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OPERATIONS IN ÉTALE AND MOTIVIC COHOMOLOGY

BERT GUILLOU AND CHUCK WEIBEL

Abstract. We classify all étale cohomology operations on Hn
et(−, μ⊗i

� ), show-
ing that they were all constructed by Epstein. We also construct operations
Pa on the mod-� motivic cohomology groups Hp,q , differing from Voevodsky’s
operations. We use them to classify all motivic cohomology operations on Hp,1

and H1,q and suggest a general classification.

In the last decade, several papers have given constructions of cohomology oper-
ations on motivic and étale cohomology, following the earlier work of Jardine [J],
Kriz-May [KM], and Voevodsky [V2,V1]; see [BJ,BJ1,Jo,M1,V3,V4]. The goal of
this paper is to provide, for each n and i, a classification of all such operations on the
étale groups Hn

et(−, μ⊗i
� ) and the motivic groups Hn,i(−,F�), similar to Cartan’s

classification of operations on singular cohomology Hn
top(−,F�) in [C]. We succeed

for étale operations and partially succeed for motivic operations.
We work over a fixed field k and fix a prime � with 1/� ∈ k. By definition, an

(unstable) étale cohomology operation on Hn
et(−, μ⊗i

� ) over k is a natural trans-

formation Hn
et(−, μ⊗i

� ) → Hp
et(−, μ⊗q

� ) of set-valued functors from the category of
(smooth) simplicial schemes over k (for some p and q). Similarly, an (unstable) mo-
tivic cohomology operation on Hn,i over k is a natural transformation Hn,i → Hp,q

of functors defined on this category, where Hp,q(X) denotes the Nisnevich coho-
mology Hp

nis(X,F�(q)), and the cochain complex F�(q) is defined in [V2] or [MVW].
Fixing k, n, and i, the set of all unstable cohomology operations forms a ring. The
product of θ1 and θ2 is the operation x �→ θ1(x) · θ2(x).

Our classification theorems describe the ring of all operations in terms of certain
specific operations. Thus we begin with their construction, in Sections 1, 4, and 6.

In étale cohomology with constant coefficients, operations P a were constructed
by Epstein [E] and used by Raynaud in [R]. A second construction is given by
Peter May in [M]. As both are based on Steenrod’s original construction in [SE],
they agree. The upshot is that Cartan’s ring H∗

top(Kn) of operations on Hn
top(−,F�)

embeds into the ring of all étale operations on Hn
et(−, μ⊗i

� ); we refer the reader to
Definition 0.1 below for a precise description of Cartan’s ring.

For étale cohomology with twisted coefficients μ⊗i
� , Epstein’s approach [E] and

May’s approach [M] give apparently different constructions of étale operations P a.
We will show in Corollary 4.7 that the two constructions give the same operations.

Epstein’s construction is more easily accessible to algebraic geometers, because
it uses equivariant sheaf cohomology and is an application of the method described
in his 1966 paper [E]. After stating Epstein’s result in Theorem 1.3, we indicate the
key points in his construction that we will need to compare with May’s construction.
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The classification of étale cohomology operations is given in Sections 2 and 3.
Theorem 3.5 gives the general result: the ring of all (unstable) étale operations
on Hn

et(−, μ⊗i
� ) over k is the tensor product H∗

et(k(ζ),F�) ⊗ H∗
top(Kn), where ζ is

a primitive �th root of unity. Thus all (unstable) étale operations on Hn
et(−, μ⊗i

� )
over k are H∗

et(k(ζ),F�)-linear combinations of monomials in the operations P I .
Our proof starts with the special case in which ζ ∈ k. In this case, it is a result
of Breen and Jardine that the graded ring of all étale operations on Hn

et(−, μ⊗i
� ) is

H∗
et(k, μ

⊗∗
� )⊗H∗

top(Kn).
In Section 4, we present May’s construction, using the notion of a suitable pair

(K, θ) (see 4.2) and show in Corollary 4.7 that the étale operations P a coincide. Our
construction of motivic cohomology operations will use May’s construction. The
brief Section 5 relates the discussion of Section 4 to the operad-based approach of
Hinich and Schechtman [HS].

In Section 6, we use the Norm Residue Theorem to construct motivic operations
P a (see Definition 6.5). We show they are compatible with the étale operations
and stable under simplicial suspension, and we verify the usual properties in Sec-
tion 7. The operation P 0 is the Frobenius Hn,i → Hn,i� on motivic cohomology,
induced by the �th power map F�(i) → F�(i�); see Proposition 8.4. One new re-
sult concerning Voevodsky’s operations is that for n > i and x ∈ H2n,i we have
Pn
V (x) = [ζ⊗(�−1)](n−i) ∪ x�, where [ζ⊗(�−1)] is the canonical element of H0,�−1(k)

(see Corollary 8.10). This extends Lemma 9.8 of [V1], which states that Pn(x) = x�

for x ∈ H2n,n(X).
The classification of motivic cohomology operations is complicated by the pres-

ence of more operations than those constructed by Voevodsky or via Steenrod-
Epstein methods. One example is that an �-torsion element t in the Brauer group
of k gives an operation H1,2 → H3,3 by

H1,2(X) ∼= H1
et(X,μ⊗2

� )
∪t−→ H3

et(X,μ⊗3
� ) ∼= H3,3(X).

Also unexpectedly, we may also use t and the Bockstein β to get an operation
H1,2(X) → H4,3(X) (see Example 11.5 below). When k contains a primitive �th
root of unity ζ, we also have an interesting operation H1,2(X) → H2,1(X) =
Pic(X)/�: divide by the Bott element [ζ] ∈ H0,1(k) and then apply the Bockstein;
see Proposition 11.2.

In Section 10, we determine the ring of all motivic cohomology operations on
Hn,1. If � �= 2, it is the algebra H∗,∗(k)⊗H∗

top(Kn), where H∗,∗(k) is the motivic
cohomology of k and H∗

top(Kn) is Cartan’s ring, described in Definition 0.1 below.
Many of these operations fail to be stable operations because they do not fit into
a sequence of operations compatible with the motivic t-suspension X �→ S1

tX; for
this reason, we call them unstable.

In Section 11, we determine the ring of (unstable) cohomology operations on
H1,i. When k contains the �th roots of unity, this is the graded polynomial ring
over H∗,∗(k) on operations γ : H1,i(X) ∼= H1,1(X) and its Bockstein, where γ is
given by the Norm Residue Theorem 6.2. For general fields, it is the Galois-invariant
subring. The operations on H1,2 referred to above arise in this way.

Finally Section 12 contains a conjecture about what the general classification
might be for Hn,i when n, i > 1.

Since it is the topological prototype of our classification theorem, we conclude
this introduction with a description of the ring of all singular cohomology operations
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on Hn
top(−,F�). Serre observed in [S50, 28.1] (cf. [EM, p. 513]) that the ring of oper-

ations from Hn
top(−,F�) to H∗

top(−,F�) is isomorphic to the cohomology H∗
top(Kn)

of the Eilenberg-Mac Lane space Kn = K(F�, n); the structure of this ring was de-
termined by Serre and Cartan in [S50], [C], [C1]. The following description is taken
from [McC, 6.19].

Definition 0.1. For � > 2, let Λn denote the free graded-commutative F�-algebra
generated by the elements P I(ιn), where I = (ε0, s1, ε1, . . . , sk, εk) is an admissible
sequence satisfying either e(I) < n or else e(I) = n and ε0 = 1.

Here the excess of I is defined to be e(I) = 2
∑

(si− �si+1− εi)+
∑k

i=0 εi, where
si = 0 for i > k, and I is admissible if si ≥ �si+1 + εi for all i < k.

When � = 2, Λn denotes the free graded-commutative F2-algebra generated by
the elements SqI(ιn), with I = (s1, . . . , sk) admissible (si ≥ 2si+1) and e(I) < n,
where the excess is e(I) =

∑
(si − 2si+1) = s1 −

∑
i>1 si.

We will write H∗
top(Kn) for Λn because of the following result.

Theorem 0.2 (Cartan–Serre). The ring H∗
top(Kn,F�) of cohomology operations

from Hn
top(−,F�) to H∗

top(−,F�) is isomorphic to Λn.

For example, every operation on H2
top(−,F�) is a polynomial in id, β, the P Iβ,

and (if � �= 2) the βP Iβ (where P I = P �k · · ·P �P 1). This is because the only
admissible sequences with excess < 2 are 0, (1), and (0, �k, 0, . . . , �, 0, 1, 1).

1. Epstein’s étale construction

Cohomology operations in étale cohomology were constructed by David Epstein
long ago in the 1966 paper [E] as a special case of operations constructed in an
axiomatic framework; see Sections 10 and 11.1 of [E]. Epstein’s construction was
made explicit by Michèle Raynaud [R, 4.4] for étale cohomology with constant
coefficients. Alternative constructions were later given by L.Breen [Br, III.4] and
J.F. Jardine [J, 1.4], [J1, §2], and [M1].

In Epstein’s approach, one starts with an F�-linear tensor abelian category Sh
(such as sheaves of F�-modules on a site), a left exact functor H0(X,−) (global
sections over X), and a commutative associative ring object A of Sh.

In this section, we consider the situation in which Sh is the category of étale
sheaves of F�-modules on the big étale site of simplicial schemes X• over a base S,
which we may assume is Spec(k). The ring object A will be the graded étale sheaf⊕∞

i=0 μ
⊗i
� .

Definition 1.1. If X• is a simplicial scheme over S, the étale site Et(X•) is the
category whose objects are pairs (n, U → Xn) with U → Xn étale. A morphism
to (m,U ′) is an ordinal map [m] → [n], together with a map U → U ′ forming
a commutative square with Xn → Xm. A covering of (n, U) is a family of maps
Ui → U over Xn so that the Ui → U are an étale cover of U .

The étale site of a simplicial scheme X• first arose in [D, 5.1.8]; our description
is based upon the definition of the étale site Et(X•) in [F, 1.4].

Recall that if X = X• is a simplicial scheme and F is a sheaf of F�-modules, then
the functor Γ(F) = F(X) is defined as the equalizer of F(X0) ⇒ F(X1), and the
cohomology functors Hi

et(X,F) are defined as its derived functors; see [D, 5.2.2]
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or [F, 2.3]. If X• is a constant simplicial scheme, Hi
et(X,F) is the usual étale

cohomology of X.
The derived functors of H0(X,−) : Sh → F�-mod are just the usual étale coho-

mology groups, because the usual Godement resolution of a sheaf F [Milne, p. 90]
is a flasque resolution by sheaves of F�-modules which are injective objects of Sh.

The étale Bockstein β : Hn
et(X,μ⊗i

� ) → Hn+1
et (X,μ⊗i

� ) is defined as the con-

necting map in the cohomology sequence for 0 → μ⊗i
� → μ⊗i

�2 → μ⊗i
� → 0. (This

sequence is the tensor product of the sequence 0 → Z/� → Z/�2 → Z/� → 0 with
μ⊗i
�2 .) By definition, β is natural in X but can depend on the choice of i; see Remark

3.3.1 below. If B =
⊕∞

i=0 μ
⊗i
�2 , we may also regard β as the connecting map in the

cohomology sequence for 0 → A i−→ B → A → 0.

Lemma 1.2. The étale Bockstein is a derivation. That is, if u ∈ Hn
et(X,μ⊗i

� ) and

v ∈ Hm
et (X,μ⊗j

� ), then β(u ∪ v) = β(u) ∪ v + (−1)nu ∪ β(v).

Proof. (Folklore) Choose a flasque Godement-style resolution B → I whose stalks
are free (=injective) Z/�2-modules, and write Ī for I/�I, so that A → Ī is also a
flasque resolution. Lifting cycles ū and v̄ representing u and v to chains u′ ∈ In(X)
and v′ ∈ Im(X), β(u) and β(v) are represented by u′′ and v′′, defined by δ(u′) =
i(u′′) and δ(v′) = i(v′′).

The cup product u ∪ v is represented by the image of ū ⊗ v̄ under the map
m : Ī ⊗ Ī → Ī resolving A ⊗A → A; see [D-4.5, 1.2.2]. Since the coboundary on
I ⊗ I satisfies

δ(u′ ⊗ v′) = i(u′′)⊗ v′ + (−1)nu′ ⊗ i(v′′) = i(u′′ ⊗ v̄) + (−1)ni(ū⊗ v′′)

it follows that β(u ∪ v) is represented by m(u′′ ⊗ v̄) + (−1)nm(ū ⊗ v′′), i.e., by
β(u) ∪ v + (−1)nu ∪ β(v). �

Remark 1.2.1. The same proof works in the motivic setting to show that the motivic
Bockstein is also a derivation, a fact stated in [V1, (8.1)].

Epstein defines an operation P 0 : Hn
et(X,μ⊗i

� ) → Hn
et(X,μ⊗i�

� ) in [E, 7.1] and

shows in [E, 7.3] that P 0 is the canonical Frobenius isomorphism induced by μ⊗i
�

∼=
μ⊗i�
� . (Our pairing H0

et(X,μ⊗i
� ) ⊗ H0

et(X,μ⊗j
� ) → H0

et(X,μ⊗i+j
� ) is the pairing

SA⊗ TB → U(A⊗B) in [E, (3.2.1)].) Epstein also defines an operation

Q0 : Hn
et(X,μ⊗i

� ) → Hn+1
et (X,μ⊗i�

� );

we’ll see in Proposition 3.3 below that Q0 = βP 0 and Qa = βP a, where β is the
Bockstein on H∗

et(X,μ⊗i�
� ). With this dictionary, Epstein’s theorem specializes to

yield:

Theorem 1.3. For each odd prime �, there are additive cohomology operations

P a : Hn
et(X,μ⊗i

� ) → H
n+2a(�−1)
et (X,μ⊗i�

� ), a ≥ 0,

natural in X, satisfying the usual relations: P ax = x� if n = 2a, P ax = 0 if
n < 2a, the Cartan relation P a(xy) =

∑
P i(x)P j(y), and Adem relations for both

P aP b (a < b�) and P aβP b (a ≤ b�).
When � = 2, there are Steenrod operations Sqa : Hn

et(X,μ⊗i
2 ) → Hn+a

et (X,μ⊗2i
2 )

or Hn
et(X,Z/2) → Hn+a

et (X,Z/2), satisfying the usual relations.
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Proof. The existence and basic properties are given in Chapter 7 of [E]; additivity
is 6.7. The Adem relations are established in [E, 9.7–8], using the dictionary that
Qb = βP b and P aβP b = P aQb. Naturality follows from [E, 11.1(8)]. �

Remark 1.3.1.
(i) There are canonical isomorphisms μ�

∼= μ⊗�
� and μ⊗i

�
∼= μ⊗i�

� . We have em-
phasized the difference in weight because of our application to motivic operations.

(ii) Epstein also constructs operations Qa; they equal βP a if we use the sheaf

A =
⊕∞

i=0 μ
⊗i
� but can differ if we use the smaller sheaf A =

⊕d
i=0 μ

⊗i
� , where

d = [k(ζ�) : k]; see Propositions 2.4 and 3.3.
(iii) If Z is a closed simplicial subscheme of X (see [D] or [F]), we get cohomology

operations P a on the relative groups Hn
et(X,Z;μ⊗i

� ), natural in the pair (X,Z), by
replacing H0(X,−) by the left exact functor H0

et(X,Z;−).

In order to compare to May’s construction and to classify operations, we will need
a rephrasing of one of the key results from [E], using the language of equivariant
sheaf cohomology.

Definition 1.4. If G is a finite group, we write ShG for the category of G-
equivariant objects of Sh, i.e., objects B equipped with a homomorphism G →
End(B). If B is in ShG, then H0(X,B) is a G-module, and we define the left exact
functor H0

G(X,−) on the category ShG by the formula H0
G(X,B) = H0(X,B)G.

We write H∗
G(X,−) for the derived functors of H0

G(X,−).

We will use the following result in Section 6.

Theorem 1.5. Let A be a bounded below cochain complex of objects of Sh on which
a finite group G acts trivially. Then there is a natural isomorphism

H∗(G,F�)⊗H∗(X,A)
�−→ H∗

G(X,A).

If A is a sheaf of dg commutative algebras, this is an algebra isomorphism.

Proof (See [E, 4.4.4]). Fix an injective resolution A
∼−→ I∗ in Sh. Choosing a

resolution F∗ → F� by finitely generated free F�[G]-modules, set F ∗ = Hom(F∗,F�),
soH∗(G,F�) is the cohomology of (F ∗)G. Since G acts trivially on A, we have quasi-

isomorphisms of complexes in ShG: A
∼−→ I∗ = F� ⊗ I∗

∼−→ Tot(F ∗ ⊗ I∗). Since
each Fn is a free F�[G]-module of finite rank, Fn ⊗ Iq ∼= Hom(Fn, I

q) is injective
in ShG, and A → Tot(F ∗ ⊗ I∗) is an injective resolution in ShG. Hence H∗

G(X,A)
is the cohomology of the total complex of

H0
G(X,F ∗ ⊗ I∗) = (F ∗)G ⊗ I∗(X).

The Künneth formula tells us that H∗((F ∗)G⊗ I∗(X)) is the tensor product of the
cohomology of (F ∗)G and I∗(X), i.e., of H∗(G,F�) and H∗(X,A).

We omit the standard proof that a commutative associative product on A induces
an algebra structure on H∗(X,A) and H∗

G(X,A) and that the isomorphism of
Theorem 1.5 commutes with products. �

Recall that for any sheaf (or complex) A, the symmetric group Sn acts on A⊗n

by permuting factors (with the usual sign change for tensor products of complexes).

If A
∼−→ B is a quasi-isomorphism, then so is A⊗n ∼−→ B⊗n by the following useful

lemma.



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

1062 BERT GUILLOU AND CHUCK WEIBEL

Lemma 1.6. If C, C ′, and D are bounded below cochain complexes of sheaves
of F�-modules and f : C

∼−→ C ′ is a quasi-isomorphism, then so is f ⊗ 1 : C ⊗
D −→ C ′ ⊗D.

Proof. Let K denote the cone of f ; it is acyclic. Since ⊗ is an exact functor,
every sheaf of F�-modules is flat, and K ⊗ D is acyclic by the Künneth formula
[WH, 3.6.1]. Since C ⊗ D −→ C ′ ⊗D −→ K ⊗D is a distinguished triangle, the
result follows. �

Remark 1.6.1. If A is a sheaf of commutative F�-algebras and A
∼−→ I is an in-

jective resolution, the choice of a lift I⊗2 → I of A⊗2 → A makes I a sheaf of
homotopy commutative, homotopy unital, and homotopy associative dg algebras,
as A⊗2 ∼−→ I⊗2. Such a lift exists and is unique up to chain homotopy, by the
comparison theorem [WH, 2.3.7, 10.4.7].

Similar remarks hold when A is a sheaf of bounded below, homotopy associative
and commutative dg algebras, using the total complex I of a Cartan-Eilenberg
resolution; see [WH, 5.7.9 and Ex. 5.7.2].

Let π be a Sylow �-subgroup of S�. Choosing an injective resolution A⊗� → J∗ in
Shπ, the comparison theorem lifts the equivariant quasi-isomorphism A⊗� → I⊗�

to an equivariant map I⊗� → J∗, unique up to chain homotopy.
Since H∗(X,A) is the cohomology of I(X), we can represent any element of

Hn(X,A) by an n-cocycle u ∈ In(X). The n�-cocycle u ⊗ · · · ⊗ u of I(X)⊗� is π-
invariant, because the generator of π acts as multiplication by (−1)n(�−1), which is
the identity on any F�-module. Its image Pu in Jn�(X) is also π-invariant. Epstein
shows in [E, 5.1.3] that P (u+ dv) = Pu+ dw for v ∈ In−1(X) and w ∈ Jn�−1(X),
so the cohomology class of Pu is independent of the choice of cocycle u.

Definition 1.7. The reduced power map is defined to be the map on cohomology
associated to u �→ u⊗ · · · ⊗ u :

P : Hn(X,A) → Hn�
π (X,A⊗�).

Now let π denote the cyclic group of order �. We will write W∗ → F� for the
standard periodic F�[π]-resolution [WH, 6.2.1], with generator ek of Wk

∼= F�[π],
and set W ∗= Hom(W∗,F�); thus H

∗(π,F�) is the cohomology of (W ∗)π.

Now suppose that there is a π-equivariant map A⊗� m−→ B and that π acts
trivially on B. (When A is a commutative ring, multiplication A⊗� → A is a π-
equivariant map.) We write m∗ for the induced map H∗

π(X,A⊗�) → H∗
π(X,B).

By Theorem 1.5, m∗P (u) ∈ H∗
π(X,B) has an expansion

∑
wk ⊗ Dk(u), where

wk ∈ Hk(π,F�) are the (dual) basis elements of [SE, V.5.2]: if � > 2, then w0 = 1,
w2 = βw1, w2i = wi

2, and w2i+1 = w1w
i
2. If � > 2 and n ≥ 2a, Epstein defines

(1.8) P a : Hn(X,A) → Hn+2a(�−1)(X,B), P au = (−1)aνnD(n−2a)(�−1)(u),

where

νn = (−1)r
(
�− 1

2

)
!−n and r =

(�− 1)(n2 + n)

4
.

(See [E, 7.1], [SE, VII.6.1], and [SE-err].) If n < 2a, then Epstein defines P a = 0.
When � = 2, Epstein defines operations Sqi by Sqi(u) = Dn−i(u) for n ≥ i and

Sqi(u) = 0 for n < i.
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Remark 1.8.1. Epstein also defines operations Qa = (−1)a+1νnD(n−2a)(�−1)−1(u)
in this setting, with Qa = 0 when n ≤ 2a, and establishes Adem relations for them
as well.

Of course, Epstein’s construction mimicks Steenrod’s construction of Dk, P
a,

and Qa (see [SE], VII.3.2 and VII.6.1). In Steenrod’s setting one can lift to integral
cochains; with this assumption, Steenrod proves that βD2k = −D2k+1 and hence
that βP a = Qa; see [SE, VII.4.6] and [SE-err]. As we mentioned in Remark 1.3.1,
the formula Qa = βP a may not hold when the sheaf A fails to distinguish between
μ⊗i
� and μ⊗i�

� . (See Propositions 2.4 and 3.3 and Theorem 8.11.)

Recall that the simplicial suspension SX of a simplicial scheme X is again a sim-

plicial scheme. There is a canonical isomorphism H̃n
et(X,μ⊗i

� )
∼=−→ H̃n+1

et (SX, μ⊗i
� ).

Proposition 1.9. The operations P a are simplicially stable in the sense that they
commute with simplicial suspension: there are commutative diagrams for all X and
all n and i, with N = n+ 2a(�− 1):

H̃n
et(X,μ⊗i

� )
Pa

−−−−→ H̃N
et (X,μ⊗i�

� )

∼=
⏐⏐� ∼=

⏐⏐�
H̃n+1

et (SX, μ⊗i
� )

Pa

−−−−→ H̃N+1
et (SX, μ⊗i�

� ).

Proof. The proofs of Lemmas 1.2 and 2.1 of [SE] go through, using simplicial ho-
motopy invariance (H∗

et(X) ∼= H∗
et(X ×Δ1)) of étale cohomology and excision. �

If f : X → Y is a finite map, then f∗ : Sh(X) → Sh(Y ) is an exact functor.

It follows that a π-equivariant map A⊗� m−→ B of étale sheaves on X induces a
π-equivariant map f∗m : (f∗A)⊗� ∼= f∗(A

⊗�) → f∗B and hence operations P a, Qa

from H∗(Y, f∗A) to H∗(Y, f∗B).

Proposition 1.10. Suppose that f : X → Y is a finite map and A⊗� m−→ B is a
π-equivariant map of sheaves on X. Then Epstein’s P a and Qa commute with the

isomorphism f∗ : H∗(Y, f∗A)
�−→ Hn(X,A).

Proof. Let I and J be the injective resolutions of A and A⊗� in the construction 1.7
of the power map P for A. Then f∗I and f∗J are injective resolutions of f∗A and
f∗A

⊗�, and if u is a cocycle in In(X) = (f∗I
n)(Y ), then u⊗ · · · ⊗ u is a cocycle in

I(X)⊗� ∼= (f∗I)(Y )⊗�, and I∗(X) → J∗(X) is identified with f∗I
∗(Y ) → f∗J

∗(Y ).
It follows that the left square commutes in the diagram

Hn(Y, f∗A)
P−−−−→ Hn�

π (Y, f∗A
⊗�)

m∗−−−−→ Hn�(Y, f∗B)

∼=
⏐⏐� ∼=

⏐⏐� ∼=
⏐⏐�

Hn(X,A)
P−−−−→ Hn�

π (X,A⊗�)
m∗−−−−→ Hn�(X,B).

The right square commutes by the functoriality of f∗. Expanding m∗P (f∗u) as in
Theorem 1.5, the result follows from (1.8) and Remark 1.8.1. �

2. The étale Steenrod algebra when ζ� ∈ k

In this section and the next we determine the algebra of all étale cohomology
operations Hn

et(−, μ⊗i
� ) → H∗

et(−, μ⊗∗
� ) for each n and i, over a field k containing
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1/�. We work in the big étale site of smooth simplicial schemes over k (see Definition
1.1).

Recall from SGA 4 (V.2.1.2 in [Ver]) that if M is a (simplicial) étale sheaf of
F�-modules, then the sheaf cohomology groups H∗

et(X,M) are isomorphic to the
(hyper) Ext-groups Ext∗(F�[X],M) in the category of étale sheaves of F�-modules.
(Here we regard M as a cochain complex using Dold-Kan.) If K is a second sim-
plicial étale sheaf of F�-modules, one writes H∗

et(K,M) for Ext∗(K,M).
It is well known that cohomology operations Hn

et(−, L) → H∗
et(−,M) are in

1–1 correspondence with elements of H∗
et(K,M), where K denotes the standard

simplicial Eilenberg-MacLane sheaf K(L, n) associated to L. If M is a ring, these
operations form a ring; the product of θ1 and θ2 is x �→ θ1(x) · θ2(x).

Now fix i and consider cohomology operations Hn
et(−, μ⊗i

� ) → H∗
et(−, μ⊗j

� ). As

observed above, they are in 1–1 correspondence with elements ofH∗
et(K,μ⊗j

� ), where

K denotes the simplicial Eilenberg-MacLane scheme K(μ⊗i
� , n). For example, the

identity operation on Hn
et(−, μ⊗i

� ) corresponds to ιn ∈ Hn
et(K,μ⊗i

� ), and the étale

Bockstein β : Hn
et(X,μ⊗i

� ) → Hn+1
et (X,μ⊗i

� ) corresponds to β(ιn) ∈ Hn+1
et (K,μ⊗i

� ).
We first discuss the case of constant coefficients (M = F�), which is known and

due to Breen [Br, 4.3–4] and Jardine [J]. The graded ring of all unstable étale coho-
mology operations from Hn

et(−,F�) to H∗
et(−,F�) is isomorphic to the cohomology

ring H∗
et(Kn,F�), where Kn = K(F�, n) is the constant simplicial sheaf classifying

elements of Hn
et(−,F�). By Theorem 1.3, there is a ring homomorphism from the

classical unstable Steenrod algebra H∗
top(Kn) of Definition 0.1 to H∗

et(Kn,F�).
There is also a ring homomorphism from H∗

et(k,F�) to H∗
et(Kn,F�), sending a

to the constant operation θ(x) = a. It is injective and is induced by Kn → Spec k.
These induce a graded algebra homomorphism from H∗

et(k,F�) ⊗F�
H∗

top(Kn) to
H∗

et(Kn,F�). Note that H∗
et(k,F�)⊗F�

H∗
top(Kn) is free as a left H∗

et(k,F�)-module;

a basis is given by those monomials P I in the Steenrod operations P a and βP a for
which I has excess < n, exactly as in the topological case.

We summarize the above discussion.

Theorem 2.1 (Breen-Jardine). The ring of all étale cohomology operations on
Hn

et(−,F�) is the graded tensor product H∗
et(k,F�) ⊗H∗

top(Kn): every operation is

a polynomial in the operations P I with coefficients in H∗
et(k,F�).

Examples 2.2. When k = C, H∗
et(C,F�) ∼= F� and étale operations are classifed

by H∗
top(Kn). The action of the P I is compatible with the canonical comparison

isomorphism H∗
et(X,F�) ∼= H∗

top(X(C),F�). This is clear from the constructions in
[E] and [J].

When k = R and � = 2, the ring of étale cohomology operations over R is the
graded polynomial ring H∗

top(Kn)[σ], generated over F2 by σ in degree 1 and the

SqI(ιn) with I admissible and e(I) < n. This is because H∗
et(R,F2) = F2[σ].

Remark 2.2.1. Let H∗
top(Kn)

ind denote the indecomposable subspace of H∗
top(Kn);

by Definition 0.1 it has the P I(ιn) as a basis, and Hp
top(Kn)

ind injects into the
degree p − n part of the topological Steenrod algebra. It follows that the vector
space H∗

et(k,F�)⊗F�
H∗

top(Kn)
ind embeds into the algebra of stable étale operations

with a degree shift; cf. [J]. Note that the multiplication ◦ in the stable algebra is
different: P a ◦ λ =

∑
P i(λ)P j , λ ∈ H∗

et(k,F�), and a > 0, arising from the Cartan
formula.
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Example 2.3. When k× contains μ� but not μ�2 , the étale sheaves μ
⊗i
�2 are distinct

nontrivial extensions of F� by F� (i = 0, . . . , � − 1), and the associated boundary
maps ∂i in the exact sequence

(2.3.1) · · ·Hn(X,F�) → Hn(X,μ⊗i
�2 ) → Hn(X,F�)

∂i−→ Hn+1(X,F�) · · ·
are cohomology operations on Hn

et(−,F�); ∂0 is the Bockstein β. By Theorem 2.1,
the ∂i are linear combinations of the generators β of H1

top(Kn) and elements of

H1
et(k,F�), such as z = ζ−1β(ζ), ζ ∈ μ�. Note that z is nontrivial as μ�2 �⊂ k×. It

is an exercise to check that z is independent of the choice of generator ζ of μ�.

Lemma 2.3.2. If μ� ⊂ k×, the cohomology operation ∂i of (2.3.1) is β − i z.

Proof. The sheaf ring
⊕

μ⊗j
�2 acts on the extensions 0 → F� → μ⊗i

�2 → F� → 0, so
there is a pairing betweenH∗

et(k,R) and the direct sum of the cohomology sequences

(2.3.1). Set H0j = H0
et(k, μ

⊗j
�2 ); when j �= 0 (mod �), this group is Z/�. This yields

a commutative diagram for each i and j:

H0j ⊗Hn
et(X,μ⊗i

�2 ) −−−−→ H0j ⊗Hn
et(X,F�)

1⊗∂i−−−−→ H0j ⊗Hn+1
et (X,F�)

∪
⏐⏐� ∪

⏐⏐�∼= ∪
⏐⏐�∼=

Hn
et(X,μ⊗i+j

�2 ) −−−−→ Hn
et(X,F�)

1⊗∂i+j−−−−−→ Hn+1
et (X,F�).

Now set j = �− i, so μ⊗i+j
�2 = μ0

�2 = Z/�2. Then the bottom right map ∂i+j is the

Bockstein β. For u ∈ Hn
et(X,F�) and [ζ⊗j ] ∈ H0j we have

β([ζ⊗j ] ∪ u) = [ζ⊗j ] ∪ β(u) + j z ∪ [ζ⊗j ] ∪ u = [ζ⊗j ] ∪ (β(u) + j z).

As this equals [ζ⊗j ] ∪ ∂i(u), we are done. �

Proposition 2.4. If μ� ⊂ k, Epstein’s cohomology operation Q0 agrees with the
Bockstein β on Hn

et(X,F�), and Qa = βP a.

Proof. Jardine’s argument in [J, pp. 108–114] that Epstein’s Sq1 is the Bockstein
when � = 2 applies when � > 2 as well and proves that Epstein’s Q0 is the Bockstein
operation. For Qa, we invoke the Adem relation Qa = QaP 0 = Q0P a [E, 9.8(4)].

�

3. The étale Steenrod algebra when ζ� �∈ k

We now discuss the twisted coefficient case (M = μ⊗i
� ). This reduces to Theorem

2.1 when k contains a primitive �th root of unity: since the sheaves μ⊗i
� are all

isomorphic to F�, the ring of étale operations on Hn
et(−, μ⊗i

� ) is just H∗
et(k,F�) ⊗

H∗
top(Kn). Since this is always the case when � = 2, we shall restrict to the case of

an odd prime �.
Fix a field k with 1/� ∈ k, and let G be the Galois group of the extension

k(ζ)/k, where ζ denotes a primitive �th root of unity. Then G is cyclic of order

d = [k(ζ) : k], d | � − 1, and 1 �→ ζ⊗d defines an isomorphism F�

∼=−→ μ⊗d
� . Since

i ≡ j (mod d) implies that μ⊗i
�

∼= μ⊗j
� , we are led to consider the Z/d-graded étale

sheaf of Kummer algebras

A =

d−1⊕
i=0

μ⊗i
� .
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Thus our problem is to determine the ring H∗
et(Kn, A) =

⊕d−1
j=0 H

∗
et(Kn, μ

⊗i
� ).

Epstein defines cohomology operations P a
A and Qa

A on each Hn
et(−, A); setting

N = n+ 2a(�− 1), their components are operations

P a
A : Hn

et(X,μ⊗i
� ) → HN

et (X,μ⊗i
� ) and Qa

A : Hn
et(X,μ⊗i

� ) → HN+1
et (X,μ⊗i

� ).

By naturality with respect to the homomorphism A =
⊕∞

i=0 μ
⊗i
� → A [E, 6.2], the

operations P a and Qa defined using A are compatible with the operations P a
A and

Qa
A. Since the cup product with ζ⊗i(�−1) ∈ H0

et(k, μ
⊗i(�−1)
� ) induces an isomorphism

HN
et (X,μ⊗i

� ) ∼= HN
et (X,μ⊗i�

� ), this means that

(3.1) P a(u) = ζ⊗i(�−1) ∪ P a
A(u) and Qa(u) = ζ⊗i(�−1) ∪Qa

A(u).

Since � does not divide |G|, Maschke’s Theorem gives an identification of the
étale sheaf F�[G] with the direct sum of the sheaves of irreducible F�[G]-modules
μ⊗i
� , i.e., with A. For any X, Shapiro’s Lemma provides an isomorphism

(3.2) H∗
et(X,A)

∼=−→ H∗
et(X(ζ),F�),

where X(ζ) denotes X ×k Spec(k(ζ)). In fact, A = π∗F� � Rπ∗F�, where π :
Spec(k(ζ))et → Spec(k)et. Taking X = Spec(k) yields H∗

et(k,A) ∼= H∗
et(k(ζ),F�).

Any F�[G]-module M is the sum of its isotypical summands, the isotypical sum-
mand for μ⊗i

� being HomG(μ
⊗i
� ,M) ∼= HomG(F�, μ

⊗−i
� ⊗ M). In particular, the

action of G on X(ζ) decomposes H∗
et(X(ζ),F�) into its isotypical pieces. Because

the μ⊗i
� are the isotypical summands of A = π∗F�, the summand H∗

et(X,μ⊗i
� ) in

(3.2) is the isotypical summand of H∗
et(X(ζ),F�) for μ

⊗i
� . Thus the injection

Hn
et(X,μ⊗i

� ) → Hn
et(X(ζ), μ⊗i

� ) ∼= Hn
et(X(ζ),F�)

sends u to ζ−i ⊗ π∗(u), where π∗(u) is the image of u in Hn
et(X(ζ), μ⊗i

� ).

Example 3.2.1. The product of ζ−1 ∈ H0
et(k(ζ), μ

⊗−1
� ) and β(ζ) ∈ H1

et(k(ζ), μ�)
is an element ζ−1 ∪ β(ζ) of H1

et(k(ζ),F�). As it is fixed by G, it descends to an
element of H1

et(k,F�), which we will call z. Thus π∗(z) = ζ−1 ∪ β(ζ). As observed
after (2.3.1), z = 0 iff k(ζ) contains primitive �2-roots of unity.

Because the Frobenius is the identity on A, P 0
A is the identity operation by

[E, 8.3.4], and P 0(u) = ζi(�−1) ∪ u. We can now relate Epstein’s operation Q0 to
the étale Bockstein β and relate his Qa to βP a.

Proposition 3.3. Suppose that ζ� �∈ k, and let z ∈ H1
et(k,F�) be the element of

Example 3.2.1. Then, as cohomology operations on Hn
et(X,μ⊗i

� ) for (0 ≤ i < d):

Q0
A = β − i z and Q0 = βP 0 = ζ⊗i(�−1) ∪ (β − i z);

Qa
A = βP a

A − i z ∪ P a
A and Qa = βP a for a > 0.

The case when ζ� ∈ k (d = 1) is handled by Proposition 2.4. Note that by our

convention, the β in Qa = βP a is the Bockstein on H∗(X,μ⊗i�
� ).
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Proof. Given the isomorphism (3.2), Proposition 1.10 for Q0
A implies that the fol-

lowing diagram commutes:⊕d−1
i=0 Hn

et(X,μ⊗i
� )

Q0
A−−−−→

⊕d−1
0=0 H

n+1
et (X,μ⊗i�

� )

ζ−i∪π∗
⏐⏐�∼= ζ−i�∪π∗

⏐⏐�∼=

Hn
et(X(ζ),F�)

Q0=β−−−−→ Hn+1
et (X(ζ),F�).

For all u ∈ Hn
et(X,μ⊗i

� ), β(π∗u) = π∗β(u) by naturality. Since π∗(z) = ζ−1β(ζ),

the diagram implies that (ζ−i� ∪ π∗)(Q0
Au) equals

β(ζ−i ∪ π∗u) =ζ−i ∪ β(π∗u) + β(ζ−i) ∪ π∗(u)

=ζ−i ∪ π∗β(u)− i ζ−i−1β(ζ) ∪ π∗(u)

=(ζ−i ∪ π∗)(β(u)− i z ∪ u).

Since ζ−i∪π∗ is the isomorphism (3.2), the identity Q0
A(u) = β(u)− i z∪u follows.

By (3.1), we have Q0u = ζi(�−1) ∪Q0
Au, which agrees with βP 0u = β(ζi(�−1) ∪ u).

Finally, the identity for Qa
A and Qa follows by invoking the Adem relations

Qa
AP

0
A = Q0

AP
a
A, Q

aP 0 = Q0P a, and P 0P a = P aP 0 [E, 9.8(1,4)]:

Qa
A = Qa

AP
0
A = Q0

AP
a
A = (β − i z)P a

A and QaP 0 = Q0P a = βP 0P a = βP aP 0.

Now use the fact that P 0 is invertible. �
Remark 3.3.1. If i ≡ j (mod d), the étale sheaves μ⊗i

� and μ⊗j
� are isomorphic.

This does not affect the operation Q0
A, but it changes the Bockstein because the

isomorphism Hn
et(X,μ⊗i

� ) ∼= Hn
et(X,μ⊗j

� ) sends u to v = ζj−i∪u. Setting j = dq+i,
Lemma 1.2 yields

β(v) = ζ⊗dq ∪ β(u) + dqζ⊗dq−1β(ζ) ∪ u = ζ⊗dq ∪ {β(u) + (dq) z ∪ u} .

Using the Bockstein and Epstein’s operations P a, we have operations P I defined
on Hn

et(−, μ⊗i
� ) for every admissible sequence I in the sense of Definition 0.1.

In order to classify all operations on Hn
et, we first consider the case n = 1. In

topology, the ring of operations on H1(−,F�) is H∗
top(K1) ∼= F�[u, v]/(u

2), where

u = P 0 is in degree 1, corresponding to the identity operation, and v is in degree 2,
corresponding to the Bockstein operation. By Theorem 1.3, there is a canonical map
from F�[u, v]/(u

2) to étale cohomology operations from H1
et(−, μ⊗i

� ) to H∗
et(−, μ⊗∗

� ),

sending u to the identity, v to the Bockstein β : H1
et(−, μ⊗i

� ) → H2
et(−, μ⊗i

� ), and
vm to x �→ β(x)m.

For any i, the basechange μ⊗i
� (ζ) of the algebraic group μ⊗i

� is isomorphic to
F�(ζ), the constant sheaf F� on the big étale site of k(ζ). The induced isomor-
phism (Bμ⊗i

� )(ζ) ∼= (BF�)(ζ) induces an isomorphism of cohomology groups, which
immediately yields the following calculation.

Recall that A =
⊕d−1

i=0 μ⊗i
� .

Proposition 3.4. The graded algebra of cohomology operations from H1
et(−, μ⊗i

� )

to
⊕d−1

j=0 H
∗
et(−, μ⊗j

� ) is isomorphic to the H∗
et(k(ζ),F�)-module

H∗(Bμ⊗i
� , A) ∼= H∗(Bμ⊗i

� (ζ),F�) ∼= H∗(k(ζ),F�)⊗ F�[u, v]/(u
2), β(u) = v.

Every operation on H1
et(−, μ⊗i

� ) is uniquely a sum of operations φ(x) = cxεβ(x)m,

where ε ∈ {0, 1}, m ≥ 0, and c ∈ H∗
et(k, μ

⊗j
� ) for some j.
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The operations u and v on H1
et are of course u(x) = x and v(x) = β(x). Propo-

sition 3.4 is the case n = 1 of the following result.

Theorem 3.5. For each i and n ≥ 1, the ring of all étale cohomology operations
from Hn

et(−, μ⊗i
� ) to H∗

et(−, A) is the free left H∗
et(k(ζ),F�)-module H∗

et(k(ζ),F�)⊗
H∗

top(Kn).

If c ∈ H∗
et(k, μ

⊗j
� ), the operation coresponding to the monomial c P I1 · · ·P Ir

sends Hn
et(−, μ⊗i

� ) to H∗
et(−, μ⊗ri+j

� ).

Proof. We first show that the basechange K(μ⊗i
� , n) ×k Spec(k(ζ) is the space

K(μ⊗i
� , n) over k(ζ). This is clear for n = 0 and follows inductively from the

construction of K(A, n+1) via the bar construction on K(A, n), together with the
observation that (X ×k Y )×k Spec(k(ζ)) is X(ζ)×k(ζ) Y (ζ).

By (3.2), the cohomology of K(μ⊗i
� , n) with coefficients in A is the same as the

cohomology of K(μ⊗i
� , n)×k Spec(k(ζ)) with coefficients in F�. The Breen-Jardine

result, Theorem 2.1, shows that this is H∗
et(k(ζ),F�)⊗H∗

top(Kn). �

4. May’s adjoint construction

A somewhat different approach to constructing cohomology operations was given
by Peter May in [M]. Because we will need May’s version of Kudo’s Theorem (in
Theorem 9.5 below), we need to know how the two constructions compare.

First, we need a chain level version of the Steenrod-Epstein function

m∗P : Hn(X,A) → Hn�
π (X,A)

used in (1.8) to define P a when A is a sheaf of commutative algebras. Fix an

injective resolution A
∼−→ I∗ (in Sh), an injective resolution A⊗� ∼−→ I⊗� ∼−→ J∗

in the category Shπ of π-equivariant sheaves, and an injective resolution I⊗� ∼−→ J∗
S

in the category ShS�
of S�-equivariant sheaves, as in Section 1.

The multiplication map m : A⊗� → A is equivariant for both the action of
S� and its subgroup π on A⊗�. As we observed in the proof of Theorem 1.5,
A → Tot(W ∗ ⊗ I∗) is an injective resolution in Shπ. The comparison theorem lifts
the resolution A⊗� → J∗ to an equivariant map J∗ → Tot(W ∗⊗I∗) over A⊗� → A;
taking sections over X yields a map J∗(X) → Tot(W ∗ ⊗ I∗(X)), natural in X.
This induces an equivariant map of complexes of π-sheaves

mπ : I⊗� ∼−→ J∗ → Tot(W ∗ ⊗ I∗).

Consider the isomorphism η : W ∗ ⊗ I∗ → Hom(W∗, I
∗), defined on sections by

ηU (f ⊗ x)(w) = (−1)|x| |w|f(w)x, f ∈ W ∗, w ∈ W∗, x ∈ I∗(U).

If {wk ∈ W k} is the dual basis for {ek ∈ Wk} we have η(wj⊗x)(ek) = (−1)k|x|δjk x.
The composition ηmπ sends I⊗� to Hom(W∗, I

∗). It is the (signed) adjoint

(4.1) θ : W∗ ⊗ I⊗� → I∗

of the map ηmπ(X) which forms the basis for May’s approach; see [M, 2.1]. In
this approach, we fix a projective resolution of F� as an S�-module, V∗ → F�, and
a π-equivariant map j : W∗ → V∗ over F�.

Similarly, suppose that K is a sheaf of bounded below, homotopy associative dg
algebras, and K → I is an injective replacement (so that a lift I ⊗ I → I gives I
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the structure of a homotopy associative dg algebra). Given a π-equivariant map
m : K⊗� → Hom(W∗,K), the comparison theorem lifts

K⊗� m−→ Hom(W∗,K)
�−→ Hom(W∗, I)

to an equivariant map mπ : I⊗� → Hom(W∗, I), whose adjoint is again a map θ of
the form given in (4.1).

Definition 4.2. Suppose that K is a sheaf of homotopy associative dg F�-algebras
on some site and θ : W∗ ⊗ K⊗� → K is a morphism of complexes in Shπ. We say
that (K, θ) is suitable if (i) the restriction of θ to K⊗� = F�{e0} ⊗ K⊗� is chain
homotopic to the iterated product K⊗� → K (in some order) and (ii) θ is chain
homotopic to a composite

W∗ ⊗K⊗� j−→ V∗ ⊗K⊗� φ−→ K,

where φ is the restriction to Shπ of a morphism of complexes in ShS�
.

A morphism of suitable pairs (K, θ) → (K′, θ′) is a morphism f : K → K′ for
which fθ is chain homotopic (over F�[π]) to θ′(1⊗ f⊗�). It is a perfect morphism if
fθ = θ′(1⊗ f⊗�). May writes C(π,∞,F�) for the category of suitable pairs.

Taking sections over X, the pair (K(X), θX) satisfies May’s axioms in [M, 2.1],
where θX is the induced map W∗ ⊗ K(X)⊗� → W∗ ⊗ K⊗�(X) → K(X). If f is a
(perfect) morphism, then for any X, fX :K(X) → K′(X) is a (perfect) morphism
in the sense of [M, 2.1].

Remark 4.2.1. If Λ is any commutative ring, Definition 4.2 makes sense for any
sheaf of homotopy associative dg Λ-algebras; we say that (K, θ) is suitable for Λ.
Following [M, p. 161], we say that a suitable (K, θ) is reduced if it is obtained by

reduction mod � from a pair (K̃, θ̃) which is suitable for Z/�2, such that K̃ is a

flat Z/�2-module. Since 0 → K → K̃ → K → 0 is an exact sequence of chain
complexes, this data suffices to yield a Bockstein β : HN (K) → Hn+1(K).

Example 4.3. Let C be an acyclic operad of dg vector spaces over F�. Then we
may take V∗ = C(�), since it is a resolution of F�. If C acts on K, K is homotopy
associative, and θ is the composition of j ⊗ 1 : W∗ ⊗ K⊗� → C(�) ⊗ K⊗� with the
structure map C(�)⊗K⊗� → K, then (K, θ) is a suitable pair.

Definition 4.4 (May). Suppose that (K, θ) is suitable, and set K = K(X). Define
the function DM

k : Kn → Kn�−k by the formula

DM
k (u) = θ(ek ⊗ u⊗�),

and define the Steenrod operations P a
M : Hn(K) → Hn+2a(�−1)(K) (and Qa

M ) by

P a
M (u) = (−1)aνnD

M
(n−2a)(�−1)(u) and Qa

M (u) = (−1)aνnD
M
(n−2a)(�−1)−1(u)

(see [M, pp. 162, 182]; May’s ν(−n) is our νn). As with Epstein’s construction,
P a
M = 0 when n < 2a, and Qa

M = 0 when n ≤ 2a. May notes in [M, 2.3–2.5]
that the DM

k and hence the P a
M , Qa

M are additive and functorial for morphisms of
suitable pairs.

These operations are natural in X, because for every morphism f : Y → X in
the site, the restriction f∗ : K(X) → K(Y ) gives a perfect morphism (K(X), θX) →
(K(Y ), θY ) of objects in the sense of [M, 2.1].
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A morphism of suitable pairs (K, θ) → (K′, θ′) induces a map HnK(X) →
HnK′(X) compatible with the operations P a

M on HnK(X) and the correspond-
ing operations P a

M on HnK′(X) in the sense that P a
Mf∗ = f∗P a

M . This follows
from [M, 3.1(iii)].

Lemma 4.4.1. If (K, θ) is reduced, then Qa
M = β P a

M , where β is the Bockstein.

Proof. The proof of [M, 2.3(v)] applies; it suffices to show that βD2i = D2i−1.

Given u in Kn with d(u) = 0, lift u to ũ ∈ K̃n and let b be such that d(ũ) = � b,
so β(u) = b. Since d(ũ⊗�) = N(� b ⊗ ũ⊗�−1), where N =

∑
{σ ∈ π} and θβ = βθ,

May’s calculation in W∗ ⊗ K̃⊗� [M, p. 163] goes through to show that

βD2i(u) = θβ(e2i ⊗ u⊗�) ≡ θ
(
e2i−1 ⊗ u⊗�

)
= D2i−1(u) modulo boundaries. �

Lemma 4.5. If A is a sheaf of commutative dg F�-algebras, A
∼−→ I is an injective

resolution, and θ is as in (4.1), the pair (I, θ) is suitable. Hence this data yields
cohomology operations P a

M : Hn(X,A) → Hn+2a(�−1)(X,A), natural in X.

Proof. By Remark 1.6.1, I is a sheaf of homotopy associative dg algebras. By
construction, the restriction of θ to I⊗� = W0⊗I⊗� is chain homotopic to the given
map I⊗� → I. To see that axiom 4.2(ii) is satisfied, set V ∗ = Hom(V∗,F�) and
note that, by the proof of Theorem 1.5, A → Tot(V ∗ ⊗ I) is an injective resolution

in ShS�
. The construction before Definition 1.7 yields a map mS : I⊗� ∼−→ J∗

S →
V ∗⊗ I whose adjoint V∗⊗ I⊗� → I is φ. The comparison theorem for Shπ provides
a lift JS → J over I⊗� such that the map

I⊗� mS−→ Hom(V∗, I)
j∗−→ Hom(W∗, I)

is chain homotopic over F�[π] to the map mπ, as required. The final assertion
follows because H∗(X,A) = H∗I(X). �

In fact, the operations P a
M are independent of the choice of resolution A

�−→ I;
this follows from the following lemma, whose proof is the same as the proof of
Lemma 4.5, with A replaced by K. (See the discussion before Definition 4.2.)

Lemma 4.5.1. Let (K, θ0) be a suitable pair, where K is a sheaf of bounded below,

homotopy associative dg F�-algebras. If η : K ∼−→ I is an injective replacement and
θ is the map of (4.1), then the pair (I, θ) is suitable, and η is a perfect morphism
(K, θ0) → (I, θ) of suitable pairs.

The sign differences in the formulas for P a and P a
M (and for Qa and Qa

M ) are
explained by the following calculation.

Proposition 4.6. For u in Hn(X,A), DM
k = (−1)kDk.

Proof. Consider the isomorphism φ : W ∗ ⊗ I∗(X) → Hom(W∗, I
∗(X)), defined

above. The adjoint θ of φmπ is the composite

W∗ ⊗ I(X)⊗� ∼= I(X)⊗� ⊗W∗
φmπ⊗1−−−−−→ Hom(W∗, I(X))⊗W∗

η−→ I(X),
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where the first map is the signed symmetry isomorphism and η is evaluation. We
now compute that

DM
k (u) = θ(ek ⊗ u⊗�) = (−1)kn�η

(
φ[mπ(u

⊗�)]⊗ ek
)

= (−1)kn�η
(
φ
[∑

wj ⊗Dj(u)
]
⊗ ek

)
= (−1)kn�

∑
j

φ [wj ⊗Dj(u)] (ek)

= (−1)kn�(−1)k(n�−k)Dk(u) = (−1)kDk(u). �

Recall that Epstein’s operations P a and Qa are defined in (1.8) and Remark
1.8.1.

Corollary 4.7. May’s operations P a
M and Qa

M coincide with Epstein’s P a and Qa.

Lemma 4.8. Set m = (�− 1)/2. Then for each u ∈ In(X):
(i) dP a(u) = P a(du) and dQa(u) = −Qa(du); and
(ii) if u is a cocycle representing x ∈ Hn(X,A), then P a(u) and Qa(u) are

cocycles representing P a(x) and Qa(x), respectively.

Proof. In Theorem 3.1 of [M], May shows that (i) dP a
M (u) = P a

M (du) and dQa
M (u) =

−Qa
M (du), and (ii) if u is a cocycle representing x ∈ Hn(X,A), then P a

M (u) and
Qa

M (u) are cocycles representing P a
M (x) and Qa

M (x). The result is immediate from
Corollary 4.7. �

Let G ∼= π � π denote a Sylow �-subgroup of S�2 . Then there is a free F�[G]-
module resolution W∗ ⊗W⊗�

∗ → F�. If
′V∗ → F� is a projective resolution of F� as

an S�2-module, then there is a G-module morphism σ : W∗ ⊗W⊗�
∗ → ′V∗ over F�.

Definition 4.9. Following [M, 4.1], we say that a suitable (K, θ) is an Adem object

if there is an S�2-equivariant morphism ′V∗ ⊗ K⊗�2 → K whose composition with
σ ⊗ 1 is G-homotopic to

(W∗ ⊗W⊗�
∗ )⊗K⊗�2 ∼= W∗ ⊗ (W∗ ⊗K⊗�)⊗� θ⊗�

−→ W∗ ⊗K⊗� θ−→ K.

May proves in [M, 4.7] that the P a satisfy the Adem relations whenever (K, θ) is
an Adem object.

Example 4.9.1. Given A
∼−→ I, A⊗� → Tot(′V ∗ ⊗ I) is an injective resolution

in ShS�2
, and we get an S�2-equivariant map I⊗�2 → Hom(′V∗, I) whose adjoint

′V∗ ⊗ I⊗�2 → I makes (I, θ) into an Adem object. We omit the routine details.
Similarly, if (K, θ0) is an Adem object, K → I an injective replacement, and (I, θ)

is as in Lemma 4.5.1, then the map ′V∗⊗K⊗�2 → K → I lifts to an S�2-equivariant

map ′V∗ ⊗ I⊗�2 → I; this map makes (I, θ) into an Adem object. Again, we omit
the routine details.

Definition 4.10. If (K1, θ1) and (K2, θ2) are suitable pairs, the tensor product
(K1 ⊗K2, θ1 ⊗ θ2) is also a suitable pair, where θ1 ⊗ θ2 is described in [M, 2.1].

A suitable pair (K, θ) is a Cartan object if the product (K ⊗ K, θ ⊗ θ) → (K, θ)
is a morphism of suitable pairs.

Example 4.10.1. If A is a sheaf of commutative algebras, then so is A ⊗ A, and
the product A ⊗ A → A makes A into a Cartan object. If A

∼−→ I is an injective
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resolution, then the pair (I, θ) of Lemma 4.5 is also a Cartan object, because
the two morphisms W∗ ⊗ (I ⊗ I)⊗� → I are isomorphic to the two morphisms
W∗ ⊗ (A ⊗ A)⊗� → A in the derived category and (because I is a bounded below
complex of injectives) therefore chain homotopic.

For exactly the same reasons, if (K, θ0) is a Cartan object and K → I is an
injective replacement, then so is (I, θ).

5. Operads and operations

In [M1], May gave a different approach to power operations in sheaf cohomology.
In this section, we give a short discussion of this approach.

Let Z denote the Eilenberg-Zilber operad in the category of F�-modules, defined
by Hinich and Schechtman in [HS]. By an action of Z on a cochain complex of
sheaves C we mean a collection of sheaf morphisms

Z(n)⊗ C⊗n −→ C

satisfying appropriate equivariance, associativity, and unit axioms. The choice of
an elementm ∈ Z(2) determines a product C⊗2 → C and makes C into a homotopy
associative dg algebra. Because each Z(n) is an acyclic complex of F�[Sn]-modules,

we have quasi-isomorphisms W∗
�−→ Z(�) and ′V∗

�−→ Z(�2). We thus have a
natural map

θ : W∗ ⊗ C⊗� �−→ Z(�)⊗ C⊗n −→ C.

Lemma 5.1. If Z acts on a cochain complex C, then (C, θ) is a suitable pair in
the sense of Definition 4.2. It is also an Adem and a Cartan object (Definitions
4.9 and 4.10).

Proof. This is an exercise in the axioms of operads, left to the reader. The axiom
about Z(�) ⊗ Z(�)⊗� → Z(�2) is used to show (C, θ) is an Adem object, and the
axiom about Z(2)⊗Z(�)⊗2 → Z(2�) is used to show it is a Cartan object. �

Example 5.2. Let F •F denote the Godement resolution of a sheaf F . Since every
skyscraper sheaf of F�-modules is an injective sheaf, this is an injective resolution of
F . If A is any sheaf of commutative F�-algebras, the results of Section 4 apply. Al-
ternatively, Hinich and Schechtman showed in [HS] that Z acts on F •A, so (F •A, θ)
is not only suitable but is both an Adem and a Cartan object by the lemma above.

By Lemma 4.5, this data provides cohomology operations P a on H∗(X,A), natu-
ral in X. Of course, this construction is little more than a reinterpretation of May’s
procedure (in Theorem 4.8 of [M1]), where he shows that the Eilenberg-Zilber op-
erad acts on the sections F •A(X), giving cohomology operations.

Remark 5.3. If A is a sheaf of étale algebras, the direct image α∗(F
•A) is also

a complex of injective Nisnevich sheaves. However, although the operad Z acts
on the good truncations τ≤iα∗(F

•A), it only acts up to homotopy on an injective
replacement, such as the complex Inis of Corollary 6.4 below. Thus one needs to
take care when using this approach to construct motivic cohomology operations in
the next section.
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6. Motivic Steenrod operations

In this section we construct operations P a on the motivic cohomology groups
Hn,i(X) = Hn,i(X,F�), n ≥ 2a, compatible with the operations P a in étale coho-
mology (defined in Theorem 1.3) in the sense that there are commutative diagrams

(6.1)

Hn,i(X,F�)
Pa

−−−−→ Hn+2a(�−1),i�(X,F�)⏐⏐� ⏐⏐�
Hn

et(X,μ⊗i
� )

Pa

−−−−→ H
n+2a(�−1)
et (X,μ⊗i�

� ).

Let α∗ denote the direct image functor from the étale site to the Nisnevich site.
If A is any étale sheaf, then we may regard Rα∗A as a complex of Nisnevich sheaves
such that H∗

nis(X,Rα∗A) ∼= H∗
et(X,A). If A → I is an injective resolution, then

α∗I is a complex of injective Nisnevich sheaves representing Rα∗A.
Let τ≤iA denote the good truncation of A in cohomological degrees at most i;

Hn(τ≤iA) is Hn(A) for i ≤ n and zero for n > i (cf. [WH, 1.2.7]). If Bn = 0 for
n < 0, there is a natural transformation (τ≤iA)⊗B → τ≤i(A⊗B).

The following theorem, due to Voevodsky and Rost, is sometimes known as the
Beilinson Conjecture; it is equivalent to the Norm Residue Theorem; see [SV], [W],
[V4, 6.17], or [HW, Thm.C].

Norm Residue Theorem 6.2. For any field of characteristic �= �, the canonical
map F�(i) → τ≤iRα∗μ

⊗i
� is a quasi-isomorphism of complexes of Nisnevich sheaves

on the category of smooth simplicial schemes. Hence for any X we have

Hn,i(X,F�) ∼= Hn
nis(X, τ≤iRα∗μ

⊗i
� ).

In particular, if n ≤ i, then Hn,i(X,F�) ∼= Hn
et(X,μ⊗i

� ).

We apply the above constructions to the étale sheaf of dg algebrasA =
⊕∞

i=0 μ
⊗i
� .

Choose injective resolutions μ⊗i
� → I(i) and write I for the complex of étale sheaves⊕∞

i=0 I(i). Then A ∼→ I is an injective resolution; by Remark 1.6.1, I is an étale
sheaf of homotopy-associative graded dg algebras, and (I, θ) is suitable by Lemma
4.5.

Now consider the Nisnevich sheaf of dg algebras α∗I. Using the natural trans-
formation (α∗I)

⊗� → α∗(I
⊗�), we obtain a map α∗θ : W∗ ⊗ (α∗I)

⊗� → α∗I such
that (α∗I, α∗θ) is suitable in the sense of Definition 4.2. It is also clear that
(α∗I(X), α∗θX) is both an Adem object and a Cartan object, natural in X (see
Examples 4.9.1 and 4.10.1).

Of course, nothing new has happened; for each X we have α∗I(X) = I(X) and
(α∗θ)X = θX by the definition of direct image, so the resulting cohomology opera-
tions on H∗α∗I(X) = H∗

et(X,μ⊗∗
� ) are the same as those constructed in Definition

4.4 and hence (by Corollary 4.7) are the same as those in Theorem 1.3.
We now consider the effect of truncation. If K =

⊕∞
i=0 Ki is a sheaf of (homotopy

associative) graded dg algebras, set τK =
⊕

τ≤iKi. The products

τ≤i1Ki1 ⊗ τ≤i2Ki2 → τ≤i1+i2(Ki1 ⊗Ki2) → τ≤i1+i2Ki1+i2

make τK a sheaf of (homotopy associative) graded dg algebras. If (K, θ) is suitable
(Definition 4.2) and

∑
ir = n, the component maps

W∗ ⊗
⊗�

r=1
(τ≤irKir) → τ≤n(W∗ ⊗

⊗
Kir)

θ−→ τ≤nKn
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assemble to define a map W∗ ⊗ (τK)⊗� → τK we shall call τθ.

Lemma 6.3. If (K, θ) is suitable, then so is (τK, τθ), and τK → K defines a perfect
morphism of suitable pairs.

If (K, θ) is an Adem object (resp., a Cartan object), so is (τK, τθ).

Proof. Axiom (i) is trivial, and axiom (ii) follows from the commutative diagram

W∗ ⊗
⊗�

r=1(τ
≤irKir) → τ≤j(W∗ ⊗

⊗
Kir)

↓ j ↓ j ↘τθ

V∗ ⊗
⊗�

r=1(τ
≤irKir) → τ≤j(V∗ ⊗

⊗
Kir)

φ−→ τ≤jKj .

The final two assertions are easily verified using similar diagrams. �
Example 6.3.1. When K = α∗I =

⊕
α∗I(i), we see that (τ α∗I, τθ) is suitable,

where τ α∗I =
⊕

τ≤iI(i). Since (α∗I, θ) is both an Adem object and a Cartan
object, so is (τ α∗I, τθ).

Because each α∗I(i)
n is an injective Nisnevich sheaf and the sheaf Zi(α∗I(i))

of i-cycles has an injective resolution starting with α∗I(i)
i, τ≤iα∗I(i) is quasi-

isomorphic to a chain complex I(i)∗nis of injective Nisnevich sheaves on X with

I(i)nnis = α∗I(i)
n for n ≤ i, and I(i)nis represents τ≤iRα∗μ

⊗i
� . By Theorem 6.2,

Hn,i(X,F�) is the nth cohomology of the cochain complex I(i)∗nis(X).
By Remark 1.6.1, Inis =

⊕
I(i)nis is a Nisnevich sheaf of homotopy-associative

dg algebras, and the products I(i)nis⊗I(j)nis → I(i+j)nis, representing the pairings

τ≤iRα∗μ
⊗i
� ⊗ τ≤jRα∗μ

⊗j
� → τ≤i+jRα∗μ

⊗i+j
� ,

induce the product in motivic cohomology by [SV, 7.1].

Corollary 6.4. The pair (Inis, θ
′) is suitable and is both an Adem and a Cartan

object. In addition, τα∗I → Inis defines a perfect morphism (τα∗I, τθ) → (Inis, θ
′).

Proof. By Example 6.3.1, (τα∗I, τθ) is suitable and both an Adem and a Cartan
object. By Lemma 4.5.1, (Inis, θ

′) is suitable, and η is a perfect morphism. As
observed in Examples 4.9.1 and 4.10.1, (Inis, θ

′) is both an Adem and a Cartan
object. �
Remark 6.4.1. By the comparison theorem, τα∗I → α∗I lifts to a morphism f :
Inis → α∗I. We will see in Lemma 6.6 that f defines a morphism of suitable pairs
(Inis, θ

′) → (α∗I, α∗θ).

Recall that Hn,i(X,F�) = Hn
nis(X,F�(i)). By the Norm Residue Theorem 6.2,⊕

i

Hn,i(X,F�) =
⊕
i

Hn
nis(X, I(i)nis) = HnInis(X).

Definition 4.4, applied to (Inis, θ
′), yields operations P a and Qa on the cohomology

of Inis(X), sending
⊕

i H
n,i(X) to

⊕
i H

N,i�(X) and
⊕

i H
N+1,i�(X). By con-

struction, these operations multiply the weight i by �. We shall now formalize this
observation.

Definition 6.5 (P a). The motivic cohomology operations are the operations

P a : Hn,i(X) → HN,i�(X) and Qa : Hn,i(X) → HN+1,i�(X),

N = n+ 2a(�− 1), defined by the suitable pair (Inis, θ
′) of Corollary 6.4, using the

identification of Hn,i(X) with HnInis(X). If n < 2a, we define P a = 0.
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If � = 2, we write Sq2a for P a and Sq2a+1 for βP a, so that Sqa takes Hn,i(X)
to Hn+a,2i(X). If n < a, then Sqa is zero on Hn,i(X).

By Lemma 4.5, these operations are natural in X.

Remark 6.5.1. These motivic cohomology operations are almost surely the opera-
tions defined by Kriz and May in [KM, I.7.2] and by Joshua in [Jo, §8]; compare
with [BJ].

Lemma 6.6. The motivic cohomology operations P a and Qa are compatible with
the étale cohomology operations P a and Qa in the sense that the diagram (6.1)
commutes.

Proof. We need to show that fθ′ is chain homotopic to (α∗θ)(1 ⊗ f⊗�). Consider
the following diagram of complexes in Shπ.

W∗ ⊗ (τα∗I)
⊗� 1⊗ε⊗�

−−−−→ W∗ ⊗ I⊗�
nis

1⊗f⊗�

−−−−→ W∗ ⊗ (α∗I)
⊗�⏐⏐�τα∗θ

⏐⏐�θ′
⏐⏐�α∗θ

τα∗I
ε−−−−→ Inis

f−−−−→ α∗I

By Lemma 6.3, the bottom composite τα∗I → α∗I defines a perfect morphism
of suitable pairs, meaning that the outer square commutes (see Definition 4.2).

By Corollary 6.4, ε : τα∗I
∼−→ Inis defines a perfect morphism of suitable pairs,

meaning that the left square commutes. Because ε is a quasi-isomorphism, so is
1 ⊗ ε⊗�, by Lemma 1.6. It follows that the right square commutes in the derived
category. Because α∗I is a bounded below complex of injectives, this implies that
the right square commutes up to chain homotopy equivalence; see [WH, 10.4.7]. �

Remark 6.6.1. It is an easy exercise to show that the motivic and étale Bockstein
operations are compatible, using τ≤iμ⊗i

�2 . We omit the details.

7. Motivic formulas

We now show that the motivic cohomology operations P a of Definition 6.5 enjoy
familiar properties.

Proposition 7.1. If u ∈ H2n,i(X), then Pn(u) = u�.

Proof. This is [M, 2.4]. �

We now turn to the Adem relations. Recall that by convention
(
n
k

)
is zero if

k < 0. Thus the sums below run over t ≤ a/�.

Theorem 7.2 (Adem relations). If � > 2 and a < b�, then

P aP b =
∑

s+t=b

(−1)a+t

(
(�− 1)s− 1

a− t�

)
P a+sP t,

P aβP b =
∑

s+t=b

(−1)a+t

(
(�− 1)s

a− t�

)
βP a+sP t + (−1)a+t

(
(�− 1)s− 1

a− t�− 1

)
βP a+sβP t.

If � = 2 and a < 2b, then

SqaSqb =
∑

s+t=b

(
s− 1

a− 2t

)
Sqa+sSqt.
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Proof. By Corollary 6.4, (Inis, θ
′) is an Adem object. As noted in [M, 4.7] (see

Definition 4.9), this implies that the P a and Qa satisfy the Adem relations. We
have replaced Qa by βP a (using Theorem 8.11) for the sake of familiarity. �

Bistable Operations 7.3. In [V1], Voevodsky defines (bistable) cohomology op-
erations P a

V on Hn,i(−,F�) of bidegree (2a(�− 1), a(�− 1)). These satisfy P 0
V x = x

for all x, P a
V x = x� for x ∈ H2a,a(X,F�), and P a

V = 0 on Hn,i if i ≤ a and n < i+a;
the usual Adem relations hold when � > 2. The cohomological degrees of P a and
P a
V are the same, namely 2a(� − 1), but the weights differ if a �= i: if a < i, then

P a
V has lower weight, but if a > i, then P a has lower weight.

When � = 2, Voevodsky’s operations Sq2iV have bidegree(2i, i) and Sq2i+1
V =

βSq2i. They satisfy a modified Cartan formula [V1, 9.7] which differs from our
Cartan formula (Theorem 7.4) by the presence of a factor of [ζ] in some terms.

Remark 7.3.1. Brosnan and Joshua have observed in [BJ, 2.1] and [BJ1, 1.1(iii)] that
the motivic-to-étale map sends P a

V to P a and SqaV to Sqa. The key is to observe that
Voevodsky’s total power operation [V1, 5.3] is compatible with Epstein’s reduced
power map (Definition 1.7 above).

Theorem 7.4 (Cartan formula). Let u ∈ Hn,i(X) and v ∈ Hm,j(Y ). Then in
H∗,(i+j)�(X × Y ) we have

P a(u ∪ v) =
∑

s+t=a

P s(u) ∪ P t(v), � > 2,

and Sqa(u ∪ v) =
∑

s+t=a Sq
s(u) ∪ Sqt(v) when � = 2. There is a similar formula

for Qa(u ∪ v).

Proof. By Corollary 6.4, (Inis, θ
′) is a Cartan object (Definition 4.10). The formula

now follows from [M, 2.7] (for both P a and Qa). �

Cohomology operations on Hn,0 are easy to describe because of the following
characterization. Recall that π0X denotes the set of connected components of a
scheme X; if X• is a simplicial scheme, π0X• denotes the simplicial set n �→ π0(Xn).

Lemma 7.5. Let A be any abelian group. If X• is a smooth simplicial scheme, the
motivic cohomology ring H∗,0(X•, A) is isomorphic to the topological cohomology
ring H∗

top(π0X•, A) of the simplicial set π0X•.

Proof. For smooth connected X we have Hn,0(X,A) = Hn
nis(X,A) = 0 for n > 0

and H0,0(X,A) = A, almost by definition; see [MVW, 3.4]. Hence the spectral
sequence Ep,q

1 = Hq(Xp, A) ⇒ Hp+q,0(X) degenerates to the cohomology of the
chain complex Hom(π0X•, A), which is H∗

top(π0X•, A). For a simplicial set K such
as π0X•, the construction of the product in motivic cohomology [MVW, 3.11] shows
that H∗

top(K) ∼= H∗,0(K) is an isomorphism of rings. �

Any simplicial set X = X• may be regarded as a discrete simplicial scheme; in
degree n it is the disjoint union of copies of Spec(k), indexed by Xn.

Theorem 7.6. For any simplicial set X, there is a natural isomorphism

H∗,∗(k,F�)⊗H∗
top(X,F�) ∼= H∗,∗(k,F�)⊗H∗,0(X,F�)

∪−→ H∗,∗(X,F�).
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Proof. By Lemma 7.5, H∗
top(X,F�) ∼= H∗,0(X,F�). Thus the map exists and is

natural in X by the above remarks. It is an isomorphism for spheres by [V1, (2.7)].
If X(i) denotes the i-skeleton of X, the cone Ci of X

(i−1) → X(i) is a bouquet of
i-spheres, and the map is compatible with the exact sequence

· · · H̃n(Ci,F�) → Hn(X(i),F�) → Hn(X(i−1),F�) · · ·
of [V2, Lemma 8.2]. The result now follows by induction on i. �

Applying this to the classifying space Kn for simplicial cohomology, we obtain:

Corollary 7.7. The ring of motivic cohomology operations on Hn,0(−,F�) is iso-
morphic to H∗,∗(k,F�)⊗H∗

top(Kn) ∼= H∗,∗(Kn,F�) as a free left H∗,∗(k,F�)-module.

IfK is a simplicial set, the isomorphism H∗,0(K,F�) ∼= H∗
top(K,F�) is compatible

with the action of the P I . This is clear from Lemma 6.6 and Example 2.2.

Example 7.7.1. Let Δ1 denote the simplicial 1-simplex and let s ∈ H1,0(Δ1, ∂Δ1)
be the generator. By the above comparison with topology, P 0(s) = s. By definition,
P a(s) = 0 for a > 0.

Recall that the simplicial suspension SX of a pointed simplicial scheme X is
again a simplicial scheme. Multiplication by the element s of Example 7.7.1 induces

a canonical isomorphism Hn,i(X,F�)
∼=−→ Hn+1,i(SX,F�). (Compare to Lemmas

1.2 and 2.1 of [SE].)

Proposition 7.8. The motivic operations P a and Qa are simplicially stable in
the sense that they commute with simplicial suspension: there are commutative
diagrams for all X, n, and i, with N = n+ 2a(�− 1), the diagram for P a being

Hn,i(X)
Pa

−−−−→ HN,i�(X)

∼=
⏐⏐� ∼=

⏐⏐�
Hn+1,i(SX)

Pa

−−−−→ HN+1,i�(SX).

Proof. By the Cartan formula Theorem 7.4, P a(sx) = P 0(s)P a(x) = s ·P a(x). �

Recall from [V1] that although each Hn,i(−,F�) is defined as a contravariant
functor on the category of smooth simplicial schemes, it is homotopy invariant and
factors through the pointed motivic homotopy category Ho•. It is an elementary
observation that any natural transformation between homotopy invariant functors,
defined on the category of smooth simplicial schemes, must factor through Ho•. In
particular, cohomology operations Hn,i(−,F�) → Hp,q(−,F�) may be regarded as
natural transformations between functors defined on Ho•.

Example 7.9. The classifying space K = K(F�(i), n) for H
n,i(−,F�) is an object

of Ho•; as observed in [V1, p. 3] we have Hn,i(X,F�) ∼= HomHo•(X+,K). By the
Yoneda Lemma, cohomology operations Hn,i(−,F�) → Hp,q(−,F�) correspond to
elements of Hp,q(K,F�). For example, under the map from Hp,q = Hp,q(k,F�) to
Hp,q(K,F�) induced by the structure map K → Spec(k), c ∈ Hp,q corresponds
to the constant operation sending every element of Hn,i(X,F�) to the image of c
in Hp,q(X,F�). Similarly, the canonical class ι ∈ Hn,i(K,F�) corresponds to the
identity operation.
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If n ≥ i, we see from [V3, 3.27] that the summands of the motive F�tr(K)
having smallest weight or degree are F�(i)[n] and F�(i)[n+1]. It follows that every
cohomology operation Hn,i → Hp,q with p ≤ n + 1 is an F�-linear combination of
the Bockstein, the identity, and constant operations. More precisely:

(a) if p < n, then Hp,∗(K) = Hp,∗, corresponding to constant operations;
(b) Hn,∗(K) ∼= H0,∗ ·ι⊕Hn,∗, with (b ι, c) corresponding to the operation φ(x) =

bx+ c;
(c) Hn+1,∗(K) ∼= H0,∗ · β(ι)⊕H1,∗ · ι ⊕Hn+1,∗, with (a, b, c) corresponding to

the operation φ(x) = aβ(x) + bx+ c.
If n < i, this is no longer the case. In Example 11.5 below, we show that

there is a weight-reducing operation H1,2(−,F�) → H2,1(−,F�) for all k and a
weight-preserving operation H1,2(−,F�) → H3,2(−,F�) for most k. For another
example, suppose that ζ ∈ k and n ≤ i. Then cupping with [ζ] ∈ H0,1(k,F�) is
an isomorphism by Theorem 6.2; its inverse (defined when n < i) is an operation
Hn,i(−,F�) → Hn,i−1(−,F�).

8. Relation to periodicity

Sometimes we can deduce motivic operations from étale operations. For example,
if n ≤ i (and hence n ≤ i�), then the diagram (6.1) allows us to identify the motivic
operation P 0 : Hn,i(X) → Hn,i�(X) with the étale operation P 0 : Hn

et(X,μ⊗i
� ) ∼=

Hn
et(X,μ⊗i�

� ) and thus conclude that P 0 is an isomorphism in this range. The
same reasoning, using the Norm Residue Theorem 6.2, shows that if n ≤ i and
n + 2a(� − 1) ≤ i�, the motivic and étale operations P a agree on Hn,i(X) ∼=
Hn

et(X,μ⊗i
� ) and also agree with b(i−a)(�−1)/dP a

V , where b ∈ H0,d(k) is defined as
follows.

Fix a primitive �th root of unity, ζ, in an extension field of k; this choice
determines a generator [ζ] of H0(k(ζ), μ�). If [k(ζ) : k] = d, then H0,d(k) ∼=
H0

et(k, μ
⊗d
� ) ∼= H0

et(k,F�), and the element [ζ]d = [ζ⊗d] descends to a “periodicity”
element b in H0,d(k). By abuse of notation, if d|m we write [ζ]m for the element
bm/d of H0,m(k). (If d = 1, then b = [ζ].)

Note that multiplication by b is a map from Hn,i(X) to Hn,i+d(X); by the Norm
Residue Theorem 6.2, it is an isomorphism when i ≥ n. By construction, this is
the map in cohomology induced by the change-of-truncation map

(8.1) F�(i) ∼= τ≤iRα∗μ
⊗i
� → τ≤i+dRα∗μ

⊗i
�

∼= F�(i+ d)

associated to the isomorphism of étale sheaves μ⊗i
� → μ⊗i+d

� sending the generator

ζ⊗i to the generator ζ⊗i+d.
Write Hn,i(X)[1/b] for the colimit of

Hn,i(X)
b−→ Hn,i+d(X)

b−→ · · · b−→ Hn,i+jd(X)
b−→ · · · .

From the diagram

Hn,i(X)
b−−−−→ Hn,i+d(X)

b−−−−→ · · ·Hn,i+jd(X)
b−−−−→ · · ·⏐⏐� ⏐⏐� ⏐⏐�

Hn
et(X,μ⊗i

� )
∼=−−−−→ Hn

et(X,μ⊗i+d
� )

∼=−−−−→ · · ·Hn
et(X,μ⊗i+jd

� )
∼=−−−−→ · · ·

we obtain a natural transformation from Hn,i(X)[1/b] to Hn
et(X,μ⊗i

� ).
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We can formulate this in the motivic derived category DM , using the étale-to-
Nisnevich change of topology map α. Recall from [MVW, 10.2] that Hn

et(X,μ⊗i
� )

is isomorphic to

HomDMet
(α∗

F�,trX,F�(i)[n]) ∼= HomDM (F�,trX,Rα∗μ
⊗i
� ).

The map F�(i) = τ≤iRα∗μ
⊗i
� → Rα∗μ

⊗i
� is compatible with the map F�(i) →

F�(i + d) → Rα∗μ
⊗i+d
� , so it factors through a map F�(i)[1/b] → Rα∗μ

⊗i
� , where

F�(i)[1/b] denotes the (homotopy) colimit in DM of

F�(i)
b−→ F�(i+ d)

b−→ F�(i+ 2d)
b−→ · · · b−→ F�(i+ jd)

b−→ · · · .
The following calculation is originally due to Levine [L].

Theorem 8.2. For each i, F�(i)[1/b] → Rα∗μ
⊗i
� is an isomorphism in DM .

For X smooth and all n, Hn,i(X)[1/b] −→ Hn
et(X,μ⊗i

� ) is an isomorphism.

Proof. Any complex C is the homotopy colimit of the change-of-truncation maps
τ≤mC → τ≤m+1C. For C = Rα∗μ

⊗i
� , this yields the first assertion. The second

assertion is an immediate consequence of this and the fact that F�,trX is a compact
object in DM , so HomDM (F�,trX,−) commutes with homotopy colimits. �

Our next goal is to compare P 0 to the cohomology of the change-of-truncation
map τ≤iRα∗μ

⊗i
� → τ≤i�Rα∗μ

⊗i
� of (8.1).

Lemma 8.3. The Frobenius map F�(i)
Φ−→ F�(i�) in motivic cohomology is chain

homotopic to the change-of-truncation map

F�(i) ∼= τ≤iRα∗μ
⊗i
� → τ≤i�Rα∗μ

⊗i
�

∼= F�(i�).

The Frobenius Hn,i(X)
Φ−→ Hn,i�(X) is multiplication by bi(�−1)/d = [ζ⊗i(�−1)].

Proof. The Frobenius endomorphism is the identity on the étale sheaf of rings

A =
⊕d

i=0 μ
⊗i
� , so if we fix i and an injective replacement μ⊗i

� → I, the Frobenius

on μ⊗i
� lifts to a map fi : I → I which is chain homotopic to the identity. Since the

product in motivic cohomology is induced from the product on Rα∗μ
⊗i
� = α∗I, the

Frobenius in motivic cohomology is represented by the good truncation in degrees

at most i� of the composite τ≤iα∗I ⊂ α∗I
fi−→ α∗I. Since good truncation preserves

chain homotopy, it is chain homotopic to the canonical map τ≤iα∗I ⊂ τ≤i�α∗I.
The final assertion follows from (8.1). �

Proposition 8.4. The map P 0 : Hn,i(X) → Hn,i�(X) is multiplication by bi(�−1)/d.
Equivalently, P 0 is the cohomology of the change-of-truncation map

τ≤iRα∗μ
⊗i
� → τ≤i�Rα∗μ

⊗i
� .

Proof. Recall that the Godement resolution F → S•(F) is a functorial simplicial
resolution of any sheaf F by flasque sheaves. Letting S•

i denote the total com-

plex of the Godement resolution of τ≤iRα∗μ
⊗i
� , it follows that the product on⊕

τ≤iRα∗μ
⊗i
� induces a product pairing Sn

i ⊗ Sn
j → Sn

i+j for all n. In particular,

the Frobenius on Rα∗μ
⊗i
� induces a map Sn

i → Sn
i�.

In [E, 11.1], Epstein shows that the Godement resolution satisfies the conditions

of his Section 8. By functoriality, the equivariant map (Rα∗μ
⊗i
� )⊗� → Rα∗μ

⊗i�
�

constructed after Theorem 6.2 lifts to an equivariant map (S•
i )

⊗� → S•
i�. This is

the analogue of [E, 8.3.2] and is exactly what we need in order for the proof of
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[E, 8.3.4] to work. Thus if we represent v ∈ Hn,i(X) by a cocycle u in the algebra
H0(X,Sn), then P 0v is represented by the element u� of H0(X,Sn). Therefore P 0

is represented by the Frobenius. �

Example 8.4.1. Recall that b ∈ H0,d(k). Since P 0(b) = b� (by Proposition 8.4),
the Cartan formula Theorem 7.4 yields P a(bx) = b�P a(x).

Recall from [V3, 2.60] that a split proper Tate motive is a direct sum of Tate
motives F�(i)[2i + j] with j ≥ 0. If the weights i are at least n, then we say the
motive has weight ≥ n. Note that the cohomology of F�(i)[2i+ j] is a free bigraded
H∗,∗-module of rank 1 with a generator in bidegree (2i+ j, i).

It follows that we have a Künneth formula (see [W, 4.1]): if F�,tr(Y ) is a split
proper Tate motive, then H∗,∗(Y ) is a free bigraded H∗,∗-module, and

(8.5) H∗,∗(X × Y ) ∼= H∗,∗(X)⊗H∗,∗ H∗,∗(Y ).

Example 8.6. Let K = K(F�(i), n) be the Eilenberg-Mac Lane space classifying
Hn,i(−,F�); if n ≥ 2i ≥ 0, then M = F�,tr(K) is a split proper Tate motive of
weight ≥ i, by [V3, 3.28]. It follows that H∗,∗(K⊗p) is the p-fold tensor product of
H∗,∗(K) with itself over H∗,∗.

Recall from [MVW, 3.1] that F�(i)[i] is represented by the abelian presheaf
F�,tr(G

∧i
m ), so F�(i)[n] is represented by the simplicial abelian presheaf associated

to F�,tr(G
∧i
m )[n− i] when n ≥ i. From the adjunction

HomHo•(X, uF�(i)[n]) ∼= HomDM (F�,tr(X),F�(i)[n]) = Hn,i(X)

(see Example 7.9) we see that the classifying space K(F�(i), n) of H
n,i(−,F�) is the

simplicial abelian presheaf G = uF�(i)[n] underlying F�(i)[n]; see [V3, p. 5].

Lemma 8.7. If F�,tr(Y ) is a split proper Tate motive, then multiplication by be is
an injection from Hp,q(Y,F�) into Hp,q+de(Y,F�) and hence into Hp,q(Y,F�)[1/b].

Proof. It suffices to consider F�,tr(Y ) = F�(i)[2i+j]. There is no harm in increasing
e so that (� − 1)|de. Set p′ = p − 2i − j and q′ = q − i. Since H∗,∗(Y ) is a free
H∗,∗(k)-module of rank 1, the assertion for Hp,q(Y ) amounts to the assertion that

either Hp′,q′(k) = 0 (and injectivity is obvious) or else 0 ≤ p′ ≤ q′ and Hp′,q′(k) ∼=
Hp′

et (k, μ
⊗q′

� ). In the latter case, we also have Hp′,q′+de(k) ∼= Hp′

et (k, μ
⊗q′+de
� ), and

the isomorphism is induced from the isomorphism μ⊗q′

�
∼= μ⊗q′+de

� . �

In the next proposition, we write K for K(F�(i), n). For each p and q, there is a

canonical map Hp,q(K,F�) → Hp
et(K,μ⊗q

� ). It sends the motivic operations P a of
Definition 6.5 to the étale operations P a of Theorem 1.3.

Proposition 8.8. If n ≥ 2i, the canonical map is an injection, from the set
Hp,q(K,F�) of motivic cohomology operations Hn,i → Hp,q to the set Hp

et(K,μ⊗q
� )

of étale cohomology operations Hn
et(−, μ⊗i

� ) → Hp
et(−, μ⊗q

� ).

Proof. By the usual transfer argument, we may assume that ζ ∈ k. Let K denote
the Eilenberg-MacLane space classifying Hn,i(−,F�). By Example 8.6, F�,tr(K) is
a split proper Tate motive. By Lemma 8.7 and Levine’s Theorem 8.2, Hp,q(K,F�)

injects into Hp,q(K,F�)[1/b] ∼= Hp
et(K,μ⊗q

� ). Thus the group Hp,q(K,F�) of mo-

tivic cohomology operations injects into the group Hp
et(K,μ⊗q

� ) of étale cohomology
operations. �



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.
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Corollary 8.9. Suppose that n ≥ 2i and n ≥ 2a. Then for x ∈ Hn,i(X):

(1) If a ≤ i, P a(x) = [ζ](i−a)(�−1) ∪ P a
V (x).

(2) If a ≥ i, P a
V (x) = [ζ](a−i)(�−1) ∪ P a(x).

Proof (Cf. [BJ, Thm. 1.1]). The two sides have the same bidegree and agree with
P a(x) in étale cohomology by Lemma 6.6 and Remark 7.3.1. �

Corollary 8.10. If n ≥ i and x ∈ H2n,i, then Pn
V (x) = [ζ](n−i)(�−1) ∪ x�.

Proof. This is the case a = n of Corollary 8.9, as Pn(x) = x� (Proposition 7.1). �
We can now show that the motivic Qa equals βP a.

Theorem 8.11. The motivic operations Qa on Hn,i satisfy Qa = βP a.

Proof. Set K = K(F�(i), n), so that motivic cohomology operations Hn,i → HN,i�

correspond to elements of HN,i�(K) (see Example 8.6). Now the identity on Hn,i

is represented by the canonical element ι of Hn,i(K), and the motivic cohomol-
ogy operations Qa and βP a are represented by the elements Qa(ι) and βP a(ι) of
HN,i�(K).

We first consider Q0. The map Hn+1,i�(K) → Hn+1
et (K,μ⊗i�

� ) is an isomorphism
if n ≤ i� by Theorem 6.2 and is an injection if n ≥ 2i by Proposition 8.8. By
Lemma 6.6 and Remark 6.6.1, we have a commutative diagram:

Hn,i(K)
Q0−βP 0

−−−−−−→ Hn+1,i�(K)⏐⏐� into

⏐⏐�
Hn

et(K,μ⊗i
� )

Q0−βP 0

−−−−−−→ Hn+1
et (K,μ⊗i�

� ).

The bottom map is zero by Proposition 3.3. It follows that Q0(ι) = βP 0(ι) in
Hn+1,i�(K) and hence that Q0 = βP 0 as motivic cohomology operations.

Now suppose that a > 0, and set N = n+ a(�− 1) + 1 . If n ≥ 2i, we consider
the commutative diagram:

Hn,i(K)
Qa−βPa

−−−−−−→ HN,i�(K)⏐⏐� into

⏐⏐�
Hn,i

et (K,μ⊗i
� )

Qa−βPa

−−−−−−→ HN
et (K,μ⊗i�

� ).

The lower horizontal map is zero by Proposition 3.3. The right vertical map is
an injection by Proposition 8.8, because F�,tr(K) is a split proper Tate motive
(by Example 8.6). It follows that Qa(ι) = βP a(ι) in HN,i�(K) and hence that
Qa = βP a as cohomology operations on Hn,i.

If n < 2i, we consider suspension SdK, where d = 2i − n. By Proposition 7.8,
we have a commutative diagram with vertical isomorphisms:

Hn,i(K)
Qa−βPa

−−−−−−→ HN,i�(K)

∼=
⏐⏐� ∼=

⏐⏐�
H2i,i(SdK)

Qa−βPa

−−−−−−→ HN+d,i�(SK).

By the above argument, Qa = βP a on H2i,i(SdK). It follows that Qa = βP a on
Hn,i(K) and hence as cohomology operations on Hn,i. �
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9. Borel’s Theorem

In order to go from H1,∗ to Hn,∗, we need a slight generalization of Borel’s the-
orem [McC, 6.21], one which accounts for the coefficient ring H∗,∗ = H∗,∗(Spec k).

Definition 9.1. Let H∗ be a graded-commutative F�-algebra. If W ∗ is a graded
H∗-algebra, an �-simple system of generators of W ∗ over H∗ is a totally ordered set
of elements xi such that W ∗ is a free left H∗-module on the monomials xm1

i1
· · ·xmk

ik
,

where the i’s are in order and 0 ≤ mj < � (with mj ≤ 1 if deg(xj) is odd).

Theorem 9.2. Let H∗ be a graded-commutative F�-algebra with H0 = F�, and
suppose that {E∗,∗

r , dr} is a 1st-quadrant spectral sequence of graded-commutative

H∗-algebras converging to H∗. Set V ∗ = E∗,0
2 and W ∗ = E0,∗

2 , and suppose that
(i) E∗,∗

2
∼= W ∗ ⊗H∗ V ∗ as algebras, and that

(ii) the H∗-algebra W ∗ has an �-simple system of generators {xi}, each of which
is transgressive.

Then V ∗ is the tensor product of H∗ and a free graded-commutative F�-algebra
on generators yi = τ (xi) and (when � �= 2 and deg(xj) is even) zj = τ (yj ⊗ x�−1

j ).

(Here τ is the transgression.)

Proof. The proof of Borel’s Theorem in [McC, 6.21] goes through. �

Let G be a simplicial sheaf of groups, such as Bμ�. We use the bar construction
to form the bisimplicial classifying spaces B•G (with Gp in simplicial degree p) of
a simplicial sheaf of groups G and E•G (with Gp+1 in simplicial degree p). We

write the canonical projection as E•G
π−→ B•G. The Leray spectral sequence

[Milne, III.1.18] becomes

(9.3) Ep,q
2 = Hp(B•G,Rqπ∗A) ⇒ Hp+q(E•G,A).

Proposition 9.4. Suppose that G is a simplicial sheaf of groups on a site over k and
A is a sheaf of homotopy-associative dg F�-algebras satisfying H0(G,A) = H0(k,A)
as well as the Künneth condition that

H∗(U,A)⊗H∗(k,A) H
∗(G,A)

∼=−→ H∗(U ×G,A)

is an isomorphism for all U in the site of B•G. Then the Leray spectral sequence
(9.3) satisfies condition (i) of Borel’s Theorem 9.2 with

Ep,q
2 = Hp(B•G,A)⊗H∗(k,A) H

q(G,A).

Proof. For simplicity of notation, let us write ⊗H for ⊗H∗(k,A). We first claim
that the higher direct images Rqπ∗(A) are A⊗H H∗(G,A). To see this, recall that
Rqπ∗(A) is the sheafification of the presheaf that to a map U → BpG associates
Hq(π−1U,A), where π−1U = E•G×BpG U is U ×G. By hypothesis, H∗(π−1U,A)
is H∗(U,A) ⊗H H∗(G,A). The claim follows, since sheafification commutes with
⊗HH∗(G,A), and the sheaf associated to Hq(−, A) is A if q = 0 and zero for q > 0.
Thus we have Ep,q

2 = Hp(B•G,A)⊗H Hq(G,A).
It remains to check the Borel condition. By hypothesis, H0(G,A) = H0(k,A),

so Ep,0
2 = Hp(B•G,A), and H0(B•G,A) = H0(k,A). Thus we have

E0,q
2 = H0(B•G,A)⊗H Hq(G,A) = Hq(G,A).

The fact that the spectral sequence is multiplicative follows from the fact that A is
a sheaf of algebras and the work of Massey [Mass]. �
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Kudo’s Theorem 9.5. Suppose G and A satisfy the hypotheses of Proposition
9.4. If x ∈ Hn(G,A) transgresses to y ∈ Hn+1(B•G,A), then

(1) β(x) transgresses to −β(y),
(2) P a(x) transgresses to P a(y), and
(3) if n = 2a, then x�−1 ⊗ y transgresses to −Qa(y).

Any simplicially stable operation commutes with the transgression; see [McC,
6.5]. Hence part (2) of Theorem 9.5 is immediate whenever we know that P a is
simplicially stable. This is so for the operations P a in étale and motivic cohomology
(by Propositions 1.9 and 7.8).

Proof (Cf. [M, 3.4]). As in the proof of Theorem 1.5, we fix a quasi-isomorphism

A
∼−→ I∗. Let f = π∗ and g = i∗ be the canonical maps I(G)

g←−I(E•G)
f←−I(B•G)

coming from G
i−→ E•G

π−→ B•G. The assertion that x transgresses to y means
that there is a cocycle b in In+1(B•G) representing y and an element u in In(E•G),
such that f(b) = du and g(u) is a cocyle representing x.

Since the Bockstein satisfies g(βu) = βg(u) and f(βb) = β(du) = −d(βu), we
see that β(x), which is represented by g(βu), transgresses to −β(y).

Recall from Section 4 that b and u determine a cocyle P a(b) in I∗(B•G) repre-
senting P a(y) and an element P a(u) in I∗(E•G) so that P a(x) is represented by
P ag(u) = gP a(u). By Lemma 4.8, we have

fP a(b) = P af(b) = P a(du) = dP a(u).

It follows that P a(x) trangresses to P a(y).
Since b is a cocycle, Qa(b) represents Qa(y), and by Lemma 4.8 we have

fQa(b) = Qaf(b) = Qa(du) = − d(Qau).

Thus the class of Qa(u) transgresses to −Qa(y), and it suffices to show that Qa(u)
represents x�−1⊗y under the isomorphism Ep,q

2
∼= Hp(B•G)⊗Hq(G) of Proposition

9.4.
Recall from (1.8) that νn = (−1)rm!−n, where m = (� − 1)/2. We have νn =

(−1)a, because n = 2a, (m!)2 = (−1)m+1, and r ≡ am (mod 2). We now follow
p. 167 of [M] up to (9). Starting from u ∈ In(X), May produces elements ti in
I⊗�(X) and a family of elements {ca}, {c′a} in C∗ ⊗ I⊗�(X), depending naturally
on u, such that

Qa
M (u) = (−1)aν(1− n) θ(c′a) = m! θ(c′a).

The analysis of the terms in c′a at the top of p. 171 of [M] shows that there is a term
c′′ such that c′ − d(c′′) is (−1)mm! z plus terms mapped by θ into lower parts of
the filtration, where z = e0 ⊗ u ⊗ · · · ⊗ u ⊗ du, and that θ(z) represents x�−1 ⊗ y.
Therefore, up to terms in lower parts of the filtration we have Qa

M (u) = m! θ(c′a) =
(−1)m(m!)2θ(z) = −θ(z). Since we saw in Corollary 4.7 that Qa(u) = Qa

M (u), the
result follows. �

We illustrate the use of Proposition 9.4 with the étale topology. First, con-
sider the étale sheaf G = μ�. If μ� is connected, then it does not satisfy the
Künneth condition of Proposition 9.4 for U = Spec(k̄). Indeed, H0(μ�,F�) = F�, yet

H0(G× Spec k̄,F�) =
∏�

1 F�. However, things change if we consider the étale sheaf

A =
⊕d−1

i=0 μ⊗i
� of Section 2.

Lemma 9.6. H∗
et(X × μ⊗i

� ,A) ∼= H∗
et(X,A)⊗H∗(k,A) H

∗
et(μ

⊗i
� ,A).
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Proof. As an étale sheaf of F�-modules, constant over k(ζ), F�[μ
⊗i
� ] is a direct sum

of the locally constant sheaves μ⊗α
� , each of which is an invertible object. Because

F�[X × μ⊗i
� ] ∼= F�[X]⊗ F�[μ

⊗i
� ], Hn

et(X × μ⊗i
� , μ⊗q

� ) equals

Extn(F�[X]⊗ F�[μ
⊗i
� ], μ⊗q

� ) ∼= Extn(F�[X],RHom(F�[μ
⊗i
� ], μ⊗q

� ))

∼= Extn(F�[X],RHom(F�,⊕μ⊗q−α
� ))

∼=
⊕
α

Extn(F�[X], μ⊗q−α
� ) ∼=

⊕
α

Hn
et(X,μ⊗q−α

� ).

The pairing H∗
et(X,A)⊗F�

H∗
et(μ

⊗i
� ,A) → H∗

et(X × μ⊗i
� ,A) is the direct sum over

α, s, and t of the top row in the commutative diagram

Ext∗(F�[X], μ⊗s
� )⊗F�

Ext∗(μ⊗α
� , μ⊗t

� ) −−−−→ Ext∗(F�[X]⊗ μ⊗α
� , μ⊗s+t

� )

∼=
⏐⏐� ⏐⏐�∼=

Ext∗(F�[X], μ⊗s
� )⊗F�

Ext∗(F�, μ
⊗t−α
� ) −−−−→ Ext∗(F�[X], μ⊗s+t−α

� ).

Since H∗
et(k,A) = Ext∗(F�,A) ∼=

⊕
t Ext(F�, μ

⊗t−α
� ) for each α, setting s = q − α

and summing over s and t yields the result. �

Corollary 9.7. If Y is a coproduct of schemes which are finite products of μ⊗i
� ,

then

H∗
et(X × Y,A) ∼= H∗

et(X,A)⊗H∗(k,A) H
∗
et(Y,A).

Example 9.8. The ring of all étale cohomology operations from H2
et(−, μ⊗i

� ) to

H∗
et(−, μ⊗∗

� ) is the free left H∗
et(k,A)-module on generators in H∗,i(K2): monomials

in the identity (id ∈ H2
et(K2, μ

⊗i
� )), β, the P Iβ, and the βP Iβ (P I = P �ν · · ·P �P 1).

This result, proven in Theorem 3.5 above, can also be obtained from the Leray
spectral sequence (9.3).

Each term in the simplicial sheaf B•μ
⊗i
� is a coproduct of products of μ⊗i

� , so
Corollary 9.7 and Proposition 9.4 imply that the Leray spectral sequence satisfies
condition (i) of Borel’s Theorem 9.2. The explicit description of H∗

et(Bμ⊗i
� ,A) in

Proposition 3.4 as H∗
et(k,A) ⊗ F�[u, v]/(u

2) shows that it has an �-simple system
of generators: u and the xν = v�

ν

for ν ≥ 0. The transgression τ sends u to
ι, so v = βu transgresses to −β, by Kudo’s Theorem 9.5(1). Thus condition (ii)
is also satisfied, and Borel’s Theorem states that H∗

et(K2,A) is the free graded-
commutative H∗,∗-algebra on generators ι ∈ H2,i(K2),

yν = τ (xν) ∈ H2�ν+1(K2, μ
⊗i�ν

� ) and zν = τ (x�−1
ν ⊗yν) ∈ H2�ν+1+2(K2, μ

⊗i�ν+1

� ).

Note that y0 = β(ι). Since xν+1 = x�ν

ν = P �νxν , Kudo’s Theorem 9.5(2) and an
inductive argument show that yν+1 is P

�νyν and also P �ν · · ·P �P 1β. This completes
the proof for � = 2.

For � > 2, it remains to show that −zν is βP �ν (yν) = βP �ν · · ·P �P 1β. This
follows from Kudo’s Theorem 9.5(3), using Proposition 3.3 to write βP a for Qa.

10. Motivic operations on weight 1 cohomology

We now turn to natural operations defined on the motivic cohomology groups
with weight 1, i.e., Hn,1(X) = Hn,1(X,F�). We begin with the case n = 1.

Let μ� be the group scheme of �th roots of unity. On pp. 130–131 of [MV],
Morel and Voevodsky define a simplicial Nisnevich sheaf Betμ� and observe that
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it classifies the étale cohomology group H1
et(−, μ�), and hence the motivic group

H1,1 by Theorem 6.2, in the sense that [X+, Betμ�] ∼= H1,1(X) for every smooth
simplicial scheme X over k.

Following [V1, p. 17], we write Bμ� for the geometric classifying space of μ�,
constructed in [MV, p. 133] (where the notation Bgmμ� was used). By [MV, 4.2.7],
Bμ� is A1-equivalent to Betμ�, so it also classifies H1,1.

When � = 2, the generator [ζ] of H0,1(k) = μ2(k) and its Bockstein, the element
[−1] ∈ H1,1(k) = k×/k×�, play an important role.

Proposition 10.1. There are elements u ∈ H1,1(Bμ�), v ∈ H2,1(Bμ�) such that

H∗,∗(Bμ�) ∼=
{
H∗,∗(k)⊗ F�[u, v]/(u

2), � �= 2,

H∗,∗(k)⊗ F�[u, v]/(u
2 + [−1]u+ [ζ]v), � = 2.

Thus every cohomology operation on H1,1(X) is uniquely a sum of the operations
x �→ cxεβ(x)m, where c ∈ Hs,j(k), m ≥ 0, and 0 ≤ ε ≤ 1.

Proof. This is the special case F• = S0 in Proposition 6.10 of [V1]. Note that the
operation cxε(βx)m has bidegree (s+ 2m+ ε− 1, j +m+ ε− 1). �

As in Example 9.8, we can use this as the starting point to describe all motivic
operations on H∗,1. For example, G = Bμ� is a simplicial group-scheme whose class
in DM is a split proper Tate motive, so the Künneth formula (8.5) holds. Since
H0,q(Bμ�) ∼= H0,q(k) by Proposition 10.1, Proposition 9.4 applies to show that the
Leray spectral sequence has the form

(10.2) Ep,q
2 = Hp,∗(B•Bμ�)⊗H∗,∗(k) H

q,∗(Bμ�) ⇒ Hp+q,∗(E•Bμ�) ∼= Hp+q,∗(k).

Corollary 10.3. If � �= 2, the ring of cohomology operations on H2,1 is the tensor
product of H∗,∗(k,F�) and the free graded-commutative algebra generated by the
identity of H2,1, the Bockstein β, the P Iβ, and the βP Iβ where P I = P �ν · · ·P �P 1.

For � = 2, the ring of cohomology operations on H2,1 is the tensor product of
H∗,∗(k,F2) and the free graded-commutative algebra generated by the identity of
H2,1, Sq1, . . . , SqI = SqIV , where SqI = Sq2

ν · · ·Sq2Sq1.
Proof. By [MV, 4.1.16], Bμ� is K(F�(1), 1). From the sequence

HomHo•(X+, E•Bμ�) → HomHo•(X+, B•Bμ�) → HomHo•(X+, Bμ�[1])

→ HomHo•(X+, E•Bμ�[1])

it follows that the simplicial scheme B•Bμ� is K(F�(1), 2). Thus we merely need
to compute the motivic cohomology of K(F�(1), 2) using (10.2).

By Proposition 10.1, H∗,∗(Bμ�) has an �-simple system of generators over H∗,∗

consisting of u and the xν = v�
ν

for ν ≥ 0. Since the Künneth formula (8.5) holds,
Proposition 9.4 implies that the hypotheses of Borel’s Theorem 9.2 and Kudo’s
Theorem 9.5 hold for (10.2). Therefore H∗,∗(B•Bμ�) is the tensor product of H∗,∗

and the free graded-commutative F�-algebra on generators ι, yν = τ (xν) — and
zν if � > 2. Since u transgresses to ι, x0 = v = β(u) and xν+1 = P �νxν , Kudo’s
Theorem 9.5 implies (by induction) that y0 = β(ι), yν+1 = P �νyν = P Iβ(ι), and
(using Theorem 8.11) that zν is −βP Iβ(ι). �

To describe cohomology operations on Hn,1, we use the algebra H∗
top(Kn), de-

fined in Definition 0.1. We bigrade it by giving it the weight grading that P I has
weight �k − 1, where I = (ε0, s1, ε1, . . . , sk, εk).
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Theorem 10.4. For each n ≥ 1, the ring of all motivic cohomology operations on
Hn,1 is isomorphic to the free left H∗,∗-module H∗,∗(k) ⊗ H∗

top(Kn) in which the

P I are bigraded according to Definition 6.5.
Thus every cohomology operation on Hn,1(X) is a sum of the operations x �→

c(P I1x)(P I2x) · · · (P Isx), where c ∈ H∗,∗(k) and each Ij satisfies the excess condi-
tion of Definition 0.1.

Proof. We proceed by induction on n, the cases n = 1, 2 being given above. Set
Kn = K(F�(1), n), so Kn+1 = B•(Kn), and suppose inductively that the algebra
H∗,∗(Kn) is given as described in the theorem, so that it has an �-simple system
of generators consisting of the P I(ιn) with I admissible and e(I) < n (or e(I) = n
and ε1 = 1), and �ν powers of the P I(ιn) of even degree.

Since F�,tr(Kn) is a split proper Tate motive by [V3, 3.28], the Künneth condition
(8.5) of Proposition 9.4 holds. Hence the hypotheses of Borel’s Theorem 9.2 are
satisfied, and the Leray spectral sequence (9.3) has the form

Ep,q
2 = Hp,∗(Kn+1)⊗H∗,∗(k) H

q,∗(Kn) ⇒ Hp+q,∗(E) ∼= Hp+q,∗(k).

Therefore H∗,∗(Kn+1) is the tensor product of H
∗,∗ and a free graded-commutative

F�-algebra on certain generators; it remains to establish that they are the ones
described in the theorem. But, except for weight considerations, this is exactly the
same as in the topological case, as presented on p. 200 of [McC]. Of course, the
weight of the xI = P I(ιn) is the same as the weight of yI = P I(ιn+1). Inspection

of the weights of the new generators P �ts · · ·P syI (when xI has degree 2s) shows

that each additional P �ts multiplies the weight by �, as required. �

11. Motivic operations on degree 1 cohomology

We now turn to operations defined on H1,∗. Here we encounter new cohomology
operations arising from the Norm Residue Theorem 6.2, representing a negative
twist. Here are a couple of examples.

Example 11.1. There are operationsH1,r(�−1)(X)
∼−→H1,1(X), since both groups

are naturally isomorphic to H1
et(X,μ�). An element η ∈ H1

et(k, μ
⊗2−i
� ) determines

a natural transformation H1,i(X) → H2,2(X).

The case k = k(ζ). If k contains a primitive �th root of unity ζ, the classification
is immediate from Proposition 10.1. Let [ζ] be the class of ζ in H0,1(k) ∼= μ�.

Proposition 11.2. Suppose that ζ ∈ k and i > 1. Then there is a natural isomor-
phism γ : H1,i(X)

∼−→ H1,1(X), and [ζ]i−1 ∪ γ(x) = x.
Every motivic cohomology operation on H1,i is uniquely a sum of the operations

x �→ c(γx)εβ(γx)m, where c ∈ H∗,∗(k), 0 ≤ ε ≤ 1, and m ≥ 0.

Proof. By Theorem 6.2, H1,i(X) ∼= H1
et(X,μ⊗i

� ) for all i > 0. Since multiplica-

tion by [ζi−1] is an isomorphism between Hn
et(X,μ�) and Hn

et(X,μ⊗i
� ), its inverse

isomorphism γ is natural. Via γ, operations on H1,i correspond to operations on
H1,1, which are described in Proposition 10.1. �

For example if i ≥ 2 and η ∈ H1
et(k, μ

⊗2−i
� ), then the operation H1,i → H2,2 of

Example 11.1 is the operation x �→ c(γx) of Proposition 11.2, where c = η ∪ [ζ]i−1.

Remark 11.2.1. If c ∈ Hs,j(k), then φ(x) = c(γx)ε(βγx)m is a cohomology opera-
tion of bidegree (s + ε + 2m − 1, j + ε + m − i). In particular γ is a cohomology
operation of bidegree (0, 1− i).
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Galois descent. We now consider the situation in which μ� �⊂ k. Clearly, not all
cohomology operations defined over k(ζ) are defined over k. However, some of these
operations do descend, such as those in Example 11.1.

It is convenient to consider the étale cohomology of k as being bigraded, by
integers n ≥ 0 and i ∈ Z, with Hn

et(k, μ
⊗i
� ) in bidegree (n, i). Thus the motivic

cohomology ring H∗,∗(k) is a bigraded subring of H∗
et(k, μ

⊗∗
� ).

Definition 11.3. For each integer b, let ζ−bH∗,∗(k) denote the direct sum of all
Hs

et(k, μ
⊗t
� ) with 0 ≤ s ≤ t+b. This is a bigradedH∗,∗(k)-submodule ofH∗

et(k, μ
⊗∗
� ).

It is a cyclic module if and only if ζb ∈ k, when it is the H∗,∗(k)-submodule

generated by [ζb] ∈ H0
et(k, μ

⊗−b
� ).

Theorem 11.4. Fix an integer i ≥ 2. Then the ring of cohomology operations on
H1,i is the direct sum of copies of ζ−bH∗,∗(k), b=(i−1)(ε+m), over integers m≥0,
and ε ∈ {0, 1}. If 0 ≤ s ≤ t+ b, the operation corresponding to c ∈ Hs

et(k, μ
⊗t
� ), m,

and ε sends H1,i(X) to Hs+ε+2m,t+b+ε+m(X):

φ(ζi−1 ∪ y) = (ζb ∪ c)yεβ(y)m.

Proof. Let G denote the Galois group of k(ζ)/k. Since H∗,∗(X) is the G-invariant
summand of H∗,∗(X(ζ)), a motivic operation H1,i(X) → H∗,∗(X) is the same
thing as a G-invariant operation H1,i(X) → H∗,∗(X(ζ)). Given x ∈ H1,i(X),
there is a unique y ∈ H1,1(X(ζ)) so that x = [ζ]i−1 ∪ y, where [ζ] ∈ H0,1(k(ζ)). By
Proposition 11.2, we are reduced to determining when G acts trivially on c′yε(βy)m.

Since yε(βy)m is in the summand of H∗,∗(k(ζ)) which is isotypical for μ⊗−b
� , this

holds if and only if c′ is in the summand of Hs,j(k(ζ)) which is isotypical for μ⊗b
� .

By (3.2), there is a unique c ∈ Hs,j−b(k) so that c′ = [ζ]b ∪ c. �
Example 11.5 (b = 1). An element c in H1

et(k,F�) = Hom(Gal(k̄/k),F�) de-
termines operations C : H1,2(X) → H2,1(X) and φ : H1,2(X) → H3,2(X). If
y ∈ H1,1(X(ζ)) is such that x = [ζ] ∪ y, then, regarding ζc as an element of
H1,1(k(ζ)), we have C(x) = (ζc)y and φ(x) = (ζc)β(y). Of course, we can identify

C with the map H1
et(X,μ�)

∪c−→ H2
et(X,μ�).

An element t in H2
et(k, μ�) (the �-torsion subgroup of the Brauer group of k)

determines operations H1,2(X) → H3,3(X) and H1,2(X) → H4,3(X). Writing
x = [ζ] ∪ y in H1,2(X(ζ)), the operations followed by the inclusion H∗,∗(X) ⊂
H∗,∗(X(ζ)) send x to ([ζ]∪ t)y and ([ζ]∪ t)β(y), respectively. As mentioned in the

introduction, we can identify the first operation with H1
et(X,μ⊗2

� )
∪t−→ H3

et(X,μ⊗3
� ).

12. Conjectural matter

In the preceding two sections we have classified motivic cohomology operations
on Hn,i when n = 1 or i = 1. We have also classified operations whose targets lie
inside the “étale zone” where n ≤ i. We know little about the intermediate zone
where i < n < 2i. In this section we make some guesses about operations in the
“topological zone” where n ≥ 2i.

Example 12.1. There are many operations defined on Hn,2, n ≥ 2. Let us
compare Voevodsky’s operation P 1

V (landing in Hn+2�−2,�+1) with our operation
P 1 (landing in Hn+2�−2,2�). Thus P 1 has the same bidegree as [ζ]�−1P 1

V , where
[ζ] ∈ H0,1(k). If n ≥ 4, we have P 1 = [ζ]�−1P 1

V by Corollary 8.9. If n = 2 we
also have P 1 = [ζ]�−1P 1

V because they induce the same étale operation (P 1) from
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H2,2(X) ∼= H2
et(X,μ⊗2

� ) to H2�,2�(X) ∼= H2�
et (X,μ⊗2�

� ). We do not know if P 1 and

[ζ]�−1P 1
V agree on H3,2.

Suppose that φ is a motivic cohomology operation on Hn,i where n ≥ 2i. Passing
to étale cohomology sends φ to an étale operation, which by Theorem 3.5 is a
polynomial in the étale operations P I . By Proposition 8.8, some multiple of the
Bott element b sends φ to operations bNφ which are in the subalgebra generated by
the motivic operations P I defined in Definition 6.5. It remains to determine what
those powers are.

The following result of Voevodsky [V1, 3.6–7] shows that all nontrivial operations
in the topological zone increase n.

Lemma 12.2 (Voevodsky). There are no motivic cohomology operations from H2i,i

to Hn,j when j < i or when i = j and (n, j) �= (2i, i). The module of motivic
cohomology operations from H2i,i to H∗,i is isomorphic to F�, on the identity.

Conjecture 12.3. Assume that k contains all primitive �th roots of unity and that
n ≥ 2i. Then the module of all motivic cohomology operations on Hn,i(−,F�) is the
tensor product of H∗,∗ and a free graded polynomial algebra over F� with generators
all P IP J

V , where I = (ε0, s1, ε1, . . . , sk, εk), J = (sk+1, εk+1, . . . , sm, εm) subject to
the conditions that (a) the concatenation IJ is admissible with excess e(IJ) either
< 4 or else ε0 = 1 and e(IJ) = 4 and (b) for all j > k, sj < i+ (�− 1)

∑m
j+1 si.

For (n, i) = (4, 2) this conjecture implies that among the polynomial generators

for the motivic operations on H4,2 we find P �2+�+1βP �+1
V βP 1

V β. If � = 2, we may
rewrite these operations as Sq14Sq7V Sq

3
V Sq

1
V ; compare with [V3, 3.57].

Lemma 12.4. If Conjecture 12.3 holds for H2i,i, then it holds for all Hn,i with
n ≥ 2i.

Proof. We consider the Leray spectral sequence (9.3) for G = K(F�(i), n) and
K = B•G = K(F�(i), n+ 1) when n ≥ 2i. By induction, H∗,∗(G) is a polynomial
algebra overH∗,∗ with an �-simple system {xi} of generators. By [V3, 3.28], F�,tr(G)
is a split proper Tate motive, so the Künneth condition of Proposition 9.4 holds,
and Borel’s Theorem 9.2 implies that H∗,∗(K) is the tensor product of H∗,∗ and a
free graded-commutative F�-algebra on generators yi = τ (xi) and, when deg(xj) is

even and � > 2, zj = τ (x�−1
j ⊗ yj).

We now use the fact that the transgression commutes with any (S1)-stable coho-
mology operation, such as P J

V ; see [McC, 6.5]. Since the tautological element ιn of
Hn,i(G) transgresses to the tautological element ιn+1 of Hn+1,i(K), the generator
xj = P IP J

V (ιn) transgresses to yj = P IP J
V (ιn+1) by Kudo’s Theorem 9.5. This

finishes the proof for � = 2.
If � is odd and xj = P IP J

V (ιn) has degree 2a, the transgression zj of x�−1
j ⊗ yj is

−βP aP IP J
V (ιn+1) by Kudo’s Theorem 9.5(3). This finishes the proof for � odd. �
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