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OPERATIONS IN ETALE AND MOTIVIC COHOMOLOGY

BERT GUILLOU AND CHUCK WEIBEL

ABSTRACT. We classify all étale cohomology operations on HZ; (—, u?i), show-
ing that they were all constructed by Epstein. We also construct operations
P% on the mod-¢ motivic cohomology groups HP-4, differing from Voevodsky’s
operations. We use them to classify all motivic cohomology operations on HP>!
and H1:9 and suggest a general classification.

In the last decade, several papers have given constructions of cohomology oper-
ations on motivic and étale cohomology, following the earlier work of Jardine [J],
Kriz-May [KM], and Voevodsky [V2|[V1]; see [BJLBJITolMILV3|[V4]. The goal of
this paper is to provide, for each n and 7, a classification of all such operations on the
étale groups H&(—,p?i) and the motivic groups H™!(—,F;), similar to Cartan’s
classification of operations on singular cohomology Hi (—,F,) in [C]. We succeed
for étale operations and partially succeed for motivic operations.

We work over a fixed field k and fix a prime ¢ with 1/¢ € k. By definition, an
(unstable) étale cohomology operation on HZ(—,u$") over k is a natural trans-
formation HZ(—,uS") — HE (=, u39) of set-valued functors from the category of
(smooth) simplicial schemes over k (for some p and ¢). Similarly, an (unstable) mo-
tivic cohomology operation on H™* over k is a natural transformation H™* — HP»4
of functors defined on this category, where H?9(X) denotes the Nisnevich coho-
mology H”. (X,F.(g)), and the cochain complex Fy(q) is defined in [V2] or [MVW].
Fixing k, n, and 4, the set of all unstable cohomology operations forms a ring. The
product of §; and 65 is the operation x +— 60y (x) - O2(x).

Our classification theorems describe the ring of all operations in terms of certain
specific operations. Thus we begin with their construction, in Sections [l [ and

In étale cohomology with constant coefficients, operations P® were constructed
by Epstein [E] and used by Raynaud in [R]. A second construction is given by
Peter May in [M]. As both are based on Steenrod’s original construction in [SE],
they agree. The upshot is that Cartan’s ring H, (K,,) of operations on H{y, (—,Fy)
embeds into the ring of all étale operations on HZ(—, u?i); we refer the reader to
Definition [0I] below for a precise description of Cartan’s ring.

For étale cohomology with twisted coefficients p?i, Epstein’s approach [E] and
May’s approach [M] give apparently different constructions of étale operations P¢.
We will show in Corollary .7 that the two constructions give the same operations.

Epstein’s construction is more easily accessible to algebraic geometers, because
it uses equivariant sheaf cohomology and is an application of the method described
in his 1966 paper [E]. After stating Epstein’s result in Theorem [[33] we indicate the
key points in his construction that we will need to compare with May’s construction.
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The classification of étale cohomology operations is given in Sections 2 and [3
Theorem gives the general result: the ring of all (unstable) étale operations
on HZ(—,ud") over k is the tensor product H (k(¢),F) ® H, (K,), where € is
a primitive ¢th root of unity. Thus all (unstable) étale operations on HZ(—, ")
over k are HY (k(¢),Fy)-linear combinations of monomials in the operations P’.
Our proof starts with the special case in which ¢ € k. In this case, it is a result
of Breen and Jardine that the graded ring of all étale operations on HZ (—, u?i) is
H:t(ka ,LL?*) ® H:op(Kn)'

In Section Ml we present May’s construction, using the notion of a suitable pair
(K, 0) (seel2]) and show in Corollary fTlthat the étale operations P* coincide. Our
construction of motivic cohomology operations will use May’s construction. The
brief Section [l relates the discussion of Section Ml to the operad-based approach of
Hinich and Schechtman [HS].

In Section [6] we use the Norm Residue Theorem to construct motivic operations
P?® (see Definition [G5). We show they are compatible with the étale operations
and stable under simplicial suspension, and we verify the usual properties in Sec-
tion [ The operation P° is the Frobenius H™? — H™% on motivic cohomology,
induced by the ¢th power map Fy(i) — F¢(if); see Proposition B4l One new re-
sult concerning Voevodsky’s operations is that for n > i and x € H?™® we have
Pp(z) = [¢®ED]=D U 2¢ where [(®~V] is the canonical element of H%*~!(k)
(see Corollary BI0). This extends Lemma 9.8 of [V1], which states that P"(z) = z*
for x € H*"(X).

The classification of motivic cohomology operations is complicated by the pres-
ence of more operations than those constructed by Voevodsky or via Steenrod-
Epstein methods. One example is that an ¢-torsion element ¢ in the Brauer group
of k gives an operation H%? — H>3 by

~Y t ~
H'Y(X) = HY (X, 1f%) =5 HL(X, %) = HY(X).

Also unexpectedly, we may also use ¢t and the Bockstein § to get an operation
HY2(X) — H*3(X) (see Example below). When k contains a primitive ¢th
root of unity ¢, we also have an interesting operation H'?(X) — H*(X) =
Pic(X)/¢: divide by the Bott element [¢] € H*!(k) and then apply the Bockstein;
see Proposition

In Section [[0] we determine the ring of all motivic cohomology operations on
H™'. If £ # 2, it is the algebra H**(k) ® H{, (K,), where H**(k) is the motivic
cohomology of k and Hy,,(K,) is Cartan’s ring, described in Definition [0.1] below.
Many of these operations fail to be stable operations because they do not fit into
a sequence of operations compatible with the motivic t-suspension X +— S} X; for
this reason, we call them unstable.

In Section [[Il we determine the ring of (unstable) cohomology operations on
H''. When k contains the /th roots of unity, this is the graded polynomial ring
over H**(k) on operations v : HV#(X) = H%(X) and its Bockstein, where + is
given by the Norm Residue Theorem[6.2] For general fields, it is the Galois-invariant
subring. The operations on H'? referred to above arise in this way.

Finally Section contains a conjecture about what the general classification
might be for ™! when n,i > 1.

Since it is the topological prototype of our classification theorem, we conclude
this introduction with a description of the ring of all singular cohomology operations
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on H{ (—,F;). Serre observed in [S50, 28.1] (cf. [EM) p. 513]) that the ring of oper-
ations from H{y (—,F,) to H, (—,F) is isomorphic to the cohomology Hy, (Ky)
of the Eilenberg-Mac Lane space K,, = K(Fy,n); the structure of this ring was de-
termined by Serre and Cartan in [S50], [C], [CI]. The following description is taken

from [McCl 6.19].

Definition 0.1. For ¢ > 2, let A,, denote the free graded-commutative Fy-algebra
generated by the elements P’ (s, ), where I = (eg, 81, €1, ..., 5k, €) is an admissible
sequence satisfying either e(I) < n or else e(I) =n and ¢, = 1.

Here the excess of I is defined to be e(I) =2 (s; — €s;41 —€;) + Zf:o €;, where
s; =0 for i > k, and [ is admissible if s; > €s;11 + ¢; for all i < k.

When ¢ = 2, A,, denotes the free graded-commutative Fy-algebra generated by
the elements Sq’(t,), with I = (s1,...,s;) admissible (s; > 2s;41) and e(I) < n,
where the excess is e(1) = > (s; — 25441) = 51 — D ;51 Si-

We will write Hy,,

Theorem 0.2 (Cartan-Serre). The ring Hy, ,(Kn,F¢) of cohomology operations
from H{, (=, F;) to Hy

top(—Fe) is isomorphic to Ay,.

(K,) for A, because of the following result.

For example, every operation on thop(—, [Fy) is a polynomial in id, 3, the P!g3,

and (if £ # 2) the BP!B (where P! = P’ ... P!P'). This is because the only
admissible sequences with excess < 2 are 0, (1), and (0,¢%,0,...,¢,0,1,1).

1. EPSTEIN’S ETALE CONSTRUCTION

Cohomology operations in étale cohomology were constructed by David Epstein
long ago in the 1966 paper [E] as a special case of operations constructed in an
axiomatic framework; see Sections 10 and 11.1 of [E]. Epstein’s construction was
made explicit by Michele Raynaud [R) 4.4] for étale cohomology with constant
coefficients. Alternative constructions were later given by L. Breen [Brl, IIT.4] and
J.F. Jardine [J}, 1.4], [J1 §2], and [M1].

In Epstein’s approach, one starts with an Fy-linear tensor abelian category Sh
(such as sheaves of Fy-modules on a site), a left exact functor H°(X, —) (global
sections over X), and a commutative associative ring object A of Sh.

In this section, we consider the situation in which Sh is the category of étale
sheaves of Fy;-modules on the big étale site of simplicial schemes X, over a base .5,
which we may assume is Spec(k). The ring object A will be the graded étale sheaf

@zo N?i-

Definition 1.1. If X, is a simplicial scheme over S, the étale site Et(X,) is the
category whose objects are pairs (n,U — X,) with U — X,, étale. A morphism
to (m,U’) is an ordinal map [m] — [n], together with a map U — U’ forming
a commutative square with X,, — X,,. A covering of (n,U) is a family of maps
U; — U over X,, so that the U; — U are an étale cover of U.

The étale site of a simplicial scheme X, first arose in [D] 5.1.8]; our description
is based upon the definition of the étale site Et(X,) in [F] 1.4].

Recall that if X = X, is a simplicial scheme and F is a sheaf of Fy-modules, then
the functor I'(F) = F(X) is defined as the equalizer of F(Xy) = F(X1), and the
cohomology functors H{ (X, F) are defined as its derived functors; see [D] 5.2.2]
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or [F, 2.3]. If X, is a constant simplicial scheme, H¢ (X, F) is the usual étale
cohomology of X.

The derived functors of HY(X, —) : Sh — Fy-mod are just the usual étale coho-
mology groups, because the usual Godement resolution of a sheaf F [Milnel p.90]
is a flasque resolution by sheaves of Fy-modules which are injective objects of Sh.

The étale Bockstein B : HZ(X,ud") — HETH(X, ud") is defined as the con-
necting map in the cohomology sequence for 0 — u?i — u% — u?i — 0. (This
sequence is the tensor product of the sequence 0 — Z/¢ — Z/{* — Z /¢ — 0 with
u?;i.) By definition, g is natural in X but can depend on the choice of 7; see Remark
B3I below. If B=@:2, ,u?;i, we may also regard 8 as the connecting map in the

cohomology sequence for 0 - A — B — A — 0.

Lemma 1.2. The étale Bockstein is a derivation. That is, if u € HZ (X, ,u?i) and
v e HI X, u?), then B(uUwv) = B(u) Uv + (—1)"u U B(v).

Proof. (Folklore) Choose a flasque Godement-style resolution B — Z whose stalks
are free (=injective) Z/¢?>-modules, and write Z for Z/¢Z, so that A — T is also a
flasque resolution. Lifting cycles @ and v representing u and v to chains ' € Z™(X)
and v’ € Z™(X), B(u) and B(v) are represented by w’ and v”, defined by d(v') =
i(u”) and §(v') = i(v").

The cup product uw U v is represented by the image of © ® v under the map
m:Z®Z — T resolving A ® A — A; see [D-4.5| 1.2.2]. Since the coboundary on
7 ® 1 satisfies

d(u' @) =i(u") @0 + (=1)"u @i(v") =i(uv" @0)+ (=1)"i(u ®@v")

it follows that S(u U v) is represented by m(u” @ ©) + (—1)"m(a ® v"), i.e., by
Bu)Uv+ (—1)"uU B(v). O

Remark 1.2.1. The same proof works in the motivic setting to show that the motivic
Bockstein is also a derivation, a fact stated in [V1l (8.1)].

Epstein defines an operation P° : HZ(X, u$") — HZ(X, u2") in [E} 7.1] and
shows in [E, 7.3] that P° is the canonical Frobenius isomorphism induced by " =
p$* . (Our pairing HY (X, 1) @ HY (X, u?j) — HY(X, u?”j) is the pairing
SA®TB — U(A® B) in [E] (3.2.1)].) Epstein also defines an operation

Q" HI(X, ") — HETH(X, uf™);

we'll see in Proposition below that Q° = BPY and Q® = BP%, where f3 is the
Bockstein on HZ (X, u?w). With this dictionary, Epstein’s theorem specializes to
yield:

Theorem 1.3. For each odd prime £, there are additive cohomology operations
P HE(X, ) — HEPCOD (X 48, a>o0,

natural in X, satisfying the usual relations: Pz = z‘ if n = 2a, Pz = 0 if
n < 2a, the Cartan relation P*(xy) = Pi(x)P?(y), and Adem relations for both
PaPY (a < bl) and PBP° (a < bl).

When £ = 2, there are Steenrod operations Sq® : HZ (X, uS") — HIT (X, u$?h)
or H%(X,7./2) — HI"(X,7/2), satisfying the usual relations.
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Proof. The existence and basic properties are given in Chapter 7 of [E]; additivity
is 6.7. The Adem relations are established in [E, 9.7-8], using the dictionary that

Q" = BP? and P*BP® = P*Q". Naturality follows from [E|, 11.1(8)]. O
Remark 1.3.1. ' 4
(i) There are canonical isomorphisms i, = ,u?e and " = u?w. We have em-

phasized the difference in weight because of our application to motivic operations.
(ii) Epstein also constructs operations Q%; they equal SP® if we use the sheaf
A = @, 1" but can differ if we use the smaller sheaf A = @?:0 1S where
d = [k(Ce) : kJ; see Propositions [2Z4] and B3
(iii) If Z is a closed simplicial subscheme of X (see [D] or [F]), we get cohomology
operations P on the relative groups HZ (X, Z; u?i)7 natural in the pair (X, Z), by
replacing H°(X, —) by the left exact functor HS (X, Z; —).

In order to compare to May’s construction and to classify operations, we will need
a rephrasing of one of the key results from [E], using the language of equivariant
sheaf cohomology.

Definition 1.4. If G is a finite group, we write Shg for the category of G-
equivariant objects of Sh, i.e., objects B equipped with a homomorphism G —
End(B). If B is in Shg, then H°(X, B) is a G-module, and we define the left exact
functor H% (X, —) on the category Shg by the formula H2(X, B) = H°(X, B)¢.
We write HY (X, —) for the derived functors of H%(X, —).

We will use the following result in Section

Theorem 1.5. Let A be a bounded below cochain complex of objects of Sh on which
a finite group G acts trivially. Then there is a natural isomorphism

H*(G,F,) @ H*(X,A) — HAL(X, A).
If A is a sheaf of dg commutative algebras, this is an algebra isomorphism.

Proof (See [El 4.4.4]). Fix an injective resolution A — I* in Sh. Choosing a
resolution F, — Fy by finitely generated free Fy[G]-modules, set F* = Hom(F,, Fy),
so H*(G,TF,) is the cohomology of (F*)¥. Since G acts trivially on A, we have quasi-
isomorphisms of complexes in Shg: A — I* = Fy ® I* 5 Tot(F* ® I*). Since
each F™ is a free Fy[G]-module of finite rank, F" ® I? = Hom(F,, I7) is injective
in Shg, and A — Tot(F* ® I*) is an injective resolution in Shg. Hence H (X, A)
is the cohomology of the total complex of

HY(X,F*®I*) = (F")° @ I'(X).
The Kiinneth formula tells us that H*((F*)% ® I*(X)) is the tensor product of the
cohomology of (F*)¢ and I*(X), i.e., of H*(G,F,) and H*(X, A).
We omit the standard proof that a commutative associative product on A induces

an algebra structure on H*(X,A) and H} (X, A) and that the isomorphism of
Theorem commutes with products. a

Recall that for any sheaf (or complex) A, the symmetric group S,, acts on A®"
by permuting factors (with the usual sign change for tensor products of complexes).
If A =5 B is a quasi-isomorphism, then so is A®™ =5 B®" by the following useful
lemma.
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Lemma 1.6. If C, C’, and D are bounded below cochain complezes of sheaves
of Fy-modules and f : C —= C' is a quasi-isomorphism, then so is f @1 : C ®
D— C'®D.

Proof. Let K denote the cone of f; it is acyclic. Since ® is an exact functor,
every sheaf of Fy-modules is flat, and K ® D is acyclic by the Kiinneth formula
[WH, 3.6.1]. Since C ® D — C' ® D — K ® D is a distinguished triangle, the
result follows. O

Remark 1.6.1. If A is a sheaf of commutative Fy-algebras and A -+ I is an in-
jective resolution, the choice of a lift €2 — I of A®2 — A makes I a sheaf of
homotopy commutative, homotopy unital, and homotopy associative dg algebras,
as A®2 =, J®2 Such a lift exists and is unique up to chain homotopy, by the
comparison theorem [WH| 2.3.7, 10.4.7].

Similar remarks hold when A is a sheaf of bounded below, homotopy associative
and commutative dg algebras, using the total complex I of a Cartan-Eilenberg
resolution; see [WHJ, 5.7.9 and Ex.5.7.2].

Let 7 be a Sylow £-subgroup of Sy. Choosing an injective resolution A®¢ — J* in
Sh,, the comparison theorem lifts the equivariant quasi-isomorphism A®¢ — 1®¢
to an equivariant map I®¢ — J*, unique up to chain homotopy.

Since H*(X, A) is the cohomology of I(X), we can represent any element of
H"(X, A) by an n-cocycle u € I"(X). The nf-cocycle u ® --- ® u of I(X)®* is 7-
invariant, because the generator of 7 acts as multiplication by (—1)”“*1), which is
the identity on any Fy-module. Its image Pu in J"(X) is also 7-invariant. Epstein
shows in [E], 5.1.3] that P(u + dv) = Pu+ dw for v € I""}(X) and w € J*~}(X),
so the cohomology class of Pu is independent of the choice of cocycle u.

Definition 1.7. The reduced power map is defined to be the map on cohomology
associated tou —m U ® - @ u:

P:H"(X,A) — H'(X, A®").

Now let 7 denote the cyclic group of order . We will write W, — F; for the
standard periodic Fy[r]-resolution [WH], 6.2.1], with generator e of W}, = Fy[n],
and set W*= Hom(W,,Fy); thus H*(m,Fy) is the cohomology of (W*)~.

Now suppose that there is a m-equivariant map A® - B and that m acts
trivially on B. (When A is a commutative ring, multiplication A®¢ — A is a -
equivariant map.) We write m, for the induced map H*(X, A®Y) — H*(X,B).
By Theorem [[E m.P(u) € H:(X,B) has an expansion Y wi ® Dy (u), where
wy, € H*(7,Fy) are the (dual) basis elements of [SE, V.5.2]: if £ > 2, then wg = 1,
wo = Pwy, wo; = w%, and wo; 41 = wlwé. If £ > 2 and n > 2a, Epstein defines

(18)  P*:H"(X,A) — H"™=V(X,B), P = (~1)"vyD(n_sa)c—1)(1),

where
_ _ 2
vy = (—1)" (€_1>, and = LD+
2 4
(See [El 7.1], [SE| VIIL.6.1], and [SE-er1].) If n < 2a, then Epstein defines P* = 0.
When ¢ = 2, Epstein defines operations Sq’ by S¢‘(u) = D,,_;(u) for n > i and
Sqi(u) =0 for n < i.
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Remark 1.8.1. Epstein also defines operations Q% = (—1)“+1I/nD(n_2a)(g_1)_1(u)
in this setting, with Q® = 0 when n < 2a, and establishes Adem relations for them
as well.

Of course, Epstein’s construction mimicks Steenrod’s construction of Dy, P®,
and Q% (see [SE], VIL.3.2 and VII.6.1). In Steenrod’s setting one can lift to integral
cochains; with this assumption, Steenrod proves that SDsr = —Dagy1 and hence
that SP* = Q% see [SEl VIL.4.6] and [SE-err]. As we mentioned in Remark [[3.1]
the formula Q* = SP® may not hold when the sheaf A fails to distinguish between
p$" and p™. (See Propositions 4] and B3 and Theorem [B111)

Recall that the simplicial suspension SX of a simplicial scheme X is again a sim-
plicial scheme. There is a canonical isomorphism HZ (X, u$") — HZTH(SX, u$h).
Proposition 1.9. The operations P® are simplicially stable in the sense that they

commute with simplicial suspension: there are commutative diagrams for all X and
all n and i, with N =n+ 2a(f — 1):

HE(X,u")  ——  HY(X,u"™)

HE (X, i) —— BT (SX, 1),
Proof. The proofs of Lemmas 1.2 and 2.1 of [SE] go through, using simplicial ho-

motopy invariance (HZ (X) = HZ (X x Al)) of étale cohomology and excision. [

If f: X — Y is a finite map, then f, : Sh(X) — Sh(Y) is an exact functor.
It follows that a m-equivariant map A®Y = B of étale sheaves on X induces a
m-equivariant map fom : (foA)®¢ = f,(A®Y) — f.B and hence operations P?, Q°
from H*(Y, f.A) to H*(Y, f.B).

Proposition 1.10. Suppose that f : X — Y is a finite map and A®* 5 B is a
w-equivariant map of sheaves on X. Then Epstein’s P* and Q% commute with the
isomorphism f. : H*(Y, f.A) — H™(X, A).

Proof. Let I and J be the injective resolutions of A and A®* in the construction 7]
of the power map P for A. Then f.I and f.J are injective resolutions of f,A and
[ A%t and if u is a cocycle in I™(X) = (f.I")(Y), then u ® - -- ® u is a cocycle in
I(X)® = (f.1)(Y)®, and I*(X) — J*(X) is identified with f,I*(Y) — f.J*(Y).
It follows that the left square commutes in the diagram

H™(Y, f.A) —2— HM(Y, f.A®Y) " H™(Y, f.B)

gl gl %
H"(X,A) —C— HM(X,A®Y) T, H"(X,B).

The right square commutes by the functoriality of f.. Expanding m.P(f.u) as in
Theorem [[.5] the result follows from (L8) and Remark [[.81] O

2. THE ETALE STEENROD ALGEBRA WHEN (; € k

In this section and the next we determine the algebra of all étale cohomology
operations H(—,u$") — Hz (—, ud*) for each n and i, over a field k containing
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1064 BERT GUILLOU AND CHUCK WEIBEL

1/¢. We work in the big étale site of smooth simplicial schemes over & (see Definition
LT).

Recall from SGA 4 (V.2.1.2 in [Ver]) that if M is a (simplicial) étale sheaf of
Fs-modules, then the sheaf cohomology groups H (X, M) are isomorphic to the
(hyper) Ext-groups Ext*(F;[X], M) in the category of étale sheaves of Fy-modules.
(Here we regard M as a cochain complex using Dold-Kan.) If K is a second sim-
plicial étale sheaf of Fy-modules, one writes HY (K, M) for Ext* (K, M).

It is well known that cohomology operations HZ(—,L) — H}(—, M) are in
1-1 correspondence with elements of HZ (K, M), where K denotes the standard
simplicial Eilenberg-Mac Lane sheaf K(L,n) associated to L. If M is a ring, these
operations form a ring; the product of 6, and 63 is = +— 01(x) - O2(x).

Now fix i and consider cohomology operations HJ (—,u$") — H:t(—,,u?j). As
observed above, they are in 1-1 correspondence with elements of HZ, (K, /L?j ), where
K denotes the simplicial Eilenberg-Mac Lane scheme K (/Q@i, n). For example, the
identity operation on HZ(—, ") corresponds to ¢, € HZ (K, uf"), and the étale
Bockstein 3 : H (X, u5") — HETH(X, u") corresponds to 8(t,) € HETH (K, uf?).

We first discuss the case of constant coefficients (M = Fy), which is known and
due to Breen [Br], 4.3-4] and Jardine [J]. The graded ring of all unstable étale coho-
mology operations from HZ(—,Fy) to HY (—,Fe) is isomorphic to the cohomology
ring H} (K,,,Fy), where K,, = K(Fy,n) is the constant simplicial sheaf classifying
elements of H”(—,F,). By Theorem [[3] there is a ring homomorphism from the
classical unstable Steenrod algebra H{;,,(K,) of Definition 01l to Hy (K, Fy).

There is also a ring homomorphism from H (k,Fy) to HY (K,,F¢), sending a
to the constant operation (z) = a. It is injective and is induced by K,, — Speck.
These induce a graded algebra homomorphism from H (k,F¢) ®r, H,,(Ky) to
HZ(Kn,Fy). Note that HY (k,F) @p, Hy,, (K) is free as a left HY (k,Fy)-module;
a basis is given by those monomials P’ in the Steenrod operations P® and SP® for
which I has excess < n, exactly as in the topological case.

We summarize the above discussion.

Theorem 2.1 (Breen-Jardine). The ring of all étale cohomology operations on
HE (—,Fy) is the graded tensor product Hy(k,F¢) ® Hy,,(Ky,): every operation is
a polynomial in the operations P1 with coefficients in HZ (k,Fy).

Examples 2.2. When k = C, H} (C,F;) = [, and étale operations are classifed
by Hi,,(Ky). The action of the P! is compatible with the canonical comparison
isomorphism Hy (X, Fy) = HY, (X(C),F,). This is clear from the constructions in
[E] and [J].

When k£ = R and ¢ = 2, the ring of étale cohomology operations over R is the
graded polynomial ring Hy, (K, )[o], generated over F; by o in degree 1 and the

Sq! (1) with I admissible and e(I) < n. This is because H}(R,Fy) = Fa[o].

Remark 2.2.1. Let H, (K,)™" denote the indecomposable subspace of H}, (Kp);

by Definition it has the P’(1,) as a basis, and Hf, (K,)™" injects into the
degree p — n part of the topological Steenrod algebra. It follows that the vector
space Hp (k,Fo) ©r, H,,(K,)™" embeds into the algebra of stable étale operations
with a degree shift; cf. [J]. Note that the multiplication o in the stable algebra is
different: P2o X\ =" P{(\)P’, X\ € H},(k,F;), and a > 0, arising from the Cartan

formula.
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Example 2.3. When £* contains u, but not p,2, the étale sheaves u?f are distinct
nontrivial extensions of Fy by Fy (¢ = 0,...,£ — 1), and the associated boundary
maps 0; in the exact sequence

(2.3.1) o HMX,Fy) — HY(X, p&) — HY(X,Fy) 25 B (X, Fy) -

are cohomology operations on HZ(—,Fy); 0y is the Bockstein S. By Theorem 2]
the 9; are linear combinations of the generators 8 of Hl (K,) and elements of
HL (k,Fy), such as z = (71B((), ¢ € pe. Note that z is nontrivial as e ¢ kX, It

is an exercise to check that z is independent of the choice of generator ¢ of .
Lemma 2.3.2. If up C k™, the cohomology operation 9; of 231 is 5 —1iz.

Proof. The sheaf ring @u?;j acts on the extensions 0 — F, — u?;i —F;, = 0, so
there is a pairing between HZ, (k, R) and the direct sum of the cohomology sequences
@30). Set HY = HY, (k, ,u?;j); when j # 0 (mod ¢), this group is Z/¢. This yields
a commutative diagram for each ¢ and j:

HY @ HI (X, p%) —— HY @ HY(X,F,) —2%5 HY @ HYTH(X,F,)

Ul UJ{’E UJ{%
i+ n 1®0;4; n
HY (X, ue ™) —— HA(X,F) —% HATHX,F).

Now set j =/ — 1, so u?;iﬂ = /122 = Z/¢%. Then the bottom right map 9;; is the
Bockstein 3. For u € H (X, F,) and [(®7] € H% we have

BCHTUw) = [¢¥]UB(u) + 52U (] Uu =[] U (Bu) +j 2).
As this equals [¢®7] U 9;(u), we are done. O

Proposition 2.4. If yu, C k, Epstein’s cohomology operation Q° agrees with the
Bockstein  on H(X,Fy), and Q* = SP°.

Proof. Jardine’s argument in [J, pp.108-114] that Epstein’s Sq' is the Bockstein
when ¢ = 2 applies when ¢ > 2 as well and proves that Epstein’s QU is the Bockstein
operation. For Q%, we invoke the Adem relation Q* = Q*P° = Q°P* [E| 9.8(4)].

O

3. THE ETALE STEENROD ALGEBRA WHEN (; & k

We now discuss the twisted coefficient case (M = u?i). This reduces to Theorem
2.1 when k contains a primitive £th root of unity: since the sheaves ,u?i are all
isomorphic to Fy, the ring of étale operations on H%(—, u) is just H (k,Fy) ®
H, (Ky). Since this is always the case when £ = 2, we shall restrict to the case of
an odd prime /.

Fix a field k with 1/¢ € k, and let G be the Galois group of the extension
k(¢)/k, where ¢ denotes a primitive ¢th root of unity. Then G is cyclic of order
d=1k(¢):k],d|£—1, and 1 + (®? defines an isomorphism F, = p$?. Since
i =j (mod d) implies that " = /J%j, we are led to consider the Z/d-graded étale
sheaf of Kummer algebras
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Thus our problem is to determine the ring H, (K, A) = @d L HE (K, 1sh).
Epstein defines cohomology operations P§ and Q% on each HZ (-, A); setting
N =n+2a(f — 1), their components are operations

Py HL(X, pf") — HY (X, 1) and Q% : HA(X, uf") — HYTHX, uf?).

By naturality with respect to the homomorphism A = @5°, u$" — A [E| 6.2], the
operations P* and Q¢ defined using A are compatible with the operations P4 and
Q¢ . Since the cup product with ¢®i-1) ¢ HY (k, M®M 1)) induces an isomorphism
HY (X, 1§ = HY (X, u$™), this means that

(3.1) P(u) = ¢® DU P(u) and Q(u) = (¥ U QY (u).

Since ¢ does not divide |G|, Maschke’s Theorem gives an identification of the
etale sheaf Fy[G] with the direct sum of the sheaves of irreducible Fy[G]-modules
M , i.e., with A. For any X, Shapiro’s Lemma provides an isomorphism

(3.2) HZ (X, A) = HZ(X(C),Fo),

where X ({) denotes X xj Spec(k(¢)). In fact, A = m.F, ~ Rm,Fy, where 7 :
Spec(k(())et — Spec(k)er. Taking X = Spec(k) yields HZ (k, A) =2 H (k(C),Fo).
Any Fy[G]-module M is the sum of its isotypical summands, the isotypical sum-
mand for u?i being Homg(u?i,M) = HOIHG(Fg,/,LZ@_i ® M). In particular, the
action of G on X (¢) decomposes H} (X ((),F,) into its isotypical pieces. Because
the u$" are the isotypical summands of A = 7,Fy, the summand H (X, u$") in
(B2) is the isotypical summand of H (X (¢),Fy) for 45", Thus the injection

HE (X, ") = HE(X(C), 1) 22 HE(X(C), Fe)
sends u to (~° ® 7*(u), where 7*(u) is the image of u in HZ (X (¢), u$").

Example 3.2.1. The product of (7! € HY (k(¢), u$™") and B(¢) € HL (k(C), i)
is an element (= U B(¢) of HL (k(¢),Fy). As it is fixed by G, it descends to an
element of HZ (k,Fy), which we will call z. Thus 7*(z) = (-1 U 8(¢). As observed
after (Z3.0)), z = 0 iff k(¢) contains primitive £?-roots of unity.

Because the Frobenius is the identity on A, PY is the identity operation by
[E], 8.3.4], and P%(u) = ¢*“~1) Uwu. We can now relate Epstein’s operation Q° to
the étale Bockstein 8 and relate his Q% to SP?.

Proposition 3.3. Suppose that (; & k, and let z € H;t(k,IFg) be the element of
Ezample B2l Then, as cohomology operations on H%(X, us*) for (0 <i < d):

Q%=B—iz and QOZ/BPOZCXM(Z—UU(B_Z.Z);
Q4 =pPS—izUP% and Q%=pBP fora>0.

The case when (y € k (d = 1) is handled by Proposition [Z41 Note that by our
convention, the § in Q* = SP® is the Bockstein on H*(X, u®z£).
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Proof. Given the isomorphism (3.2)), Proposition [LT0 for QY implies that the fol-
lowing diagram commutes:

n Q - n k2
@‘“H( ugh) —2 @y HATH (X, u)

i | o o |

HL(X(O),F) =2 HI(X(Q), Fe).

For all uw € HZ(X,u$"), B(r*u) = 7*B(u) by naturality. Since 7*(2) = (~18(C),
the diagram implies that (¢~% U 7*)(Q%u) equals
B¢ UT L) =¢CT U B(r u) + BT U (u)

=" UTB(u) =i (TTIB() Ut (u)

=(¢"UT)(B(u) —izUu).
Since (~*U* is the isomorphism ([B.2)), the identity Q% (u) = B(u) —i zUwu follows.
By @), we have Q°u = ¢~V U Q%u, which agrees with SP%u = B(¢*“"1 Uu).

Finally, the identity for Q% and Q¢ follows by invoking the Adem relations
Q4P = Q% Pe, QP = Q°P4, and PP = PP0 [F, 9.8(14)]:
Q% = Q%P =Q%Ps = (B—iz)P; and Q“P°=Q"P"=p3P°P*=j3P*P".

Now use the fact that P is invertible. (]

Remark 3.3.1. If i = j (mod d), the étale sheaves uei and ,u ' are isomorphic.
This does not affect the operation QY 47 but it changes the Bockstein because the
isomorphism HZ (X, u$") = HZ (X, ug”) sends u to v = (I ~"Uu. Setting j = dg+i,
Lemma yields

B(v) = ¢®U B(u) + dg¢®M 7 B(C) Uu = (MU {B(u) + (dg) z Uu}.

Using the Bockstein and Epstein’s operations P?, we have operations P! defined
on H2(—, u$") for every admissible sequence I in the sense of Definition (111

In order to classify all operations on H}, we first consider the case n = 1. In
topology, the ring of operations on H'(—,F,) is H, (K1) = Felu,v]/(u?), where
u = PV is in degree 1, corresponding to the identity operation, and v is in degree 2,
corresponding to the Bockstein operation. By Theorem[L.3] there is a canonical map
from Fy[u, v]/(u?) to étale cohomology operations from H} (—, u$") to Hz (—, u$™),
sending u to the identity, v to the Bockstein 8 : HL (—, u$") — HZ(—,u$"), and
v™ to x — B(x)™

For any ¢, the basechange u?i(o of the algebraic group u?i is isomorphic to
F(¢), the constant sheaf Fy, on the big étale site of k({). The induced isomor-
phism (Bu$")(¢) = (BF;)(¢) induces an isomorphism of cohomology groups, which
immediately yields the followmg calculation.

Recall that A = @ ®1

Proposition 3.4. The gmded algebra of cohomology operations from Helt(—,,u?i)
to @d LH (- g is isomorphic to the H} (k(C),F,)-module

H*(Bug', A) = H*(Bug' (), Fr) = H* (k(¢), Fe) @ Folu, v]/(u?), Blu) =v.

Every operation on HZ (— ,,uz N s umquely a sum of operations ¢(x) = cx®f(x)™
where € € {0,1}, m >0, and ¢ € HZ (k, u?) for some j.

This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.



1068 BERT GUILLOU AND CHUCK WEIBEL

The operations v and v on H), are of course u(r) = z and v(x) = B(x). Propo-
sition [3.4]is the case n = 1 of the following result.

Theorem 3.5. For each i and n > 1, the ring of all étale cohomology operations
from HE(—, u$") to HE,(—, A) is the free left HZ (k(C),Fr)-module HZ (k(C),Fe) ®
Hi (). |

If c € H;‘t(k,u?j), the operation coresponding to the monomial ¢ Pt ... PIr
sends ch(_a N?l) to H:t(_’ M?Ti-i_j)'

Proof. We first show that the basechange K(u$’,n) x; Spec(k(¢) is the space
K(u",n) over k(¢). This is clear for n = 0 and follows inductively from the
construction of K(A,n+ 1) via the bar construction on K(A,n), together with the
observation that (X x; Y") xx Spec(k()) is X(C) xx ) Y(€)-

By ([B2), the cohomology of K (1$*,n) with coefficients in A is the same as the
cohomology of K (u$*,n) x5 Spec(k(¢)) with coefficients in F,. The Breen-Jardine
result, Theorem 2.1} shows that this is H} (k(C), Fe) @ Hy,, (Ky). O

4. MAY’S ADJOINT CONSTRUCTION

A somewhat different approach to constructing cohomology operations was given
by Peter May in [M]. Because we will need May’s version of Kudo’s Theorem (in
Theorem below), we need to know how the two constructions compare.

First, we need a chain level version of the Steenrod-Epstein function

m.P: H"(X,A) — H™(X, A)

used in (L8) to define P* when A is a sheaf of commutative algebras. Fix an
injective resolution A =+ I'* (in Sh), an injective resolution A®¢ =5 [®¢ =, J*
in the category Sh, of m-equivariant sheaves, and an injective resolution I®¢ =5 J p
in the category Shg, of Se-equivariant sheaves, as in Section [

The multiplication map m : A®* — A is equivariant for both the action of
S, and its subgroup m on A®‘. As we observed in the proof of Theorem [L5]
A — Tot(W* @ I*) is an injective resolution in Sh,. The comparison theorem lifts
the resolution A®* — J* to an equivariant map J* — Tot(W* ®I*) over A®* — A;
taking sections over X yields a map J*(X) — Tot(W* ® I'*(X)), natural in X.
This induces an equivariant map of complexes of m-sheaves

My s 190 =5 J* = Tot(W* @ I*).
Consider the isomorphism 7 : W* ® I'* — Hom(W,, I'*), defined on sections by
nw(f @z)(w) = () fw)e,  feW weW.,zel"(U).

If {w), € W*} is the dual basis for {e; € W} we have n(w;®@z)(ex) = (—1)*1%15;4 z.
The composition nm, sends I%¢ to Hom(W,, I*). Tt is the (signed) adjoint

(4.1) 0:W, oI I

of the map nm,(X) which forms the basis for May’s approach; see [M} 2.1]. In
this approach, we fix a projective resolution of Fy as an Sy;-module, V, — Fy, and
a m-equivariant map j : W, — Vi over Fy.

Similarly, suppose that K is a sheaf of bounded below, homotopy associative dg
algebras, and K — I is an injective replacement (so that a lift I ® I — I gives I
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the structure of a homotopy associative dg algebra). Given a m-equivariant map
m : K® — Hom(W,, K), the comparison theorem lifts

K%t 2 Hom(W,,K) — Hom(W,,I)

to an equivariant map m, : I®¢ — Hom(W.,, I), whose adjoint is again a map 6 of
the form given in ({I]).

Definition 4.2. Suppose that K is a sheaf of homotopy associative dg Fy-algebras
on some site and 6 : W, ® K®¢ — K is a morphism of complexes in Sh,. We say
that (KC,0) is suitable if (i) the restriction of 6 to K®¢ = Fy{eo} ® K¢ is chain
homotopic to the iterated product X®¢ — K (in some order) and (ii) 6 is chain
homotopic to a composite

W, @ K& 2, v, @ k& 25 K,

where ¢ is the restriction to Sh, of a morphism of complexes in Shg,.

A morphism of suitable pairs (K,6) — (K’,0') is a morphism f : K — K’ for
which f6 is chain homotopic (over Fy[r]) to 6'(1® f®¢). It is a perfect morphism if
f0 =01 f). May writes C(m, 00, F;) for the category of suitable pairs.

Taking sections over X, the pair (K(X),0x) satisfies May’s axioms in [M] 2.1],
where 0x is the induced map W, ® K(X)®* — W, ® K¥(X) - K(X). If fisa
(perfect) morphism, then for any X, fx :K(X) — K'(X) is a (perfect) morphism
in the sense of [M] 2.1].

Remark 4.2.1. If A is any commutative ring, Definition makes sense for any
sheaf of homotopy associative dg A-algebras; we say that (K, 6) is suitable for A.
Following [M| p.161], we say that a suitable (K, 0) is reduced if it is obtained by
reduction mod ¢ from a pair (K 6) which is suitable for Z/¢?, such that K isa
flat Z/¢?>-module. Since 0 — K — K — K — 0 is an exact sequence of chain
complexes, this data suffices to yield a Bockstein 8 : HY (K) — H"*1(K).

Example 4.3. Let C be an acyclic operad of dg vector spaces over Fy,. Then we
may take V., = C(¢), since it is a resolution of Fy. If C acts on K, K is homotopy
associative, and 6 is the composition of j ® 1 : W, ® K®¢ — C(¢) ® K®* with the
structure map C(£) ® K®¢ — K, then (K, 6) is a suitable pair.

Definition 4.4 (May). Suppose that (1, 6) is suitable, and set K = IC(X). Define
the function DM : K™ — K™~=F by the formula

D (u) = 0(ey, @ u®"),
and define the Steenrod operations Pg, : H"(K) — H"*2¢(=V(K) (and Q%,) b
Pir(u) = (=1)"vaD{y _gay—1y(w) and  Qf(u) = (=1)*vn D} _ga)r—1y_1(u)

(see M| pp.162,182]; May’s v(—n) is our v,). As with Epstein’s construction,
Pf, = 0 when n < 2a, and Q}, = 0 when n < 2a. May notes in [M, 2.3-2.5]
that the DM and hence the P{,, Q%, are additive and functorial for morphisms of
suitable pairs.

These operations are natural in X, because for every morphism f:Y — X in
the site, the restriction f* : K(X) — K(Y) gives a perfect morphism (K(X),0x) —
(K(Y),0y) of objects in the sense of [M] 2.1].
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A morphism of suitable pairs (K,0) — (K’,60') induces a map H"K(X) —
H"K'(X) compatible with the operations P§, on H"K(X) and the correspond-
ing operations P§; on H"K'(X) in the sense that Pg, f* = f*P§,. This follows
from [M], 3.1(iii)].

Lemma 4.4.1. If (K, 0) is reduced, then Q%; = 8 P§;, where ( is the Bockstein.

Proof. The proof of [M| 2.3(v)] applies; it suffices to show that SDs; = Da;_;.
Given u in K™ with d(u) = 0, lift u to @ € K™ and let b be such that d(i) = £b,
so B(u) = b. Since d(a®*) = N({b® a®* '), where N = Y {0 € 7} and 63 = 36,
May’s calculation in W, @ K®¢ [M p.163] goes through to show that

BDsi(u) = 65(ez; ® u®€) =0 (621;1 ® u®€) = Ds;_1(u) modulo boundaries. O

Lemma 4.5. If A is a sheaf of commutative dg Fy-algebras, A — I is an injective
resolution, and 6 is as in [@Il), the pair (I,60) is suitable. Hence this data yields
cohomology operations Py, : H"(X, A) — H"+2¢=0 (X A), natural in X.

Proof. By Remark [LG.1], I is a sheaf of homotopy associative dg algebras. By
construction, the restriction of @ to I®* = Wy ® I® is chain homotopic to the given
map I® — I. To see that axiom EZ(ii) is satisfied, set V* = Hom(V,,F,) and
note that, by the proof of Theorem [[5] A — Tot(V* ® I) is an injective resolution
in Shg,. The construction before Definition [[7] yields a map mg : I®¢ -~ Js —
V*® I whose adjoint V, ® I®¢ — I is ¢. The comparison theorem for Sh, provides
a lift Jg — J over I®¢ such that the map

190 ™% Hom(V,, ) 2 Hom(W,,I)

is chain homotopic over Fy[n] to the map m,, as required. The final assertion
follows because H*(X,A) = H*I(X). O

In fact, the operations Py, are independent of the choice of resolution A =T,
this follows from the following lemma, whose proof is the same as the proof of
Lemma L5 with A replaced by K. (See the discussion before Definition 2])

Lemma 4.5.1. Let (IC,00) be a suitable pair, where KC is a sheaf of bounded below,
homotopy associative dg Fe-algebras. If n: K — I is an injective replacement and
0 is the map of (1), then the pair (I,0) is suitable, and n is a perfect morphism
(K,00) = (I,0) of suitable pairs.

The sign differences in the formulas for P* and Pj, (and for Q* and Q%) are
explained by the following calculation.

Proposition 4.6. For u in H"(X,A), DM = (-1)kDy.

Proof. Consider the isomorphism ¢ : W* ® I*(X) — Hom(W,, I*(X)), defined
above. The adjoint 8 of ¢ m, is the composite

W, @ I(X)® = 1(X)® @ W, 2% Hom(W,, I(X)) @ W. - I(X),
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where the first map is the signed symmetry isomorphism and 7 is evaluation. We
now compute that

DM (u) = (e, @ u®Y) = (—1)ky (qb[mﬁ(u@é)] ® ex)
(1 (0[S wy © Dy(w)] @ )
(1 3 9l © Dy )] (e

= (C)F 1D ) = (<1 D(w). O

Recall that Epstein’s operations P* and Q® are defined in (L&) and Remark
81

Corollary 4.7. May’s operations Py, and Q%, coincide with Epstein’s P* and Q“

Lemma 4.8. Set m = (¢ —1)/2. Then for each u € I"(X):

(i) dP%(u) = P*(du) and dQ*(u) = —Q%(du); and

(ii) if w is a cocycle representing x € H™(X,A), then P*(u) and Q%(u) are
cocycles representing P*(x) and Q%(x), respectively.

Proof. In Theorem 3.1 of [M], May shows that (i) dP{, (u) = P§,(du) and dQ%,(u) =
—Q%(du), and (ii) if v is a cocycle representing x € H" (X, A), then P§,(u) and
Q5 (u) are cocycles representing Py (z) and Q9,(x). The result is immediate from
Corollary €71 O

Let G = 77 denote a Sylow £-subgroup of Sy2. Then there is a free Fy[G]-
module resolution W, @ W®¢ — F,. If 'V, — F, is a projective resolution of F, as
an Syp2-module, then there is a G-module morphism o : W, @ W®¢ — 'V, over F,.

Definition 4.9. Following [M] 4.1], we say that a suitable (K, 0) is an Adem object
if there is an Sj2-equivariant morphism 'V, ® K2 — K whose composition with
o ® 1 is G-homotopic to

(W, ® W) 0 K& =~ W, ® (W, © K292 225 w, o 1o % k.

May proves in [M| 4.7] that the P® satisfy the Adem relations whenever (K, 6) is
an Adem object.

Example 4.9.1. Given A — I, A®* — Tot('V* ® I) is an injective resolution
in Shs,,, and we get an Spz-equivariant map %0 Hom('V,, I) whose adjoint
'V, ® I®Y — T makes (I,6) into an Adem object. We omit the routine details.

Similarly, if (1C, 6y) is an Adem object, X — I an injective replacement, and (I, 6)
is as in Lemma 5.1} then the map 'V, ® K2 — K — I lifts to an Sjz-equivariant
map 'V, ® % I; this map makes (7, #) into an Adem object. Again, we omit
the routine details.

Definition 4.10. If (K,6;1) and (Ks,0s2) are suitable pairs, the tensor product
(K1 ® Ka,61 ® 05) is also a suitable pair, where 6; ® 65 is described in [M] 2.1].

A suitable pair (K,0) is a Cartan object if the product (K @ K,0 ® 6) — (K, 6)
is a morphism of suitable pairs.

Example 4.10.1. If A is a sheaf of commutative algebras, then so is A ® A, and
the product A ® A — A makes A into a Cartan object. If A —= I is an injective
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resolution, then the pair (I,6) of Lemma is also a Cartan object, because
the two morphisms W, ® (I ® I)®* — I are isomorphic to the two morphisms
W, ® (A® A)® — A in the derived category and (because I is a bounded below
complex of injectives) therefore chain homotopic.

For exactly the same reasons, if (KC,6y) is a Cartan object and K — I is an
injective replacement, then so is (I, 6).

5. OPERADS AND OPERATIONS

In [MI], May gave a different approach to power operations in sheaf cohomology.
In this section, we give a short discussion of this approach.

Let Z denote the Filenberg-Zilber operad in the category of Fy-modules, defined
by Hinich and Schechtman in [HS]. By an action of Z on a cochain complex of
sheaves C' we mean a collection of sheaf morphisms

Z(n)®C®" — C

satisfying appropriate equivariance, associativity, and unit axioms. The choice of
an element m € Z(2) determines a product C®? — C and makes C into a homotopy
associative dg algebra. Because each Z(n) is an acyclic complex of Fy[S,,]-modules,
we have quasi-isomorphisms W, — Z(f) and 'V, — Z(£?). We thus have a
natural map

6:W,C% = Z(l) @ C®" — C.

Lemma 5.1. If Z acts on a cochain complex C, then (C,6) is a suitable pair in
the sense of Definition B2l It is also an Adem and a Cartan object (Definitions
and E10).

Proof. This is an exercise in the axioms of operads, left to the reader. The axiom
about Z(¢) ® Z(£)®* — Z(£2) is used to show (C,6) is an Adem object, and the
axiom about Z(2) ® Z(£)®? — Z(2() is used to show it is a Cartan object. O

Example 5.2. Let F*F denote the Godement resolution of a sheaf F. Since every
skyscraper sheaf of Fy-modules is an injective sheaf, this is an injective resolution of
F. If A is any sheaf of commutative Fy-algebras, the results of Section [ apply. Al-
ternatively, Hinich and Schechtman showed in [HS| that Z acts on F*A, so (F*A, 0)
is not only suitable but is both an Adem and a Cartan object by the lemma above.

By Lemmal[LH] this data provides cohomology operations P* on H*(X, A), natu-
ral in X. Of course, this construction is little more than a reinterpretation of May’s
procedure (in Theorem 4.8 of [MI]), where he shows that the Eilenberg-Zilber op-
erad acts on the sections F*A(X), giving cohomology operations.

Remark 5.3. If A is a sheaf of étale algebras, the direct image a.(F*A) is also
a complex of injective Nisnevich sheaves. However, although the operad Z acts
on the good truncations 7<%, (F*A), it only acts up to homotopy on an injective
replacement, such as the complex I;5 of Corollary [6.4] below. Thus one needs to
take care when using this approach to construct motivic cohomology operations in
the next section.
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6. MOTIVIC STEENROD OPERATIONS

In this section we construct operations P* on the motivic cohomology groups
H™(X) = H™(X,Fy), n > 2a, compatible with the operations P® in étale coho-
mology (defined in Theorem [[3]) in the sense that there are commutative diagrams

H"’i(X, Fy) P_a> Hn+2a(£71),i£(X’ F,)

(6.1) l l

HE (X, 1) —E HIPD (X, a8,

Let a, denote the direct image functor from the étale site to the Nisnevich site.
If A is any étale sheaf, then we may regard Ra, A as a complex of Nisnevich sheaves
such that H} (X, Ra,A) = Hi (X, A). If A — I is an injective resolution, then
a, I is a complex of injective Nisnevich sheaves representing Ro, A.

Let 7<*A denote the good truncation of A in cohomological degrees at most
H"™(75'A) is H"(A) for i < n and zero for n > i (cf. [WH, 1.2.7]). If B® = 0 for
n < 0, there is a natural transformation (75'A) ® B — 75/(A ® B).

The following theorem, due to Voevodsky and Rost, is sometimes known as the
Beilinson Conjecture; it is equivalent to the Norm Residue Theorem; see [SV], [W],

[V4l 6.17], or [HW] Thm. C].

Norm Residue Theorem 6.2. For any field of characteristic # {, the canonical
map Fe(i) — 7'51}304*/128Z is a quasi-isomorphism of complezes of Nisnevich sheaves
on the category of smooth simplicial schemes. Hence for any X we have

H™(X,F,) = HE (X, 75 Ra ).

nis

In particular, if n < i, then H™*(X,F;) = H" (X, u®i).

We apply the above constructlons to the étale sheaf of dg algebras A = ;- 0 M .
Choose injective resolutions u * — I(i) and write I for the complex of étale sheaves
@2, I(i). Then A1 is an injective resolution; by Remark [[G.1] I is an étale
sheaf of homotopy-associative graded dg algebras, and (7, ) is suitable by Lemma

Now consider the Nisnevich sheaf of dg algebras «.. /. Using the natural trans-
formation (a,1)®* — a,(I®%), we obtain a map a6 : W, ® (a,I)®* — a.I such
that (aul,a.0) is suitable in the sense of Definition It is also clear that
(s I(X),.0x) is both an Adem object and a Cartan object, natural in X (see
Examples 2.1 and ET0T]).

Of course, nothing new has happened; for each X we have o, J(X) = I(X) and
(a.0)x = Ox by the definition of direct image, so the resulting cohomology opera-
tions on H*a,. [(X) = HZ (X, ud*) are the same as those constructed in Definition
€4 and hence (by Corollary 7)) are the same as those in Theorem [[3]

We now consider the effect of truncation. If = @3-, K; is a sheaf of (homotopy
associative) graded dg algebras, set 7K = @ 7='K;. The products

TG, @ TSP, = TSR (K, @ Ky) = 7SRRI L,

make 7K a sheaf of (homotopy associative) graded dg algebras. If (K, 0) is suitable
(Definition 2)) and > i, = n, the component maps

W, ® ®r_ TEK,) = TS W e QK)o TS,
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assemble to define a map W, ® (7K)®¢ — 7K we shall call 70.

Lemma 6.3. If (K, 0) is suitable, then so is (TKC,70), and 7K — K defines a perfect
morphism of suitable pairs.
If (K,0) is an Adem object (resp., a Cartan object), so is (7K, 76).

Proof. Axiom (i) is trivial, and axiom (ii) follows from the commutative diagram

W2 Qi (T57 ;) — 192 QK,)

¥ 1j Nk
V, 0@, (rS0K,) - S (V.o®K,) - Sk,
The final two assertions are easily verified using similar diagrams. ]

Example 6.3.1. When K = o, ] = @ «.I(i), we see that (7 a.l,76) is suitable,
where T a,l = @ 7=4(i). Since (a.l,6) is both an Adem object and a Cartan
object, so is (T a1, 70).

Because each a,I(i)" is an injective Nisnevich sheaf and the sheaf Z¢(c.I(i))
of i-cycles has an injective resolution starting with a, (i), 75, I(i) is quasi-
isomorphic to a chain complex I(#)%;, of injective Nisnevich sheaves on X with
I(i)% = a. (i)™ for n < i, and I(i)ns represents 7<'Ro, u’’. By Theorem B2
H™'(X,F,) is the nth cohomology of the cochain complex I(4)%(X).

By Remark [LGT] Iis = @ I(i)nis is a Nisnevich sheaf of homotopy-associative
dg algebras, and the products I(i)niS®I(j)niS — I(i4J)nis, representing the pairings

TS Ra,pu$t @ TSjRCk*/L — 75 Ra, u®”]

induce the product in motivic cohomology by [SV] 7.1].

Corollary 6.4. The pair (ILns, 0') is suitable and is both an Adem and a Cartan
object. In addition, Ta I — Inis defines a perfect morphism (tau I, 70) = (Inis, 0').

Proof. By Example 631 (ra..1,76) is suitable and both an Adem and a Cartan
object. By Lemma 5T (Ip,0") is suitable, and 7 is a perfect morphism. As
observed in Examples 0.1 and EI01] (I, 6’) is both an Adem and a Cartan
object. O

Remark 6.4.1. By the comparison theorem, 7o, — .l lifts to a morphism f :
ILis — a.l. We will see in Lemma, that f defines a morphism of suitable pairs
(Liis, 0") — (a1, a,0).

Recall that H™*(X,F,) = H" (X, F(i )) By the Norm Residue Theorem [6.2]

@Hnl X IFZ @ m:, nls) - Hn[nis(X)-
Definition L4l applied to (Ips, 8’), ylelds operations P* and Q% on the cohomology
of Iis(X), sending @, H™*(X) to @, HY*(X) and @; H¥*1¥#(X). By con-
struction, these operations multiply the weight ¢ by £. We shall now formalize this
observation.

Definition 6.5 (P®). The motivic cohomology operations are the operations
P*: H™(X) = HY(X) and Q“:H™(X)— HV*'(X),

N =n+2a(f—1), defined by the suitable pair (I, 6’) of Corollary [6.4] using the
identification of H™#(X) with H" I,is(X). If n < 2a, we define P* = 0.
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If ¢ = 2, we write S¢?¢ for P% and Sq¢?*! for BP%, so that Sq® takes H™!(X)
to H"T%2(X). If n < a, then Sq® is zero on H™(X).
By Lemma [£.3] these operations are natural in X.

Remark 6.5.1. These motivic cohomology operations are almost surely the opera-
tions defined by Kriz and May in [KM| 1.7.2] and by Joshua in [Jol §8]; compare
with [BJ].

Lemma 6.6. The motivic cohomology operations P* and Q% are compatible with
the étale cohomology operations P* and Q% in the sense that the diagram (G.I)
commutes.

Proof. We need to show that f@’ is chain homotopic to (c.6)(1 ® f®¢). Consider
the following diagram of complexes in Sh.

®¢ (4
W, ® (ra.])® 22 W, @ 1% 220 W, ® (e, 1)

nis

lfa*é lg’ loz*Q

rad <, . I a1

By Lemma 6.3, the bottom composite 7o, — .l defines a perfect morphism
of suitable pairs, meaning that the outer square commutes (see Definition F2)).
By Corollary 6.4, € : T, ] — I;s defines a perfect morphism of suitable pairs,
meaning that the left square commutes. Because € is a quasi-isomorphism, so is
1 ® €®¢, by Lemma It follows that the right square commutes in the derived
category. Because ./ is a bounded below complex of injectives, this implies that
the right square commutes up to chain homotopy equivalence; see [WH| 10.4.7]. O

Remark 6.6.1. It is an easy exercise to show that the motivic and étale Bockstein
operations are compatible, using TSZ;L?;’. We omit the details.

7. MOTIVIC FORMULAS

We now show that the motivic cohomology operations P® of Definition enjoy
familiar properties.

Proposition 7.1. If u € H*(X), then P"(u) = u’.
Proof. This is [M], 2.4]. O

We now turn to the Adem relations. Recall that by convention (Z) is zero if
k < 0. Thus the sums below run over ¢ < a/Y.

Theorem 7.2 (Adem relations). If ¢ > 2 and a < b¢, then

pip =% (—1)a+t<(€_ Ls = 1) patspt,

a—tl
s+t=b

“BP’ = —1)ett (€—=1)s atspt | [ 1\a+t (l—1)s—1 a+s g pt
pPpp _s.%;b( 1)+<a_te>ﬁP Pr+ ( 1)+<a_w_1)313 8P

If £ =2 and a < 2b, then

s—1
Sq*Sq® = Z (a— 2t> Sq*t5Sq".

s+t=b
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Proof. By Corollary 6.4l (I,s,6’) is an Adem object. As noted in [M] 4.7] (see
Definition [L9)), this implies that the P* and Q® satisfy the Adem relations. We
have replaced Q® by SP? (using Theorem [RTT]) for the sake of familiarity. O

Bistable Operations 7.3. In [V1], Voevodsky defines (bistable) cohomology op-
erations P& on H™'(—, ;) of bidegree (2a(¢ — 1), a(¢ —1)). These satisfy Pdz =z
for all z, Ptz = z* for x € H**%(X,Fy), and P¢ =0on H™' ifi <aandn < i+a;
the usual Adem relations hold when ¢ > 2. The cohomological degrees of P* and
Py are the same, namely 2a(¢ — 1), but the weights differ if a # i: if a < 4, then
Py, has lower weight, but if @ > 4, then P* has lower weight.

When ¢ = 2, Voevodsky’s operations SqZ’ have bidegree(2i,i) and Sq21+1 =
BSg*. They satisfy a modified Cartan formula [VI, 9.7] which differs from our
Cartan formula (Theorem [[4]) by the presence of a factor of [(] in some terms.

Remark 7.3.1. Brosnan and Joshua have observed in [BJl, 2.1] and [BJ1l 1.1(iii)] that
the motivic-to-étale map sends Py} to P* and S¢qi- to Sq®. The key is to observe that
Voevodsky’s total power operation [V1l 5.3] is compatible with Epstein’s reduced
power map (Definition [[7] above).

Theorem 7.4 (Cartan formula). Let w € H™(X) and v € H™I(Y). Then in
H*UHDYX xY) we have

“(uUw) Z P*(u) U Pt(v), > 2,
s+t=a

and Sq*(uUv) =3 ., Sq°(u) USq"(v) when £ = 2. There is a similar formula
for Q*(uUw).

Proof. By Corollary [6.4], (Ip,;s,8’) is a Cartan object (Definition Z10). The formula
now follows from [Ml 2.7] (for both P% and Q%). O

Cohomology operations on H™? are easy to describe because of the following
characterization. Recall that myX denotes the set of connected components of a
scheme X; if X, is a simplicial scheme, 7y X, denotes the simplicial set n — mo(X,,).

Lemma 7.5. Let A be any abelian group. If X, is a smooth simplicial scheme, the
motivic cohomology ring H*°(X,, A) is isomorphic to the topological cohomology
ring Hy,,(moX., A) of the simplicial set mo X,.

Proof. For smooth connected X we have H™%(X, A) = H" (X, A) =0 for n > 0
and H%?(X,A) = A, almost by definition; see [MVW], 3.4]. Hence the spectral
sequence E}'? = H%(X,, A) = HPT909(X) degenerates to the cohomology of the
chain complex Hom(myX,, A), which is Ht*op(on,, A). For a simplicial set K such
as mpX,, the construction of the product in motivic cohomology [MVW]| 3.11] shows
that Hy, (K) = H*°(K) is an isomorphism of rings. O

Any simplicial set X = X, may be regarded as a discrete simplicial scheme; in
degree n it is the disjoint union of copies of Spec(k), indexed by X,

Theorem 7.6. For any simplicial set X, there is a natural isomorphism

H**(k,Fo) @ Hi o (X, Fe) 2 H** (k,Fo) @ H**(X,Fy) — H**(X,Fy).
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Proof. By Lemma [L5, H, (X,F;) = H*°(X,F;). Thus the map exists and is
natural in X by the above remarks. It is an isomorphism for spheres by [V1 (2.7)].
If X denotes the i-skeleton of X, the cone C; of X(~1 — X is a bouquet of
i-spheres, and the map is compatible with the exact sequence

- H™M(C,Fy) — HY(X W, Fy) — HY(XDFy) -
of [V2| Lemma 8.2]. The result now follows by induction on i. O
Applying this to the classifying space K, for simplicial cohomology, we obtain:

Corollary 7.7. The ring of motivic cohomology operations on H™°(—,F,) is iso-
morphic to H**(k,Fo)QH (K,) = H**(K,,Fy) as a free left H**(k,F;)-module.

top

If K is a simplicial set, the isomorphism H*°(K,F,) = H;;, (K,F;) is compatible

with the action of the P!. This is clear from Lemma and Example

Example 7.7.1. Let A! denote the simplicial 1-simplex and let s € HMO(A 9A!)
be the generator. By the above comparison with topology, PY(s) = s. By definition,
P*(s) =0 for a > 0.

Recall that the simplicial suspension SX of a pointed simplicial scheme X is
again a simplicial scheme. Multiplication by the element s of Example[Z.7.I]induces
a canonical isomorphism H™(X,F;) —s H"*%(SX,F,). (Compare to Lemmas
1.2 and 2.1 of [SE].)

Proposition 7.8. The motivic operations P* and Q% are simplicially stable in
the sense that they commute with simplicial suspension: there are commutative
diagrams for all X, n, and i, with N =n + 2a(¢ — 1), the diagram for P* being

Hn,z(X) pe , HN,M(X)

Hrhi(gx) —2y gN+Lit(gx).
Proof. By the Cartan formula Theorem [[4, P%(sz) = P%(s)P%(z) = s- P%(z). O

Recall from [VI] that although each H™'(—,F,) is defined as a contravariant
functor on the category of smooth simplicial schemes, it is homotopy invariant and
factors through the pointed motivic homotopy category Ho,. It is an elementary
observation that any natural transformation between homotopy invariant functors,
defined on the category of smooth simplicial schemes, must factor through Ho,. In
particular, cohomology operations H™*(—,F,) — HP9(—,F;) may be regarded as
natural transformations between functors defined on Ho,.

Example 7.9. The classifying space K = K(Fy(i),n) for H™*(—,F,) is an object
of Ho,; as observed in [VI p.3] we have H™!(X,F,) = Homy,, (X1, K). By the
Yoneda Lemma, cohomology operations H™¢(—,F,) — H?9(—,F,) correspond to
elements of HP4(K,Fy). For example, under the map from H?? = HP9(k,F;) to
HP4(K,Fy) induced by the structure map K — Spec(k), ¢ € HP'? corresponds
to the constant operation sending every element of H™*(X,[F,) to the image of ¢
in HP9(X,Fy). Similarly, the canonical class « € H™*(K,F;) corresponds to the
identity operation.
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If n > 4, we see from [V3| 3.27] that the summands of the motive Fy, (K)
having smallest weight or degree are Fy(i)[n] and Fy(i)[n+ 1]. It follows that every
cohomology operation H™? — HP'? with p < n + 1 is an F,-linear combination of
the Bockstein, the identity, and constant operations. More precisely:

(a) if p < n, then HP*(K) = HP>*, corresponding to constant operations;

(b) H»*(K) = H%* -1 H™*, with (b, ¢) corresponding to the operation ¢(z) =
bx + ¢;

(c) HL*(K) =2 HO* - B(1) @ HY* -1 @ H*L* | with (a, b, c) corresponding to
the operation ¢(z) = aB(z) + bx + c.

If n < 4, this is no longer the case. In Example below, we show that
there is a weight-reducing operation H?(—,F,) — H?>!(—,F,) for all k and a
weight-preserving operation H?(—,F;) — H>2(—,F;) for most k. For another
example, suppose that ¢ € k and n < i. Then cupping with [(] € HY!(k,Fy) is
an isomorphism by Theorem [6:2} its inverse (defined when n < 4) is an operation
H™ (=, Fp) — HY (=, Fy).

8. RELATION TO PERIODICITY

Sometimes we can deduce motivic operations from étale operations. For example,
if n < (and hence n < if), then the diagram (6.1]) allows us to identify the motivic
operation P : H™(X) — H™"(X) with the étale operation P : H (X, ") =
HI (X, ,u?”) and thus conclude that P° is an isomorphism in this range. The
same reasoning, using the Norm Residue Theorem [6.2] shows that if n < ¢ and
n + 2a(¢ — 1) < if, the motivic and étale operations P* agree on H™!(X) =
HZ (X, pu$") and also agree with b(—®)=1/dpa where b € H*%(k) is defined as
follows.

Fix a primitive ¢th root of unity, ¢, in an extension field of k; this choice
determines a generator [¢] of H(k(C),ue). If [k(¢) : k] = d, then H%(k) =
HY (k, uP) = HY (K, F,), and the element [¢]¢ = [(®?] descends to a “periodicity”
element b in H%¢(k). By abuse of notation, if d|m we write [(]™ for the element
bm/d of HO™ (k). (If d = 1, then b = [¢].)

Note that multiplication by b is a map from H™(X) to H™*+4(X); by the Norm
Residue Theorem [6.2] it is an isomorphism when 7 > n. By construction, this is
the map in cohomology induced by the change-of-truncation map

(8.1) Fo(i) = 75 Rauul’ — 75 R pu* =2 Fy(i + d)
associated to the isomorphism of étale sheaves ,u?i — u?”d sending the generator

¢®% to the generator (®+9,
Write H™(X)[1/b] for the colimit of

Hn,i(X) i> Hn,i-‘rd(X) i> i> H%H‘jd(X) i> e

From the diagram

H™(X) b, gritd(x) b ogmeitid(x) Py

| l !

HE (X i) —= HL(X, ) —S R (X, )

we obtain a natural transformation from H™*(X)[1/b] to HZ (X, u$").
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We can formulate this in the motivic derived category DM, using the étale-to-
Nisnevich change of topology map a. Recall from [MVW] 10.2] that HZ (X, u5")
is isomorphic to

HOIIIDJMet (Q*ngtrX, ]Fg(l)[n]) = HOHID]V[(F“rX, Ra*ui,@l)

The map Fy(i) = 75'Ra,uf’ — Rl is compatible with the map Fo(i) —

Fe(i 4+ d) — Ra.u$™™, so it factors through a map Fy(i)[1/b] — Ra.puy’, where
Fy(i)[1/b] denotes the (homotopy) colimit in DM of

Fo(i) —2 Foli + d) —2 Foli +2d) — -+ 5 Fo(i + jd) —2 -+ .
The following calculation is originally due to Levine [LJ.

Theorem 8.2. For each i, Fy(i)[1/b] — Ra.u$" is an isomorphism in DM.
For X smooth and all n, H™(X)[1/b] — HZ(X,pu$") is an isomorphism.

Proof. Any complex C' is the homotopy colimit of the change-of-truncation maps
TSMC — rSMHLC. For C = Ra*pi,@i, this yields the first assertion. The second
assertion is an immediate consequence of this and the fact that Fy (. X is a compact
object in DM, so Homp s (Fe X, —) commutes with homotopy colimits. O

Our next goal is to cornp.eure'P0 to the cohomology of the change-of-truncation
map 7S Ra, = 7S¥ Rl of (B).

Lemma 8.3. The Frobenius map Fy(i) N Fy(il) in motivic cohomology is chain
homotopic to the change-of-truncation map

Fo(i) = 75" Rau i’ — 75" Ronpl" =2 Fy(il).
The Frobenius H™(X) 2, H™*(X) is multiplication by b*(¢=1/d = [¢®i(¢-1)],

Proof. The Frobenius endomorphism is the identity on the étale sheaf of rings
A= @?:O ug@, so if we fix 7 and an injective replacement uZ@Z — I, the Frobenius
on %@Z lifts to a map f; : I — I which is chain homotopic to the identity. Since the
product in motivic cohomology is induced from the product on Ro, u?z = a. 1, the
Frobenius in motivic cohomology is represented by the good truncation in degrees
at most ¢ of the composite 7<%an ] C a, L) a,I. Since good truncation preserves

chain homotopy, it is chain homotopic to the canonical map 7<%a, I C 7<%a, 1.
The final assertion follows from (&I]). O

Proposition 8.4. The map P°: H™*(X) — H™*(X) is multiplication by b**=1/4
Equivalently, P° is the cohomology of the change-of-truncation map

TS Ra ) — TSzZRa*uZ@Z.

Proof. Recall that the Godement resolution F — S*(F) is a functorial simplicial
resolution of any sheaf F by flasque sheaves. Letting S; denote the total com-
plex of the Godement resolution of TSiRa*,uZ@i, it follows that the product on
D r=~'Ra, ﬂ?i induces a Aproduct pairing S;" ® S7' — Sy ; for all n. In particular,
the Frobenius on Roz*uZ@z induces a map S;* — SJ}.

In [El 11.1], Epstein shows that the Godement resolution satisfies the conditions
of his Section 8. By functoriality, the equivariant map (Ra*u?i)‘w — Ra*,u?ie
constructed after Theorem lifts to an equivariant map (S;)®¢ — S3,. This is
the analogue of [El 8.3.2] and is exactly what we need in order for the proof of
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[E, 8.3.4] to work. Thus if we represent v € H™(X) by a cocycle u in the algebra
HOY(X,8™), then PY% is represented by the element u’ of H°(X,S™). Therefore P°
is represented by the Frobenius. (|

Example 8.4.1. Recall that b € H%¢(k). Since P°(b) = b* (by Proposition B4,
the Cartan formula Theorem [T yields P?(bz) = b°P?(x).

Recall from [V3| 2.60] that a split proper Tate motive is a direct sum of Tate
motives F;(i)[2¢ + j] with j > 0. If the weights i are at least n, then we say the
motive has weight > n. Note that the cohomology of F,(7)[2i + j] is a free bigraded
H**-module of rank 1 with a generator in bidegree (2i + j,1).

It follows that we have a Kiinneth formula (see [W), 4.1]): if F/ ¢, (Y) is a split
proper Tate motive, then H**(Y") is a free bigraded H**-module, and

(8.5) H**(X xY) 2 H**(X) @y~ H**(Y).

Example 8.6. Let K = K(F(i),n) be the Eilenberg-Mac Lane space classifying
H™ (=, Fy); if n > 2i > 0, then M = Fy,(K) is a split proper Tate motive of
weight > 4, by [V3] 3.28]. It follows that H**(K®P) is the p-fold tensor product of
H**(K) with itself over H**.

Recall from [MVW] 3.1] that F,(:)[¢] is represented by the abelian presheaf
Fo:(G)Y), so Fy(i)[n] is represented by the simplicial abelian presheaf associated
to Fy ¢ (GAY)[n — i] when n > 4. From the adjunction

Homp,, (X, ulFy(i)[n]) = Homp s (Fe i (X), Fe(i)[n]) = H™(X)

(see Example [Z.9)) we see that the classifying space K (F(i),n) of H™*(—,F,) is the
simplicial abelian presheaf G = ulFy()[n] underlying F,(i)[n]; see [V3] p.5].

Lemma 8.7. IfF,..(Y) is a split proper Tate motive, then multiplication by b° is
an injection from HP4(Y,Fy) into HP 9+ (Y ;) and hence into HP(Y,Fy)[1/b].

Proof. Tt suffices to consider Fy ¢, (Y") = F(i)[2i+j]. There is no harm in increasing
e so that (¢ — 1)|de. Set p’ = p—2i—j and ¢ = g — 4. Since H**(Y) is a free
H**(k)-module of rank 1, the assertion for H?*?(Y") amounts to the assertion that
either H? ' (k) = 0 (and injectivity is obvious) or else 0 < p’ < ¢’ and H?" 9 (k) =
Hgt/ (k,ufq/). In the latter case, we also have HP'' +de (k) =~ Hft’(k,u?qurde), and
the isomorphism is induced from the isomorphism ,u?q/ = u?q/+de. O

In the next proposition, we write K for K (F,(i),n). For each p and ¢, there is a
canonical map H?Y(K,F,) — HEY (K, u?q). It sends the motivic operations P* of
Definition to the étale operations P® of Theorem [I.3

Proposition 8.8. If n > 2i, the canonical map is an injection, from the set
HP(K,Fy) of motivic cohomology operations H™' — HP4 to the set HY (K, u?)
of étale cohomology operations HZ(—, u$") — HE(—, ud9).

Proof. By the usual transfer argument, we may assume that ¢ € k. Let K denote
the Eilenberg-Mac Lane space classifying H™!(—, F). By Example B8, F/,(K) is
a split proper Tate motive. By Lemma 87 and Levine’s Theorem B2 HP9(K,F,)
injects into HP?(K,F,)[1/b] = HE (K, pu5?). Thus the group H?9(K,F,) of mo-
tivic cohomology operations injects into the group HZ (K, u?q) of étale cohomology
operations. ([l
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Corollary 8.9. Suppose that n > 2i and n > 2a. Then for v € H™*(X):
(1) Ifa <i, P*(x) = [(]O-=D U P (a).
(2) Ifa>i, Pe(e) = [@CD U Pa(a).

Proof (Cf. [BJ, Thm. 1.1]). The two sides have the same bidegree and agree with
P?(z) in étale cohomology by Lemma and Remark [.3.11 O

Corollary 8.10. Ifn > i and x € H*™, then Py (z) = [(]=DU=D yzt.

Proof. This is the case a = n of Corollary B9, as P"(x) = z* (Proposition[I1)). O
We can now show that the motivic Q% equals SP*.

Theorem 8.11. The motivic operations Q® on H™* satisfy Q* = SP°.

Proof. Set K = K (Fy(i),n), so that motivic cohomology operations H™® — HN:*
correspond to elements of H™*(K) (see Example [8.6). Now the identity on H™?
is represented by the canonical element ¢ of H™(K), and the motivic cohomol-
ogy operations Q% and SP® are represented by the elements Q%(¢) and SP*(¢) of
HN,M (K) .

We first consider Q°. The map H" ¥ (K) — HXTH(K, u$™) is an isomorphism
if n < i¢ by Theorem and is an injection if n > 2i by Proposition B8 By
Lemma and Remark [6.6.1] we have a commutative diagram:

. 0_pgpo .
H’n,l(K) Q" —BP Hn+1,z£ (K)

| ]

0
H (K, i) L0 I (K, ).
The bottom map is zero by Proposition B3l It follows that Q°(:) = BP°(:) in
H"tL#(K) and hence that Q° = B3P° as motivic cohomology operations.
Now suppose that a > 0, and set N =n+a(f — 1)+ 1. If n > 2i, we consider
the commutative diagram:

oK) L ENE)

| ]

n,i i QY—pP* i
HY (K ) 2 1 (K ).

The lower horizontal map is zero by Proposition B3l The right vertical map is
an injection by Proposition B8 because Fy 4, (K) is a split proper Tate motive
(by Example B8). It follows that Q%(:) = BP%(:) in HN*(K) and hence that
Q® = BP® as cohomology operations on H™".

If n < 24, we consider suspension S?K, where d = 2i — n. By Proposition [Z.8]
we have a commutative diagram with vertical isomorphisms:

Hn,i(K) Q*—pP* HN,M(K)

| |

H2 (S9K) QU -BP", HN (S ).

By the above argument, Q% = BP* on H*(SYK). It follows that Q® = SP on
H™(K) and hence as cohomology operations on H™". (|
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9. BOREL'S THEOREM

In order to go from H'* to H™*, we need a slight generalization of Borel’s the-
orem [McCl 6.21], one which accounts for the coefficient ring H** = H**(Speck).

Definition 9.1. Let H* be a graded-commutative F,-algebra. If W* is a graded
H*-algebra, an ¢-simple system of generators of W* over H* is a totally ordered set
of elements x; such that W* is a free left H*-module on the monomials xZ“ . 3:;';“‘,
where the ¢’s are in order and 0 < m,; < ¢ (with m; <1 if deg(x;) is odd).

Theorem 9.2. Let H* be a graded-commutative Fy-algebra with H® = F,, and
suppose that {EX*,d,} is a lst-quadrant spectral sequence of graded-commutative
H*-algebras converging to H*. Set V* = EQ*’0 and W* = Eg’*, and suppose that

(i) B3 2 W* gy« V* as algebras, and that

(ii) the H*-algebra W* has an {-simple system of generators {z;}, each of which
18 transgressive.

Then V* is the tensor product of H* and a free graded-commutative Fy-algebra
on generators y; = 7(x;) and (when £ # 2 and deg(z;) is even) z; = 7(y; ® xﬁfl).
(Here T is the transgression.)

Proof. The proof of Borel’s Theorem in [McCl 6.21] goes through. O

Let G be a simplicial sheaf of groups, such as Bu,. We use the bar construction
to form the bisimplicial classifying spaces B,G (with GP in simplicial degree p) of
a simplicial sheaf of groups G and E,G (with GP*! in simplicial degree p). We
write the canonical projection as E,G — B,G. The Leray spectral sequence
[Milnel, I11.1.18] becomes

(9.3) EPY = H?(B,G, Rir, A) = HP'(E,G, A).

Proposition 9.4. Suppose that G is a simplicial sheaf of groups on a site over k and
A is a sheaf of homotopy-associative dg Fy-algebras satisfying H°(G, A) = HO(k, A)
as well as the Kinneth condition that

H*(U, A) @ =52y H* (G, A) = H*(U x G, A)

is an isomorphism for all U in the site of B,G. Then the Leray spectral sequence
©@3) satisfies condition (i) of Borel’s Theorem with

Egjq = Hp(BoGa A) ®H*(k,A) Hq(G7A)

Proof. For simplicity of notation, let us write @y for @p-x,4). We first claim
that the higher direct images Rm,(A) are A®y H*(G, A). To see this, recall that
Rim,(A) is the sheafification of the presheaf that to a map U — B,G associates
Hi(7~ U, A), where n~'U = E,G xp,c U is U x G. By hypothesis, H*(7~1U, A)
is H*(U, A) ® g H*(G, A). The claim follows, since sheafification commutes with
QuH*(G, A), and the sheaf associated to H1(—, A) is A if ¢ = 0 and zero for ¢ > 0.
Thus we have EY? = H?(B,G, A) g H1(G, A).

It remains to check the Borel condition. By hypothesis, H*(G, A) = H(k, A),
so E?? = H?(B,G, A), and H°(B,G, A) = H(k, A). Thus we have

EY? = HY(B.G,A) @y HY(G, A) = HI(G, A).

The fact that the spectral sequence is multiplicative follows from the fact that A is
a sheaf of algebras and the work of Massey [Mass]. O
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Kudo’s Theorem 9.5. Suppose G and A satisfy the hypotheses of Proposition
04 Ifz € H"(G, A) transgresses to y € H""1(B,G, A), then

(1) B(zx) transgresses to —B(y),

(2) P*(x) transgresses to P*(y), and

(3) if n = 2a, then '~ @y transgresses to — Q°(y).

Any simplicially stable operation commutes with the transgression; see [McC|

6.5]. Hence part (2) of Theorem is immediate whenever we know that P® is
simplicially stable. This is so for the operations P* in étale and motivic cohomology
(by Propositions and [T8)).
Proof (Cf. [M}, 3.4]). As in the proof of Theorem [[5] we fix a quasi-isomorphism
A =5 I*. Let f = 7* and g = i* be the canonical maps I(G)(LI(E.G)AI(B,G)
coming from G - E,G -+ B,G. The assertion that x transgresses to y means
that there is a cocycle b in I"*!(B,G) representing y and an element v in I"(E,G),
such that f(b) = du and g(u) is a cocyle representing z.

Since the Bockstein satisfies g(fu) = Sg(u) and f(Bb) = B(du) = —d(Su), we
see that S(z), which is represented by g(Bu), transgresses to —3(y).

Recall from Section M that b and u determine a cocyle P*(b) in I*(B,G) repre-
senting P%(y) and an element P*(u) in I*(E,G) so that P®(z) is represented by
P?g(u) = gP%(u). By Lemma .8 we have

FP(b) = POf(b) = P*(du) = dP"(u).

It follows that P*(z) trangresses to P*(y).
Since b is a cocycle, Q*(b) represents Q%(y), and by Lemma .8 we have

fQUb) = Qf(b) = Q%(du) = — d(Q"w).
Thus the class of Q*(u) transgresses to — Q%(y), and it suffices to show that Q%(u)
represents ‘' ®y under the isomorphism EL? = HP(B,G)® H(G) of Proposition
9.4

Recall from (L8)) that v, = (—1)"m!™", where m = (¢ — 1)/2. We have v,, =

(—1)%, because n = 2a, (m!)? = (=1)™*, and r = am (mod 2). We now follow
p.167 of [M] up to (9). Starting from w € I"(X), May produces elements ¢; in
I®Y(X) and a family of elements {c,}, {c,} in C, ® I®*(X), depending naturally
on u, such that

Qi1 () = (—1)°w(1 = n) (c,) = m! B(c,).
The analysis of the terms in ¢/, at the top of p. 171 of [M] shows that there is a term
¢’ such that ¢/ — d(c”) is (=1)™m! z plus terms mapped by 6 into lower parts of
the filtration, where z = ¢g @ u ® - -- ® u ® du, and that §(z) represents 2~ @ y.
Therefore, up to terms in lower parts of the filtration we have Q%,(u) = m! 6(c,) =
(—=1)™(m!)260(z) = —6(z). Since we saw in Corollary F7] that Q*(u) = Q%,(u), the
result follows. O

We illustrate the use of Proposition with the étale topology. First, con-
sider the étale sheaf G = py. If p, is connected, then it does not satisfy the
Kiinneth condition of Proposition[@.4lfor U = Spec(k). Indeed, H® (110, F¢) = Fy, yet
H°(G x Speck,Fy) = Hi F,. However, things change if we consider the étale sheaf
A =@ 1 of Section

Lemma 9.6. H (X x 1§, A) 2 H3(X, A) @ - () Hiy (1, A).
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Proof. As an étale sheaf of IF‘;g—modules7 constant over k(¢), F¢[uf’] is a direct sum
of the locally constant sheaves 7y, ®a each of which is an invertible object. Because
Fo[X 7] = Fo[X] © B[], HE(X x p, u2%) equals

Ext™ (Fe[X] @ Fe[uf"], ' 7) = Ext”™ (Fo[X], RHom(Fe[u§], 11?))
Ext™ (F,[X], R’Hom(Fg,@u®q *))

g@Ext (F[X], u&0) @H;Xu@ *).

The pairing HZ (X, A) @, HZ (15", A) — HZ (X x p’, A) is the direct sum over
a, s, and t of the top row in the commutative diagram

Ext*(Fo[X], u%) @p, Bxt* (ud*, uf") ——— BExt*(Fo[X] @ p*, ud)

«| |=

12

14

Ext*(Fe[X], 15°) @p, Ext™ (Fo, u* =) ———  Ext™(Fe[X], ).
Since HY (k, A) = Ext*(Fy, A) = @, Ext(Fy, uS* =) for each a, setting s = ¢ — «
and summing over s and t yields the result. |

Corollary 9.7. If Y is a coproduct of schemes which are finite products of u?i,
then
HE (X x Y, A) = HE (X, A) @per,a) Hy (V) A).

Example 9.8. The ring of all étale cohomology operations from H2(—, u?i) to
H (=, pu$*) is the free left HY (k,.A)-module on generators in H**(K5): monomials
in the identity (id € HZ (K2, u?")) 3, the P! 3, and the BP!3 (PT = P¥... P‘PY).
This result, proven in Theorem B.5] above, can also be obtained from the Leray
spectral sequence ([@3)).

Each term in the simplicial sheaf B,u;" is a coproduct of products of ,u?i, SO
Corollary [0.7] and Proposition [0.4] 1mply that the Leray spectral sequence satisfies
condition (i) of Borel’s Theorem 02l The explicit description of H} (B, A) in
Proposition B4 as Hg (k, A) ® IF[ [u v]/(u?) shows that it has an (-simple system
of generators: u and the x, = v* for v > 0. The transgression 7 sends u to
t, 0 v = f[u transgresses to —f, by Kudo’s Theorem [0.5(1). Thus condition (ii)
is also satisfied, and Borel’s Theorem states that HJ (K5, A) is the free graded-
commutative H**-algebra on generators ¢« € H>*(Ks),

Yy = T(CL‘V) H2£V+1(K M@M ) and 2, = T(xl—1®yy) Hggﬂ+l+2(K HU/Z@MV+1).

Note that yo = B(¢). Since z,41 = 2% = P x,, Kudo’s Theorem [@:5(2) and an
inductive argument show that y, 41 is P vy, and also P*" - .. PP . This completes
the proof for £ = 2.

For ¢ > 2, it remains to show that —z, is P’ (y,) = BP* ... P'P'B. This
follows from Kudo’s Theorem [0.5](3), using Proposition B3] to write SP* for Q°.

Z

10. MOTIVIC OPERATIONS ON WEIGHT 1 COHOMOLOGY

We now turn to natural operations defined on the motivic cohomology groups
with weight 1, i.e., H™1(X) = H™1(X,F,). We begin with the case n = 1.

Let ue be the group scheme of fth roots of unity. On pp.130-131 of [MV],
Morel and Voevodsky define a simplicial Nisnevich sheaf Beyuy and observe that
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it classifies the étale cohomology group HZ (—, ), and hence the motivic group
HY! by Theorem [B.2] in the sense that [ X, Begue] =2 H(X) for every smooth
simplicial scheme X over k.

Following [V1l p.17], we write By, for the geometric classifying space of pyg,
constructed in [MV], p.133] (where the notation By, was used). By [MV] 4.2.7],
By is Al-equivalent to Begpuy, so it also classifies H1.

When ¢ = 2, the generator [¢] of H®!(k) = ua(k) and its Bockstein, the element
[—1] € H(k) = kX /k*¢, play an important role.

Proposition 10.1. There are elements uw € H“Y(Buy), v € H*1(Bug) such that
H**(k) ® Folu, v]/(u?), C#2,
H**(k) @ Felu, v]/(u? + [~ 1u + [(v), £=2.

Thus every cohomology operation on HY'(X) is uniquely a sum of the operations
x> cx®B(x)™, where c € H*(k), m >0, and 0 < e < 1.

Proof. This is the special case F, = S° in Proposition 6.10 of [V1]. Note that the
operation cx®(Sx)™ has bidegree (s+2m+¢ec—1,j+m+¢e—1). O

H** (Bug) = {

As in Example [0.8] we can use this as the starting point to describe all motivic
operations on H*!. For example, G = By, is a simplicial group-scheme whose class
in DM is a split proper Tate motive, so the Kiinneth formula (5] holds. Since
H%9(Bpuy) = H*9(k) by Proposition [0l Proposition applies to show that the
Leray spectral sequence has the form

(102) Ef? = HP*(B,Buy) @g-- (o) H" (Bpg) = HPH0* (B, Bpg) = HP*0 (k).

Corollary 10.3. If { # 2, the ring of cohomology operations on H?! is the tensor
product of H**(k,Fy) and the free graded-commutative algebra generated by the
identity of H*', the Bockstein 3, the P13, and the 3P where P! = P¥ ... P!,

For £ = 2, the ring of cohomology operations on H>' is the tensor product of
H**(k,F3) and the free graded-commutative algebra generated by the identity of
H*' Sq',...,Sq¢" = Sqi,, where Sq' = Sq% - Sq?Sq".

Proof. By MV, 4.1.16], By, is K(F¢(1),1). From the sequence

Hompy,, (X4, F,Bu¢) — Homp,, (X, B,Bue) — Homp,, (X4, Bue[1])
— HOIIIHO. (X+, E.B/.Lg[lD

it follows that the simplicial scheme B,Bpuy is K(F;(1),2). Thus we merely need
to compute the motivic cohomology of K (F,(1),2) using (10.2).

By Proposition [0 H**(Bue) has an ¢-simple system of generators over H**
consisting of u and the x, = v*" for v > 0. Since the Kiinneth formula (&3) holds,
Proposition implies that the hypotheses of Borel’s Theorem and Kudo’s
Theorem [@.5] hold for (I02]). Therefore H**(B,By) is the tensor product of H**
and the free graded-commutative Fy-algebra on generators ¢, y, = 7(x,) — and
z, if £ > 2. Since u transgresses to ¢, xg = v = B(u) and x,41 = P z,, Kudo’s
Theorem implies (by induction) that yo = 8(1), yu41 = P* y, = PA(1), and
(using Theorem BIT)) that z, is —BPT3(1). O

To describe cohomology operations on H™', we use the algebra Ht*op(Kn), de-
fined in Definition Il We bigrade it by giving it the weight grading that P! has
weight % — 1, where I = (g, 81, €1, .., Sk, €&)-
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Theorem 10.4. For each n > 1, the ring of all motivic cohomology operations on
H™' is isomorphic to the free left H**-module H** (k) @ H{, (K,) in which the
PT are bigraded according to Definition 6.5l

Thus every cohomology operation on H™'(X) is a sum of the operations x —
c(Phg)(Pl2x) - (Plsx), where c € H**(k) and each I; satisfies the excess condi-
tion of Definition [0.11

Proof. We proceed by induction on n, the cases n = 1,2 being given above. Set
K, = K(F;(1),n), so K,,+1 = B,(K,), and suppose inductively that the algebra
H**(K,) is given as described in the theorem, so that it has an ¢-simple system
of generators consisting of the P(s,,) with I admissible and e(I) < n (or e(I) =n
and €; = 1), and ¢ powers of the P!(1,,) of even degree.

Since Fy 1, (K,) is a split proper Tate motive by [V3] 3.28], the Kiinneth condition
®3) of Proposition holds. Hence the hypotheses of Borel’s Theorem are
satisfied, and the Leray spectral sequence (@3] has the form

By = P (o) @p0-y HY () = HP¥17 (B) = HYH07 ().

Therefore H**(K,,11) is the tensor product of H** and a free graded-commutative
Fy-algebra on certain generators; it remains to establish that they are the ones
described in the theorem. But, except for weight considerations, this is exactly the
same as in the topological case, as presented on p.200 of [McC]. Of course, the
weight of the x; = PI(1,) is the same as the weight of y; = P!(1,,41). Inspection
of the weights of the new generators pls... P*#y; (when z; has degree 2s) shows
that each additional P*'s multiplies the weight by ¢, as required. O

11. MOTIVIC OPERATIONS ON DEGREE 1 COHOMOLOGY

We now turn to operations defined on H'*. Here we encounter new cohomology
operations arising from the Norm Residue Theorem [6.2] representing a negative
twist. Here are a couple of examples.

Example 11.1. There are operations H"¢~1)(X) = H%!(X), since both groups
are naturally isomorphic to HY (X, te). An element n € HY (k, u$*™") determines
a natural transformation H(X) — H>2?(X).

The case k = k({). If k contains a primitive ¢th root of unity ¢, the classification
is immediate from Proposition IOl Let [¢] be the class of ¢ in H%!(k) = p,.

Proposition 11.2. Suppose that ( € k and i > 1. Then there is a natural isomor-
phism v : HY(X) = HYY(X), and [(]""t U~y (z) = 2.

Every motivic cohomology operation on HY is uniquely a sum of the operations
x = c(yx)B(yx)™, where c € H*(k), 0 <e <1, and m > 0.
Proof. By Theorem 621 H'(X) = HL(X,u$") for all 4 > 0. Since multiplica-
tion by [¢*"!] is an isomorphism between HZ (X, 11¢) and HZ (X, u$"), its inverse
isomorphism v is natural. Via , operations on H'* correspond to operations on
H*'!', which are described in Proposition [0.1l O

For example if i > 2 and n € HY (k, u3*>"), then the operation H'* — H?? of
Example [Tl is the operation x + ¢(yx) of Proposition T2 where ¢ = nU [¢]*~ 1.
Remark 11.2.1. If ¢ € H*I(k), then ¢(z) = c(yx)*(Byz)™ is a cohomology opera-
tion of bidegree (s + &+ 2m — 1,5 + ¢+ m —i). In particular v is a cohomology
operation of bidegree (0,1 — 7).
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Galois descent. We now consider the situation in which py ¢ k. Clearly, not all
cohomology operations defined over k(() are defined over k. However, some of these
operations do descend, such as those in Example [1.11

It is convenient to consider the étale cohomology of k as being bigraded, by
integers n > 0 and i € Z, with H7(k, u") in bidegree (n,i). Thus the motivic
cohomology ring H**(k) is a bigraded subring of HZ (k, ug™*).

Definition 11.3. For each integer b, let ("*H**(k) denote the direct sum of all
H, (k, p") with 0 < s < t+b. This is a bigraded H** (k)-submodule of H (k, u§*).
It is a cyclic module if and only if ¢(* € k, when it is the H**(k)-submodule
generated by [¢?] € HY, (k, uf™").

Theorem 11.4. Fiz an integer i > 2. Then the ring of cohomology operations on
HY is the direct sum of copies of (" H**(k), b= (i—1)(s+m), over integers m>0,
and e € {0,1}. If 0 < s < t+b, the operation corresponding to ¢ € H;jt(k‘,uz@t), m,
and ¢ sends HV4(X) to HsTet2mt+btetm(xy.
#(¢HUy) = (CUyEBY)™

Proof. Let G denote the Galois group of k(¢)/k. Since H**(X) is the G-invariant
summand of H**(X(()), a motivic operation HY(X) — H**(X) is the same
thing as a G-invariant operation H*(X) — H**(X(¢)). Given x € HY(X),
there is a unique y € H(X((¢)) so that z = [¢]*"! Uy, where [¢] € H*'(k(()). By
Proposition[IT.2] we are reduced to determining when G acts trivially on ¢’y (B8y)™.
Since y°(By)™ is in the summand of H**(k(¢)) which is isotypical for %@_b, this
holds if and only if ¢ is in the summand of H*7(k(¢)) which is isotypical for z".
By [B.2), there is a unique ¢ € H*I7b(k) so that ¢/ = [(]° Uc. O

Example 11.5 (b = 1). An element ¢ in H(k,F,) = Hom(Gal(k/k),F,) de-
termines operations C' : H"?(X) — H*»Y(X) and ¢ : H'"*(X) — H3*(X). If
y € HY1(X(C)) is such that x = [¢] Uy, then, regarding (c as an element of
HY1(k(C)), we have C(z) = ((c)y and ¢(z) = ((c)B(y). Of course, we can identify
C with the map HZ (X, ) — H2(X, ).

An element t in H%(k, ) (the f-torsion subgroup of the Brauer group of k)
determines operations H'?(X) — H33(X) and H"?(X) — H*3(X). Writing
r = [(JUy in HY?(X(¢)), the operations followed by the inclusion H**(X) C
H**(X(¢)) send z to ([(]Ut)y and ([¢] Ut)B(y), respectively. As mentioned in the

introduction, we can identify the first operation with HZ (X, u$?) N H3,(X, 15).

12. CONJECTURAL MATTER

In the preceding two sections we have classified motivic cohomology operations
on H™® when n = 1 or i = 1. We have also classified operations whose targets lie
inside the “étale zone” where n < i. We know little about the intermediate zone
where ¢ < n < 2¢. In this section we make some guesses about operations in the
“topological zone” where n > 2i.

Example 12.1. There are many operations defined on H™2, n > 2. Let us
compare Voevodsky’s operation PL (landing in H"+2¢=2/1) with our operation
P! (landing in H"*2¢-226) Thus P! has the same bidegree as [¢]*"1 P}, where
(€] € HOY (k). If n > 4, we have P! = [(]*"'P} by Corollary RO If n = 2 we
also have P! = [(]*"1 Pl because they induce the same étale operation (P') from
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H?2(X) =2 HZ(X, u$?) to H*2/(X) = HY (X, u$*"). We do not know if P! and
[C]*~ 1P} agree on H?2.

Suppose that ¢ is a motivic cohomology operation on H™* where n > 2i. Passing
to étale cohomology sends ¢ to an étale operation, which by Theorem [3.5] is a
polynomial in the étale operations P!. By Proposition B8, some multiple of the
Bott element b sends ¢ to operations bY ¢ which are in the subalgebra generated by
the motivic operations P! defined in Definition It remains to determine what
those powers are.

The following result of Voevodsky [V1], 3.6-7] shows that all nontrivial operations
in the topological zone increase n.

Lemma 12.2 (Voevodsky). There are no motivic cohomology operations from H?
to H™ when j < i or when i = j and (n,j) # (2i,i). The module of motivic
cohomology operations from H?*"* to H*' is isomorphic to Fy, on the identity.

Conjecture 12.3. Assume that k contains all primitive £th roots of unity and that
n > 2i. Then the module of all motivic cohomology operations on H™*(—,Fy) is the
tensor product of H** and a free graded polynomial algebra over Fy, with generators
all PTPJ, where I = (€0,81,€1,- ..,k €k)s J = (Skt1s€ht1s-- - Sm, €m) subject to
the conditions that (a) the concatenation I.J is admissible with excess e(1.J) either
<4 orelseeg=1and e(IJ) =4 and (b) forall j >k, s; <i+ ({—1) Zﬁl S;.

For (n,i) = (4,2) this conjecture implies that among the polynomial generators
for the motivic operations on H*? we find P‘ﬂ‘*‘“lﬁPf/ﬂﬂP‘l/ﬁ. If ¢ = 2, we may
rewrite these operations as Sq'4Sq7,Sqd Sqi,; compare with [V3| 3.57].

Lemma 12.4. If Conjecture MZ3l holds for H?"*, then it holds for all H™ with
n > 2.

Proof. We consider the Leray spectral sequence [@3) for G = K (F(i),n) and
K = B,G = K(Fy(i),n + 1) when n > 2i. By induction, H**(G) is a polynomial
algebra over H** with an (-simple system {z; } of generators. By [V3| 3.28], Fy1,(G)
is a split proper Tate motive, so the Kiinneth condition of Proposition holds,
and Borel’s Theorem [0.2] implies that H**(K) is the tensor product of H** and a
free graded-commutative F,-algebra on generators y; = 7(x;) and, when deg(z;) is
even and £ > 2, z; = T(LL'§71 ®y;).

We now use the fact that the transgression commutes with any (S*)-stable coho-
mology operation, such as P&; see [McC] 6.5]. Since the tautological element ¢, of
H™(@G) transgresses to the tautological element ¢, 1 of H"T1(K), the generator
z; = PIP{(1,) transgresses to y; = P!P{(t,+1) by Kudo’s Theorem This
finishes the proof for ¢ = 2.

If ¢ is odd and z; = P! P{(1,) has degree 2a, the transgression z; of xf_l ®y; is
—BP*PIP/(1,41) by Kudo’s Theorem [@.5)(3). This finishes the proof for £ odd. [
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