves parametric models and hence approximates covariance functions with analyt-

ical expressions. For functional data, FPC analysis has become one of the first-line methods; see, for instance,

the nonparametric estimation of covariance functions: [8, 14, 17, 22], among others. For longitudinal data, [23]

considered reduced rank spline mixed-effects models to describe the modes of the variation; [24] proposed a ge-

ometric approach within the framework of marginal maximum likelihood estimation by requiring the trajectories55

are i.i.d. Gaussian processes.

In this paper, we consider a nonparametric estimation of the stationary covariance structure, which is useful

either as a guide to the formulation of a parametric model or as the basis for formal inference without imposing
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parametric assumptions. Our estimation procedure is carried out by spline approximation, where the first step

involves the estimation of the ith trajectory and the mean function, based on dense observations (a vital feature for60

us to borrow strength); the second step estimates the covariance function through smoothing using the residuals

of the first step. The proposed covariance estimator is smooth and as efficient as the oracle estimator constructed

from true ηi(·) and the mean m(·).
After estimating the covariance function, our next concern is to provide an inferential tool to further examine

the covariance structure. Although a straightforward way is to conduct a hypothesis test, it is not well developed65

as other FDA methods, due to the difficulty of the infinite-dimensionality of the functional space. The existing

methods mainly focus on testing of the mean functions for functional data, such as the pointwise t-test provided by

[2]. However, the hypothesis test for covariance receives relatively little attention even though a global conclusion

is often more desirable in real data analysis. In this line, [25] proposed a supremum-norm based test for the equal-

ity of several covariance functions. However, it is a general-purpose smoother that is not designed specifically for70

covariance operators and it ignores the smoothness of trajectories in FDA setting, hence the simple averaging of

the observations is insufficient to meet the manifold needs in reality.

To surmount these challenges, we develop an asymptotic simultaneous confidence band (SCB), which can

be used to test the adequacy and validity of certain covariance models. Specifically, the null hypothesis is H0 :

C(h) = C (h; θ) for some θ ∈ Θ. An SCB is an intuitive and theoretically reliable tool for global inference75

of functions. For example, in the FDA framework, [14] proposed SCBs for the covariance functions, and [7]

derived a corrected SCB using principal component. The contribution of this paper is twofold. First, it provides

the methodology and asymptotic theory for the estimation of the covariance C(·) in the framework of stationary

dense functional data under mild assumptions; second, the estimator of C(·) is accompanied by a procedure for

constructing asymptotically exact SCBs.80

The rest of the paper is organized as follows. In Section 2, we introduce the two-stage B-spline estimation

procedure for the covariance function. Section 3 shows that the proposed estimator is as efficient as if all the n

trajectories ηi(·) and the mean function m(·) are known over the entire data range. Section 4 presents the asymptotic

SCB for the covariance function, and describes the implementation of the SCB. Section 5 carries out intensive

simulation studies to evaluate the finite sample performance of the proposed SCB. The methodology is verified85

by a real data example in Section 6. Technical lemmas, proofs of the main theoretical results and additional

simulation results are presented in Appendices A and B. The full version of the paper can be found in [26].

2. B-spline covariance function estimation

In this section, we describe the estimation procedure for the covariance function C(·). If the small-scale

variation of x, Zi(x) = ηi(x) − m(x), 1 ≤ i ≤ n, x ∈[0, 1], on the ith trajectory could be observed, one would90

estimate the covariance as

C̃(h) =
1

1 − h

∫ 1−h

0

1

n

n∑

i=1

Zi(x)Zi(x + h)dx, h ∈ [0, h0] , (3)

where h0 ∈ (0, 1) is a pre-specified upper limit. Since {Zi(x)}n
i=1

, x ∈[0, 1], are unobserved, the above estimator

C̃(h) is “infeasible” in practice. In this paper, we propose to estimate the covariance function based on the

following residuals

Ẑi(x) = η̂i(x) − m̂(x), i ∈ {1, . . . , n}, x ∈ [0, 1], (4)

where η̂i(x) and m̂(x) are the estimators of ηi(x) and m(x), respectively.95

In such case, a sample-based consistent estimator can be employed, such as the spline smoother proposed in

[5]. Denote by {t`}Js

`=1
a sequence of equally-spaced points, t` = `/ (Js + 1), ` ∈ {1, . . . , Js}, 0 < t1 < · · · < tJs

< 1,

called interior knots, which divide the interval [0, 1] into (Js + 1) equal subintervals I0 = [0, t1), I` = [t`, t`+1),

` ∈ {1, . . . , Js − 1}, IJs
=

[
tJs
, 1

]
. For any positive integer p, let t1−p = · · · = t0 = 0 and 1 = tJs+1 = · · · = tJs+p be

auxiliary knots. Let S(p−2) = S(p−2) [0, 1] be the polynomial spline space of order p on I`, ` ∈ {0, . . . , Js}, which100

consists of all (p − 2) times continuously differentiable functions on [0, 1] that are polynomials of degree (p − 1)
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on subintervals I`, ` ∈ {0, . . . , Js}. Following the notation in [27], we denote by {B`,p(x), 1 ≤ ` ≤ Js + p} the pth

order B-spline basis functions of S(p−2), hence S(p−2) =

{∑Js+p

`=1
λ`,pB`,p(x)

∣∣∣∣ λ`,p ∈ R, x ∈ [0, 1]

}
.

The ith unknown trajectory ηi(x) is estimated by using the following formula

η̂i (·) = argmin
g(·)∈S(p−2)

N∑

j=1

{
Yi j − g(x j)

}2
. (5)

One can then estimate the unknown mean function m (·) as m̂(x) = n−1
∑n

i=1 η̂i(x), and obtain the covariance105

estimator

Ĉ(h) =
1

1 − h

∫ 1−h

0

1

n

n∑

i=1

Ẑi(x)Ẑi(x + h)dx, h ∈ [0, h0] . (6)

3. Asymptotic Properties

This section studies the asymptotic properties for the proposed estimators.

3.1. Assumptions

To study the asymptotic properties of the two-step spline estimator Ĉ(·), one needs some assumptions.110

Throughout the paper, for sequences an and bn, denote an � bn if an and bn are asymptotically equivalent.

For any function ϕ(x) defined on a domain χ, denote ‖ϕ‖∞ = supx∈χ |ϕ(x)|, and ϕ(q)(x) its qth order derivative

with respect to x. For any L2 integrable functions φ(x) and ϕ(x), x ∈ χ, define their theoretical inner product as

〈φ, ϕ〉 =
∫
χ
φ(x)ϕ(x)dx, and the empirical inner product as 〈φ, ϕ〉N = N−1

∑N
j=1 φ ( j/N)ϕ ( j/N). Correspondingly

and respectively, theoretical and empirical norms are ‖φ‖22 = 〈φ, φ〉, ‖φ‖22,N = 〈φ, φ〉N .115

For a non-negative integer q and a real number µ ∈ (0, 1], writeH (q,µ)[0, 1] as the space of µ-Hölder contin-

uous functions, i.e.,

H (q,µ)[0, 1] =

ϕ : [0, 1]→ R

∣∣∣∣∣∣∣
‖ϕ‖q,µ = sup

x,y∈[0,1],x,y

∣∣∣ϕ(q)(x) − ϕ(q) (y)
∣∣∣

|x − y|µ < +∞
 .

We next introduce some technical assumptions.

(C1) There exists an integer q > 0 and a constant µ ∈ (0, 1], such that the regression function m (·) ∈ H (q,µ) [0, 1].

In the following, one denotes p∗ = q + µ.

(C2) The standard deviation function σ(·) ∈ H (0,ν)[0, 1] for positive index ν ∈ (0, 1] and for some constants Mσ,

M0 > 0, supx∈[0,1] σ(x) ≤ Mσ, suph∈[0,h0] |C(h)| ≤ M0.120

(C3) There exists a constant θ > 0, such that as N → ∞, n = n (N)→ ∞, n = O(Nθ).

(C4) The rescaled FPCs φk (·) ∈ H (q,µ) [0, 1] with
∑∞

k=1 ‖φk‖q,µ < +∞,
∑∞

k=1 ‖φk‖∞ < +∞; for increasing positive

integers {kn}∞n=1, as n→ ∞,
∑∞

kn+1 ‖φk‖∞ = O(n−1/2) and kn = O (nω) for some ω > 0.

(C5) There are constants c1, c2 ∈ (0,+∞), γ1, γ2 ∈ (1,+∞) , β1, β2 ∈ (0, 1/2), and i.i.d N (0, 1) variables{
Ui j,ε

}n,N

i=1, j=1
,
{
Uik,ξ

}n,kn

i=1,k=1
such that min

{
2(3 + (1 + β1) p∗)−1 (1 − β2) p∗, 2(1 + β1)−1(ν − β2)

}
> θ for the125

index ν in Assumption (C2), p∗ in Assumption (C1), and

Pr

 max
1≤k≤kn

max
1≤t≤n

∣∣∣∣∣∣∣

t∑

i=1

ξik −
t∑

i=1

Uik,ξ

∣∣∣∣∣∣∣
> nβ1

 < c1n−γ1 , Pr


max
1≤i≤n

max
1≤t≤N

∣∣∣∣∣∣∣∣

t∑

j=1

εi j −
t∑

j=1

Ui j,ε

∣∣∣∣∣∣∣∣
> Nβ2


< c2N−γ2 .
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(C5’) The i.i.d variables
{
εi j

}
i≥1, j≥1

are independent of {ξik}i≥1,k≥1. The number of distinct distributions for all FPC

scores {ξik}i≥1,k≥1 is finite. There exist constants r1 > 4 + 2ω, r2 > 4 + 2θ, for ω in Assumption (C4) and θ

in Assumption (C3), such that E|ε11|r2 and E|ξ1k |r1 , k ∈ {1, 2, . . .}, are finite.

(C6) The spline order p ≥ p∗, the number of interior knots Js�NγdN for some τ > 0 with dN + d−1
N
= O (lnτ N)

as N → ∞, and for p∗ in Assumption (C1), ν in Assumption (C2), θ in Assumption (C3), β1, β2 and γ1 in

Assumption (C5)

max

{
5θ

4p∗
,
θ + (γ1 + 1 + ω)−1 8θβ1

2p∗
, 1 − ν

}
< γ < 1 − θ

2
− β2 −

θ

2
β1.

Assumptions (C1)–(C2) are standard in the literature, see [5] for instance. In particular, (C1) and (C4) control130

the size of the bias of the spline smoother for m(·) and φk(·). Assumption (C2) ensures the variance function is

a uniformly bounded function. Assumption (C3) regulates that sample size n grows as a fractional power θ of

N, the number of observations per subject. The bounded smoothness of the principal components is guaranteed

in Assumption (C4). Assumption (C5) provides a strong approximation of estimation errors and FPC scores.

Assumption (C5’) is an elementary assumption guaranteeing the high-level Assumption (C5). It is noteworthy135

that the smoothness of our estimator is controlled by the knots of the splines. Assumption (C6) specifies the

number of knots for the B-spline smoothing.

Remark 1. These assumptions are mild conditions that can be satisfied in many practical situations. One simple

and reasonable setup for the above parameters q, µ, θ, p, γ can be as follows: q + µ = p∗ = 4, ν = 1, θ = 1,

p = 4 (cubic spline), γ = 3/8, dN � ln ln N. These constants are used as defaults in implementing the method; see140

Section 4.

3.2. Oracle efficiency

We now show that the proposed two-step estimator Ĉ(·) defined in (6) is oracle-efficient, i.e., it is as efficient

as if all trajectories ηi(·) are known over the entire data range. To begin with, we first investigate the asymptotic

property of the infeasible covariance estimator C̃(h). Denote by ∆(h) = C̃(h) −C(h), h ∈ [0, h0].145

By the definition of C(h) and C̃(h) in (1) and (3), it is easy to show that C(h) = (1−h)−1
∫ 1−h

0

∑∞
k=1 φk(x)φk(x+

h)dx, and C̃(h) = n−1(1 − h)−1
∑n

i=1

∑∞
k,k′=1 ξikξik′

∫ 1−h

0
φk(x)φk′ (x + h)dx. Thus,

∆(h) =
1

1 − h

∞∑

k,k′=1

(
ξ̄·kk′ − δkk′

) ∫ 1−h

0

φk(x)φk′ (x + h) dx,

where ξ̄·kk′ = n−1
∑n

i=1 ξikξik′ , and δkk′ = 1 for k = k′ and 0 otherwise.

Then the asymptotic mean squared error of the infeasible covariance estimator C̃(·) is provided in Theorem

1 below. Let

Ξ(h) =

∞∑

k,k′=1

{
1

1 − h

∫ 1−h

0

φk(x)φk′ (x + h)dx

}2

+

∞∑

k=1

(
Eξ4

1k − 3
) { 1

1 − h

∫ 1−h

0

φk(x)φk (x + h) dx

}2

+

∞∑

k,k′=1

{
1

1 − h

∫ 1−h

0

φk(x)φk′ (x + h)dx

}{
1

1 − h

∫ 1−h

0

φk′ (x)φk(x + h)dx

}
. (7)

Theorem 1. Under Assumptions (C1)–(C6), suph∈[0,h0] |nE {∆(h)}2 − Ξ(h)| = O(1).

Remark 2. By rewriting Ξ(h), one has

Ξ(h) =

∞∑

k=1

(
Eξ4

1k − 1
) { 1

1 − h

∫ 1−h

0

φk(x)φk(x + h)dx

}2

+

∞∑

k<k′

[
1

1 − h

{∫ 1−h

0

φk(x)φk′ (x + h)dx +

∫ 1−h

0

φk′ (x)φk (x + h) dx

}]2

.
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From (3.2) in [14],

V (x, x + h) =

∞∑

k<k′

{φk(x)φk′ (x + h) + φk′ (x)φk(x + h)}2 +
∞∑

k=1

φ2
k(x)φ2

k(x + h)
(
Eξ4

1k − 1
)
,

thus, (1 − h)−1
∫ 1−h

0
V (x, x + h) dx ≥ Ξ(h), h ∈ [0, h0]. Therefore, if the covariance function is stationary, the

infeasible estimator C̃(·) is more efficient than the covariance estimator given in [14].

Proposition 1. Under Assumptions (C1)–(C6), as N → ∞,
√

n∆(·) →D ζ(·), where ζ(·) is a Gaussian process

defined on [0, h0] such that Eζ(h) = 0, Eζ2(h) = Ξ(h), with covariance function

Ω
(
h, h′

)
=Cov

(
ζ(h), ζ

(
h′

))
= (1 − h)−1(1 − h′)−1 ×

{∫ 1−h

0

∫ 1−h′

0

∞∑

k,k′=1

φk(x)φk

(
x′
)
φk′ (x + h)φk′

(
x′ + h′

)
dxdx′

+

∫ 1−h

0

∫ 1−h′

0

∞∑

k,k′=1

φk(x)φk

(
x′ + h′

)
φk′ (x + h) φk′

(
x′
)

dxdx′

+

∫ 1−h

0

∫ 1−h′

0

∞∑

k=1

(
Eξ4

1k − 3
)
φk(x)φk(x + h)φk

(
x′
)
φk

(
x′ + h′

)
dxdx′

}
,

for h, h′ ∈ [0, h0].150

The proof of Proposition 1 is deferred to Section A.3 in Appendix A. Although the oracle smoother C̃(·)
enjoys the desirable theoretical property, it is not a statistic since Zi(x) = ηi(x) − m(x) is unknown. According

to Proposition 2 below, the price for using Ẑi(x) = η̂i(x) − m̂(x) in place of Zi(x) in the covariance estimator

is asymptotically negligible, that is, two-step estimator Ĉ(·) is as efficient as the infeasible estimator C̃(·). See

Section A.4 in Appendix A for the proof of Proposition 2 .155

Proposition 2. Under Assumptions (C1)–(C6), suph∈[0,h0] |Ĉ(h) − C̃(h)| = Op(n−1/2).

Combining the above two propositions, we obtain the following result.

Theorem 2. Under Assumptions (C1)–(C6), suph∈[0,h0] |Ĉ(h) −C(h) − ∆(h)| = Op(n−1/2).

Theorem 2 indicates that ∆(h) is the leading term of Ĉ(h) −C(h).

4. Simultaneous confidence band160

In this section, we construct the SCB for the covariance function C(·).

4.1. Asymptotic SCB

The next theorem presents the asymptotic behavior of the maximum of the normalized deviation of the

covariance estimator Ĉ(·), which sheds the lights on how to construct the asymptotic SCB for C(·). It is a direct

result of Propositions 1, 2 and Theorem 2, thus the proof is omitted.165

Theorem 3. Under Assumptions (C1)–(C6), for any α ∈ (0, 1),

lim
N→∞

Pr

{
sup

h∈[0,h0]

n1/2
∣∣∣∣Ĉ(h) −C(h)

∣∣∣∣Ξ(h)−1/2 ≤ Q1−α

}
= 1 − α,

lim
N→∞

Pr

{
n1/2

∣∣∣∣Ĉ(h) −C(h)
∣∣∣∣Ξ(h)−1/2 ≤ z1−α/2

}
= 1 − α, ∀h ∈ [0, h0] ,

where Q1−α is the 100 (1 − α)th percentile of the absolute maxima distribution of ζ(h)Ξ−1/2(h), while z1−α/2 is

denoted as the 100 (1 − α/2)th percentile of the standard normal distribution, and ζ(h) is the mean zero Gaussian

process defined in Proposition 1.

Corollary 1. Under Assumptions (C1)–(C6), an asymptotic 100 (1 − α) % exact SCB for C(·) is given by Ĉ(h) ±
n−1/2Q1−αΞ

1/2(h), h ∈ [0, h0]. While an asymptotic pointwise confidence band for C(·) is given by Ĉ(h) ±170

n−1/2z1−α/2Ξ
1/2(h), h ∈ [0, h0].
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4.2. Knots selection

In spline smoothing, the number of knots is often treated as an unknown tuning parameters, and the fitting

results can be sensitive to it. Though in the literature there is no optimal method to choose Js, we recommend

the following two ways. One is criterion-based selection strategy such as Generalized Cross-Validation (GCV),

where the candidate pool for Js is all the integers between 1 and Js∗ , where J∗s = min {10, bn/4c}. Specifically, the

GCV is given as

GCV(J) =
N−1

∥∥∥∥Y − BJ

(
B>

J
BJ

)−1
B>

J
Y
∥∥∥∥

2

[
1 − N−1tr

{
BJ

(
B>

J
BJ

)−1
B>

J

}]2
,

where Y = (Y ·1, . . . ,Y ·N)>, where Y · j = n−1
∑n

i=1 Yi j, BJ(x) =
{
B1,p(x), . . . , BJ+p,p(x)

}>
, J = 1, . . . , J∗s , and

BJ = {BJ (1/N) , . . . ,BJ (N/N)}> is the N × (J + p) design matrix for spline regression. Then the number of knots

selected is Js = arg minJ GCV(J). The second method to choose Js is the formula based selection strategy as175

stated in Remark 1, specifically, we seek Js that satisfies Assumption (C6) such that Js � NγdN . In practice, the

smoothness order (q, µ) of m (·) and φk (·) are taken as default (3, 1) or (4, 0) with a matching spline order p = 4

(cubic spline). Therefore, we suggest Js = bcNγ {ln ln (N)}γc for some positive constant c. Note that the default

of parameter γ = 3/8 satisfies the condition given in Assumption (C6). In our extensive simulation studies, we

find that c = 0.8 is a good choice for the tuning parameter. Both methods give very similar estimators and SCBs180

in our numerical studies.

4.3. FPC analysis

We now describe how to obtain the covariance function Ĝ (·, ·), and its eigenfunctions φ̂k(·) and eigenvalues

λ̂k in the FPC analysis. We estimate G(·, ·) by

Ĝ
(
x, x′

)
= n−1

n∑

i=1

Ẑi(x)Ẑi(x′) =

Js+p∑

s=1

Js+p∑

s′=1

β̂ss′Bs,p(x)Bs′,p
(
x′
)
, (8)

where Ẑi is defined in (4) and β̂ss′ ’s are the coefficients.185

In FPC applications, it is typical to truncate the spectral decomposition at an integer κ to account for the some

predetermined proportion of the variance. For example, in our numerical studies below, κ is selected as the number

of eigenvalues that can explain 95% of the variation in the data. Next, let B(x) =
{
B1,p(x), . . . , BJs+p,p(x)

}>
, and

the N×(Js + p) design matrix B for spline regression is B = {B (1/N) , . . . ,B (N/N)}>. Then for any k ∈ {1, . . . , κ},
we consider the following spline approximation for ψk(·): ψ̂k (x′) =

∑Js+p

`=1
γ̂`kB`,p (x′), where γ̂`k’s are coefficients190

of B-spline estimator subject to γ̂>
k

B>Bγ̂k = 1 with γ̂k =
(
γ̂1,k, . . . , γ̂Js+p,k

)>
. The estimates of eigenfunctions and

eigenvalues correspond ψk and λk can be obtained by solving the eigenequations,

∫
Ĝ

(
x, x′

)
ψ̂k

(
x′
)

dx′ = λ̂kψ̂k(x), k ∈ {1, . . . , κ}. (9)

According to (8), solving (9) is equivalent to solving the following: B>(x)β̂B>Bγ̂k = λ̂kB>(x)̂γk, k ∈ {1, . . . , κ},
where β̂> = (̂βs,s′ )

Js+p

s,s′=1
.

By simple algebra, one needs to solve β̂B>Bγ̂k = λ̂kγ̂k, for any k ∈ {1, . . . , κ}. Consider the following195

Cholesky decomposition: B>B = LBL>
B

. Therefore, solving (9) is equivalent to solving λ̂kL>
B
γ̂k = L>

B
β̂LBL>

B
γ̂k,

that is, λ̂k and L>
B
γ̂k, k ∈ {1, . . . , κ}, are the eigenvalues and unit eigenvectors of L>

B
β̂LB. In other words, γ̂k

is obtained by multiplying
(
L>

B

)−1
immediately after the unit eigenvectors of L>

B
β̂LB, hence ψ̂k (·) is obtained.

Consequently, φ̂k (x′) = λ̂
1/2

k
ψ̂k (x′). Then, the kth FPC score of the ith curve can be estimated by a numerical

integration: ξ̂ik = N−1
∑N

j=1 λ̂
−1
k

{
Yi j − m̂( j/N)

}
φ̂k( j/N).200
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4.4. Estimating the variance function Ξ(h) and the percentile Q1−α

Notice the fact that (7) inspires us to estimate the variance function Ξ(·) by merely computing ξ̂4
1k

, Ĉ(·) and

φ̂k. In practice, the following estimator is employed

Ξ̂(h) =

κ∑

k,k′=1

{
1

1 − h

∫ 1−h

0

φ̂k(x)φ̂k′ (x + h) dx

}2

+ Ĉ2(h) +

κ∑

k=1

(
Eξ̂4

1k − 3
) { 1

1 − h

∫ 1−h

0

φ̂k(x)φ̂k(x + h)dx

}2

.

Next, to derive the percentile Q1−α, the Gaussian process is simulated as follows

ζ̂(h) =

κ∑

k,k′

1

1 − h

∫ 1−h

0

εkk′ φ̂k(x)φ̂k′ (x + h)dx +

κ∑

k=1

1

1 − h

∫ 1−h

0

εkφ̂k(x)φ̂k(x + h)
(
Eξ̂4

1k − 1
)1/2

dx,

where εkk′ and εk are independent standard Gaussian random variables. Hence, ζ̂(h) is a zero mean Gaussian

process with variance function Ξ̂(h) and covariance function

Ω̂
(
h, h′

)
= Cov

{̂
ζ(h), ζ̂

(
h′

)}
=

1

1 − h

1

1 − h′

∫ 1−h

0

∫ 1−h′

0


κ∑

k,k′=1

φ̂k(x)φ̂k

(
x′
)
φ̂k′ (x + h)φ̂k′

(
x′ + h′

)

+

κ∑

k=1

(
Eξ̂4

1k − 3
)
φ̂k(x)φ̂k (x + h) φ̂k

(
x′
)
φ̂k

(
x′ + h′

)
 dxdx′ + Ĉ(h)Ĉ

(
h′

)
,

for any h, h′ ∈ [0, h0]. A large number of independent realizations of ζ̂(h) are simulated, then the maximal absolute205

deviation for each copy of ζ̂(h)Ξ̂−1/2(h) is taken. Eventually, Q1−α is estimated by the empirical percentiles of these

maximum values.

5. Simulation Studies

To illustrate the finite-sample behavior of our confidence bands, we conduct simulation studies to illustrate

the finite-sample performance of the proposed method.210

5.1. General study

The data are generated from the following model: Yi j = m ( j/N)+
∑∞

k=1 ξikφk ( j/N)+σ( j/N)εi j, j ∈ {1, . . . ,N},
i ∈ {1, . . . , n}, where m(x) = sin{2π (x − 1/2)}, εi j are i.i.d standard normal variables, φk(x) =

√
λkψk(x) with

λk = (1/4)[k/2], ψ2k−1(x) =
√

2 cos (2kπx), ψ2k(x) =
√

2 sin (2kπx), k ≥ 1. We consider both homogenous errors

with σ(x) = σε and strongly heteroscedastic errors with σ(x) = σε
{
5 + exp(x)

}−1 {
5 − exp(x)

}
, where the noise215

level σε = 0.1, 0.5. Since Assumption (C5) is satisfied, following [14], we truncate
∑∞

k=1 ξikφk ( j/N) at 1000. The

number of curves n = bcNθc with c = 0.8 and θ = 1, and the number of observations per curve N is taken to be

50, 100 and 200, respectively. Each simulation is repeated 500 times. Throughout this section, the mean function

is estimated by cubic splines, i.e., p = 4, with the number of knots selected using the formula and GCV given in

Section 4.2.220

First, we examine the accuracy of the proposed two-stage estimation procedure. The average mean squared

error (AMSE) is computed to assess the performance of the covariance estimators Ĉ(·) and C̃(·) defined in (6) and

(3), respectively. The AMSE of Ĝ(·, ·), the eigenvalue λ̂k’s and the eigenfunction φ̂k’s are defined as

AMSE(Ĝ) =
1

500N2

500∑

s=1

N∑

j, j′=1

{
Ĝs

(
j/N, j′/N

) −G
(
j/N, j′/N

)}2
,

AMSE(̂λ) =
1

500κ

500∑

s=1

κ∑

k=1

(̂λks − λk)2, AMSE(φ̂) =
1

500Nκ

500∑

s=1

N∑

j=1

κ∑

k=1

{
(φ̂ks − φk) ( j/N)

}2
,
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where Ĝs, λ̂ks, φ̂ks represent the values of the s-th replication of Ĝ(·, ·), λ̂k, φ̂k in (9), respectively. Our simulation

results based on homogeneous and heteroscedastic variance functions are listed in Tables 1 and 2, respectively.

One concludes that a lager noise level leads to a higher AMSE over all, and the AMSEs of the two estimators Ĉ(·)
and C̃(·) are very similar in each scenario. Moreover, the AMSE(̂λ) is getting smaller when N is increasing in

each scenario. The GCV method has smaller AMSE(̂λ) and AMSE(Ĝ) than the formula method does. The value225

of the AMSE for φ̂ varies in each of the scenarios. When N = 50, the AMSE(φ̂) based on the formula method is

smaller than that based on the GCV method, while a converse phenomenon is observed when N = 100, 200.

Tables 1 and 2 also present the empirical coverage rate (CR), i.e., the percentage of the event that the true

curve C(·) is entirely covered by the SCB among all 500 replications, respectively. As the sample size increases,

the CR of the SCB becomes closer to the nominal confidence level, which shows a positive confirmation of230

Theorem 3. In addition, the average widths (WD) of the bands are calculated and presented in columns 9 and 11

of Tables 1–2. It is obvious that the width tends to be narrower when the sample size becomes larger and noise

level σε smaller.

Table 1: Average mean squared errors (AMSEs) of Ĉ, C̃, λ̂, Ĝ, φ̂, coverage rates (CRs) of the proposed SCBs (outside/inside of the parentheses

is based on Ĉ, C̃) and average widths (WDs) of SCBs based on Ĉ. The standard deviation of the errors σ(x) = σε = 0.1, 0.5. The number of

knots for the splines are determined by the formula (Formula) and the GCV described in Section 4.2. Results are based on 500 replications.

σε N

AMSE SCB

Ĉ C̃ λ̂ Ĝ φ̂
95% 99%

CR WD CR WD

0.1
50 0.068 0.065 0.014 0.130 0.661 0.866(0.892) 1.25 0.926(0.942) 1.51

Formula
100 0.034 0.035 0.006 0.051 0.871 0.910(0.922) 0.92 0.970(0.970) 1.11

200 0.016 0.016 0.003 0.025 0.845 0.958(0.962) 0.67 0.992(0.992) 0.80

0.1
50 0.065 0.065 0.009 0.095 0.806 0.868(0.894) 1.25 0.940(0.948) 1.51

GCV
100 0.035 0.034 0.005 0.048 0.790 0.914(0.920) 0.92 0.968(0.970) 1.11

200 0.016 0.016 0.002 0.025 0.769 0.960(0.960) 0.67 0.992(0.994) 0.80

0.5
50 0.070 0.065 0.014 0.133 0.651 0.864(0.892) 1.26 0.920(0.938) 1.53

Formula
100 0.035 0.035 0.006 0.052 0.876 0.910(0.922) 0.93 0.966(0.970) 1.11

200 0.016 0.016 0.003 0.025 0.845 0.956(0.960) 0.67 0.992(0.992) 0.80

0.5
50 0.070 0.065 0.012 0.107 0.871 0.858(0.896) 1.27 0.918(0.940) 1.53

GCV
100 0.036 0.035 0.006 0.052 0.826 0.898(0.920) 0.92 0.958(0.964) 1.11

200 0.017 0.016 0.003 0.026 0.798 0.946(0.960) 0.67 0.988(0.992) 0.80

Overall, the performance of the SCB based on estimator Ĉ is indistinguishable from the infeasible SCB

based on estimator C̃; and they approximate the nominal level as N increases. The knots number selected by the235

GCV yield similar results as those of the formula. For visualization of actual estimation, Fig. 1 depicts the true

covariance C(·), the spline covariance estimators Ĉ(·), as well as the 99% SCB for C(·). They are all based on a

typical run under the setting N = 50, N = 200 and σε = 0.1. It is clear from Fig. 1 that the estimator Ĉ(·) is very

close to the true covariance function C(·) and the true covariance function is entirely covered by the SCB.

5.2. Spatial covariance models240

In order to compare the finite-sample performance of the proposed estimator to that of [14], we consider the

following spatial covariance models:

• Spherical model (M1): C(h;σ2
s , θs) = σ

2
s{1 − 1.5h/θs + 0.5(h/θs)

3}I {h ≤ θs};

• Matérn model (M2): C(h;σ2
s , θs, v) = σ2

s {Γ(v)}−1 21−v(2
√

vh/θs)
vzv(2

√
vh/θs),where Γ is the gamma func-

tion, zv is the modified Neumann function;245

• Gaussian model (M3): C(h;σ2
s , θs) = σ

2
s exp(−h2/θ2

s ).
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Fig. 1: Plot of true covariance function (thick solid line), oracle estimator Ĉ (dashed line) and the 99% SCB (dotted-dashed line), infeasible

estimator C̃ (dotted line) for the covariance function with σε = 0.1.

Table 2: Average mean squared errors (AMSEs) of Ĉ, C̃, λ̂, Ĝ, φ̂, coverage rates (CRs) of the proposed SCB (outside/inside of the parentheses

is based on Ĉ, C̃) and average widths (WDs) of SCBs based on Ĉ. The heteroscedastic errors are based on standard deviation function:

σ(x) = σε {5 − exp(x)}/{5 + exp(x)}, σε = 0.1, 0.5. Results are based on 500 replications.

σε N

AMSE SCB

Ĉ C̃ λ̂ Ĝ φ̂
95% 99%

CR WD CR WD

0.1
50 0.068 0.065 0.014 0.130 0.650 0.862(0.890) 1.25 0.930(0.942) 1.51

Formula
100 0.034 0.035 0.006 0.051 0.870 0.912(0.922) 0.92 0.966(0.970) 1.11

200 0.016 0.016 0.003 0.025 0.859 0.954(0.960) 0.67 0.988(0.990) 0.80

0.1
50 0.065 0.065 0.009 0.095 0.808 0.868(0.896) 1.25 0.938(0.948) 1.51

GCV
100 0.034 0.035 0.005 0.048 0.772 0.918(0.920) 0.92 0.970(0.970) 1.11

200 0.016 0.016 0.002 0.025 0.772 0.960(0.960) 0.67 0.992(0.994) 0.80

0.5
50 0.070 0.065 0.014 0.133 0.651 0.864(0.890) 1.26 0.926(0.940) 1.52

Formula
100 0.035 0.035 0.006 0.051 0.879 0.916(0.920) 0.92 0.966(0.970) 1.11

200 0.016 0.016 0.003 0.025 0.847 0.960(0.964) 0.67 0.988(0.990) 0.80

0.5
50 0.067 0.065 0.010 0.098 0.857 0.868(0.898) 1.26 0.930(0.942) 1.51

GCV
100 0.035 0.034 0.005 0.049 0.817 0.912(0.922) 0.92 0.962(0.968) 1.11

200 0.016 0.016 0.003 0.025 0.783 0.954(0.962) 0.67 0.992(0.994) 0.80
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In the parameterization (following [28] page 29) of the covariance structure, σ2
s is the sill and θs is the

range parameter. In the simulation, we set σ2
s = 2 for M1, M2 and M3, and choose θs = 1 for M1 and M2,

θs = 3 for M3, while for M2, v = 3. Since C(h) → 0 as h → ∞, in practice, we only numerically evaluate

the covariance C(h) over the “effective range” defined as the distance beyond which the correlation between250

observations, ρ(h) = C(h)/C (0), is less than or equal to 0.05. In such sense, we choose the compact interval

[0, s] to represent the “effective range”, where s is the largest h satisfying ρ(h) ≤ 0.05. An exception of this

phenomenon is the spherical model that has an exact range [0, θs], i.e., C(h) = 0 when h = θs. To be consistent in

our evaluation of the methods, we apply the “effective range” to the spherical model as well.

Our data are generated from Yi j = m(x j) + Zi(x j) + σ(x j)εi j, where m(x) = sin{2π (x − 1/2)}, {x j}Nj=1
are255

equally spaced grid points over “effective range” [0, s], εi j ∼ N(0, 1) are i.i.d variables, and the process Zi(·) is

generated from a zero mean Gaussian process. We examine the performance of models containing homogeneous

errors with σ(x) = σε and heteroscedastic errors with σ(x) = σε
{
5 + exp(x)

}−1 {
5 − exp(x)

}
for M1, and σ(x) =

σε
{
30 + exp (x/2)

}−1 {
30 − exp (x/2)

}
for M2 and M3. The results are similar to each other, so we only present

the results with homogeneous errors. The number of curves n = b0.8Nc with N = 50, 100 and 200, and the noise260

levels are σε = 0.1, 0.5. The mean function is estimated by cubic splines, i.e., p = 4, with the number of knots

selected using the formula given in Section 4.2. The GCV selected knots yield similar results but it is more time

consuming, hence they are not summarized here.

The AMSE of the covariance estimators Ĉ and C̃ are reported in columns 4–5 of Table 3. The performance

of the two estimators is very similar. Columns 6 and 8 present the empirical coverage rate CR, i.e., the percentage265

of the true curve C(·) entirely covered by the SCB, based on 95% and 99% confidence levels, respectively. As the

sample size increases, the coverage probability of the SCB becomes closer to the nominal confidence level. In

addition, the WDs of the bands are calculated and presented in columns 7 and 9 in Table 3. It is obvious that the

width tends to be narrower when the sample size becomes larger or σε is smaller.

Table 3: Average mean squared errors (AMSEs) of Ĉ, C̃, λ̂, Ĝ, φ̂, coverage rates (CRs) of the proposed the SCB (outside/inside of the

parentheses is based on Ĉ, C̃) and average widths (WDs) of SCBs based on Ĉ. Results are based on data generated from models M1–M3 in

Section 5.2, and 500 replications, in which the standard deviation of the errors σ(x) = σε = 0.1, 0.5.

σε Model N

AMSE SCB

Ĉ C̃
95% 99%

CR WD CR WD

0.1

M1

50 0.082 0.081 0.910(0.918) 1.37 0.960(0.966) 1.68

100 0.040 0.040 0.920(0.926) 0.99 0.974(0.978) 1.21

200 0.019 0.018 0.946(0.952) 0.72 0.980(0.986) 0.87

M2

50 0.096 0.095 0.904(0.908) 1.44 0.950(0.954) 1.78

100 0.048 0.049 0.926(0.924) 1.05 0.978(0.978) 1.30

200 0.022 0.022 0.958(0.958) 0.76 0.992(0.994) 0.94

M3

50 0.109 0.109 0.906(0.910) 1.50 0.954(0.958) 1.86

100 0.055 0.055 0.922(0.928) 1.09 0.976(0.978) 1.35

200 0.025 0.025 0.960(0.958) 0.79 0.988(0.990) 0.98

0.5

M1

50 0.082 0.080 0.896(0.912) 1.38 0.952(0.964) 1.70

100 0.040 0.040 0.920(0.928) 0.99 0.980(0.980) 1.21

200 0.019 0.018 0.938(0.946) 0.72 0.988(0.988) 0.88

M2

50 0.097 0.096 0.896(0.908) 1.46 0.946(0.958) 1.80

100 0.048 0.049 0.914(0.930) 1.06 0.978(0.980) 1.30

200 0.022 0.022 0.954(0.958) 0.77 0.990(0.994) 0.94

M3

50 0.111 0.111 0.908(0.916) 1.51 0.952(0.962) 1.88

100 0.055 0.055 0.912(0.924) 1.10 0.974(0.978) 1.36

200 0.025 0.025 0.958(0.956) 0.79 0.988(0.990) 0.98

When the covariance structure is not necessarily stationary, [14] proposed a tensor-product bivariate B-270
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spline estimator ĜTPS(x, x′) and a SCB for the covariance function G(x, x′) = Cov {Z1(x),Z1 (x′)}. Following the

suggestion of one referee, to assess the accuracy of recovering G(·, ·), the covariance function estimators Ĉ is also

presented in 2D to make a comparison, say, ĜPROP(x, x′) = Ĉ(|x − x′|). In addition, the simultaneous confidence

envelops (SCE) is constructed by using ĜPROP(x, x′) and ĜTPS(x, x′) are compared, named SCE-I and SCE-II,

respectively.275

Columns 4–5 of Table 4 present the AMSEs of ĜPROP(x, x′) and ĜTPS(x, x′). The results of AMSEs indicate

that ĜPROP is more accurate than ĜTPS, while ĜTPS usually gives larger AMSE. Columns 6–13 of Table 4 report

the CR and WD of SCE-I and SCE-II. One sees that the CRs of SCE-I are much closer to the nominal levels than

those of SCE-II, and increasing the sample size helps to improve the CR of the SCEs to their nominal levels. One

also observes the widths of the SCE-I are much narrower than those of the SCE-II. These findings indicate our280

proposed SCE-I is more efficient than SCE-II when the true covariance function is stationary.

Table 4: Average mean squared errors (AMSEs) of ĜPROP(·, ·), ĜTPS(·, ·), coverage rates (CRs) and average widths (WDs) of SCE-I and

SCE-II. Results are based on data generated from models M1–M3 in Section 5.2 and 500 replications, where the standard deviation of the

errors σ(x) = σε = 0.1, 0.5.

σε Model N

AMSE SCE-I SCE-II

ĜPROP ĜTPS 95% 99% 95% 99%

CR WD CR WD CR WD CR WD

0.1

M1

50 0.079 0.123 0.910 1.40 0.960 1.71 0.744 2.08 0.840 2.55

100 0.039 0.063 0.920 1.01 0.974 1.24 0.852 1.64 0.944 2.02

200 0.018 0.031 0.946 0.73 0.980 0.90 0.904 1.19 0.964 1.47

M2

50 0.096 0.148 0.904 1.50 0.950 1.86 0.682 2.09 0.816 2.56

100 0.048 0.072 0.926 1.10 0.978 1.35 0.780 1.62 0.898 2.00

200 0.022 0.036 0.958 0.79 0.992 0.98 0.926 1.16 0.976 1.43

M3

50 0.114 0.153 0.906 1.57 0.954 1.95 0.724 2.15 0.824 2.65

100 0.057 0.074 0.922 1.15 0.976 1.42 0.852 1.52 0.942 1.86

200 0.026 0.039 0.960 0.83 0.988 1.21 0.882 1.09 0.956 1.33

0.5

M1

50 0.079 0.133 0.896 1.41 0.952 1.73 0.740 2.10 0.858 2.58

100 0.039 0.064 0.920 1.02 0.980 1.25 0.814 1.64 0.924 2.03

200 0.018 0.032 0.938 0.74 0.988 0.90 0.896 1.19 0.968 1.46

M2

50 0.097 0.146 0.898 1.51 0.946 1.87 0.666 2.13 0.780 2.60

100 0.048 0.071 0.914 1.10 0.978 1.35 0.768 1.62 0.906 2.00

200 0.022 0.036 0.954 0.79 0.990 0.98 0.928 1.16 0.970 1.43

M3

50 0.115 0.161 0.908 1.58 0.952 1.97 0.694 2.16 0.792 2.65

100 0.057 0.075 0.912 1.15 0.974 1.42 0.814 1.53 0.928 1.87

200 0.026 0.037 0.958 0.83 0.988 1.03 0.864 1.09 0.956 1.33

6. Real data analysis

To further illustrate our methodology, we first consider the modeling of the Gait Data collected by the Motion

Analysis Laboratory at the Children’s Hospital in San Diego, CA. We focus on the “Hip Angle” functional dataset,

which consists of the angles formed by the hip of each boy over his gait cycle. See [29] for the details. In the285

study, the cycle begins and ends at the point where the heel of the limb under observation strikes the ground,

which has been translated into values over [0, 1]. There are measurements on n = 39 samples (boys), where for

each sample N = 20 hip angles were recorded every 0.05 second with time being measured on [0, 1]. Denote by

Yi j the hip angle of the ith boy at the time x j, j ∈ {1, . . . ,N} and i ∈ {1, . . . , n}. Fig. 2 (a) shows hip curves together

with their estimated mean curve, and Fig. 2 (b) describes the 3D shape of all curves, where “time” is plotted on290

one axis and sample index on the other.
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Fig. 2: (a) Hip angle data (dotted lines) with its mean function estimator (solid line); (b) 3D plot of the data; (c): unsmoothed sample

correlation 3D plot for the hip angle data; (d): unsmoothed sample correlation contour plot for the hip angle data.
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Fig. 2 (c) and (d) display the 3D and contour plots of the sample correlation of the hip data. From the

plot, the contours are almost parallel to the main diagonal, indicating that the variation of the hip angles can

be considered as an approximately stationary process. Fig. 3 (a) shows a 3D plot of the proposed covariance

matrix estimator ĜPROP(x, x′) = Ĉ(|x− x′|) with its asymptotic SCE. For comparison, the nonstationary covariance295

function estimator ĜTPS and its SCE are also presented; see Fig. 3 (b).

As mentioned in Section 1, SCB is a very insightful and useful tool to examine the adequacy of certain

parametric specifications of a covariance function. Now we make use of the proposed SCB to test if this hip data

has a parametric covariance form like M1, M2 or M3. We set the null hypothesis H0 for M1, M2 and M3 in the

following:

M1 H0: C(h) = C (h; 32, θs) = 32{1 − 1.5 (h/θs) + 0.5(h/θs)
3}I {h ≤ θs} , (10)

M2 H0: C(h) = C(h; 32, θs, ν) = 32 {Γ (v)}−1 21−v(2
√

vh/θs)
v
zv(2

√
vh/θs), (11)

M3 H0: C(h) = C(h; 32, θs) = 32 exp(−h2/θ2
s ), (12)

where θs = 1.12 for M1 and M2, v = 1.2 for M2 and θs = 2.19 for M3. In Fig. 4, the thick solid line is the

covariance function C(h) under H0, the center dashed line is the B-spline estimator , and the dotted-dashed lines

are the SCBs. From Fig. 4 (a), one observes that even the 99% SCB cannot contain C (h; 32, 1.12), hence the

null hypothesis in (10) is rejected with p-value < 0.01. Fig. 4 (b) and (c) indicate that the 80% SCB contains300

C (h; 32, 1.2, 1.12) and C (h; 32, 2.19), the null hypothesis in (11) and (12) is not rejected with p-value > 0.2.
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Fig. 3: (a): Covariance matrix estimator based on ĜPROP(x, x′) (middle) with 95% SCE (up and below); (b): covariance matrix estimator

ĜTPS(x, x′) (middle) of [14] with 95% SCE (up and below).
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Appendix A310

This section provides technical lemmas and detailed proofs of the main asymptotic results. Throughout this

section, Op (or Op) denotes a sequence of random variables of certain order in probability. For instance, Op(n−1/2)
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Fig. 4: Covariance function C(h) under H0 (thick solid line), B-spline covariance estimator Ĉ (dotted line), and the SCB based

on Ĉ (dotted-dashed line) for the hip angle data.

means a smaller order than n−1/2 in probability, and by Oa.s. (or Oa.s.) almost surely O (or O). In addition, Up

denotes a sequence of random functions which are Op uniformly defined in the domain.

For any vector a = (a1, . . . , an) ∈ Rn, denote the norm ‖a‖r = (|a1|r + · · · + |an|r)1/r, r ∈ {1, 2, . . . , }, ‖a‖∞ =315

max (|a1| , . . . , |an|). For any matrix A = (ai j)
m,n

i=1, j=1
, denote its Lr norm as ‖A‖r = maxa∈Rn,a,0 ‖Aa‖r ‖a‖−1

r , for

r < +∞ and ‖A‖r = max1≤i≤m

∑n
j=1 |ai j|, for r = ∞.

A.1. Decomposition

Let Yi = (Yi1, . . . ,YiN)>, then the spline estimator η̂i(x) in (5) can be represented as η̂i(x) = B(x)>(B>B)−1B>Yi,

where B is the design matrix defined in Section 4.3. Define the empirical inner product matrix of B-spline basis{
B`,p(x)

}Js+p

`=1
as

Vn,p =
{〈

B`,p, B`′,p
〉

N

}Js+p

`,`′=1
= N−1B>B,

and, according to Lemma A.3 in [5], for some constant Cp > 0, we have
∥∥∥V−1

n,p

∥∥∥∞ ≤ CpJs.

Denote ηi = {ηi (1/N) , . . . , ηi (N/N)}>, m = {m (1/N) , . . . ,m (N/N)}>, Zi = {Zi (1/N) , . . . ,Zi (N/N)}>, εi =320

(σ (1/N) εi1, . . . , σ (N/N) εiN)>. According to model (2), ηi = m + Zi, then the approximation error η̂i(x) − ηi(x)

can be decomposed into the following:

η̂i(x) − ηi(x) = η̃i(x) − ηi(x) + ε̃i(x), (A1)

where

η̃i(x) = N−1B(x)>V−1
n,pB>ηi = m̃(x) + Z̃i(x),

m̃(x) = N−1B(x)>V−1
n,pB>m, Z̃i(x) = N−1B(x)>V−1

n,pB>Zi,

ε̃i(x) = N−1B(x)>V−1
n,pB>εi,

Thus, one has η̂i(x) − ηi(x) = Z̃i(x) − Zi(x) + m̃(x) − m(x) + ε̃i(x). Therefore, by (4) and (A1), the approximation

error of Ẑi(x) in (4) to Zi(x) can be represented by

Ẑi(x) − Zi(x) = Z̃i(x) − Zi(x) + ε̃i(x) − 1

n

n∑

i′=1

{
Z̃i′ (x) + ε̃i′ (x)

}
. (A2)
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A.2. Technical Lemmas325

In this section, we provide some technical lemmas. For the sake of saving space, we only state the lemmas

and refer to [26] for the proofs of these lemmas.

Lemma A.1. Under Assumptions (C1)–(C6), as N → ∞, one has

max
1≤i≤n
‖̃ηi − ηi‖∞ = Oa.s.{J−p∗

s (n ln n)2/r1 },

max
1≤i≤n
‖Z̃i − Zi‖∞ = Oa.s.{J−p∗

s (n ln n)2/r1 },

max
1≤i≤n
‖Zi‖∞ = Oa.s.{(n ln n)2/r1 }.

Lemma A.2. Under Assumptions (C1)–(C6), as N → ∞, one has

max
1≤i≤n
‖̃εi‖∞ = Oa.s{J1/2

s N−1/2(ln N)1/2}.

Lemma A.3. Under Assumptions (C1)–(C6), as N → ∞

max
1≤i≤n

∥∥∥̂ηi − ηi

∥∥∥∞ = Op

{
J
−p∗

s (n ln n)2/r1 + J1/2
s N−1/2 (ln N)1/2

}
,

max
1≤i≤n
‖Ẑi − Zi‖∞ = Op

{
J
−p∗

s (n ln n)2/r1 + J1/2
s N−1/2 (ln N)1/2

}
. (A3)

Lemma A.4. Assumption (C5) holds under Assumptions (C4) and (C5’).

Lemma A.5. Under Assumptions (C1)–(C6),

sup
h∈[0,h0]

∣∣∣∣∣∣∣
1

n(1 − h)

∫ 1−h

0

n∑

i=1

Zi(x + h)
{
Z̃i(x) − Zi(x)

}
dx

∣∣∣∣∣∣∣
= Op(n−1/2).

Lemma A.6. Under Assumptions (C1)–(C6),

max
1≤i≤n

max
1≤`≤Js+p

∣∣∣∣∣∣∣∣
1

N

N∑

j=1

B`,p( j/N)σ ( j/N) Ui j,ε

∣∣∣∣∣∣∣∣
= Oa.s.(N

−1/2J−1/2
s ln1/2 N),

where Ui j,ε, 1 ≤ i ≤ n, 1 ≤ j ≤ N, are i.i.d standard normal random variables.330

Lemma A.7. Under Assumptions (C1)–(C6),

max
1≤k≤kn

max
1≤`≤Js+p

∣∣∣∣∣∣∣∣
1

nN

n∑

i=1

Uik,ξ



N∑

j=1

B`,p

(
j

N

)
σ ( j/N) (εi j − Ui j,ε)



∣∣∣∣∣∣∣∣
= Oa.s.

(
n−1/2Nβ2−1 ln1/2 N

)
,

where 0 < β2 < 1/2.

Lemma A.8. Under Assumptions (C1)–(C6), one has

max
1≤k≤kn

max
1≤`≤Js+p

∣∣∣∣∣∣∣∣
(nN)−1

n∑

i=1

(
ξik − Uik,ξ

) N∑

j=1

B`,p

(
j

N

)
σ

(
j

N

)
Ui j,ε

∣∣∣∣∣∣∣∣
= Oa.s.(n

β1−1/2N−1/2J−1/2
s ln1/2 N),

where 0 < β1 < 1/2.

Lemma A.9. Under Assumptions (C2)–(C6),

max
1≤k≤kn

max
1≤`≤Js+p

∣∣∣∣∣∣∣∣
1

nN

n∑

i=1

(
ξik − Uik,ξ

)


N∑

j=1

B`,p

(
j

N

)
σ

(
j

N

)
(εi j − Ui j,ε)



∣∣∣∣∣∣∣∣
= Oa.s.

(
nβ1 Nβ2−1

)
.
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Lemma A.10. Under Assumptions (C2)–(C6), suph∈[0,h0] supx∈[0,1]

∣∣∣ 1
n

∑n
i=1 Zi(x + h)̃εi(x)

∣∣∣ = Op(n−1/2).335

Lemma A.11. Under Assumptions (C2)–(C6), one has

sup
h∈[0,h0]

sup
x∈[0,1]

∣∣∣∣∣∣∣
1

n

n∑

i=1

Zi(x + h)
1

n

n∑

i′=1

Z̃i′ (x)

∣∣∣∣∣∣∣
= Op(n−1/2).

Lemma A.12 (Theorem 1.2 of [30]). Let ζ1, . . . , ζN be independent real valued random variables with Eζ j =

0,Eζ2
j
= σ2

j
< +∞, j ∈ {1, . . . ,N} and let S N =

∑N
j=1 ζ j, V2

N
=

∑N
j=1 σ

2
j
. If there exists c > 0 such that for r ≥ 3,

E
∣∣∣ζ j

∣∣∣r ≤ cr−2r!σ2
j
< +∞, j ∈ {1, . . . ,N}, then for each N > 1, t > 0,

Pr

(∣∣∣∣∣
S N

VN

∣∣∣∣∣ ≥ t

)
≤ 2 exp

−
t2

4

1

1 + ctV−1
N
/2

 .

Lemma A.13 (Theorem 2.6.7 of [31]). Suppose that ξi, 1 ≤ i ≤ n are i.i.d with E(ξ1) = 0, E(ξ2
1
) = 1 and H(x) > 0

(x ≥ 0) is an increasing continuous function such that x−2−γH(x) is increasing for some γ > 0 and x−1 ln H(x) is

decreasing with EH (|ξ1|) < ∞. Then there exist constants C1, C2, a > 0 which depend only on the distribution of ξ1

and a sequence of Brownian motions {Wn(m)}∞n=1, such that for any {xn}∞n=1 satisfying H−1 (n) < xn < C1 (n ln n)1/2

and S m =
∑m

i=1 ξi, then Pr {max1≤m≤n |S m −Wn (m)| > xn} ≤ C2n {H (axn)}−1 .340

Lemma A.14. Let Wi ∼ N
(
0, σ2

i

)
, σi > 0, i ∈ {1, . . . , n}, for a > 2

Pr

(
max
1≤i≤n
|Wi/σi| > a

√
ln n

)
<

√
π/2n1−a2/2.

Hence, (max1≤i≤n |Wi|) / (max1≤i≤n σi) ≤ max1≤i≤n |Wi/σi| = Oa.s.(
√

ln n).

A.3. Proof of Proposition 1

Let Ft = σ
(
ξ̄·11, ξ̄·12, . . . , ξ̄·1t, ξ̄·22, . . . , ξ̄·t−1,t, ξ̄·tt

)
, so that F2 ⊆ F3 ⊆ F4 ⊆ · · · is an increasing sequence of

σ-fields. Denote

S t(h) =
√

n∆(·) =
√

n
∑

1≤k,k′≤t

ξ̄·kk′
1

1 − h

∫ 1−h

0

φk(x)φk′ (x + h)dx

+
√

n
∑

1≤k≤t

(
ξ̄·kk − 1

) 1

1 − h

∫ 1−h

0

φk(x)φk(x + h)dx,

for t ∈ {1, . . . , kn}, where kn satisfies Assumption (C4). We show that S t(h) is a martingale process in h ∈ [0, h0].

Define Dt(h) = S t(h) − S t−1(h), thus,

Dt(h) =

√
n

1 − h


t−1∑

k=1

ξ̄·kt

∫ 1−h

0

{φk(x)φt(x + h) + φt(x)φk(x + h)} dx +
(
ξ̄·tt − 1

) ∫ 1−h

0

φt(x)φt(x + h)dx

 ,

which is Ft-measurable. While notice that for any t,

E ( Dt(h)| Ft−1)

=

√
n

1 − h
E


t−1∑

k=1

ξ̄·kt

∫ 1−h

0

{φk(x)φt(x + h) + φt(x)φk(x + h)} dx +
(
ξ̄·tt − 1

) ∫ 1−h

0

φt(x)φt(x + h)dx

∣∣∣∣∣∣Ft−1



=

√
n

1 − h
E


1

n

n∑

i=1

ξit

t−1∑

k=1

ξik

∫ 1−h

0

{φk(x)φt(x + h) + φt(x)φk(x + h)} dx

∣∣∣∣∣∣∣
Ft−1



+
√

nE

{(
ξ̄·tt − 1

) ∫ 1−h

0

φt(x)φt(x + h)dx

∣∣∣∣∣∣Ft−1

}
= 0,
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which implies that {Dt(h), t = 2, 3, . . .} is a martingale difference process with respect to {Ft−1, t = 2, 3, . . .}.345

Next denote

E
(

D2
t (h)

∣∣∣Ft−1

)
= V

(1)
t (h) + V

(2)
t (h) + V

(3)
t (h), (A4)

in which

V
(1)
t (h) =nE



n−1

n∑

i=1

ξit

t−1∑

k=1

ξik

1

1 − h

∫ 1−h

0

{φk(x)φt(x + h) + φt(x)φk(x + h)} dx



2
∣∣∣∣∣∣∣∣
Ft−1

 ,

V
(2)
t (h) =nE


{(
ξ̄·tt − 1

) 1

1 − h

∫ 1−h

0

φt(x)φt(x + h)dx

}2
∣∣∣∣∣∣∣
Ft−1

 ,

V
(3)
t (h) =2nE



n−1

n∑

i=1

ξit

t−1∑

k=1

ξik

1

1 − h

∫ 1−h

0

{φk(x)φt(x + h) + φt(x)φk(x + h)} dx



×
(
ξ̄·tt − 1

) 1

1 − h

∫ 1−h

0

φt(x)φt(x + h)dx

∣∣∣∣∣∣Ft−1

]
.

Moreover, one can show that

V
(1)
t (h) = E




1

n

n∑

i=1

ξit

t−1∑

k=1

ξik

1

1 − h

∫ 1−h

0

{φk(x)φt(x + h) + φt(x)φk(x + h)} dx



2
∣∣∣∣∣∣∣∣
Ft−1



= E

t−1∑

k=1


1

n

n∑

i=1

ξ2
itξ

2
ik

(
1

1 − h

∫ 1−h

0

{φk(x)φt(x + h) + φt(x)φk(x + h)} dx

)2
∣∣∣∣∣∣∣
Ft−1



= Eξ2
1t

t−1∑

k=1

ξ̄·kk

[
1

1 − h

∫ 1−h

0

{φk(x)φt(x + h) + φt(x)φk(x + h)} dx

]2

,

therefore, one has when n→ ∞,

kn∑

t=2

V
(1)
t (h)→

∞∑

k,k′

{
1

1 − h

∫ 1−h

0

φk(x)φk′ (x + h)dx

}2

+

∞∑

k,k′

{
1

1 − h

∫ 1−h

0

φk(x)φk′ (x + h)dx

}{
1

1 − h

∫ 1−h

0

φk(x + h)φk′ (x)dx

}
< ∞.

Note that

V
(2)
t (h) =

(
Eξ4

1t − 1
) {

(1 − h)−1

∫ 1−h

0

φt(x)φt(x + h)dx

}2

< ∞,

so one has that
kn∑

t=2

V
(2)
t (h)→

∞∑

k=1

(
Eξ4

1k − 1
) {

(1 − h)−1

∫ 1−h

0

φk(x)φk(x + h)dx

}2

< ∞.

Similarly,

V
(3)
t (h) =2nE




t−1∑

k=1

1

n

n∑

i=1

ξitξik

1

1 − h

∫ 1−h

0

{φk(x)φt(x + h) + φt(x)φk(x + h)} dx



×


1

n

n∑

i=1

ξ2
it − 1


1

1 − h

∫ 1−h

0

φt(x)φt(x + h)dx

∣∣∣∣∣∣∣
Ft−1

 .
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Thus,

V
(3)
t (h) =2

(
Eξ3

1t − 1
)

E


t−1∑

k=1

ξ̄·k
1

1 − h

∫ 1−h

0

{φk(x)φt(x + h) + φt(x)φk(x + h)} dx

× 1

1 − h

∫ 1−h

0

φt(x)φt(x + h)dx

∣∣∣∣∣∣Ft−1

]
,

where ξ̄·k = n−1
∑n

i=1 ξik. Next, notice that

sup
h∈[0,h0]

∞∑

k=1

∞∑

k′=1

1

1 − h

∫ 1−h

0

{φk(x)φt(x + h) + φt(x)φk(x + h)} dx < ∞.

Therefore, one has

kn∑

t=2

V
(3)
t (h)→ 2

kn∑

t=2

(
Eξ3

1t − 1
) ∞∑

k=1

E
(
ξ̄·k

∣∣∣Ft−1

)
× 1

(1 − h)2

×
∫ 1−h

0

{φk(x)φt(x + h) + φt(x)φk(x + h)} dx ×
∫ 1−h

0

φt(x)φt(x + h)dx→p 0,

as n→ ∞.

According to (A4), as n→ ∞, one has

kn∑

t=2

E
(

D2
t (h)

∣∣∣Ft−1

)
→p

∞∑

k,k′

{
1

1 − h

∫ 1−h

0

φk(x)φk′ (x + h)dx

}2

+

∞∑

k,k′

{
1

1 − h

∫ 1−h

0

φk(x)φk′ (x + h)dx

}{
1

1 − h

∫ 1−h

0

φk(x + h)φk′ (x)dx

}

+
(
Eξ4

1t − 1
) { 1

1 − h

∫ 1−h

0

φt(x)φt(x + h)dx

}2

.

Denote by E
(

D3
t (h)

∣∣∣Ft−1

)
= d

(1)
t (h) + 3d

(2)
t (h) + 3d

(3)
t (h) + d

(4)
t (h), where

d
(1)
t (h) =n3/2E




t−1∑

k=1

ξ̄·kt

1

1 − h

∫ 1−h

0

{φk(x)φt(x + h) + φt(x)φk(x + h)} dx



3
∣∣∣∣∣∣∣∣
Ft−1

 ,

d
(2)
t (h) =n3/2E




t−1∑

k=1

ξ̄·kt

1

1 − h

∫ 1−h

0

{φk(x)φt(x + h) + φt(x)φk(x + h)} dx



2

×
(
ξ̄·tt − 1

) 1

1 − h

∫ 1−h

0

φt(x)φt(x + h)dx

∣∣∣∣∣∣Ft−1

]
,

d
(3)
t (h) =n3/2E




t−1∑

k=1

ξ̄·kt

1

1 − h

∫ 1−h

0

{φk(x)φt(x + h) + φt(x)φk(x + h)} dx



×
(
ξ̄·tt − 1

)2
{

1

1 − h

∫ 1−h

0

φt(x)φt(x + h)dx

}2
∣∣∣∣∣∣∣
Ft−1

 ,

d
(4)
t (h) =n3/2E


{(
ξ̄·tt − 1

) 1

1 − h

∫ 1−h

0

φt(x)φt(x + h)dx

}3
∣∣∣∣∣∣∣
Ft−1

 .
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Applying similar arguments in Lemma 6 of [14], one has
∑kn

t=2
E{d(i)

t (h)|Ft−1} →p 0, for i = 1, 2, 3, 4. Hence, for350

any ε > 0, suph∈[0,h0]

∑kn

t=2
E

{
D3

t (h)I
(
D2

t (h) > ε
)∣∣∣∣Ft−1

}
→p 0.

By the uniform central limit theorem, one has
√

n∆(·) = S t(h)→D ζ(·), as n→ ∞, where ζ(h) is a Gaussian

process such that Eζ(h) = 0,

Ξ(h) = Eζ2(h) =

∞∑

k=1

(
Eξ4

1k − 1
) ( 1

1 − h

∫ 1−h

0

φk(x)φk(x + h)dx

)2

+

∞∑

k<k′

{
1

1 − h

(∫ 1−h

0

φk(x)φk′ (x + h)dx +

∫ 1−h

0

φk′ (x)φk (x + h) dx

)}2

,

and covariance function

Ω
(
h, h′

)
=Cov

(
ζ(h), ζ

(
h′

))
=

1

1 − h

1

1 − h′

{∫ 1−h

0

∫ 1−h′

0

∞∑

k,k′=1

φk(x)φk

(
x′
)
φk′ (x + h)φk′

(
x′ + h′

)
dxdx′

+

∫ 1−h

0

∫ 1−h′

0

∞∑

k,k′=1

φk(x)φk

(
x′ + h′

)
φk′ (x + h) φk′

(
x′
)

dxdx′

+

∫ 1−h

0

∫ 1−h′

0

∞∑

k=1

(
Eξ4

1k − 3
)
φk(x)φk(x + h)φk

(
x′
)
φk

(
x′ + h′

)
dxdx′

}
,

for any h, h′ ∈ [0, h0]. The proposition is proved.

A.4. Proof of Proposition 2

We decompose the difference between Ĉ(h) and C̃(h) into the following three terms:

Ĉ(h) − C̃(h) = I(h) + II(h) + III(h),

where

I(h) =
1

n(1 − h)

∫ 1−h

0

n∑

i=1

{
Ẑi(x) − Zi(x)

} {
Ẑi(x + h) − Zi(x + h)

}
dx,

II(h) =
1

n(1 − h)

∫ 1−h

0

n∑

i=1

Zi(x + h)
{
Ẑi(x) − Zi(x)

}
dx,

III(h) =
1

n(1 − h)

∫ 1−h

0

n∑

i=1

Zi(x)
{
Ẑi(x + h) − Zi(x + h)

}
dx.

Note that by (A2), suph∈[0,h0] |I(h)| ≤ max1≤i≤n ‖Ẑi − Zi‖2∞. According to (A3),

max
1≤i≤n
‖Ẑi − Zi‖∞ = Op

{
J
−p∗

s n ln n + J1/2
s N−1/2 (ln N)1/2

}
,

By (A2), one has

II(h) =
1

n(1 − h)

∫ 1−h

0

n∑

i=1

Zi(x + h)
{
Ẑi(x) − Zi(x)

}
dx

=
1

n(1 − h)


∫ 1−h

0

n∑

i=1

Zi(x + h)
{
Z̃i(x) − Zi(x)

}
dx +

∫ 1−h

0

n∑

i=1

Zi(x + h)̃εi(x)dx



− 1

n2(1 − h)


∫ 1−h

0

n∑

i=1

Zi(x + h)

n∑

i′=1

Z̃i′ (x)dx +

∫ 1−h

0

n∑

i=1

Zi(x + h)

n∑

i′=1

ε̃i′ (x)dx

 .
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Similar to the proof of Lemma A.10, it is easy to see

sup
h∈[0,h0]

1

n2(1 − h)

∣∣∣∣∣∣∣

∫ 1−h

0

n∑

i=1

Zi(x + h)

n∑

i′=1

ε̃i′ (x)dx

∣∣∣∣∣∣∣
= Op(n−1/2).

Consequently, by Lemmas A.5, A.10 and A.11, one has

sup
h∈[0,h0]

|II(h)| = sup
h∈[0,h0]

1

n(1 − h)

∣∣∣∣∣∣∣

∫ 1−h

0

n∑

i=1

Zi(x + h)
{
Ẑi(x) − Zi(x)

}
dx

∣∣∣∣∣∣∣
= Op(n−1/2).

Similarly, one can show that suph∈[0,h0] |III(h)| = suph∈[0,h0] |II(h)|. Consequently,

sup
h∈[0,h0]

|Ĉ(h) − C̃(h)| = sup
h∈[0,h0]

|I(h) + II(h) + III(h)| = Op(n−1/2).

Appendix B

This section presents more results and findings from additional simulation examples.355

B.1. A simulation study to evaluate the knots selection methods

In this section, we conduct a simulation study to evaluate the performance of the knots selection methods

proposed in Section 4.2. The setting of the simulation is the same as in Section 5.1. For model fitting, the

mean function is estimated by cubic splines, and the number of knots of the splines, Js, is selected using either

the formula-based method (Formula) and the GCV method (GCV) described in Section 4.2. Each simulation is360

repeated 500 times.

Fig. B.1 below shows the frequency bar plot of the GCV-selected Js over 500 replications, where the black

triangles indicate the number of knots suggested using the formula given in Section 4.2. From Fig. B.1, one

sees that on average the GCV method tends to select a slightly larger number of knots than the formula method

does, but both methods provide similar results as shown in Tables 1 and 2. The GCV method is indeed more365

time-consuming than the formula method. For example, in scenario N = 50 and σε = 0.1 of Table 1 , it takes 50

seconds for the formula and 9 minuses for GCV selected method, respectively.

B.2. More results for spatial covariance models

Tables B.1–B.2 report some simulation results based on the spatial covariance model presented in Section 5.2.

Specifically, we report the simulation results based on the data generated from the model with the heteroscedastic370

errors: σ(x) = σε
{
5 + exp(x)

}−1 {
5 − exp(x)

}
for M1, and σ(x) = σε

{
30 + exp (x/2)

}−1 {
30 − exp (x/2)

}
for M2

and M3. The number of curves n = b0.8Nc with N = 50, 100 and 200, and the noise levels are σε = 0.1, 0.5.

The mean function is estimated by cubic splines, i.e., p = 4, with the number of knots selected using the formula

method.

The AMSE of the covariance estimators Ĉ and C̃ are reported in columns 3–4 of Table B.1. The performance375

of the two estimators is very similar. Columns 5 and 7 present the empirical coverage rate CR, i.e., the percentage

of the true curve C(·) entirely covered by the SCB, based on 95% and 99% confidence levels, respectively. As the

sample size increases, the coverage probability of the SCB becomes closer to the nominal level. Columns 3–4 of

Table B.2 present the AMSEs of ĜPROP(x, x′) and ĜTPS(x, x′). The results of AMSEs indicate that ĜPROP is more

accurate than ĜTPS, while ĜTPS usually gives larger AMSE. Columns 5–12 of Table 4 report the CR and WD of380

SCE-I and SCE-II. One sees that the CRs of SCE-I are much closer to the nominal levels than those of SCE-II,

and increasing the sample size helps to improve the CR of the SCEs to their nominal levels. One also observes

the widths of the SCE-I are much narrower than those of the SCE-II.
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Fig. B.1: The histogram of the GCV selected number of knots in 500 replications with (a) homogeneous and (b) heteroscedastic errors. Black

triangles indicate the number of knots suggested by the formula. The GCV selection method is given in Section 4.2.

22



Table B.1: Average mean squared errors (AMSEs) of Ĉ, C̃, coverage rates (CRs) (outside/inside of the parentheses is based on Ĉ, C̃),

and average widths (WDs) of the asymptotic SCBs based on Ĉ. The standard deviation function for the heteroscedastic errors σ(x) =

σε
{
5 + exp(x)

}−1 {
5 − exp(x)

}
for M1, and σ(x) = σε

{
30 + exp (x/2)

}−1 {
30 − exp (x/2)

}
for M2 and M3. The details of models M1, M2 and

M3 are given in Section 5.2. Results are based on 500 replications.

σε Model N

AMSE SCB

Ĉ C̃
95% 99%

CR WD CR WD

0.1

M1

50 0.082 0.081 0.916(0.920) 1.37 0.958(0.966) 1.68

100 0.040 0.040 0.922(0.926) 0.99 0.974(0.978) 1.21

200 0.019 0.018 0.940(0.952) 0.72 0.980(0.986) 0.87

M2

50 0.095 0.096 0.906(0.904) 1.44 0.950(0.954) 1.78

100 0.048 0.049 0.922(0.926) 1.05 0.980(0.976) 1.30

200 0.022 0.022 0.958(0.958) 0.76 0.992(0.994) 0.94

M3

50 0.109 0.109 0.904(0.908) 1.50 0.954(0.956) 1.86

100 0.055 0.055 0.922(0.928) 1.09 0.976(0.978) 1.35

200 0.025 0.025 0.960(0.958) 0.79 0.988(0.990) 0.98

0.5 M1

50 0.082 0.081 0.898(0.918) 1.38 0.962(0.970) 1.69

100 0.040 0.040 0.918(0.924) 0.99 0.976(0.980) 1.21

200 0.019 0.018 0.948(0.952) 0.72 0.982(0.986) 0.88

M2

50 0.096 0.096 0.904(0.908) 1.45 0.948(0.958) 1.79

100 0.048 0.049 0.916(0.926) 1.06 0.974(0.980) 1.30

200 0.022 0.022 0.960(0.956) 0.77 0.990(0.994) 0.94

M3

50 0.110 0.109 0.904(0.908) 1.51 0.948(0.958) 1.87

100 0.055 0.055 0.910(0.924) 1.10 0.976(0.976) 1.36

200 0.025 0.025 0.960(0.958) 0.79 0.988(0.990) 0.98
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Table B.2: Average mean squared errors (AMSEs) of ĜPROP(·, ·), ĜTPS(·, ·), coverage rates (CRs) and average widths (WDs) of SCE-

I and SCE-II. The standard deviation function of the heteroscedastic errors σ(x) = σε
{
5 + exp(x)

}−1 {
5 − exp(x)

}
for M1, and σ(x) =

σε
{
30 + exp (x/2)

}−1 {
30 − exp (x/2)

}
for M2 and M3. Details of models M1, M2 and M3 are given in Section 5.2. Results are based on

500 replications.

σε Model N

AMSE SCE-I SCE-II

ĜPROP ĜTPS 95% 99% 95% 99%

CR WD CR WD CR WD CR WD

0.1

M1

50 0.079 0.121 0.916 1.40 0.958 1.71 0.722 2.07 0.838 2.55

100 0.039 0.061 0.922 1.01 0.974 1.24 0.850 1.64 0.952 2.03

200 0.018 0.032 0.940 0.73 0.980 0.90 0.880 1.19 0.964 1.46

M2

50 0.097 0.150 0.906 1.50 0.950 1.86 0.710 2.08 0.830 2.56

100 0.048 0.071 0.922 1.10 0.980 1.35 0.786 1.63 0.900 2.00

200 0.022 0.036 0.958 0.79 0.992 0.98 0.930 1.16 0.976 1.43

M3

50 0.114 0.153 0.904 1.57 0.954 1.95 0.720 2.15 0.816 2.64

100 0.057 0.074 0.922 1.15 0.976 1.42 0.856 1.52 0.944 1.86

200 0.026 0.039 0.960 0.83 0.988 1.03 0.878 1.09 0.956 1.33

0.5

M1

50 0.079 0.129 0.902 1.41 0.964 1.73 0.730 2.10 0.834 2.57

100 0.039 0.064 0.920 1.02 0.980 1.25 0.810 1.65 0.918 2.03

200 0.018 0.035 0.942 0.74 0.984 0.90 0.914 1.21 0.980 1.49

M2

50 0.097 0.143 0.904 1.51 0.948 1.86 0.674 2.10 0.802 2.57

100 0.048 0.071 0.916 1.10 0.972 1.35 0.774 1.63 0.894 2.01

200 0.022 0.036 0.960 0.79 0.990 0.98 0.924 1.16 0.970 1.43

M3

50 0.114 0.149 0.900 1.58 0.948 1.96 0.696 2.12 0.820 2.60

100 0.057 0.075 0.910 1.15 0.974 1.42 0.830 1.52 0.930 1.87

200 0.026 0.038 0.960 0.83 0.988 1.03 0.876 1.09 0.944 1.33
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