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Abstract

In this paper we explore fundamental problems in random-
ized communication complexity such as computing Set Inter-
section on sets of size k and Equality Testing between vectors
of length k. Brody et al. [BCK+16] and Sağlam and Tar-
dos [ST13] showed that for these types of problems, one can
achieve optimal communication volume of O(k) bits, with
a randomized protocol that takes O(log∗ k) rounds. They
also proved [BCK+16, ST13] that this is one point along the
optimal round-communication tradeoff curve.

Aside from rounds and communication volume, there is
a third parameter of interest, namely the error probability
perr. It is straightforward to show that protocols for Set
Intersection or Equality Testing need to send Ω(k+ log p−1

err)
bits. Is it possible to simultaneously achieve optimality in
all three parameters, namely O(k+ log p−1

err) communication
and O(log∗ k) rounds?

In this paper we prove that there is no universally
optimal algorithm, and complement the existing round-
communication tradeoffs [BCK+16, ST13] with a new trade-
off between rounds, communication, and probability of error.
In particular:

• Any protocol for solving Multiple Equality Testing
in r rounds with failure probability perr = 2−E has
communication volume Ω(Ek1/r).

• There exists a protocol for solving Multiple Equality
Testing in r + log∗(k/E) rounds with O(k + rEk1/r)
communication, thereby essentially matching our lower
bound and that of [BCK+16, ST13].

• Lower bounds on Equality Testing extend to Set Inter-
section, for every r, k, and perr (which is trivial); in the
reverse direction, upper bounds on Equality Testing for
r, k, perr imply similar upper bounds on Set Intersection
with parameters r + 1, k, and perr.

Our original motivation for considering perr as an in-

dependent parameter came from the problem of enumer-

ating triangles in distributed (CONGEST) networks having

maximum degree ∆. We prove that this problem can be

solved in O(∆/log n + log log∆) time with high probabil-

ity 1 − 1/poly(n). This beats the trivial (deterministic)

O(∆)-time algorithm and is superior to the Õ(n1/3) algo-

rithm of [CPZ19, CS19] when ∆ = Õ(n1/3).
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§IIIS, Tsinghua University
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1 Introduction

Communication Complexity was defined by Yao [Yao79]
in 1979 and has become an indispensible tool for proving
lower bounds in models of computation in which the
notions of parties and communication are not direct.
See, e.g., books and monographs [Rou16, RY, KN97]
and surveys [CP10, Lov89] on the subject. In this paper
we consider some of the most fundamental and well-
studied problems in this model, such as SetDisjointness,
SetIntersection, ExistsEqual, and EqualityTesting. Let
us briefly define these problems formally since the
terminology is not completely standard.

SetDisjointness and SetIntersection. In the
SetDisjointness problem Alice and Bob receive sets
A ⊂ U and B ⊂ U where |A|, |B| ≤ k and
must determine whether A ∩ B = ∅. Define
SetDisj(k, r, perr) to be the minimum communica-
tion complexity of an r-round randomized protocol
for this problem that errs with probability at most
perr. We can assume that |U | = O(k2/perr) without
loss of generality.1 The input to the SetIntersection

problem is the same, except that the parties must
report the entire set A ∩B. Define SetInt(k, r, perr)
to be the minimum communication complexity of
an r-round protocol for SetIntersection.

EqualityTesting and ExistsEqual. In the
EqualityTesting problem Alice and Bob hold vectors
x ∈ Uk and y ∈ Uk and must determine, for each
index i ∈ [k], whether xi = yi or xi 6= yi. A po-
tentially easier version of the problem, ExistsEqual,
is to determine if there exists at least one index
i ∈ [k] for which xi = yi. Define Eq(k, r, perr) to be
the randomized communication complexity of any
r-round protocol for EqualityTesting that errs with
probability perr, and ∃Eq(k, r, perr) the correspond-
ing complexity of ExistsEqual. Once again, we can

1Before the first round of communication, pick a pairwise
independent h : U 7→ [O(k2/perr)] and check whether h(A) ∩
h(B) = ∅ with error probability perr/2. Thus, having SetDisj

depend additionally on |U | is somewhat redundant, at least when
|U | is large.
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assume that |U | = O(k/perr) without loss of gener-
ality.

The deterministic communication complexity of
these problems is well understood [KN97],2 so we con-
sider randomized complexity exclusively. Although
these problems are well studied [HW07, FKNN95,
BCK+16, ST13, KS92], most prior work has focused on
the relationship between round complexity and commu-

nication volume, and paid relatively little attention to
the role of perr. [HW07, FKNN95, ST13, KS92]. Brody
et al.[BCK+16] incorporated perr into the round vs com-
munication trade-off and in particular distinguished be-
tween the role of false positives and false negatives.

History. H̊astad and Wigderson [HW07] gave an
O(log k)-round protocol for SetDisjointness in which Al-
ice and Bob communicate O(k) bits, which matched
an Ω(k) lower bound of Kalyanasundaram and Schnit-
ger [KS92]; see also [Raz92, BGMdW13, DKS12]. Feder
et al. [FKNN95] proved that EqualityTesting can be
solved with O(k) communication by an O(

√
k)-round

protocol that errs with probability exp(−
√
k). The

round complexity and error probability were later im-
proved to log k and exp(−k/polylog(k)), respectively
[Nik13].

Improving [HW07], Sağlam and Tardos [ST13]
gave an r-round protocol for SetDisjointness that uses
O(k log(r) k) communication, where log(r) is the r-fold
iterated logarithm function. For r = log∗ k the error
probability of this algorithm is exp(−

√
k), coinciden-

tally matching [FKNN95]. In independent work, Brody
et al. [BCK+16] gave r-round and O(r)-round protocols
for ExistsEqual and SetIntersection, respectively, that use
O(k log(r) k) communication and err with probability
1/poly(k).

Sağlam and Tardos [ST13] proved that this

O(k log(r) k) round vs communication tradeoff is op-
timal, using a combinatorial round elimination tech-
nique. In particular, this lower bound applies to any
ExistsEqual protocol with constant error probability. In-
dependently, Brody et al. [BCK+16] gave a simpler
proof for the EqualityTesting problem with the same
tradeoff curve, but only holds for protocols with error
probability of 1/poly(k). Brody et al. [BCK+16] also
introduced a randomized reduction from SetIntersection

to EqualityTesting, which carries a probability of error
that is only tolerable if perr > exp(−Õ(

√
k)).

1.1 Contributions First, we observe that a simple
deterministic reduction shows that SetIntersection is
essentially equivalent to EqualityTesting for any perr,

2When perr = 0, the deterministic complexity must be ex-
pressed in terms of k and |U |.

up to one round of communication, and SetDisjointness

is essentially equivalent to ExistsEqual for any perr.
Theorem 1.1 is proved in Appendix A; it is inspired
by the randomized reduction of Brody et al. [BCK+16].

Theorem 1.1. For any parameters k ≥ 1, r ≥ 1, and
perr > 0, it holds that

Eq(k, r, perr) ≤ SetInt(k, r, perr),

∃Eq(k, r, perr) ≤ SetDisj(k, r, perr),

SetInt(k, r + 1, perr) ≤ Eq(k, r, perr) + ζ,

SetDisj(k, r + 1, perr) ≤ ∃Eq(k, r, perr) + ζ,

where ζ = O(k + log log p−1
err).

Second, we prove that in any of the four problems, it
is impossible to simultaneously achieve communication
volume O(k+log p−1

err) in O(log∗ k) rounds for all k, perr.
Specifically, for perr = 2−E , any r-round protocol
needs Ω(Ek1/r) communication. A key takeaway for
this result is that for any E > k, if one wishes to
achieve error probability 2−E with the optimal O(k +
E) communication, one needs Ω(log k) rounds, instead
of log∗ k rounds. We complement this lower bound
with an upper bound showing that in r + log∗(k/E)
rounds, we can solve EqualityTesting with O(k+rEk1/r)
communication. This matches our lower bound when
E ≥ k and r is constant, but is slightly suboptimal
when r = ω(1). We illustrate two ways to shave off this
factor of r. We give an (r+log∗(k/E))-round ExistsEqual

protocol that communicates O(k + Ek1/r) bits, as
well as an EqualityTesting protocol that communicates
O(k + Ek1/r) bits, but with round complexity O(r) +
log∗(k/E).

Our original interest in SetIntersection came
from distributed subgraph detection in CONGEST3

networks, which has garnered significant interest
in recent years [CS19, CPZ19, IG17, ACKL17,
DKO14, KR18, FGKO18, CK18, GO18]. Izumi and
LeGall [IG17] proved that triangle enumeration4 re-
quires Ω(n1/3/log n) rounds in the CONGEST model,
and further showed that local triangle enumeration5 re-

3In the CONGEST model there is a graph G = (V,E) whose
vertices are identified with processors and whose edges represent

bidirectional communication links. Each vertex v does not know

G, and is only initially aware of an O(logn)-bit ID(v), deg(v),
and global parameters n ≥ |V | and ∆ ≥ maxu∈V deg(u).

Communication proceeds in synchronized rounds; in each round,
each processor can send a (different) O(logn)-bit message to each

of its neighbors.
4Every triangle (3-cycle) in G must be reported by some

vertex.
5Every triangle in G must be reported by at least one of the

three constituent vertices. Izumi and LeGall [IG17] only stated

the Ω(n/logn) lower bound but it can also be expressed in terms
of ∆.
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Problem Commun. Rounds Error Probability Ref.

EqualityTesting O(k) O(
√
k) exp(−

√
k) [FKNN95]

EqualityTesting O(k) log k exp(−k/polylog(k)) [Nik13]
SetDisjointness O(k) O(log k) Constant [HW07]

SetDisjointness O(k log(r) k) r ≥ exp(−
√
k) [ST13]

ExistsEqual r
SetIntersection

O(k log(r) k)
O(r)

1/poly(k) [BCK+16]

ExistsEqual

/ [SetDisjointness]
O(k + Ek1/r) r + log∗(k/E) [+1] 2−E

EqualityTesting O(k + rEk1/r) r + log∗(k/E) [+1]
new

/ [SetIntersection] O(k + Ek1/r) O(r) + log∗(k/E) [+1]
2−E

Lower Bounds

SetDisjointness Ω(
√
k) ∞ Constant [BFS86]

SetDisjointness Ω(k) ∞ Constant [KS92]

ExistsEqual Ω(k log(r) k) r Constant [ST13]

ExistsEqual Ω(k log(r) k) r 1/poly(k) [BCK+16]

ExistsEqual Ω(Ek1/r) r 2−E new

Table 1: Upper and Lower bounds on SetDisjointness, SetIntersection,EqualityTesting, and ExistsEqual. Via trivial
reductions, lower bounds on ExistsEqual extend to all four problems, and upper bounds on SetIntersection extend
to all four problems. From Theorem 1.1, the upper bounds on SetIntersection and SetDisjointness follow from those
of EqualityTesting and ExistsEqual, respectively, +1 round of communication. The log-star function is defined as
log∗(x) = min{i : log(i)(x) ≤ 1}, e.g., log∗(k/E) = 0 if E ≥ k.

quires Ω(∆/log n) rounds in CONGEST, which can be
as large as Ω(n/log n).

The most natural way to solve (local) triangle enu-
meration is, for every edge {u, v} ∈ E(G), to have u and
v run a two-party SetIntersection protocol in which they
compute N(u) ∩N(v), where N(u) = {ID(x) | {u, x} ∈
E(G)} and ID(x) ∈ {0, 1}O(logn) is x’s unique identi-
fier. Any r-round protocol with communication volume
O(∆) can be simulated in CONGEST in O(∆/log n+ r)
rounds since the message size is O(log n) bits. However,
to guarantee a global probability of success at least 1−
1/poly(n), the failure probability of each SetIntersection

instance must be perr = 2−E , E = Θ(log n), which is in-
dependent of ∆. Our communication complexity lower
bound suggests that to achieve this error probability, we
would need Ω((∆+E∆1/r)/log n+r) CONGEST rounds,
i.e., with r = log∆ we should not be able to do better
than O(∆/log n+log∆). We prove that (local) triangle
enumeration can actually be solved exponentially faster,
in O(∆/log n + log log∆) CONGEST rounds, without
necessarily solving every SetIntersection instance.

Organization. The proof of Theorem 1.1 on the
near-equivalence of SetIntersection/SetDisjointness and
EqualityTesting/ExistsEqual appears in Appendix A.
Section 2 reviews concepts from information theory and
communication complexity. In Section 3 we present new

lower bounds for both EqualityTesting and ExistsEqual

that incorporate rounds, communication, and error
probability. Section 4 presents nearly matching up-
per bounds for EqualityTesting and ExistsEqual, and Sec-
tion 5 applies them to the distributed triangle enumer-
ation problem. We conclude with some open problems
in Section 6.

2 Preliminaries

2.1 Notational Conventions The set of positive
integers at most t is denoted [t]. Random variables are
typically written as capital letters (X,Y,M , etc.) and
the values they take on are lower case (x, y,m, etc.).
The letters p, q, µ,D are reserved for probability mass
functions (p.m.f.). E.g., D(x) denotes the probability
that X = x whenever X ∼ D. The support supp(D) of
a distribution D is the set of all x for which D(x) > 0.
If X ⊆ supp(D), D(X ) =

∑
x∈X D(x).

Many of our random variables are vectors. If x is a
k-dimensional vector and I ⊆ [k], xI is the projection
of x onto the coordinates in I and xi is short for x{i}.
Similarly, if D is the p.m.f. of a k-dimensional random
variable, DI is the marginal distribution of D on the
index set I ⊆ [k].

Throughout the paper, log and exp are the base-
2 logarithm and exponential functions, and log(r) and
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exp(r) their r-fold iterated versions:

log(0)(x) = exp(0)(x) = x,

log(r)(x) = log(log(r−1)(x)),

exp(r)(x) = exp(exp(r−1)(x)).

The log-star function is defined to be log∗(x) = min{r |
log(r)(x) ≤ 1}. In particular, log∗(x) = 0 if x ≤ 1.

2.2 Information Theory The most fundamental
concept in information theory is Shannon entropy. The
Shannon entropy of a discrete random variable X is de-
fined as

H(X) = −
∑

x∈supp(X)

Pr[X = x] log Pr[X = x].

Since there may be cases in which different distributions
are defined for the “same” random variable, we use
H(p) in place of H(X) if X is drawn from a p.m.f.
p. We also write H(α), α ∈ (0, 1), to be the entropy
of a Bernoulli random variable with success probability
α. In general, we freely use a random variable and its
p.m.f. interchangeably.

The joint entropy H(X,Y ) of two random variables
X and Y is simply

H(X,Y ) =

−
∑

x∈
supp(X)

∑

y∈
supp(Y )

Pr[X = x ∧ Y = y] log Pr[X = x ∧ Y = y].

This notion can be easily extended to cases of more than two
random variables. Here, we state a well known fact about
joint entropy.

Fact 2.1. For any random variables X1, X2, . . . , Xn, their
joint entropy is at most the sum of their individual entropies,
i.e., H(X1, X2, . . . , Xn) ≤

∑n
i=1 H(Xi).

The conditional entropy of Y conditioned on another
random variable X, denoted H(Y | X), measures the
expected amount of extra information required to fully
describe Y if X is known. It is defined to be

H(Y | X)

= H(X,Y )−H(X)

= −
∑

x∈supp(X)

Pr[X = x]

∑

y∈supp(Y )

Pr[Y = y | X = x] log Pr[Y = y | X = x] ≥ 0,

which can be viewed as a weighted sum of entropies of a
number of conditional distributions.

Finally, the mutual information I(X ; Y ) between
two random variables X and Y quantifies the amount of

information that is revealed about one random variable
through knowing the other one:

I(X ; Y )

= H(X)−H(X | Y )

= H(X) +
∑

y∈supp(Y )

Pr[Y = y]

∑

x∈supp(X)

Pr[X = x | Y = y] log Pr[X = x | Y = y].

2.3 Communication Complexity Let f(x, y) be a
function over domain X × Y, and consider any two-party
communication protocol Q(x, y) that computes f(x, y),
where one party holds x and the other holds y. The tran-
script of Q on (x, y) is defined to be the concatenation of
all messages exchanged by the two parties, in order, as they
execute on input (x, y). The communication cost of Q is the
maximum transcript length produced by Q over all possible
inputs.

Let Qd be a deterministic protocol for f and suppose
µ is a distribution over X × Y. The distributional er-
ror probability of Qd with respect to µ is the probability
Pr(x,y)∼µ[Qd(x, y) 6= f(x, y)]. For any 0 < ε < 1, the
(µ, ε)-distributional deterministic communication complexity
of the function f is the minimum communication cost of any
protocol Qd that has distributional error probability at most
ε with respect to the distribution µ.

A randomized protocol Qr(x, y, w) also takes a public
random string w ∼ W as input. The error probability of Qr

is calculated as max(x,y)∈X×Y Prw∼W [Qr(x, y, w) 6= f(x, y)].
The ε-randomized communication complexity of f is the
minimum communication cost of Qr over all protocols Qr

with error probability at most ε.
Yao’s minimax principle [Yao77] is a common starting

point for lower bound proofs in randomized communication
complexity. The easy direction of Yao’s minimax principle
states that the communication cost of the best deterministic
protocol specific to any particular distribution is at most the
communication cost of any randomized protocol on its worst
case input.

Lemma 2.1. (Yao’s minimax principle [Yao77]) Let f :
X × Y 7→ Z be the function to be computed. Let Dµ,ε(f) be
the (µ, ε)-distributional deterministic communication com-
plexity of f , and let Rε(f) be the ε-randomized communi-
cation complexity of f . Then for any 0 < ε < 1/2,

max
µ

Dµ,ε(f) ≤ Rε(f).

Therefore, to show a lower bound on the ε-randomized
communication complexity of a function f , it suffices to
find a hard distribution µ on the input set and prove a
lower bound for the communication cost of any deterministic
protocol that has distributional error probability at most ε
with respect to µ.
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3 Lower Bounds

In this section we prove lower bounds on EqualityTesting and
ExistsEqual. Theorem 3.1 obviously follows directly from
Theorem 3.2, but we prove them in that order nonetheless
because Theorem 3.1 is a bit simpler.

Theorem 3.1. Any r-round randomized protocol for
EqualityTesting on vectors of length k that errs with
probability perr = 2−E requires at least Ω(Ek1/r) bits of
communication.

Theorem 3.2. Any r-round randomized protocol for
ExistsEqual on vectors of length k that errs with probability
perr = 2−E requires at least Ω(Ek1/r) bits of communication.

Without any constraint on the number of rounds,
EqualityTesting trivially requires Ω(k) communica-
tion. ExistsEqual also requires Ω(k) communication,
through a small modification to the SetDisjointness lower
bounds [KS92, Raz92]. Even when k = 1, we need at least
Ω(E) communication to solve EqualityTesting/ExistsEqual
with error probability 2−E [KN97]. Thus, we can assume
that E = Ω(k1−1/r), k1/r = Ω(1), and hence r = O(log k).
For example, some calculations later in our proof hold when
r ≤ (log k)/6. When proving Theorem 3.2, we will further
assume E = Ω(log k) when r = 1, which is reasonable
because of Sağlam and Tardos’ Ω(k log(r) k) = Ω(k log k)
lower bound [ST13].

3.1 Structure of the Proof We consider determinis-
tic strategies for ExistsEqual/EqualityTesting when Alice and
Bob pick their input vectors independently from the uniform
distribution on [t]k, where t = 2cE and c = 1/2. Although
the probability of seeing a collision in any particular coordi-
nate is small, it is still much larger than the tolerable error
probability (since c < 1), so it is incorrect to declare “not
equal in every coordinate” without performing any commu-
nication.

We suppose, for the purpose of obtaining a contradic-
tion, that there is a protocol for EqualityTesting with er-
ror probability 2−E and communication complexity c′Ek1/r,
where c′ = c/100. The length of the jth message is lj , which
could depend on the parameters (E, r, k, etc.) and possibly
in some complicated way on the transcript of the protocol
before round j.6

Our proof must necessarily consider transcripts of the
protocol that are extremely unlikely (occurring with proba-
bility close to 2−E) and also maintain a high level of uncer-
tainty about which coordinates of Alice’s and Bob’s vectors
might be equal. Consider the first message. Alice picks
her input vector x ∈ [t]k, which dictates the first mes-
sage m1. Suppose, for simplicity, that it betrays exactly
l1/k < c′Ek1/r−1 bits of information per coordinate of x.

6In the context of ExistsEqual/EqualityTesting, it is natural

to think about uniform-length messages, lj = c′Ek1/r/r, or

lengths that decay according to some convergent series, e.g.,
lj ∝ c′Ek1/r/2j or lj ∝ c′Ek1/r/j2.

Before Bob can respond with a message m2 he must com-
mit to his input, say y. Most values of y result in “good”
outcomes: nearly all non-equal coordinates get detected im-
mediately and the effective size of the problem is dramat-
ically reduced. We are not interested in these values of y,
only very “bad” values. Let I1 be the first k1−1/r coordi-
nates (or, more generally, k1−1/r coordinates that m1 re-
vealed below-average information about). With probability

about (2−c′Ek1/r−1

)|I1| = 2−c′E , Bob picks an input y that
is completely consistent with Alice’s on I1, i.e., as far as he
can tell yi = xi for every i ∈ I1. Rather than sample y
uniformly from [t]k, we sample it from a hybrid distribution:
yI1 is sampled from the same distribution that m1 revealed
about xI1 (forcing the above event to happen with probabil-
ity 1), and y[k]\I1 is sampled from Bob’s former distribution

(in this case, the uniform distribution on [t]k−|I1|), condi-
tioned on the value of yI1 .

This process continues round by round. Bob’s message
m2 betrays at most l2/|I1| < c′Ek2/r−1 bits of information
on each coordinate of yI1 , and there must be an index set
I2 ⊂ I1 with |I2| = k1−2/r such that, with probability

around 2−c′E , it is completely consistent that xI2 = yI2 .
Alice resamples her input so that this (rare) event occurs
with probability 1, generates m3, and continues.

At the end of this process |Ir| = k1−r/r = 1, and yet
Alice and Bob have revealed less than the full cE bits of
entropy about xIr and yIr . Regardless of whether they
report “equal” or “not equal” (on Ir), they are wrong with
probability greater than 2−E . Are we done? Absolutely
not! The problem is that this strange process for sampling
a possible transcript of the protocol might itself only find
transcripts that occur with probability � 2−E , making any
conclusions we make about its (probability of) correctness
moot. Generally speaking, we need to show that Alice’s
and Bob’s actions are consistent with events that occur with
probability � 2−E .

Let us first make every step of the above process a bit
more formal. It is helpful to think about Alice’s and Bob’s
inputs not being fixed vectors selected at time zero, but
simply distributions over vectors that change as messages
progressively reveal more information about them.

• Before the jth round of communication, the sender
of the jth message’s input is drawn from a discrete
distribution D̂(j−1) over [t]k. The receiver of the jth
message’s input is drawn from the distribution D(j−1).
For example, when j = 1, if Alice speaks first then her
initial distribution, D̂(0), and Bob’s initial distribution,
D(0), are both uniform over [t]k.

• Before the jth round of communication both parties
are aware of an index set Ij−1 such that, informally, (i)

the distributions D(j−1)
Ij−1

and D̂(j−1)
Ij−1

are very similar,

and in particular, it is consistent that their inputs are
identical on Ij−1, and (ii) the messages transmitted
so far reveal “average” or below-average information
about these coordinates. For example, I0 = [k] and it
is consistent with the empty transcript that Alice’s and
Bob’s inputs are identical on every coordinate.
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• The jth message is a random variable Mj ∈ {0, 1}lj . In
order to pick an mj according to the right distribution,
the sender picks an input x ∼ D̂(j−1) which, together
with the history m1, . . . ,mj−1, determines mj . The
sender transmits mj to the receiver and promptly
forgets x. The sender’s new distribution (i.e., D̂(j−1),
conditioned on Mj = mj) is called D(j).

• The distribution D(j) may reveal information about the
coordinates Ij−1 in an irregular fashion. We find a
subset Ij ⊂ Ij−1 of coordinates, |Ij | = k1−j/r, for

which the amount of information revealed by D(j)
Ij

is

at most average. The receiver of mj changes his input
distribution to D̂(j), which is defined so that it basically
agrees with D(j)

Ij
and the marginal distribution D̂(j)

[k]\Ij
,

conditioned on the value selected by D(j)
Ij

, is identical

to D(j−1)

[k]\Ij
.

• The reason D(j)
Ij

and D̂(j)
Ij

are not identical is due

to two filtering steps. To generate D̂(j), we remove
points from the support that have tiny (but non-
zero) probability, which may be too close to the error
probability. Intuitively these rare events necessarily
represent a small fraction of the probability mass.
Second, we remove points from the support if the ratio
of their probability occurring under D(j) over D(j−1)

is too high. Intuitively, we want to conclude that if
there is a high probability of an error occurring under
D(j) then the probability is also high under D(j−1) (and
by unrolling this further, under D(0)). This argument
only works if the ratios are what we would expect,
given how much information is being revealed about
these coordinates by mj . As a result of these two

filtering steps, D(j)
Ij

(xIj ) and D̂(j)
Ij

(xIj ) differ by at most

a constant factor, for any particular vector xIj ∈ [t]|Ij |.

3.2 A Lower Bound on EqualityTesting We begin
with two general lemmas about discrete probability distri-
butions that play an important role in our proof.

Roughly speaking, Lemma 3.1 captures and generalizes
the following intuition: Suppose p is a high entropy distri-
bution on some universe U and q is obtained from p by con-
ditioning on an event X ⊆ U such that p(X ) is large, say
some constant like 1/4. If p’s entropy is close to log|U |, then
q’s entropy should not be much smaller than that of p. As
our proof goes on round by round, we will constantly throw
away part of the input distribution’s support to meet certain
conditions. It is Lemma 3.1 that guarantees that the input
distributions continue to have relatively high entropy.

Lemma 3.2 comes into play because the error probability
will be calculated backward in a round-by-round manner.
Suppose the old distribution (p) has no extremely low
probability point and the new distribution (q) has almost full
entropy. Lemma 3.2 provides us with a useful tool to transfer
a lower bound on the probability of any event w.r.t. q to a
lower bound on the same event w.r.t. p.

Lemma 3.1. Let p and q be distributions defined on a uni-
verse of size 2s. Suppose both of the following properties are
satisfied:

1. The entropy of p is H(p) ≥ s− g, where 0 ≤ g ≤ s;

2. There exists 0 < α < 1 such that q(x) ≤ p(x)/α holds
for every value x ∈ supp(q).

The entropy of q is lower bounded by:

H(q) ≥ s− g/α−H(α)/α.

Proof. Let X be the whole universe. From our assumptions,
the entropy of q can be lower bounded as follows.

H(q)

=
∑

x∈X

q(x) log
1

q(x)

=
1

α

∑

x∈X

αq(x) log
1

αq(x)
+ logα

≥ 1

α

∑

x∈X

[
p(x) log

1

p(x)
− (p(x)− αq(x)) log

1

p(x)− αq(x)

]

+ logα

The previous step follows from Assumption 2 and the fact
that x log x−1 + y log y−1 ≥ (x + y) log(x + y)−1 for any
x, y ≥ 0. Continuing,

≥ 1

α

[
s− g −

∑

x∈X

(p(x)− αq(x)) log
1

p(x)− αq(x)

]
+ logα

≥ 1

α

[
s− g − (1− α) log

2s

1− α

]
+ logα

= s− g

α
+

1− α

α
log(1− α) + logα

= s− g

α
− H(α)

α
.

Lemma 3.2. Let p and q be distributions defined on a uni-
verse of size 2s. Suppose both of the following properties are
satisfied:

1. The entropy of q is H(q) ≥ s− g1, where 0 ≤ g1 ≤ s;

2. There exists g2 ≥ 0 such that p(x) ≥ 2−s−g2 holds for
every value x ∈ supp(q).

Then, for any 0 < α < 1,

Pr
x∼q

[
q(x)

p(x)
> 2g1/α+g2−(1−α) log(1−α)/α

]
≤ α.

Proof. Let X0 = {x ∈ supp(q) | q(x)/p(x) ≤
2g1/α+g2−(1−α) log(1−α)/α} and X1 = supp(q) \ X0. Suppose,
for the purpose of obtaining a contradiction, that the conclu-
sion of the lemma is false, i.e., q(X1) = α0, for some α0 > α.
Notice that for each value x ∈ X1, Assumption 2 implies
that

(3.1)
q(x) > p(x) · 2g1/α+g2−(1−α) log(1−α)/α

≥ 2−s+g1/α−(1−α) log(1−α)/α.
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Then we can upper bound the entropy of q as follows.

H(q)

=
∑

x∈X0

q(x) log
1

q(x)
+
∑

x∈X1

q(x) log
1

q(x)

<
∑

x∈X0

q(x) log
1

q(x)
+ α0

[
s− g1

α
+

1− α

α
log(1− α)

]

≤ (1− α0) log
2s

1− α0
+ α0

[
s− g1

α
+

1− α

α
log(1− α)

]

= s− α0

α
· g1 + α0

[
1− α

α
log(1− α)− 1− α0

α0
log(1− α0)

]

< s− g1,

where the last step follows from the monotonicity of (1 −
α) log(1− α)/α. This contradicts Assumption 1.

We are now ready to begin the proof of Theo-
rem 3.1 proper. Fix a round j and a particular history
(m1, . . . ,mj−1) up to round j − 1. We let µj(mj) denote
the probability that the jth message is mj , if the input to
the sender is drawn from D̂(j−1). Define D(j)[mj ] to be the
new input distribution of the sender after he commits to mj .
When mj is clear from context, it is denoted D(j). (The pro-

cess for deriving D̂(j) from D(j) and D(j−1) on the receiver’s
end will be explained in detail later.)

We will prove by induction that the following Invari-
ant 3.3 holds for each j ∈ [0, r], where the particular val-

ues of Ij , D(j), D̂(j), and l1, . . . , lj depend on the transcript
m1, . . . ,mj that is sampled. In the base case, Invariant 3.3
clearly holds when j = 0, I0 = [k], and both D̂(0),D(0) are
the uniform distribution over [t]k.

Invariant 3.3. After round j ∈ [0, r] the partial
transcript is m1, . . . ,mj , which determines the values

{lj′ , D̂(j′),D(j′), Ij′}j′≤j . The index set Ij ⊆ [k] satisfies
all of the following:

1. |Ij | = k1−j/r.

2. Each value xIj ∈ [t]|Ij | satisfies D̂(j)
Ij

(xIj ) ≤ 4D(j)
Ij

(xIj ).

3. Each nonempty subset I ′ ⊆ Ij satisfies

H(D̂(j)

I′ ) ≥
(
cE −

j∑

u=1

16j−u+1lu
k1−(u−1)/r

− 22j
)
|I ′|.

In accordance with our informal discussion in Sec-
tion 3.1, Ij is a subset of indices on which both parties
have learned little information about each other from the
partial transcript m1, . . . ,mj . Invariant 3.3(2) ensures that
the two parties draw their inputs after the jth round from
similar distributions. Invariant 3.3(3) is the most impor-

tant property. It says that the information revealed by D̂(j)

about I ′ is roughly what one would expect, given the mes-
sage lengths l1, . . . , lj . Note that the uth message conveys
information about |Iu−1| = k1−(u−1)/r indices so the aver-
age information-per-index should be lu/k

1−(u−1)/r. The fac-
tor 16j−u+1 and the extra term 22j come from Lemma 3.1,

which throws away part of the input distribution in each
round, progressively distorting the distributions in minor
ways.

To begin our induction, at round j we find a large frac-
tion of possible messages mj that reveal little information
about the sender’s input, projected onto Ij−1. This is pos-
sible because the length of the message lj = |mj | reflects an
upper bound on the expected information gain. This idea is
formalized in the following Lemma 3.4.

Lemma 3.4. Fix j ∈ [1, r] and suppose Invariant 3.3 holds
for j − 1. Then there exists a subset of messages M′

j with
µj(M′

j) ≥ 1/2 such that each message mj ∈ M′
j satisfies

H(D(j)
Ij−1

[mj ]) ≥
(
cE − 2

j∑

u=1

16j−ulu
k1−(u−1)/r

− 2 · 22j−1

)
|Ij−1|.

Proof. Let M′
j contain all messages mj satisfying the above

inequality and M′
j be its complement. Suppose, for the

purpose of obtaining a contradiction, that the conclusion of
the lemma is not true, i.e., µj(M′

j) = α > 1/2. Then the

entropy of D̂(j−1)
Ij−1

can be upper bounded as follows.

H(D̂(j−1)
Ij−1

)

= I(D̂(j−1)
Ij−1

; Mj) +
∑

mj∈(M′
j∪M′

j)

µj(mj)H(D(j)
Ij−1

[mj ])

≤ H(Mj) +
∑

mj∈(M′
j∪M′

j)

µj(mj)H(D(j)
Ij−1

[mj ])

≤ lj +
∑

mj∈M′
j

µj(mj)H(D(j)
Ij−1

[mj ])

+
∑

mj∈M′
j

µj(mj)H(D(j)
Ij−1

[mj ])

< lj + (1− α)cE|Ij−1|

+ α

(
cE − 2

j∑

u=1

16j−ulu
k1−(u−1)/r

− 2 · 22j−1

)
|Ij−1|

= lj +

(
cE − 2α

j∑

u=1

16j−ulu
k1−(u−1)/r

− 2α · 22j−1

)
|Ij−1|

<

(
cE −

j−1∑

u=1

16j−ulu
k1−(u−1)/r

− 22j−1

)
|Ij−1|

This contradicts Invariant 3.3(3) at index j − 1.

After the jth message mj is sent, the next step is to
identify a set of coordinates Ij such that D(j) still reveals
little information about Ij and every subset of Ij , since we
need this property to hold for Ij+1, . . . , Ir in the future, all of
which are subsets of Ij . We also want Ij not to contain many
low probability points w.r.t. D(j−1), since this may stop us
from applying Lemma 3.2 later on. These two constraints are
captured by parts (2) and (1), respectively, of Lemma 3.5.
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Lemma 3.5. Fix j ∈ [1, r] and suppose Invariant 3.3 holds
for j − 1. Then there exists a subset of messages Mj ⊆ M′

j

(from Lemma 3.4) with µj(Mj) ≥ 1/4 such that for each
message mj ∈ Mj , there exists a subset Ij ⊆ Ij−1 of size
|Ij | = k1−j/r satisfying both of the following properties:

1. Pr
xIj

∼D
(j)
Ij

[
D(j−1)

Ij
(xIj ) < (4t)−|Ij |/32

]
≤ 1/2;

2. Each nonempty subset I ′ ⊆ Ij satisfies

H(D(j)

I′ ) ≥
(
cE − 4

j∑

u=1

16j−ulu
k1−(u−1)/r

− 4 · 22j−1

)
|I ′|.

Proof. We first prove that for each message mj ∈ M′
j (from

Lemma 3.4), there exists a subset J0 ⊆ Ij−1 of size |J0| ≥
|Ij−1|/2 such that each nonempty subset I ′ ⊆ J0 satisfies
part (2) of the lemma. Suppose J1, J2, . . . , Jw are disjoint
subsets of Ij−1, each of which violates the inequality of part
(2), whereas none of the subsets of J0 = Ij−1 \ (

⋃w
v=1 Jv) do.

Then we can upper bound the entropy of D(j)
Ij−1

as follows.

H(D(j)
Ij−1

)

≤
w∑

v=0

H(D(j)
Jv

)

< cE|J0|+
w∑

v=1

(
cE − 4

j∑

u=1

16j−ulu
k1−(u−1)/r

− 4 · 22j−1

)
|Jv|

= cE|Ij−1| − 4|Ij−1 \ J0|
(

j∑

u=1

16j−ulu
k1−(u−1)/r

+ 22j−1

)
.

On the other hand, from Lemma 3.4, having mj ∈ M′
j

guarantees that

H(D(j)
Ij−1

) ≥
(
cE − 2

j∑

u=1

16j−ulu
k1−(u−1)/r

− 2 · 22j−1

)
|Ij−1|.

The two inequalities above are only consistent if |Ij−1\J0| ≤
|Ij−1|/2, or equivalently |J0| ≥ |Ij−1|/2. Thus, J0 exists
with the right cardinality, as claimed.

Now suppose, for the purpose of obtaining a contradic-
tion, that the lemma is false. For every mj ∈ M′

j there is
a corresponding index set J0 whose subsets satisfy part (2)
of the lemma. If the lemma is false, that means there is a
subset M′′

j ⊆ M′
j of “bad” messages with µj(M′′

j ) > 1/4

such that, for each mj ∈ M′′
j , none of the

(
|J0|
|Ij |

)
choices for

Ij ⊆ J0 satisfy part (1) of the lemma. (Remember that J0

depends on mj but the lower bound on |J0| ≥ |Ij−1|/2 is
independent of mj .) Consider the following summation:

Z =
∑

Ij⊆Ij−1 :

|Ij |=k1−j/r

∑

xIj
∈[t]

|Ij | :

D
(j−1)
Ij

(xIj
)< (4t)

−|Ij |/32

D(j−1)
Ij

(xIj ).

We can easily upper bound Z as follows.

Z <

(
|Ij−1|
|Ij |

)
· t|Ij | · (4t)

−|Ij |

32
=

(
|Ij−1|
|Ij |

)
2−2|Ij |−5.

Invariant 3.3(2) relates D(j−1) and D̂(j−1), which lets us
lower bound Z.

Z ≥ 1

4

∑

Ij⊆Ij−1 :

|Ij |=k1−j/r

∑

xIj
∈[t]

|Ij | :

D
(j−1)
Ij

(xIj
)< (4t)

−|Ij |/32

D̂(j−1)
Ij

(xIj )

By definition, D̂(j−1) is a convex combination of the D(j)[mj ]
distributions, weighted according to µj(·). Hence, the
expression above is lower bounded by

≥ 1

4

∑

Ij⊆Ij−1 :

|Ij |=k1−j/r

∑

xIj
∈[t]

|Ij | :

D
(j−1)
Ij

(xIj
)

<(4t)
−|Ij |/32

∑

mj∈M′′
j

µj(mj) · D(j)
Ij

[mj ](xIj )

≥ 1

4

∑

mj∈M′′
j

µj(mj)
∑

Ij⊆J0 :

|Ij |=k1−j/r

∑

xIj
∈[t]

|Ij | :

D
(j−1)
Ij

(xIj
)

<(4t)
−|Ij |/32

D(j)
Ij

[mj ](xIj )

By definition, for every mj ∈ M′′
j and every choice of

Ij ⊆ J0, part (1) of the lemma is violated. Continuing with
the inequalities,

>
1

4

∑

mj∈M′′
j

µj(mj) ·
(
|J0|
|Ij |

)
· 1
2

>
1

32

(
|Ij−1|/2

|Ij |

)
.

This contradicts the upper bound on Z whenever k1/r is at
least some sufficiently large constant.

The receiver of mj constructs a new distribution D̂(j) in
two steps. After fixing Ij , we construct D̃(j) by combining
D(j−1) and D(j), filtering out some points in the space whose
probability mass is too low. We then construct D̂(j) from
D̃(j) and D(j−1) by filtering out points that occur under
D̃(j) with substantially larger probability than they do under
D(j−1).

Formally, suppose Invariant 3.3 holds for j−1. For each
message mj ∈ Mj (from Lemma 3.5), let Ij be selected to
satisfy both properties of Lemma 3.5. Define the probability
mass of a vector x ∈ [t]k under D̃(j) as follows:

D̃(j)(x) =





0 if D(j−1)
Ij

(xIj ) <
(4t)

−|Ij |

32
;

D
(j)
Ij

(xIj
)

β1
· D(j−1)(x)

D
(j−1)
Ij

(xIj
)

otherwise.

where β1 is

β1 = Pr
xIj

∼D
(j)
Ij

[
D(j−1)

Ij
(xIj ) ≥

(4t)−|Ij |

32

]
.
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In other words, we discard a 1−β1 fraction of the distribution
D(j), but ignoring this effect, the projection of D̃(j) onto Ij
has the same distribution as D(j) onto Ij , and conditioned
on the value of xIj , the distribution D̃(j) (projected onto

[k]\Ij) is identical to D(j−1). We derive D̂(j) from D̃(j) with
a similar transformation.

D̂(j)(x) =





0, if
D̃

(j)
Ij

(xIj
)

D
(j−1)
Ij

(xIj
)
> 2γj ;

D̃
(j)
Ij

(xIj
)

β2
· D(j−1)(x)

D
(j−1)
Ij

(xIj
)
, otherwise.

where β2 and γj are defined to be

β2 = Pr
xIj

∼D̃
(j)
Ij


 D̃(j)

Ij
(xIj )

D(j−1)
Ij

(xIj )
≤ 2γj


 ,

γj =

j∑

u=1

lu

(
16

k1/r

)j−u+1

+ (16 · 22j−1 + 6)|Ij |+ 6

≤
j∑

u=1

lu

(
16

k1/r

)j−u+1

+ 22j |Ij |+ 6.

The proofs of Lemmas 3.6 and 3.7 use several simple
observations about D̃(j) and D̂(j):

First, Lemma 3.5(1) states that β1 ≥ 1/2.

Lemma 3.5(2) lower bounds the entropy of D(j)
Ij

. We ap-

ply Lemma 3.1 to D(j)
Ij

and D̃(j)
Ij

(taking the roles of p and q,

respectively) with parameter α = 1/2 ≤ β1, and obtain the

following lower bound on the entropy of D̃(j)
Ij

.

H(D̃(j)
Ij

) ≥
(
cE − 8

j∑

u=1

16j−ulu
k1−(u−1)/r

− 8 · 22j−1 − 2

)
|Ij |.

Second, we can then apply Lemma 3.2 to D(j−1)
Ij

and D̃(j)
Ij

(taking the roles of p and q, respectively) with parameters

g1 = 8

j∑

u=1

16j−ulu
k(j−u+1)/r

+ (8 · 22j−1 + 2)|Ij |,

g2 = 2|Ij |+ 5,

and α = 1/2.

Since g1/α+g2−(1−α) log(1−α)/α = γj , we conclude that

β2 ≥ 1− α = 1/2. Thus, for each value xIj ∈ supp(D̂(j)
Ij

),

(3.2) D̂(j)
Ij

(xIj ) =
D̃(j)

Ij
(xIj )

β2
=

D(j)
Ij

(xIj )

β1β2
≤ 4D(j)

Ij
(xIj ).

Lemma 3.6 completes the inductive step by lower
bounding the entropy of D̂(j)

I′ for every nonempty subset
I ′ ⊆ Ij . To put it another way, it ensures that the values of
those coordinates in Ij remain almost completely unknown
to both parties.

Lemma 3.6. Fix j ∈ [1, r] and suppose Invariant 3.3 holds
for j − 1. Then, for each message mj ∈ Mj (from
Lemma 3.5), Invariant 3.3 also holds for j.

Proof. Due to Lemma 3.5 and Eqn. (3.2), the first two
properties of Invariant 3.3 are satisfied. For each nonempty
subset I ′ ⊆ Ij , the third property of Invariant 3.3 can be
derived from the second property of Lemma 3.5 and an
application of Lemma 3.1 to D(j)

I′ and D̂(j)

I′ (taking the roles
of p and q, respectively) with parameter α = 1/4 as follows.

H(D̂(j)

I′ ) ≥
(
cE − 16

j∑

u=1

16j−ulu
k1−(u−1)/r

− 16 · 22j−1 − 4

)
|I ′|

≥
(
cE −

j∑

u=1

16j−u+1lu
k1−(u−1)/r

− 22j
)
|I ′|.

Aside from maintaining Invariant 3.3 round by round,
another important part of our proof is to compute the error
probability. Lemma 3.7 shows how the error probabilities of
two consecutive rounds are related after our modification to
the protocol. More importantly, it also illustrates the reason
to bound the pointwise ratio between D̃(j)

Ij
and D(j−1)

Ij
.

Lemma 3.7. Fix a round j ∈ [1, r] and suppose Invariant 3.3
holds for j − 1. Fix any specific message mj ∈ Mj (from
Lemma 3.5). Define p to be the probability of error, when
the protocol begins after round j with the inputs drawn from
D(j) and D̂(j), respectively. Then the probability of error is
at least 2−γj−1p when the inputs are instead drawn from D(j)

and D(j−1), respectively.

Proof. From the definition of D̂(j), for each value x ∈
supp(D̂(j)), we have

(3.3)
D̂(j)(x)

D(j−1)(x)
=

D̃(j)
Ij

(xIj )

β2D(j−1)
Ij

(xIj )
≤ 2γj

β2
≤ 2γj+1.

This concludes the proof.

Finally, with all lemmas proved above, we have reached
the point to calculate the initial error probability.

Lemma 3.8. Recall that c = 1/2, c′ = c/100. Fix any
r ∈ [1, (log k)/6] and E ≥ 100k1−1/r/c. Suppose the initial
input vectors are drawn independently and uniformly from
[t]k, where t = 2cE. Then the error probability of the
EqualityTesting protocol, perr, is greater than 2−E.

Proof. First suppose Invariant 3.3 holds for r and consider
the situation after the final round, where the inputs are
drawn from D(r) and D̂(r), respectively. Notice that Ir is
a singleton set, so the entropy of D̂(r)

Ir
can be lower bounded

as follows.

H(D̂(r)
Ir

) ≥ cE −
r∑

u=1

16r−u+1lu
k1−(u−1)/r

− 22r

= cE − 16

k1/r

r∑

u=1

lu

(
16

k1/r

)r−u

− 22r

≥ cE − 16

k1/r

r∑

u=1

lu − 22k1−1/r

≥ cE − 16c′E − 22k1−1/r >
cE

2
.
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From the lower bound on the entropy of D̂(r)
Ir

, we
can easily show that there exists no value xIr such that

D̂(r)
Ir

(xIr ) = α > 3/4. If there were such a value, then the

entropy of D̂(r)
Ir

can also be upper bounded as

H(D̂(r)
Ir

) ≤ α log
1

α
+ (1− α) log

t

1− α

<
cE

4
+ α log

1

α
+ (1− α) log

1

1− α

<
cE

2
,

contradicting the lower bound on H(D̂(r)
Ir

).
After all r rounds of communication, the receiver of

the last message has to make the decision on Ir depending
only on his own input on Ir. Let X0 ⊆ [t] be the subset of
values xIr such that the protocol outputs “not equal” on Ir
upon seeing the input xIr after r rounds of communication,

X1 = [t] \ X0, and β = D̂(r)
Ir

(X0). Then, the final error
probability is at least

∑

xIr∈X0

D̂(r)
Ir

(xIr )D(r)
Ir

(xIr ) +
∑

xIr∈X1

D̂(r)
Ir

(xIr )
(
1−D(r)

Ir
(xIr )

)

≥ 1

4

∑

xIr∈X0

D̂(r)
Ir

(xIr )
2 +

1

4

∑

xIr∈X1

D̂(r)
Ir

(xIr )
∑

x′
Ir

6=xIr

D̂(r)
Ir

(x′
Ir )

=
1

4

∑

xIr∈X0

D̂(r)
Ir

(xIr )
2 +

1

4

∑

xIr∈X1

D̂(r)
Ir

(xIr )
(
1− D̂(r)

Ir
(xIr )

)

≥ 1

4

∑

xIr∈X0

D̂(r)
Ir

(xIr )
2 +

1

16

∑

xIr∈X1

D̂(r)
Ir

(xIr )

≥ β2

4t
+

1− β

16
≥ 1

4t
.

This result also meets the simple intuition that when
the inputs to the two parties are almost uniformly random
and no communication is allowed, the best strategy would
be guessing “not equal” regardless of the actual input.

Finally, we are ready to transfer the error probability
back round by round. From Lemma 3.5 through Lemma 3.7,
the error probability w.r.t. D(j) and D̂(j) differs from the
error probability w.r.t. D(j−1) and D̂(j−1) by at most a
4 · 2γj+1 = 2γj+3 factor. In particular, Lemma 3.5 and
Lemma 3.6 say that the jth message mj satisfies Invari-
ant 3.3 at index j with probability at least 1/4, provided
Invariant 3.3 holds for j − 1, and Lemma 3.7 says the error
probabilities under the two measures differ by a 2γj+1 factor
for any such mj . Repeating this for each j ∈ [1, r], we con-
clude that the initial error probability perr is lower bounded
by

perr ≥ 1

4t
· exp

(
−3r −

r∑

j=1

γj

)

= exp

(
−cE − 2− 3r −

r∑

j=1

γj

)

> 2−E ,

since

cE + 2 + 3r +

r∑

j=1

γj

≤ cE + 2 + 3r + 6r +

r∑

j=1

j∑

u=1

lu

(
16

k1/r

)j−u+1

+

r∑

j=1

22j |Ij |

≤ cE + 11r +

r∑

u=1

16lu
k1/r

r∑

j=u

(
16

k1/r

)j−u

+22k1−1/r
r∑

j=1

(
22

k1/r

)j−1

≤ cE + 11r +
32

k1/r

r∑

u=1

lu + 44k1−1/r

≤ cE +
11cE

100
+

32cE

100
+

44cE

100
< E.

Proof. [Proof of Theorem 3.1] Lemma 3.8 actually shows
that given integers k ≥ 1 and r ≤ (log k)/6, any r-
round deterministic protocol for EqualityTesting on vectors of
length k that has distributional error probability perr = 2−E

with respect to the uniform input distribution on [t]k, where
t = 2cE , requires at least Ω(Ek1/r) bits of communication.
Notice that the additional assumption E ≥ 100k1−1/r/c
always makes sense since there is a trivial Ω(k) lower
bound on the communication complexity of EqualityTesting,
regardless of r. Thus, Theorem 3.1 follows directly from
Yao’s minimax principle.

3.3 A Lower Bound on ExistsEqual The proof of
Theorem 3.2 is almost the same as that of Theorem 3.1,
except for the final step, namely Lemma 3.8, in which we
first compute the final error probability after all r rounds
of communication and then transfer it backward round by
round using Lemma 3.7. The problem with applying the
same argument to ExistsEqual protocols is that the receiver
of the last message may be able to announce the correct
answer, even though it knows little information about the
inputs on the single coordinate Ir.

In order to prove Theorem 3.2, first notice that
Lemma 3.4 through Lemma 3.7 also hold perfectly well for
ExistsEqual protocols as no modification is required in their
proofs. Therefore, it is sufficient to prove the following
Lemma 3.9, which is an analog of Lemma 3.8 for ExistsE-

qual. It is based mainly on Markov’s inequality.

Lemma 3.9. Recall that c = 1/2, c′ = c/100. Consider an
execution of a deterministic r-round ExistsEqual protocol,
r ∈ [1, (log k)/6], on input vectors drawn independently and
uniformly from [t]k, where t = 2cE. Here E ≥ 100k1−1/r/c
if r > 1 and E ≥ (100 log k)/c otherwise. Then the protocol
errs with probability perr > 2−E.
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Proof. Similarly to the proof of Lemma 3.8, we first consider
the situation after the final round. In the ExistsEqual

protocol, the receiver of the last message can make the
decision depending on every coordinate of his own input.
Let X0 ⊆ [t]k be the subset of values x such that the
protocol outputs “no” upon seeing the input x after r rounds
of communication, X1 = [t]k \ X0. Then, the final error
probability is at least

∑

x∈X0

D̂(r)(x)D(r)
Ir

(xIr )+
∑

x∈X1

D̂(r)(x)


1−

∑

y∈N (x)

D(r)(y)


 ,

where

N (x) = {y ∈ [t]k | there exists some i ∈ [k] such that xi = yi}

is the subset of input vectors that agree with x on at least
one coordinate.

The main difficulty here is to lower bound 1 −∑
y∈N (x) D(r)(y), which is potentially quite small. Consider

the following summation Z0 over all transcripts m1, . . . ,mr

in which mj ∈ Mj (from Lemma 3.5), where the set Mj

depends on m1, . . . ,mj−1:

Z0 =
∑

m1∈M1

µ1(m1)
∑

m2∈M2

µ2(m2) · · ·

∑

mr∈Mr

µr(mr)
∑

x∈[t]k

D̂(r)(x)
∑

y∈N (x)

D(r)(y).

From the proof of Lemma 3.7 (Eqn. (3.3)), we can upper
bound Z0 as follows.

Z0 ≤
∑

m1∈M1

µ1(m1) · · ·
∑

mr∈Mr

µr(mr)

∑

x∈[t]k,
y∈N (x)

2γr+1 · D(r−1)(x) · D(r)(y)

Notice that γr and D(r−1) are independent of the choice of
mr, hence by rearranging sums, this is equal to

=
∑

m1∈M1

µ1(m1) · · ·
∑

mr−1∈Mr−1

µr−1(mr−1)

∑

x∈[t]k,
y∈N (x)

2γr+1 · D(r−1)(x)
∑

mr∈Mr

µr(mr) · D(r)(y)

By definition, D̂(r−1) is a convex combination of theD(r)[mr]
distributions, weighted according to µr(·). Hence, the
expression above is upper bounded by

≤
∑

m1∈M1

µ1(m1) · · ·
∑

mr−1∈Mr−1

µr−1(mr−1)

∑

x∈[t]k,
y∈N (x)

2γr+1 · D(r−1)(x) · D̂(r−1)(y)

By the symmetry of x and y, this is equal to

=
∑

m1∈M1

µ1(m1) · · ·
∑

mr−1∈Mr−1

µr−1(mr−1)

∑

x∈[t]k,
y∈N (x)

2γr+1 · D̂(r−1)(x) · D(r−1)(y)

We repeat the same argument for rounds r − 1 down to 1,
upper bounding Z0 by

≤ exp

(
r +

r∑

j=1

γj

)
·
∑

x∈[t]k,
y∈N(x)

D̂(0)(x) · D(0)(y)

≤ exp

(
r +

r∑

j=1

γj

)
· k
t

The last inequality above follows from a union bound since,
under the initial distributions D̂(0),D(0), each of the k
coordinates is equal with probability 1/t. Recall that E ≥
100k1−1/r/c when r > 1 and E ≥ (100 log k)/c otherwise.
Hence, using the same argument as that in the proof of
Lemma 3.8, we can further bound this as

≤ 20.83cE · 20.02cE · 2−cE = 2−0.15cE ,

since

r +

r∑

j=1

γj

≤ 7r +

r∑

j=1

j∑

u=1

lu

(
16

k1/r

)j−u+1

+

r∑

j=1

22j |Ij |

≤ 7cE

100
+

32cE

100
+

44cE

100
=

83cE

100
,

and k ≤ (cE/100)r/(r−1) ≤ (cE/100)2 ≤ 20.02cE when r > 1
and k ≤ 20.01cE otherwise.

Now fix a round j and a particular history (m1, . . . ,mj)
up to round j such that mj′ ∈ Mj′ holds for every j′ ≤ j.
Define Zj as follows.

Zj =
∑

mj+1∈Mj+1

µj+1(mj+1) · · ·
∑

mr∈Mr

µr(mr)

∑

x∈[t]k

D̂(r)(x)
∑

y∈N (x)

D(r)(y).

By Markov’s inequality, there exists a subset of messages
M̂1 ⊆ M1 with µ1(M̂1) ≥ µ1(M1)/2 ≥ 1/8 such that

each message m1 ∈ M̂1 satisfies Z1 ≤ 2Z0/µ1(M1) ≤ 8Z0

since µ1(M1) ≥ 1/4 from Lemma 3.5. Similarly, conditioned

on any specific m1 ∈ M̂1, by Markov’s inequality, there
exists a subset of messages M̂2 ⊆ M2 with µ2(M̂2) ≥
µ2(M2)/2 ≥ 1/8 such that each message m2 ∈ M̂2 satisfies
Z2 ≤ 2Z1/µ2(M2) ≤ 82Z0. In general, conditioned on any

specific partial transcriptm1, . . . ,mj−1 such thatmj′ ∈ M̂j′
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holds for every j′ < j, there exists a subset of messages
M̂j ⊆ Mj with µj(M̂j) ≥ µj(Mj)/2 ≥ 1/8 such that each

message mj ∈ M̂j satisfies Zj ≤ 8jZj .
After repeating the same argument r times, we get

M̂1, . . . ,M̂r in sequence. For any sampled transcript
m1, . . . ,mr such that mj ∈ M̂j for all j ≤ r, we have

Zr ≤ 8rZ0 ≤ 23r · 2−0.15cE ≤ 2−0.12cE ≤ 1

4
,

as r ≤ cE/100 and cE ≥ 100. Further, one more application
of Markov’s inequality shows that there exists a subset of
values X ′ ⊆ [t]k with D̂(r)(X ′) = α ≥ 1/2 such that∑

y∈N (x) D(r)(y) ≤ 1/2 holds for every x ∈ X ′.
As a result, we can then lower bound the final error

probability as follows, where β = D̂(r)(X0 ∩ X ′).

∑

x∈X0

D̂(r)(x)D(r)
Ir

(xIr ) +
∑

x∈X1

D̂(r)(x)


1−

∑

y∈N (x)

D(r)(y)




≥
∑

x∈(X0∩X ′)

D̂(r)(x)D(r)
Ir

(xIr )

+
∑

x∈(X1∩X ′)

D̂(r)(x)


1−

∑

y∈N (x)

D(r)(y)




≥ 1

4

∑

x∈(X0∩X ′)

D̂(r)(x)D̂(r)
Ir

(xIr )

+
∑

x∈(X1∩X ′)

D̂(r)(x)


1−

∑

y∈N (x)

D(r)(y)




≥ 1

4

∑

x∈(X0∩X ′)

D̂(r)(x)D̂(r)
Ir

(xIr ) +
1

2

∑

x∈(X1∩X ′)

D̂(r)(x)

In order to minimize the above expression, we can now
assume without loss of generality that the partition between
X0∩X ′ and X1∩X ′ depends solely on xIr as only the relative

magnitude of D̂(r)
Ir

(xIr )/4 and 1/2 matters. Continuing,

≥ β2

4t
+

α− β

2
≥ α2

4t
≥ 1

16t
.

Finally, we are ready to transfer the error probability
back in exactly the same manner as we did in the proof of
Lemma 3.8. Using a similar argument, the existence of M̂j

guarantees that

perr ≥ 1

16t
· exp

(
−4r −

r∑

j=1

γj

)

= exp

(
−cE − 4− 4r −

r∑

j=1

γj

)
> 2−E ,

since

cE + 4 + 4r +

r∑

j=1

γj ≤ cE +
14cE

100
+

32cE

100
+

44cE

100
< E.

Proof. [Proof of Theorem 3.2] Similarly to the proof of
Theorem 3.1, Theorem 3.2 follows from Lemma 3.9 and a
direct application of Yao’s minimax principle.

4 Upper Bounds on EqualityTesting and

ExistsEqual

In this section, we prove upper bounds on both
EqualityTesting and ExistsEqual. We first give a (log∗(k/E)+
r)-round EqualityTesting protocol (Theorem 4.1) that uses
O(k + rEk1/r) bits of communication and errs with prob-
ability at most perr = 2−E . The log∗(k/E) term can-
not be completely eliminated, due to the lower bounds
of [ST13, BCK+16]. Our lower bound implies that when
E ≥ k (so log∗(k/E) = 0), the second term is optimal up to
a factor of r.

A natural goal is to achieve optimal communication
Θ(k+E) and minimize the number of rounds subject to that
constraint. When E ≥ k our lower bound says r = Ω(log k),
but in this case the algorithm of Theorem 4.1 only achieves
O(E log k) communication. Theorems 4.2 and 4.3 illustrate
two ways to shave off this factor of r. Theorem 4.2 applies to
the easier ExistsEqual problem, and Theorem 4.3 applies to
the general EqualityTesting problem, but blows up the round
complexity to log∗(k/E) +O(r).

Theorem 4.1. There exists a (log∗(k/E) + r)-round ran-
domized protocol for EqualityTesting on vectors of length k
that errs with probability perr = 2−E, using O(k + rEk1/r)
bits of communication.

Theorem 4.2. There exists a (log∗(k/E) + r)-round ran-
domized protocol for ExistsEqual on vectors of length k that
errs with probability perr = 2−E, using O(k + Ek1/r) bits of
communication.

Theorem 4.3. There exists a (log∗(k/E) + O(r))-round
randomized protocol for EqualityTesting on vectors of length
k that errs with probability perr = 2−E, using O(k + Ek1/r)
bits of communication.

Remark 4.1. The log∗(k/E) terms in the round complexity
of Theorems 4.1–4.3 are not absolute. They can each be
replaced with max{0, log∗(k/E) − log∗(C)}, at the cost of
increasing the communication by O(Ck).

4.1 Generic Protocols We start by giving a generic
protocol for EqualityTesting. The protocol uses a simple
subroutine for ExistsEqual/EqualityTesting when k = 1.
Suppose Alice and Bob hold x, y ∈ U = {0, 1}l, respectively.
Alice picks a random w ∈ {0, 1}l from the shared random
source and sends Bob x̌ = 〈x,w〉 mod 2, where 〈·, ·〉 is the
inner product operator. Bob computes y̌ = 〈y, w〉 mod 2
and declares “x = y” iff x̌ = y̌. Clearly, Bob never errs if
x = y; it is straightforward to show that the probability of
error is exactly 1/2 when x 6= y. We call this protocol an
inner product test and x̌, y̌ test bits. A b-bit inner product
test on x and y refers to b independent inner product tests
on x and y.

1726

Copyright © 2020 by SIAM
Unauthorized reproduction of this article is prohibited

D
o
w

n
lo

ad
ed

 0
6
/0

3
/2

0
 t

o
 9

9
.7

.8
0
.1

3
8
. 
R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
:/

/w
w

w
.s

ia
m

.o
rg

/j
o
u
rn

al
s/

o
js

a.
p
h
p



The entire protocol is divided into several phases. Be-
fore phase j, j ≥ 1, Alice and Bob agree on a subset Ij−1 of
coordinates on which all previous inner product tests have
passed. In other words, they have not yet witnessed that
any of the coordinates in Ij−1 are not equal. Each coordi-
nate i ∈ Ij−1 represents either an actual equality (xi = yi),
or a false positive (xi 6= yi). At the beginning of the proto-
col, I0 = [k]. In phase j, we perform lj independent inner
product tests on each coordinate in Ij−1 and let Ij ⊆ Ij−1

be the remaining coordinates that pass all their respective
inner product tests. Notice that each coordinate in Ij−1

corresponding to equality will always pass all the tests and
enter Ij , while those corresponding to inequalities will only
enter Ij with probability 2−lj . At the end of the protocol, we
declare all coordinates in Ir equal and all other coordinates
not equal.

This finishes the description of our generic protocol.
Theorems 4.1–4.3 all use the framework of the generic
protocol and mainly differ in the details, such as how Alice
and Bob exchange their test bits, how they decide lj , and
when the protocol terminates.

4.1.1 A protocol for exchanging test bits For
EqualityTesting, it is possible that a constant fraction of the
coordinates are actually equalities, which makes |Ij | = Θ(k)
for every j. The naive implementation explicitly exchanges
all lj |Ij−1| test bits and uses Ω(kE) bits of communication
in total. All the test bits corresponding to equalities are
“wasted” in a sense.

For our application, it is important that the communi-
cation volume that Alice and Bob use to exchange their test
bits in phase j be proportional to the number of false posi-
tives in Ij−1, instead of the size of Ij−1. We will use a slightly
improved version of a protocol of Feder et al. [FKNN95] for
exchanging the test bits.

Imagine packing the test bits into vectors x̂, ŷ ∈ B|Ij−1|

where B = {0, 1}lj . Lemma 4.1 shows that Alice can
transmit x̂ to Bob, at a cost that depends on an a priori
upper bound on the Hamming distance dist(x̂, ŷ), i.e., the
number of the coordinates in Ij−1 where they differ.

Lemma 4.1. (Cf. Feder et al. [FKNN95].) Suppose Al-
ice and Bob hold length-K vectors x, y ∈ BK , where B =
{0, 1}L. Alice can send one O(dL+ d log(K/d))-bit message
to Bob, who generates a string x′ ∈ BK such that the fol-
lowing holds. If the Hamming distance dist(x, y) ≤ d then
x = x′; if dist(x, y) > d then there is no guarantee.

Proof. Define G = (V,E) to be the graph on V = BK

such that {u, v} ∈ E iff dist(u, v) ≤ 2d. The maximum
degree in G is clearly at most ∆ =

(
K
2d

)
· 22Ld since there

are
(
K
2d

)
ways to select the 2d indices and 22Ld ways to

change the coordinates at those indices so that there are
at most 2d different coordinates. Let φ : V 7→ [∆ + 1] be
a proper (∆ + 1)-coloring of G. Alice sends φ(x) to Bob,
which requires log(∆+1) = O(dL+ d log(K/d)) bits. Every
string in the radius-d ball around y (w.r.t. dist) is colored
differently since they are all at distance at most 2d, hence if
dist(x, y) ≤ d, Bob can reconstruct x without error.

Corollary 4.1. Suppose at phase j, it is guaranteed
that the number of false positives in Ij−1 is at most
kj−1. Then phase j can be implemented with O(kj−1lj +
kj−1 log(k/kj−1)) bits in 2 rounds.

A naive implementation of the protocol requires 2r
rounds if the generic protocol has r phases. In fact, the
protocol can be compressed into exactly r rounds in the
following way. At the beginning, both parties agree that
I0 = [k]. Alice generates her l1|I0| test bits x̂(1) for phase 1
and communicates them to Bob; Bob first generates his own
test bits ŷ(1) for phase 1 and determines I1, then generates
l2|I1| test bits ŷ(2) for phase 2 and transmits both ŷ(1) and
ŷ(2) to Alice. Alice computes I1, generates x̂(2), computes
I2, generates x̂(3), and sends x̂(2) and x̂(3) to Bob, and so
on. There is no asymptotic increase in the communication
volume.

4.1.2 Reducing the number of false positives
Our protocols for EqualityTesting and ExistsEqual are divided
into two parts. The goal of the first part is to reduce the
number of false positives from at most k to at most E; if
E ≥ k, we can skip this part. Since the number of false
positives is large in this part, we can use standard Chernoff
bounds to control the number of false positives surviving
each phase. The details are very similar to the upper bound
in Sağlam and Tardos [ST13].

Theorem 4.4. Let (x, y) be an instance of ExistsEqual with
|x| = |y| = k. In log∗(k/E) rounds, we can reduce this to
a new instance (x′, y′) of ExistsEqual where |x′| = |y′| ≤ E,
using O(k) communication. The failure probability of this
protocol is at most 2−(E+1).

For EqualityTesting, we can reduce the initial instance
to a new instance (x′, y′) such that the Hamming distance
dist(x′, y′) ≤ E, with the same round complexity, communi-
cation volume, and error probability.

Proof. We first give the protocol for ExistsEqual, then apply
the necessary changes to make it work for EqualityTesting.

The protocol for ExistsEqual uses our generic protocol,
and imposes a strict upper bound kj on |Ij |. Whenever
|Ij | exceeds this upper bound, we halt the entire protocol
and answer yes. We set the parameters kj and lj for any
j ∈ [1, log∗(k/E)] as follows.

k0 = k,

kj = max

{
k

2j−1 exp(j)(2)
, E

}
,

lj = 3 + exp(j−1)(2).

Now suppose the input vectors share no equal coordi-
nates. We know that |Ij−1| ≤ kj−1 at the beginning of phase
j. The probability of any particular coordinate in Ij−1 pass-
ing all tests in phase j is exactly pj = exp(−lj). Thus, the
expected size of Ij is at most

kj−1pj =
k

2j−2 exp(j−1)(2)
· 1

23 exp(j)(2)
≤ kj

8
.
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Let Xi be the indicator variable that the ith coordinate
in Ij−1 survives to Ij and let X =

∑
i Xi. By the following

Chernoff bound:

Pr[X ≥ (1 + δ)µ] ≤
(

eδ

(1 + δ)1+δ

)µ

,

we have:
Pr[X ≥ kj ] < 0.3kj < 2−1.7kj .

Hence, the probability that there are at least kj co-
ordinates remaining after phase j is at most 2−1.7kj , and
the probability this happens in any phase is at most∑

j 2
−1.7kj ≤ 2−(E+1). Notice that when x and y share

at least one equal coordinate, the error probability of this
protocol is 0 because if it fails to reduce the number of coor-
dinates to E it (correctly) answers yes. The communication
volume of the protocol is asymptotic to

∑

j

lj |Ij−1| ≤
∑

j

ljkj−1 =
∑

j

O(k/2j) = O(k).

For EqualityTesting, we use the same kj as an upper
bound on the number of false positives in Ij , instead of the
size of Ij . Since the number of false positives is at most
k at the beginning, we can still use the same argument to
show that with the same choice of kj and lj , after log

∗(k/E)
phases, the number of false positives is at most E with error
probability 2−(E+1). By Corollary 4.1, the number of bits we
need to exchange in phase j is O(kj−1lj +kj−1 log(k/kj−1)).
Notice that log(k/kj−1) = j − 2 + exp(j−2)(2) = O(lj), so
the total communication volume is still O(k).

In all of our protocols, we first apply Theorem 4.4 to
reduce the number of coordinates (in the case of ExistsEqual)
or false positives (in the case of EqualityTesting) to be at
most E. This requires no communication if E ≥ k to
begin with. Hence, with log∗(k/E) extra rounds and O(k)
communication, we will assume henceforth that all instances
of ExistsEqual have E ≥ k and instances of EqualityTesting
have dist(x, y) ≤ E.

4.2 An O(k+rEk1/r)-bit EqualityTesting Protocol
In light of Theorem 4.4, we can assume that the input
vectors to EqualityTesting are guaranteed to differ in at most
k0 = min{k,E} coordinates.

Theorem 4.5. Fix any k ≥ 1, E ≥ 1, and r ∈
[1, (log k0)/2], where k0 = min{k,E}. There exists a ran-
domized protocol for EqualityTesting length-k vectors x, y
with Hamming distance dist(x, y) ≤ k0 that uses r rounds,

O(k + rEk
1/r
0 ) bits of communication, and errs with proba-

bility perr = 2−(E+1).

Proof. (Sketch) The proof for Theorem 4.5 is almost identi-
cal to the one for Theorem 4.4 except we use the following
parameters kj and lj .

kj = k
1−j/r
0 ,

lj = 4Ek
j/r−1
0 .

Combining Theorem 4.4 and Theorem 4.5, we obtain a
(log∗(k/E)+r)-round randomized protocol for EqualityTest-
ing.

4.3 An O(k + Ek1/r)-bit ExistsEqual Protocol

4.3.1 Overview of the protocol In this section,
we show that we can obtain a (log∗(k/E) + r)-round,
O(k+Ek1/r)-bit protocol for ExistsEqual. This matches the
lower bound of Theorem 3.2, asymptotically, when E ≥ k.
Theorem 4.4 covers the first part of the protocol, so we
assume without loss of generality that E ≥ k.

Suppose the inputs x and y share no equal coordinates.
Imagine writing down all the possible results of the inner
product tests in a matrix A of dimension (E + log k) × k,
where Aj,i is “=” if xi, yi pass the jth inner product test, and
“ 6=” otherwise. By a union bound, with probability 1−2−E ,
each column contains at least one “ 6=”. Now consider the
area above the first “ 6=” in each column. The probability
that this area is at least E′ is, by a union bound, at most

(4.4)

(
E′ + k − 1

k − 1

)
2−E′

< exp(k log(e(E′ + k)/k)− E′).

For E′ = E + O(k log(E/k)) = O(E), this probability is
� 2−E . In our analysis it suffices to consider a situation
where an adversary can decide the contents of A, subject
to the constraint that its error budget (the area above the
curve defined by the first “ 6=” in each column) never exceeds
E′ = O(E). The notion of an error budget is also essential
for analyzing the protocol of Section 4.4.

In the jth phase, j ≥ 1, our protocol exposes the
fragment of A consisting of the next lj rows of columns in
Ij−1. The set Ij consists of those columns without any “ 6=”
exposed so far. The communication budget for phase j is
equal to lj |Ij−1|. In the worst case, the first exposed value
in each column of Ij−1 \ Ij is “ 6=”, so the adversary spends
at least lj |Ij | of its error budget in phase j.

If we witness at least one “ 6=” in every column, we can
correctly declare there does not exist an equal coordinate and
answer no. Otherwise, if the adversary has not exceeded his
error budget but there is some column without any “ 6=”,
we answer yes. If the adversary ever exhausts his error
budget, we terminate the protocol and answer yes. Recall
that the notion of an error budget tacitly assumed that x and
y differ in all coordinates. If they do not, the protocol always
answers correctly, whether it halts prematurely or not. The
probability that the error budget is exhausted when x and y
differ in all coordinates (a false positive) is� 2−E , according
to Eqn. (4.4).

4.3.2 Analysis In this section we give a formal proof to
the following Theorem:

Theorem 4.6. Fix any k ≥ 1, E ≥ k, and r ∈ [1, (log k)/2].
There exists an r-round randomized protocol for ExistsEqual

on vectors of length k that errs with probability perr =
2−(E+1), using O(Ek1/r) bits of communication.
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Proof. The number of tests per coordinate in phase j is lj :

lj = 2Ekj/r−1.

Define Ej =
∑j

j′=1 lj′ |Ij′ | to be the portion of the error
budget spent in phases 1 through j. We can express the
asymptotic communication cost of the protocol in terms of
the error budget as follows.

r∑

j=1

lj |Ij−1| ≤ l1|I0|+ k1/r
r∑

j=2

lj−1|Ij−1| lj = k1/rlj−1.

≤ 2Ek1/r + Er−1k
1/r Defn. of Er−1.

Recall that the protocol terminates immediately after phase
j if Ej ≥ E′, which indicates Er−1 < E′. Hence, the total
cost is bounded by

≤ (2E + E′)k1/r = O(Ek1/r).

The protocol can only err if x and y differ in every
coordinate. In this case, there are two possible sources of
error. The first possibility is that the protocol answers yes
because |Ir| ≥ 1. By a union bound, this happens with
probability at most

k2−
∑r

j=1 lj ≤ k2−2E .

The second possibility is that the protocol terminates
prematurely and answers yes if Ej ≥ E′ for some j ∈ [1, r].
The probability of this event occuring is also � 2−E ; see
Eqn. (4.4). This concludes the proof.

Proof. [Proof of Theorem 4.2] Theorem 4.2 follows directly
by combining Theorem 4.4 and Theorem 4.6.

Remark 4.2. By applying the reduction of Theorem 1.1 to
Theorem 4.6, we conclude that SetDisjointness can be solved
in r + 1 rounds using O(Ek1/r) bits of communication. In
this particular case we actually do not need Theorem 1.1; it
is possible to solve SetDisjointness directly in r rounds with
O(Ek1/r) communication by an algorithm along the lines of
Theorem 4.6 or [ST13]. Theorem 1.1 can also be applied to
Theorem 4.5 to yield a SetIntersection protocol using r + 1
rounds and O(rEk1/r) communication, but here we do not
see how to solve the problem directly in r rounds. It seems
we would need some analogue of Lemma 4.1 tailored to the
SetIntersection problem.

4.4 A Communication Optimal EqualityTesting
Protocol Finally, we give an EqualityTesting protocol that
achieves the optimal communication complexity O(Ek1/r)
and uses O(r) rounds (instead of r). Due to lack of space,
we defer details of the protocol to the full version of the
paper [HPZZ19].

Theorem 4.7. Fix any k ≥ 1, E ≥ 1, and r ∈
[1, (log k0)/6], where k0 = min{k,E}. There exists a ran-
domized protocol for EqualityTesting length-k vectors x, y
with Hamming distance dist(x, y) ≤ k0 that uses O(r)

rounds, O(k + Ek
1/r
0 ) bits of communication, and errs with

probability perr = 2−(E+1).

Theorem 4.3 can then be obtained by combining Theo-
rem 4.4 and Theorem 4.7.

5 Application in Distributed Triangle

Enumeration

One way to solve local triangle enumeration in the
CONGEST model is to execute, in parallel, a SetIntersection

protocol across every edge of the graph, where the set as-
sociated with a vertex is a list of its neighbors. Since there
are at most ∆n/2 edges, we need the SetIntersection error
probability to be 2−E , E = Θ(log n), in order to guar-
antee a global success probability of 1 − 1/poly(n). Our
lower bound says any algorithm taking this approach must
take Ω((∆ + E∆1/r)/log n + r) rounds since each round of
CONGEST allows for one O(log n)-bit message. The hardest
situation seems to be when ∆ = E = Θ(log n), in which
case the optimum choice is to set r = log∆, making the tri-
angle enumeration algorithm run in O(log∆) = O(log log n)
time. In Theorem 5.1 we show that it is possible to han-
dle this situation exponentially faster, in O(log log∆) =
O(log log log n) time, and in general, to solve local trian-
gle enumeration [IG17] in optimal O(∆/log n) time so long
as ∆ > log n log log log n.

Theorem 5.1. Local triangle enumeration can be solved in
a CONGEST network G = (V,E) with maximum degree ∆ in
O(∆/log n+log log∆) rounds with probability 1−1/poly(n).
This is optimal for all ∆ = Ω(log n log log log n).

Proof. The algorithm consists of min{log log∆, log log log n}
phases. The goal of the first phase is to transform the
original triangle enumeration problem into one with max-
imum degree ∆1 < (log n)o(1), in O(log∗ n) rounds of com-
munication. The goal of every subsequent phase is to re-
duce the maximum degree from ∆′ ≤ √

log n to
√
∆′, in

O(1) rounds of communication. Thus, the total number of
rounds is O(log log∆) rounds if the first round is skipped,
and O(log∗ n+ log log(∆1)) = O(log log log n) otherwise.

Phase One. Suppose ∆ ≥ √
log n. Each vertex u is

identified with the set Au = {ID(v) | {v, u} ∈ E} having
size ∆. For each {u, v} ∈ E we reduce SetIntersection

to EqualityTesting by applying Theorem 1.1, then run the
two-party EqualityTesting protocol of Theorem 4.1, with
k = max{∆, log n}, r = log∗ n, and E = r−1k1−1/r. (I.e.,
if ∆ < log n we imagine padding each set to size log n
with dummy elements.) One undesirable property of this
protocol is that it can fail “silently” if the preconditions
of Lemma 4.1 are not met. When the Hamming distance
between two strings exceeds the threshold d, Bob generates
a garbage string x′ 6= x but fails to detect this. To rectify this
problem, we change the Lemma 4.1 protocol slightly: Alice
sends the color φ(x) of her string, as well as an O(log n)-
bit hash h(x). Bob reconstructs x′ as usual and terminates
the protocol if h(x) 6= h(x′). Clearly the probability of
an undetected failure (i.e., x 6= x′ but h(x) = h(x′)) is
1/poly(n). Define G1 = (V,E1) such that {u, v} ∈ E1 iff
the SetIntersection protocol over {u, v} detected a failure. In
other words, with high probability, all triangles in G have
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been discovered, except for those contained entirely inside
G1. The probability that any particular edge appears in E1

is 2−E = 2−k1−1/log∗ n/log∗ n and independent of all other
edges. In particular, if ∆ � (log n)1+1/log∗ n then no errors
occur, with probability 1 − 1/poly(n). Define ∆1 to be the
maximum degree in G1. Thus,

Pr
[
∆1 ≥ (log n)2ε

]
ε = 1/r = 1/log∗ n.

≤ n ·
(

∆

(log n)2ε

)
·
(
2−E

)(logn)2ε

≤ n · exp(O((log n)2ε log log n)) · 2−ε(logn)1−ε·(logn)2ε

≤ 1/poly(n).

Phases Two and Above. Suppose that at some
round, we have detected all triangles except for those
contained in some subgraph G′ = (V,E′) having maximum
degree ∆′ <

√
log n. Express ∆′ as (log n)γ , where γ < 1/2.

We execute the EqualityTesting protocol of Theorem 4.5 with
k = ∆′, r = 2, and E = C(log n)1−γ/2 for a sufficiently large
constant C. Note that 1−γ/2 > γ, so E > k, as required by
Theorem 4.5. The protocol takes O(Ek1/2/log n+r) = O(1)
rounds since the communication volume is O(Ek1/2) =
O(log n) and r = 2. Let G′′ be the subgraph of G′ consisting
of edges whose protocols detected a failure and ∆′′ be the
maximum degree in G′′. Once again,

Pr
[
∆′′ ≥ (log n)γ/2

]

≤ n ·
(

∆′

(log n)γ/2

)
·
(
2−E

)(logn)γ/2

≤ n · exp(O((log n)γ/2 log log n)) · 2−C(logn)1−γ/2·(logn)γ/2

≤ 1/poly(n).

Thus, once ∆ ≤ √
log n, log log∆ ≤ log log log n− 1 of these

2-round phases suffice to find all remaining triangles in G.

Theorem 5.1 depends critically on the duality between
edges and SetIntersection instances, and between edge end-
points and elements of sets. In particular, when an execution
of a SetIntersection over {u, v} is successful, this effectively
removes {u, v} from the graph, thereby removing many oc-
currences of ID(u) and ID(v) from adjacent sets.

Consider a slightly more general situation where we
have a graph of arboricity λ (but unbounded ∆), witnessed
by a given acyclic orientation having out-degree at most λ.
Redefine the set Au to be the set of out-neighbors of u.

Au = {ID(v) | {u, v} ∈ E with orientation u → v}.
By definition |Au| ≤ λ. Because the orientation is acyclic,
every triangle on {x, y, z} is (up to renaming) oriented as
x → y, x → z, y → z. Thus, it will only be detectable by
the SetIntersection instance associated with {x, y}.
Theorem 5.2. Let G = (V,E) be a CONGEST network
equipped with an acyclic orientation with outdegree at most
λ. We can solve local triangle enumeration on G in
O(λ/log n+ log λ) time.

Proof. We apply Theorem 1.1 to reduce each SetIntersection

instance to an EqualityTesting instance, then apply The-
orem 4.3 with E = Θ(log n) and r = log λ to solve
each with O(λ + Eλ1/r) = O(λ + E) communication in
O((λ + E)/log n + r) = O(λ/log n + log λ) time. Note that
the dependence on λ here is exponentially worse than the
dependence on ∆ in Theorem 5.1.

It may be that G is known to have arboricity λ,
but an acyclic orientation is unavailable. The well known
“peeling algorithm” (see [CN85] or [BE10]) computes a Cλ
orientation in O(logC n) time for C sufficiently large, say
C ≥ 3. Using this algorithm as a preprocessing step,
we can solve local triangle enumeration optimally when
λ = Ω(log2 n).

Theorem 5.3. Let G = (V,E) be a CONGEST network
having arboricity λ (with no upper bound on ∆). Local
triangle enumeration can be solved in optimal O(λ/log n)
time when λ = Ω(log2 n), and sublogarithmic time
O(log n/log(log2 n/λ)) otherwise.

Proof. The algorithm computes a γ · λ orientation in
O(logγ n) time and then applies Theorem 5.2 to solve local
triangle enumeration in O(γλ/log n + log(γλ)) time. The
only question is how to set γ. If λ = Ω(log2 n) we set γ = 3,
making the total time O(λ/log n), which is optimal [IG17].
Otherwise we choose γ to balance the logγ n and γλ/log n
terms, so that

γ log γ = log2 n/λ

Thus, the total running time is slightly sublogarithmic
O(log n/log(log2 n/λ)). Specifically, it is O(log n/log log n)
whenever λ < log2−ε n.

6 Conclusions and Open Problems

We have established a new three-way tradeoff between
rounds, communication, and error probability for many
fundamental problems in communication complexity such
as SetDisjointness and EqualityTesting. Our lower bound
is largely incomparable to the round-communication lower
bounds of [ST13, BCK+16], and stylistically very differ-
ent from both [ST13] and [BCK+16]. We believe that
our method can be extended to recover Sağlam and Tar-
dos’s [ST13] tradeoff (in the constant error probability
regime), but with a more “direct” proof that avoids some
technical difficulties arising from their round-elimination
technique. It is still open whether EqualityTesting can be
solved in r rounds with precisely O(Ek1/r) communication
and error probability 2−E < 2−k. Our algorithms match
this lower bound only when r = O(1) or r = Ω(log k), or for
any r when solving the easier ExistsEqual problem.

We developed some CONGEST algorithms for triangle
enumeration that employ two-party SetIntersection proto-
cols. It is known that this strategy is suboptimal when
∆ � n1/3 [CPZ19, CS19]. However, for the local trian-
gle enumeration problem7, our O(∆/log n+ log log∆) algo-

7Every triangle must be reported by one of its three constituent
vertices.
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rithm is optimal [IG17] for every ∆ = Ω(log n log log log n).
Whether there are faster algorithms for triangle detection8 is
an intriguing open problem. It is known that 1-round LOCAL

algorithms must send messages of Ω(∆ log n) bits deter-
ministically [ACKL17] or Ω(∆) bits randomized [FGKO18].
Even for 2-round triangle detection algorithms, there are no
nontrivial communication lower bounds known.

A Reductions and Near Equivalences

Brody et al. [BCK+16] proved that SetIntersection on sets
of size k is reducible to EqualityTesting on vectors of length
O(k), at the cost of one round and O(k) bits of communi-
cation. However, the reduction is randomized and fails with
probability at least exp(−Õ(

√
k)). This is the probability

that when k balls are thrown uniformly at random into k
bins, some bin contains ω(

√
k) balls.

Recall the statement of Theorem 1.1:

Eq(k, r, perr) ≤ SetInt(k, r, perr),

∃Eq(k, r, perr) ≤ SetDisj(k, r, perr),

SetInt(k, r + 1, perr) ≤ Eq(k, r, perr) + ζ,

SetDisj(k, r + 1, perr) ≤ ∃Eq(k, r, perr) + ζ,

where ζ = O(k+log log p−1
err). In other words, under any error

regime perr, the communication complexity of SetIntersection
and EqualityTesting are the same, up to one round and
O(k+log log p−1

err) bits of communication, and that the same
relationship holds between SetDisjointness and ExistsEqual.
The proof is inspired by the probabilistic reduction of Brody
et al. [BCK+16], but uses succinct encodings of perfect hash
functions rather than random hash functions.

Proof. [Proof of Theorem 1.1] The leftmost inequalities have
been observed before [ST13, BCK+16]. Given inputs x, y
to ExistsEqual or EqualityTesting, Alice and Bob generate
sets A = {(1, x1), . . . , (k, xk)} and B = {(1, y1), . . . , (k, yk)}
before the first round of communication and then proceed to
solve SetIntersection or SetDisjointness on (A,B). Knowing
A∩B or whether A∩B = ∅ clearly allows them to determine
the correct output of EqualityTesting or ExistsEqual on (x, y).

The reverse direction is slightly more complicated. Let
(A,B) be the instance of SetIntersection or SetDisjointness

over a universe U with size at most |U | = O(k2/perr).
Alice examines her set A, and picks a perfect hash function
h : U 7→ [k] for A, i.e., h is injective on A. (This can be done
in O(k) time, in expectation, using only private randomness.
In principle Alice could do this step deterministically, given
sufficient time.) Most importantly, h can be described
using O(k + log log|U |) = O(k + log log p−1

err) bits [SS90],
using a variant of the Fredman-Komlós-Szemerédi [FKS84]
2-level perfect hashing scheme.9 Alice sends the O(k +

8At least one vertex must announce there is a triangle; there

is no obligation to list them all.
9We sketch how the encoding of h works, for completeness.

First, pick a function h′ : U 7→ [O(k2)] that is collision-free on A.

Fredman et al. [FKS84] proved that a function of the form h′(x) =
(ax mod p) mod O(k2) works with constant probability, where

log log p−1
err)-bit description of h to Bob. Bob calculates

Bj = B∩h−1(j) and responds to Alice with the distribution
|B0|, |B1|, . . . , |Bk−1|, which takes at most 2k bits. They
can now generate an instance of Equality Testing where the
k equality tests are the pairs A0 ×B0, A1 ×B1, . . . , Ak−1 ×
Bk−1. By construction, Aj = A ∩ h−1(j) is a 1-element
set. There is clearly a 1-1 correspondence between equal
pairs and elements in A ∩ B. We have Bob speak first in
the EqualityTesting/ExistsEqual protocol; thus, the overhead
for this reduction is just 1 round of communication and
O(k + log log p−1

err) bits.
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