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The Communication Complexity of Set Intersection and Multiple Equality
Testing”
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Abstract
In this paper we explore fundamental problems in random-
ized communication complexity such as computing Set Inter-
section on sets of size k and Equality Testing between vectors
of length k. Brody et al. [BCK"16] and Saglam and Tar-
dos [ST13] showed that for these types of problems, one can
achieve optimal communication volume of O(k) bits, with
a randomized protocol that takes O(log™ k) rounds. They
also proved [BCK 116, ST13] that this is one point along the
optimal round-communication tradeoff curve.

Aside from rounds and communication volume, there is
a third parameter of interest, namely the error probability
Perr- 1t is straightforward to show that protocols for Set
Intersection or Equality Testing need to send Q(k + log pe_r%)
bits. Is it possible to simultaneously achieve optimality in
all three parameters, namely O(k + log ps,1) communication
and O(log™ k) rounds?

In this paper we prove that there is no universally
optimal algorithm, and complement the existing round-

communication tradeoffs [BCK ™16, ST13] with a new trade-
off between rounds, communication, and probability of error.
In particular:

e Any protocol for solving Multiple Equality Testing
in 7 rounds with failure probability perr = 27F has
communication volume Q(Ek").

e There exists a protocol for solving Multiple Equality
Testing in 7 4 log*(k/E) rounds with O(k + rEk'/")
communication, thereby essentially matching our lower
bound and that of [BCK*16, ST13].

e Lower bounds on Equality Testing extend to Set Inter-
section, for every r, k, and perr (Which is trivial); in the
reverse direction, upper bounds on Equality Testing for
7, k, Perr imply similar upper bounds on Set Intersection
with parameters r + 1, k, and perr.

Our original motivation for considering pe;r as an in-
dependent parameter came from the problem of enumer-
ating triangles in distributed (CONGEST) networks having
maximum degree A. We prove that this problem can be
solved in O(A/logn + loglog A) time with high probabil-
ity 1 — 1/poly(n). This beats the trivial (deterministic)
O(A)-time algorithm and is superior to the O(n'/?) algo-
rithm of [CPZ19, CS19] when A = O(n'/?).
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1 Introduction

Communication Complexity was defined by Yao [Yao79]
in 1979 and has become an indispensible tool for proving
lower bounds in models of computation in which the
notions of parties and communication are not direct.
See, e.g., books and monographs [Roul6, RY, KN97]
and surveys [CP10, Lov89] on the subject. In this paper
we consider some of the most fundamental and well-
studied problems in this model, such as SetDisjointness,
SetIntersection, ExistsEqual, and EqualityTesting. Let
us briefly define these problems formally since the
terminology is not completely standard.

SetDisjointness and SetIntersection. In the
SetDisjointness problem Alice and Bob receive sets
A C U and B C U where |A|,|B|] < k and
must determine whether A N B = (. Define
SetDisj(k, T, perr) to be the minimum communica-
tion complexity of an r-round randomized protocol
for this problem that errs with probability at most
Perr- We can assume that |U| = O(k? /perr) without
loss of generality.! The input to the SetIntersection
problem is the same, except that the parties must
report the entire set AN B. Define SetInt(k, 7, perr)
to be the minimum communication complexity of
an r-round protocol for Setlntersection.

EqualityTesting and ExistsEqual. In the
Equality Testing problem Alice and Bob hold vectors
x € UF and y € UF and must determine, for each
index 7 € [k], whether z; = y; or z; # y;. A po-
tentially easier version of the problem, ExistsEqual,
is to determine if there exists at least one index
i € [k] for which x; = y;. Define Eq(k, 7, perr) to be
the randomized communication complexity of any
r-round protocol for EqualityTesting that errs with
probability perr, and JEq(k, r, perr) the correspond-
ing complexity of ExistsEqual. Once again, we can

TBefore the first round of communication, pick a pairwise
independent h : U + [O(k?/perr)] and check whether h(A) N
h(B) = 0 with error probability perr/2. Thus, having SetDisj
depend additionally on |U| is somewhat redundant, at least when

|U| is large.
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assume that |U| = O(k/pery) without loss of gener-
ality.

The deterministic communication complexity of
these problems is well understood [KN97],% so we con-
sider randomized complexity exclusively. Although
these problems are well studied [HW07, FKNN95,
BCK™16, ST13, KS92], most prior work has focused on
the relationship between round complezity and commu-
nication volume, and paid relatively little attention to
the role of pe;. [HW07, FKNNO95, ST13, KS92]. Brody
et al.[BCK™'16] incorporated pe,, into the round vs com-
munication trade-off and in particular distinguished be-
tween the role of false positives and false negatives.

History. Hastad and Wigderson [HW07] gave an
O(log k)-round protocol for SetDisjointness in which Al-
ice and Bob communicate O(k) bits, which matched
an (k) lower bound of Kalyanasundaram and Schnit-
ger [KS92]; see also [Raz92, BGMdW13, DKS12]. Feder
et al. [FKNNO95] proved that EqualityTesting can be
solved with O(k) communication by an O(v/k)-round
protocol that errs with probability exp(—+v/k). The
round complexity and error probability were later im-
proved to logk and exp(—k/polylog(k)), respectively
[Nik13].

Improving [HWO07], Saglam and Tardos [ST13]
gave an r-round protocol for SetDisjointness that uses
O(klog™ k) communication, where log™ is the r-fold
iterated logarithm function. For r = log" k the error
probability of this algorithm is exp(—v/k), coinciden-
tally matching [FKNNO95]. In independent work, Brody
et al. [BCK'16] gave r-round and O(r)-round protocols
for ExistsEqual and Setlntersection, respectively, that use
O(klog(’”) k) communication and err with probability
1/poly (k).

Saglam and Tardos [ST13] proved that this
O(klog™ k) round vs communication tradeoff is op-
timal, using a combinatorial round elimination tech-
nique. In particular, this lower bound applies to any
ExistsEqual protocol with constant error probability. In-
dependently, Brody et al. [BCK'16] gave a simpler
proof for the EqualityTesting problem with the same
tradeoff curve, but only holds for protocols with error
probability of 1/poly(k). Brody et al. [BCK™16] also
introduced a randomized reduction from Setlntersection
to EqualityTesting, which carries a probability of error
that is only tolerable if pe, > exp(—O(Vk)).

1.1 Contributions First, we observe that a simple
deterministic reduction shows that Setlntersection is
essentially equivalent to EqualityTesting for any pe.r,

ZWhen Perr = 0, the deterministic complexity must be ex-

pressed in terms of k and |U].

up to one round of communication, and SetDisjointness
is essentially equivalent to ExistsEqual for any pe,.
Theorem 1.1 is proved in Appendix A; it is inspired
by the randomized reduction of Brody et al. [BCK'16].

THEOREM 1.1. For any parameters k > 1,7 > 1, and
Perr > 0, it holds that
etint(k, r, Perr ),

Eq(k, 7, perr) < S
SetDisj(k, 7, perr),
E
d

)
JEq(k, 7, perr)
Setlnt(k, T+ 1,perr>
SetDisj(k, 7 + 1, perr)

Q(kf’ T, perr) +¢,
Eq(k7 r, perr) + Ca
where ¢ = O(k + loglog p.,1).

Second, we prove that in any of the four problems, it
is impossible to simultaneously achieve communication
volume O(k+logp,,t) in O(log™ k) rounds for all k, pey;-
Specifically, for per = 27F, any r-round protocol
needs Q(EEY") communication. A key takeaway for
this result is that for any E > k, if one wishes to
achieve error probability 2~F with the optimal O(k +
E) communication, one needs Q(log k) rounds, instead
of log™ k rounds. We complement this lower bound
with an upper bound showing that in r + log*(k/E)
rounds, we can solve Equality Testing with O(k+rEE'/T)
communication. This matches our lower bound when
FE > k and r is constant, but is slightly suboptimal
when r = w(1). We illustrate two ways to shave off this
factor of r. We give an (r+log™(k/E))-round ExistsEqual
protocol that communicates O(k + Ek'Y/™) bits, as
well as an EqualityTesting protocol that communicates
O(k + EEY7) bits, but with round complexity O(r) +
log™(k/E).

Our original interest in Setlntersection came
from distributed subgraph detection in CONGEST?
networks, which has garnered significant interest
in recent years [CS19, CPZ19, IG17, ACKL17,
DKO14, KR18, FGKO18, CK18, GO18]. Izumi and
LeGall [IG17] proved that triangle enumeration? re-
quires Q(n'/3/logn) rounds in the CONGEST model,
and further showed that local triangle enumeration® re-

3In the CONGEST model there is a graph G = (V, E) whose
vertices are identified with processors and whose edges represent
bidirectional communication links. Each vertex v does not know
G, and is only initially aware of an O(logn)-bit ID(v), deg(v),
and global parameters n > |V| and A > max,cy deg(u).
Communication proceeds in synchronized rounds; in each round,
each processor can send a (different) O(log n)-bit message to each
of its neighbors.

4Every triangle (3-cycle) in G must be reported by some
vertex.

5Every triangle in G must be reported by at least one of the
three constituent vertices. Izumi and LeGall [IG17] only stated
the Q(n/logn) lower bound but it can also be expressed in terms
of A.
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Problem Commun. Rounds Error Probability ‘ Ref.
Equality Testing O(k) O(Vk) exp(—Vk) [FKNNO95]
Equality Testing O(k) log k exp(—k/polylog(k)) | [Nik13]
SetDisjointness O(k) O(log k) Constant [HWOT]
SetDisjointness O(klog™ k) r > exp(—Vk) [ST13]
ExistsEqual (r) r +
O(kl k 1/poly(k BCK™16
SetlIntersection (klog™" k) O(r) /poly (k) | ]
ExistsEqual 1/r * _E
O(k+ Ek 1 k/E 1 2
/ [SetDisjointness] (k + ) | rotlogT(k/E) [H]] new
Equality Testing O(k+rEEY") | r+1log*(k/E) [+1] 9-F
/ [Setlntersection] | O(k + Ek'/") | O(r) +1og"(k/E) [+1]
Lower Bounds
SetDisjointness Q(WVk) 00 Constant [BFS86]
SetDisjointness Q(k) 00 Constant [KS92]
ExistsEqual Q(klog™ k) T Constant [ST13]
ExistsEqual Q(klog™ k) r 1/poly(k) [BCK*16]
ExistsEqual Q(EkY™) r 2-F new

Table 1: Upper and Lower bounds on SetDisjointness, SetIntersection, Equality Testing, and ExistsEqual. Via trivial
reductions, lower bounds on ExistsEqual extend to all four problems, and upper bounds on Setlntersection extend
to all four problems. From Theorem 1.1, the upper bounds on SetIntersection and SetDisjointness follow from those
of EqualityTesting and ExistsEqual, respectively, +1 round of communication. The log-star function is defined as
log*(z) = min{i : log®(z) < 1}, e.g., log*(k/E) = 0 if E > k.

quires Q(A/logn) rounds in CONGEST, which can be
as large as Q(n/logn).

The most natural way to solve (local) triangle enu-
meration is, for every edge {u,v} € E(G), to have u and
v run a two-party Setlntersection protocol in which they
compute N(u) N N(v), where N(u) = {ID(z) | {u,z} €
E(G)} and ID(z) € {0,1}°0°87) is 2’s unique identi-
fier. Any r-round protocol with communication volume
O(A) can be simulated in CONGEST in O(A/logn +r)
rounds since the message size is O(log n) bits. However,
to guarantee a global probability of success at least 1 —
1/poly(n), the failure probability of each SetIntersection
instance must be pe,r = 27, E = O(logn), which is in-
dependent of A. Our communication complexity lower
bound suggests that to achieve this error probability, we
would need Q((A+EAY") /log n+r) CONGEST rounds,
i.e., with » = log A we should not be able to do better
than O(A/logn+log A). We prove that (local) triangle
enumeration can actually be solved exponentially faster,
in O(A/logn + loglog A) CONGEST rounds, without
necessarily solving every Setlntersection instance.

Organization. The proof of Theorem 1.1 on the
near-equivalence of Setlntersection/SetDisjointness and
EqualityTesting/ExistsEqual appears in Appendix A.
Section 2 reviews concepts from information theory and
communication complexity. In Section 3 we present new

lower bounds for both EqualityTesting and ExistsEqual
that incorporate rounds, communication, and error
probability. Section 4 presents nearly matching up-
per bounds for Equality Testing and ExistsEqual, and Sec-
tion 5 applies them to the distributed triangle enumer-
ation problem. We conclude with some open problems
in Section 6.

2 Preliminaries

2.1 Notational Conventions The set of positive
integers at most ¢ is denoted [t]. Random variables are
typically written as capital letters (X,Y, M, etc.) and
the values they take on are lower case (z,y,m, etc.).
The letters p, q, i, D are reserved for probability mass
functions (p.m.f.). E.g., D(z) denotes the probability
that X = x whenever X ~ D. The support supp(D) of
a distribution D is the set of all  for which D(z) > 0.
If X C supp(D), D(X) =) ,cr D(x).

Many of our random variables are vectors. If x is a
k-dimensional vector and I C [k], x; is the projection
of z onto the coordinates in I and w; is short for x ;.
Similarly, if D is the p.m.f. of a k-dimensional random
variable, D; is the marginal distribution of D on the
index set I C [k].

Throughout the paper, log and exp are the base-
2 logarithm and exponential functions, and log(r) and
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exp(™ their r-fold iterated versions:

log ™ () = exp®(2) = z,
log™ (z) = log(log" ™V (z)),
exp(z) = exp(exp V().

The log-star function is defined to be log*(z) = min{r |
log'") () < 1}. In particular, log*(z) = 0 if z < 1.

2.2 Information Theory The most fundamental
concept in information theory is Shannon entropy. The
Shannon entropy of a discrete random variable X is de-
fined as

H(X) = —

Y X =

z€supp(X)

z]log Pr[X = x].

Since there may be cases in which different distributions
are defined for the “same” random variable, we use
H(p) in place of H(X) if X is drawn from a p.m.f.
p. We also write H(a), « € (0,1), to be the entropy
of a Bernoulli random variable with success probability
a. In general, we freely use a random variable and its
p-m.f. interchangeably.

The joint entropy H(X,Y') of two random variables
X and Y is simply

H(X,Y) =

> Y prx

TE ye
supp(X) supp(Y’)

This notion can be easily extended to cases of more than two
random variables. Here, we state a well known fact about
joint entropy.

Fact 2.1. For any random variables X1, X2, ..., X,, their
joint entropy is at most the sum of their individual entropies,

i.e., H(.Xl,.XQ, ‘e ,Xn) S Z;L:l H(Xz)

The conditional entropy of Y conditioned on another
random variable X, denoted H(Y | X), measures the
expected amount of extra information required to fully
describe Y if X is known. It is defined to be

H(Y | X)

H(X,Y) — H(X)

- Y PrX=aq]
z€supp(X)

> Pry =y| X =a]logPr[Y =y | X =2] >0,

yEsupp(Y)

which can be viewed as a weighted sum of entropies of a
number of conditional distributions.

Finally, the mutual information 1(X ; Y) between
two random variables X and Y quantifies the amount of

=z AY =y]logPr[X =z AY =y].

information that is revealed about one random variable
through knowing the other one:

I(X;Y)
=H(X)-H(XY)
=H(X)+ Y Prly =y
y€Esupp(Y)
Z PriX =2|Y =yllogPr[X =z |Y =y].
z€supp(X)

2.3 Communication Complexity Let f(z,y) be a
function over domain X x ), and consider any two-party
communication protocol Q(z,y) that computes f(z,y),
where one party holds z and the other holds y. The tran-
seript of @Q on (z,y) is defined to be the concatenation of
all messages exchanged by the two parties, in order, as they
execute on input (z,y). The communication cost of @ is the
maximum transcript length produced by @ over all possible
inputs.

Let Q4 be a deterministic protocol for f and suppose
o is a distribution over X x ). The distributional er-
ror probability of Qa4 with respect to p is the probability
Pr,youlQa(z,y) # f(z,y)]. For any 0 < € < 1, the
(1, €)-distributional deterministic communication complexity
of the function f is the minimum communication cost of any
protocol Q4 that has distributional error probability at most
€ with respect to the distribution p.

A randomized protocol Q. (z,y,w) also takes a public
random string w ~ W as input. The error probability of Q.
is calculated as max (s y)cx xy Pru~w(Qr(z,y, w) # f(z,y))].
The e-randomized communication complezity of f is the
minimum communication cost of @, over all protocols Q.
with error probability at most e.

Yao’s minimaz principle [Yao77] is a common starting
point for lower bound proofs in randomized communication
complexity. The easy direction of Yao’s minimax principle
states that the communication cost of the best deterministic
protocol specific to any particular distribution is at most the
communication cost of any randomized protocol on its worst
case input.

LEMMA 2.1. (YAO’S MINIMAX PRINCIPLE [YAOT7]) Let f :
X x Y +— Z be the function to be computed. Let D, (f) be
the (u, €)-distributional deterministic communication com-
plexity of f, and let Re(f) be the e-randomized communi-
cation complexity of f. Then for any 0 < e < 1/2,

mjx Du,e(f) < Rc(f).

Therefore, to show a lower bound on the e-randomized
communication complexity of a function f, it suffices to
find a hard distribution g on the input set and prove a
lower bound for the communication cost of any deterministic
protocol that has distributional error probability at most €
with respect to p.
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3 Lower Bounds

In this section we prove lower bounds on Equality Testing and
ExistsEqual. Theorem 3.1 obviously follows directly from
Theorem 3.2, but we prove them in that order nonetheless
because Theorem 3.1 is a bit simpler.

THEOREM 3.1. Any r-round randomized protocol for
EqualityTesting on wectors of length k that errs with
probability pee = 27F requires at least Q(EEY") bits of
communication.

THEOREM 3.2. Any r-round randomized protocol for
ExistsEqual on vectors of length k that errs with probability
Perr = 27 F requires at least Q(Ekl/T) bits of communication.

Without any constraint on the number of rounds,
EqualityTesting  trivially requires (k)
tion. ExistsEqual also requires (k) communication,
through a small modification to the SetDisjointness lower
bounds [KS92, Raz92]. Even when k = 1, we need at least
Q(E) communication to solve EqualityTesting/ExistsEqual
with error probability 27% [KN97]. Thus, we can assume
that £ = Q(k*~/"), k" = Q(1), and hence r = O(logk).
For example, some calculations later in our proof hold when
r < (logk)/6. When proving Theorem 3.2, we will further
assume E = Q(logk) when r = 1, which is reasonable
because of Saglam and Tardos’ Q(klog'™ k) = Q(klogk)
lower bound [ST13].

communica-

3.1 Structure of the Proof We consider determinis-
tic strategies for ExistsEqual/EqualityTesting when Alice and
Bob pick their input vectors independently from the uniform
distribution on [t]¥, where ¢t = 2°F and ¢ = 1/2. Although
the probability of seeing a collision in any particular coordi-
nate is small, it is still much larger than the tolerable error
probability (since ¢ < 1), so it is incorrect to declare “not
equal in every coordinate” without performing any commu-
nication.

We suppose, for the purpose of obtaining a contradic-
tion, that there is a protocol for EqualityTesting with er-
ror probability 27 and communication complexity ¢ Ek/",
where ¢’ = ¢/100. The length of the jth message is I, which
could depend on the parameters (E,r,k, etc.) and possibly
in some complicated way on the transcript of the protocol
before round j5.°

Our proof must necessarily consider transcripts of the
protocol that are extremely unlikely (occurring with proba-
bility close to 27%) and also maintain a high level of uncer-
tainty about which coordinates of Alice’s and Bob’s vectors
might be equal. Consider the first message. Alice picks
her input vector z € [t]*, which dictates the first mes-
sage mi. Suppose, for simplicity, that it betrays exactly
li/k < ¢ EKY"! bits of information per coordinate of z.

6In the context of ExistsEqual/Equality Testing, it is natural
to think about uniform-length messages, [; = c’Ek:l/’"/r, or
lengths that decay according to some convergent series, e.g.,
lj o< /EKY7 /29 or Ij oc ¢ EEY/T /52,

Before Bob can respond with a message mo he must com-
mit to his input, say y. Most values of y result in “good”
outcomes: nearly all non-equal coordinates get detected im-
mediately and the effective size of the problem is dramat-
ically reduced. We are not interested in these values of y,
only very “bad” values. Let I be the first kY7 coordi-
nates (or, more generally, k'=/" coordinates that my re-
vealed below-average information about). With probability
about (2_ClEk1/7‘71)”1| = 2_C/E, Bob picks an input y that
is completely consistent with Alice’s on Iy, i.e., as far as he
can tell y; = z; for every i € I;. Rather than sample y
uniformly from [t]k, we sample it from a hybrid distribution:
yr, is sampled from the same distribution that m; revealed
about z, (forcing the above event to happen with probabil-
ity 1), and yp\ 1, is sampled from Bob’s former distribution
(in this case, the uniform distribution on [t]*~111), condi-
tioned on the value of yr, .

This process continues round by round. Bob’s message
ma betrays at most lo/|I1| < ¢ Ek*/"! bits of information
on each coordinate of yr,, and there must be an index set
I, C I with |Is] = k'™%/" such that, with probability
around 27¢F , it is completely consistent that zr, = yr,.
Alice resamples her input so that this (rare) event occurs
with probability 1, generates ms, and continues.

At the end of this process |I.| = k'™ = 1, and yet
Alice and Bob have revealed less than the full cE bits of
entropy about x;, and yr,.. Regardless of whether they
report “equal” or “not equal” (on I,), they are wrong with
probability greater than 27F. Are we done? Absolutely
not! The problem is that this strange process for sampling
a possible transcript of the protocol might itself only find
transcripts that occur with probability < 27, making any
conclusions we make about its (probability of) correctness
moot. Generally speaking, we need to show that Alice’s
and Bob’s actions are consistent with events that occur with
probability > 27F.

Let us first make every step of the above process a bit
more formal. It is helpful to think about Alice’s and Bob’s
inputs not being fized vectors selected at time zero, but
simply distributions over vectors that change as messages
progressively reveal more information about them.

e Before the jth round of communication, the sender
of the jth message’s input is drawn from a discrete
distribution DY~ over [t]*. The receiver of the jth
message’s input is drawn from the distribution DpU-D,
For example, when j = 1, if Alice speaks first then her
initial distribution, ﬁ(o), and Bob’s initial distribution,

DO are both uniform over [t]*.

e Before the jth round of communication both parties
are aware of an index set I;_1 such that, informally, (i)
the distributions Dg:ll) and ﬁg:i) are very similar,
and in particular, it is consistent that their inputs are
identical on I;_1, and (ii) the messages transmitted
so far reveal “average” or below-average information
about these coordinates. For example, Iy = [k] and it
is consistent with the empty transcript that Alice’s and
Bob’s inputs are identical on every coordinate.
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e The jth message is a random variable M; € {0,1}%. T
order to pick an m; according to the right dlstnbutlon,
the sender picks an input = ~ DU which, together
with the history mi,...,mj—_1, determines m;. The
sender transmits m; to the receiver and promptly
forgets . The sender’s new distribution (i.e., ﬁ(j_D,
conditioned on M; = m;) is called D).

e The distribution DV may reveal information about the
coordinates I;_; in an irregular fashion. We find a
subset I; C I;_1 of coordinates, |I;| = k'™/", for
which the amount of information revealed by D(j ) is
at most average. The receiver of m; changes his input
distribution to DY) , which is defined so that it basmally
agrees with D(j ) and the marginal distribution D k]\ I

conditioned on the value selected by Dg ), is identical
(3-1)
to D[k]\ I

e The reason Dg) and ﬁg) are not identical is due

to two filtering steps. To generate ZA)(j), we remove
points from the support that have tiny (but non-
zero) probability, which may be too close to the error
probability. Intuitively these rare events necessarily
represent a small fraction of the probability mass.
Second, we remove points from the support if the ratio
of their probability occurring under DY) oyer DU
is too high. Intuitively, we want to conclude that if
there is a high probability of an error occurring under
DY then the probability is also high under DY~ (and
by unrolling this further, under D(O)). This argument
only works if the ratios are what we would expect,
given how much information is being revealed about
these coordinates by m;. As a result of these two
filtering steps, Dg) (x1;) and ﬁg) (x1;) differ by at most

a constant factor, for any particular vector x1; € [t]uﬂ' l

3.2 A Lower Bound on EqualityTesting We begin
with two general lemmas about discrete probability distri-
butions that play an important role in our proof.

Roughly speaking, Lemma 3.1 captures and generalizes
the following intuition: Suppose p is a high entropy distri-
bution on some universe U and ¢ is obtained from p by con-
ditioning on an event X C U such that p(X) is large, say
some constant like 1/4. If p’s entropy is close to log|U|, then
¢’s entropy should not be much smaller than that of p. As
our proof goes on round by round, we will constantly throw
away part of the input distribution’s support to meet certain
conditions. It is Lemma 3.1 that guarantees that the input
distributions continue to have relatively high entropy.

Lemma 3.2 comes into play because the error probability
will be calculated backward in a round-by-round manner.
Suppose the old distribution (p) has no extremely low
probability point and the new distribution (g) has almost full
entropy. Lemma 3.2 provides us with a useful tool to transfer
a lower bound on the probability of any event w.r.t. ¢ to a
lower bound on the same event w.r.t. p.

LEMMA 3.1. Let p and q be distributions defined on a uni-
verse of size 2°. Suppose both of the following properties are
satisfied:

1. The entropy of p is H(p) > s — g, where 0 < g < s;

2. There ezists 0 < a < 1 such that q(z) < p(x)/a holds
for every value x € supp(q).

The entropy of q is lower bounded by:
H(g) > s — g/a —H(a)/a.

Proof. Let X be the whole universe. From our assumptions,
the entropy of ¢ can be lower bounded as follows.

H(q)

_ 2 los
=> )lgq(m)

reX

1
—Zaq ) log aq(@ )+loga

TzeEX

zfszumg 5~ (o) -

reX

1
cq(@))log S @)

+ log o

The previous step follows from Assumption 2 and the fact
that zlogz™ + ylogy™' > (z + y)log(xz + y)~ ' for any
z,y > 0. Continuing,

1 1
> —|ls—g— z) —agq(x))log ——— | +loga
_a[ g mez)c(p() a(@))log s g
Zl[sfgf(lfa)log 2 }Jrloga
« l-«o
:s—g—i—l_ialog(l—oz)—i—loga
a
_s_ 9 _Ha)
a «
0

LEMMA 3.2. Let p and q be distributions defined on a uni-
verse of size 2°. Suppose both of the following properties are
satisfied:

1. The entropy of q is H(q) > s — g1, where 0 < g1 < s;

2. There exists go > 0 such that p(x) > 27°792 holds for
every value x € supp(q).

Then, for any 0 < a < 1,

pr | 43) o gor/a+gr—(1—a)tor(1-a)/a|

.
z~a | p(x)

Proof. Let Xy = {z € supp(q) | gqlz)/p(x) <
g91/atgz—(1—a)log(l=a)/al and X = supp(q) \ Xo. Suppose,
for the purpose of obtaining a contradiction, that the conclu-
sion of the lemma is false, i.e., ¢(X1) = o, for some ag > a.
Notice that for each value x € Xj, Assumption 2 implies
that

q(z) > p(z) - 991/atgz—(1—a)log(l-a)/a

(31) > 275+g1/a7(170¢)log(lfll)/&'
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Then we can upper bound the entropy of ¢ as follows.
H(q)

:Z q(x) log +Z log )

rEXy
1 g1 11—«
<Z q(z)log ()—i—ao S—E—F log(1l — )
TEXy
2° a1 11—«
< (1 - ap)log 7a0+ozo stJrTlog(lfa)

e log(l — a) —

— log(1 - ao)}

(7)) 1-—
=s——- g1+
o a0

<s—aq,

where the last step follows from the monotonicity of (1 —
a)log(l — a)/a. This contradicts Assumption 1. O

We are now ready to begin the proof of Theo-
rem 3.1 proper. Fix a round j and a particular history
(m1,...,m;_1) up to round j — 1. We let u;(m;) denote
the probablhty that the jth message is m;, if the input to
the sender is drawn from DY~1. Define DY [m;] to be the
new input distribution of the sender after he commits to m;.
When m; is clear from context, it is denoted DY), (The pro-
cess for deriving DY from DY) and PY~Y on the receiver’s
end will be explained in detail later.)

We will prove by induction that the following Invari-
ant 3.3 holds for each j € [0,r], where the particular val-
ues of I; D(j) ﬁ(j) and [y, ...,l; depend on the transcript
mi,.. mj that is sampled In the base case, Invariant 3.3
clearly holds when j = 0,y = [k], and both D(O) DO are
the uniform distribution over [t]".

INVARIANT 3.3. After round j € [0,r] the partial
transcript is mai,...,mj, which determines the wvalues
{ljr,’ls(j/),D”/),Ij/}jrgj. The index set I; C [k] satisfies
all of the following:

1. |]J| = kI,
2. Each value x1; € [t]'%! satisfies ﬁg)(xfj) < 4Dg)(x1j).

3. Each nonempty subset I' C I, satisfies

~ 1677+, ;
H(D) > <CE Zkl (u=—D)/r 2]) |7'].

In accordance with our informal discussion in Sec-
tion 3.1, I; is a subset of indices on which both parties
have learned little information about each other from the
partial transcript ma, ..., m;. Invariant 3.3(2) ensures that
the two parties draw their inputs after the jth round from
similar distributions. Invariant 3.3(3) is the most impor-
tant property. It says that the information revealed by D)
about I’ is roughly what one would expect, given the mes-
sage lengths [1,...,l;. Note that the uth message conveys
information about |I,—i| = k'~(“~1/" indices so the aver-
age information-per-index should be lu/klf(ufl)/r. The fac-
tor 167! and the extra term 22’ come from Lemma 3.1,

which throws away part of the input distribution in each
round, progressively distorting the distributions in minor
ways.

To begin our induction, at round j we find a large frac-
tion of possible messages m; that reveal little information
about the sender’s input, projected onto I;_;. This is pos-
sible because the length of the message I; = |m;| reflects an
upper bound on the expected information gain. This idea is
formalized in the following Lemma 3.4.

LEMMA 3.4. Fiz j € [1,r] and suppose Invariant 3.8 holds
for j — 1. Then there exists a subset of messages M} with
wi(M3) > 1/2 such that each message m; € M} satisfies

J i
j 167741, i
H(Dg),l[mjb > <CE—2 E m—2'22j 1) |Ij_1‘.
u=1

Proof. Let M) contain all messages m; satisfying the above
inequality and ./\/l; be its complement. Suppose, for the

purpose of obtaining a contradiction, that the conclusion of
the lemma is not true, i.e., pj(M)) = o > 1/2. Then the

entropy of 52 :11)

can be upper bounded as follows.

H(BY D)

j—1

NG—1

=1DY Y M)+ D>
mj€(M{UMY)

< H(M;) + ST

m; E(M;UM;)

<L+ Y umy)H(DY [my))

. ’
m]EMj

+ > m(my)H(DY) [my))
ijMiz-

<l'+(1—Oé)CE|Ij71|
167741,
+O‘(CE 22 T—(a—D/r
T 167,
Jj—1
167~ “lu 1
<CE Zkl o 22 >|]J'1|

This contradicts Invariant 3.3(3) at index j — 1. O

m;JH(DY | [m;))

m;JH(DY | [m;))

2-22j‘1> |1j—1]

—2a- 223"1) |11

After the jth message m; is sent, the next step is to
identify a set of coordinates I; such that DY) still reveals
little information about I; and every subset of I;, since we
need this property to hold for 141, ..., I, in the future, all of
which are subsets of I;. We also want I; not to contain many
low probability points w.r.t. DY~V since this may stop us
from applying Lemma 3.2 later on. These two constraints are
captured by parts (2) and (1), respectively, of Lemma 3.5.
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LEMMA 3.5. Fiz j € [1,r] and suppose Invariant 3.3 holds
for j — 1. Then there exists a subset of messages M; C M
(from Lemma 8.4) with p;(M;j) > 1/4 such that for each
message m; € My, there exists a subset I; C I;_1 of size
|I;| = k*=9/" satisfying both of the following properties:

1. Pr. o [pgaen(mj) < (4t)_|1j‘/32} <1/2;
:thN Ij J
2. Each nonempty subset I' C I; satisfies

j j—u ,
H(DY) > (CE 4Zk116(u f/r 4-22J—1> 1'].

Proof. We first prove that for each message m; € M/ (from
Lemma 3.4), there exists a subset Jo C I;_1 of size |Jo| >
|I;_1|/2 such that each nonempty subset I’ C Jy satisfies
part (2) of the lemma. Suppose Ji,J2, ..., J, are disjoint
subsets of I;_1, each of which violates the inequality of part
(2), whereas none of the subsets of Jo = I;_1\ (U;_, Jv) do.

Then we can upper bound the entropy of Dgll as follows.
H(DY )

< 2_H(D3)
167""1,, -1
<cE|JO|+Z cE — 4Zk1 o — 42277 | 1

160, i
= cE|I;_1| — 4|I;_1 \ Jo| Zerm .

u=1

On the other hand, from Lemma 3.4, having m; € M)
guarantees that

%) 167741,
H(DR,) 2 (CE 22 T (a—1)/r

The two inequalities above are only consistent if [I;_1\ Jo| <
|I;—1|/2, or equivalently |Jo| > |I;—1|/2. Thus, Jo exists
with the right cardinality, as claimed.

Now suppose, for the purpose of obtaining a contradic-
tion, that the lemma is false. For every m; € M} there is
a corresponding index set Jo whose subsets satisfy part (2)
of the lemma. If the lemma is false, that means there is a
subset M7 C M/ of “bad” messages with j;(M[) > 1/4
€ M/, none of the (ll‘;;ll) choices for
I; C Jp satisfy part (1) of the lemma. (Remember that Jo
depends on m; but the lower bound on |Jo| > |I;—1|/2 is
independent of m;.) Consider the following summation:

7~ % >

ISR ar, et il

1=kt 0Ty, I3

DY~ V(ar,) < (4”1l /32
J

2-229"1) |I;—1].

such that, for each m;

j—1
DYV (ar,).

We can easily upper bound Z as follows.

-1\ i1 (475)_”” [i-11'\ g-21151-5
Z<( OO 1=
1751 32 |71

Invariant 3.3(2) relates DY~ and DU=D | which lets us
lower bound Z.

T ED> >

LClj—n: oy il

|1j|=k*=3/" G-1), ° I;

: DY (z]j)<(4t)_| il /32
J

SG-1
’Dg )(:Efj)

By definition, DY~ is a convex combination of the DY) [m;]
distributions, weighted according to wu;(-). Hence, the
expression above is lower bounded by

1 .
P> 2 > wi(mg) DY [my)(ar,)
LiCli—1: 5 epgllsl. mjeMy
I; (mlj)
<(at)y" %5l 32
1 .
>1 > mlm) Y > Dy Imilar)

m;eM’! I;CJp: +
’ ’ |Ij|:k17j/r TI(JJfE)]
DIj (Ilj)

1751,

<(at)~ il /32

By definition, for every m; € M) and every choice of
I; C Jo, part (1) of the lemma is violated. Continuing with
the inequalities,

Jo 1
Z pi(my) - <||]||> i)

m; GM_']-’

o L (H-l/2)
32\ |4

This contradicts the upper bound on Z whenever k" is at
least some sufficiently large constant. O

>

N

The receiver of m; constructs a new distribution DY in
two steps. After fixing I, we construct DY) by combining
DU~ and DY, filtering out some points in the space whose
probability mass is too low. We then construct DY) from
Q(j) and DY~V by filtering out points that occur under
DEj ) vs;ith substantially larger probability than they do under
DU—Y,

Formally, suppose Invariant 3.3 holds for j—1. For each
message m; € M; (from Lemma 3.5), let I; be selected to
satisfy both properties of Lemma 3.5. Define the probability
mass of a vector z € [t]* under DY) as follows:

. i—1 4 =171
. 0 if DY () < By
DY) (x) = D§;)(w1_,-) - DU D(a) therwi
R P - otherwise.
I I;
where (31 is
) =11,
_ (G-1) (4t)""%
g . Effgm Diy (@) 2 32
T
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In other words, we discard a 1—f; fraction of the distribution
DY | but ignoring this effect, the projection of DY) onto I;
has the same distribution as DY onto I;, and conditioned
on the value of xy;, the distribution DY) (projected onto
[k]\I;) is identical to DY~ . We derive DY@ from DY) with
a similar transformation.

'D(J)(EI )
0, if W > 2’“;
A(j)( ) = Pr @r;)
Do D) (2 ) PG ()
L ZG=D , otherwise.
2 ij (JJIJ-)

where (2 and +; are defined to be

750:)(1.1‘)
fam Pro|otn s S2),
$I~~D(I].) DIj (xlj)

j—u+1 )
%= (m) +(16-22 7 £ 6)|15[ +6

J
J j—u+1 _
Z (kl/r> + 227|1;] + 6.

The proofs of Lemmas 3.6 and 3.7 use several simple
observations about DY) and DY):
First, Lemma 3.5(1) states that /1 > 1/2.

Lemma 3.5(2) lower bounds the entropy of Dg). We ap-
ply Lemma 3.1 to Dg) and ﬁg) (taking the roles of p and g,
respectively) with parameter o = 1/2 < 1, and obtain the

following lower bound on the entropy of ﬁg ).

167741,
H(Dj = (CE_SZ El—(u—1)/r

Second, we can then apply Lemma 3.2 to Dg_l) and ’5?

—8-2277" — 2) |1;].

(taking the roles of p and g, respectively) with parameters

J
16771,
g1=8 Z k(] u+1)/r

g2 = 2|IJ| + 5,
and o = 1/2.

+(8-227" +2)|14,

Since g1/a+g2 — (1 —a)log(1l—a)/a = ~;, we conclude that
B2 > 1—a=1/2. Thus, for each value zr; € supp(l)g))7

. DY (xr,) DY () .
(32) DY (i) = Jﬁz A Zﬁﬁ; < 4D (xr,).

Lemma 3.6 completes the inductive step by lower
bounding the entropy of 15;],) for every nonempty subset
I' C I;. To put it another way, it ensures that the values of
those coordinates in I; remain almost completely unknown
to both parties.

LEMMA 3.6. Fiz j € [1,7] and suppose Invariant 3.3 holds
for j — 1. Then, for each message m; € M; (from
Lemma 3.5), Invariant 3.8 also holds for j.

Proof. Due to Lemma 3.5 and Eqn. (3.2), the first two
properties of Invariant 3.3 are satisfied. For each nonempty
subset I’ C I;, the third property of Invariant 3.3 can be
derived from the second property of Lemma 3.5 and an
application of Lemma 3.1 to D} ) and D(j) (taking the roles
of p and g, respectively) with parameter a = 1/4 as follows.

I 1677,
(CE—lﬁz T—G—D/r
169+ N
(c- 3 e — ) 1.

Y

H(DY) — 1622771 — 4> 4

IV

O

Aside from maintaining Invariant 3.3 round by round,
another important part of our proof is to compute the error
probability. Lemma 3.7 shows how the error probabilities of
two consecutive rounds are related after our modification to
the protocol. More importantly, it also illustrates the reason
to bound the pointwise ratio between Dg ) and Dg -,

LEMMA 3.7. Fiz around j € [1,r] and suppose Invariant 3.8
holds for j — 1. Fiz any specific message m; € M, (from
Lemma 8.5). Define p to be the probability of error, when
the protocol begins after round j with the inputs drawn from
DY) and ﬁ(j), respectively. Then the probability of error is
at least 27~ p when the inputs are instead drawn from DY)
and D(j_D, respectively.

Proof. From the definition of ﬁ(j), for each value =z €
supp(DY)), we have

B0 DY (w1, %
(33 2o f%_(l)]) < 20 < g,
DG (x) B2Df M (a1,)
This concludes the proof. 0

Finally, with all lemmas proved above, we have reached
the point to calculate the initial error probability.

LEMMA 3.8. Recall that ¢ = 1/2,¢ = ¢/100. Fiz any
r e [1,(logk)/6] and E > 100k'~Y/" /c. Suppose the initial
input vectors are drawn independently and uniformly from
[t]*, where t = 2°®. Then the error probability of the
Equality Testing protocol, per:, is greater than 27 F.

Proof. First suppose Invariant 3.3 holds for r and consider
the situation after the final round, where the inputs are
drawn from D) and 5<T), respectively. Notice that I, is
a singleton set, so the entropy of D;:) can be lower bounded
as follows.

, 1671, ”
H(D{) > cE — ZW 22

kl/r Zl (kl/T) - 22"

kl/ Zl — 29k /T

E
> cE —16¢E — 22k > &2
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From the lower bound on the entropy of 13§:), we
can easily show that there exists no value zj. such that
’DE,:)(mIT) = a > 3/4. If there were such a value, then the

entropy of 133:) can also be upper bounded as

i 1 t
H(D{”) < alog ~+ (1 a)log T

<§+a10gl+(1—o¢)log#
o 1-«

4
< ck
2 )
contradicting the lower bound on H(ﬁg))

After all r rounds of communication, the receiver of
the last message has to make the decision on I, depending
only on his own input on .. Let Xy C [¢] be the subset of
values zr, such that the protocol outputs “not equal” on I,
upon seeing the input zr, after r rounds of communication,
X1 = [t]\ A, and 8 = ﬁx)(z\’o). Then, the final error
probability is at least

> D @)D @)+ > DY (@) (1- D ()

xr, €Xo Ty, €X1

1 ~(r 1 (r S(r
LS Bl ¥ e X a0

z1, €Xo z1,.€X1 ah #TI,
1 r r S(r
=1 Z DETT) (zr1, Z D ) (z1, ( D( >(w17,))
xITEXo

A%

13 D 1—16 Z By (er,)

1,€X0 I
> 52 Gz 1
4t 16— 4t

This result also meets the simple intuition that when
the inputs to the two parties are almost uniformly random
and no communication is allowed, the best strategy would
be guessing “not equal” regardless of the actual input.

Finally, we are ready to transfer the error probability
back round by round. From Lemma 3.5 through Lemma 3.7,
the error probability w.r.t. DY) and DY) differs from the
error probability w.r.t. DU~V and DUV by at most a
4. 2%+t = 273 factor. In particular, Lemma 3.5 and
Lemma 3.6 say that the jth message m; satisfies Invari-
ant 3.3 at index j with probability at least 1/4, provided
Invariant 3.3 holds for j — 1, and Lemma 3.7 says the error
probabilities under the two measures differ by a 2% +! factor
for any such m;. Repeating this for each j € [1,7], we con-
clude that the initial error probability perr is lower bounded
by

pcrr = - €Xp ( 3r — ZVJ)
= exp <0E23r2'yj>

j=1

> 2

since
cE+2+3r+Z%‘
j=1
ro g 16 j—u+1
§0E+2+3r+6r+;;lu (W)
+) 22|15
j=1
161,
<CE+11T+§;W§;(W)
/ 22\’
1-1/r
+22k Z(kw)
j=1
< cE+11 +£il 444kt
<c T+ i > L
11cE  32cE  44cFE
< cE E.
S 900 T 00 T 100
O

Proof. [Proof of Theorem 3.1] Lemma 3.8 actually shows
that given integers k > 1 and r < (logk)/6, any 7-
round deterministic protocol for Equality Testing on vectors of
length k that has distributional error probability perr = 2—F
with respect to the uniform input distribution on [t}k, where
t = 2°F | requires at least Q(Ek'/") bits of communication.
Notice that the additional assumption E > 100k'~Y/" /¢
always makes sense since there is a trivial Q(k) lower
bound on the communication complexity of Equality Testing,
regardless of r. Thus, Theorem 3.1 follows directly from
Yao’s minimax principle. 0

3.3 A Lower Bound on ExistsEqual The proof of
Theorem 3.2 is almost the same as that of Theorem 3.1,
except for the final step, namely Lemma 3.8, in which we
first compute the final error probability after all » rounds
of communication and then transfer it backward round by
round using Lemma 3.7. The problem with applying the
same argument to ExistsEqual protocols is that the receiver
of the last message may be able to announce the correct
answer, even though it knows little information about the
inputs on the single coordinate I,..

In order to prove Theorem 3.2, first notice that
Lemma 3.4 through Lemma 3.7 also hold perfectly well for
ExistsEqual protocols as no modification is required in their
proofs. Therefore, it is sufficient to prove the following
Lemma 3.9, which is an analog of Lemma 3.8 for ExistsE-
qual. It is based mainly on Markov’s inequality.

LEMMA 3.9. Recall that ¢ = 1/2,¢' = ¢/100. Consider an
execution of a deterministic r-round ExistsEqual protocol,

€ [1, (log k) /6], on input vectors drawn independently and
uniformly from [t]®, where t = 2°F. Here E > 100k*~1/" /c
if r>1 and E > (100logk)/c otherwise. Then the protocol
errs with probability perr > 27 F
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Proof. Similarly to the proof of Lemma 3.8, we first consider
the situation after the final round. In the ExistsEqual
protocol, the receiver of the last message can make the
decision depending on every coordinate of his own input.
Let Xy C [t]® be the subset of values z such that the
protocol outputs “no” upon seeing the input x after r» rounds
of communication, X1 = [t]* \ Xp. Then, the final error
probability is at least

ST D@D (2r,)+ > D7) [ 1- YD D) |,

TEX TEX] yeN (z)

where

N (z) = {y € [t]" | there exists some i € [k] such that z; = y,}

is the subset of input vectors that agree with x on at least
one coordinate.

The main difficulty here is to lower bound 1 —
ZyGN(ac) D) (y), which is potentially quite small. Consider
the following summation Zy over all transcripts m1, ..., m,
in which m; € M; (from Lemma 3.5), where the set M;
depends on my,...,mj_1:

Zo= Y m(m) Y pa(ma)---

miEMy mo EMao
S lm) Y %) Y 20
meEM, zet]k yEN (z)

From the proof of Lemma 3.7 (Eqn. (3.3)), we can upper
bound Zj as follows.

Zo< D mlm)- > pe(me)

m1EMy meEM,y
> 2D V(@) D (y)
zelt)®,
yeN (z)

Notice that 7, and D"~Y are independent of the choice of
m,, hence by rearranging sums, this is equal to

= > mlm) D peoa(meon)

miEM;y My 1 EMp_q
Yo 2D V@) N pe(m) - D (y)
xe[t]k, meEMp
yeEN ()

By definition, D"~ is a convex combination of the D" [my]
distributions, weighted according to p,(-). Hence, the
expression above is upper bounded by

< Z pa(ma)-- - Z

Hr—1 (mr—l)

miEMy mp_1EMp_1
Z o+l p (r— 1)(1.) ~(r— 1)(y)
ze[t]”,
yeN (z)

By the symmetry of x and y, this is equal to

— Z pa(ma)--- Z

ﬂ'r—l(mr—l)

miEMy My 1 EMp_q
> 2t DO V(@) DU y)
zelt]”,
yeN (z)

We repeat the same argument for rounds r — 1 down to 1,
upper bounding Z by

<exp <T+Zw> > 50 D0
J=1 zelt]®
yeN(T)
u k
cow(ri3n)
j=1

The last inequality above follows from a union bound since,
under the initial distributions ﬁ(0)7D(0)7 each of the k
coordinates is equal with probability 1/¢. Recall that E >
100k ~'/" /¢ when r > 1 and E > (100logk)/c otherwise.
Hence, using the same argument as that in the proof of
Lemma 3.8, we can further bound this as

S 20.830E X 204020E X 2—CE _ 2—0.15cE

’

since

T+Z’Yj
j—u+1 r )
<7T+ZZJ (kw) +3 22|11
j=1

Jj=1lu=1

T7cE  32cE  44cE 83ckE
g TAn + + = )
100 100 100 100

and k < (cE/100)” "1 < (cE/100)* < 20-92¢F

and k < 20-91¢F gtherwise.

Now fix a round j and a particular history (mu,...,m;)
up to round j such that mj € M;/ holds for every j' < j.
Define Z; as follows.

when r > 1

Zj = Z pirr(mgyr) - Z pr ()
mj+1E€Mjp1 mr €My
> D7) > ).
celt)k yeN (@)

By Markov’s inequality, there exists a subset of messages
M; C M; with ,ul(./\/l;l) > pi1(M1)/2 > 1/8 such that
each message m1 € /\/l1 satisfies Z1 < 2Zp/pu1(M1) < 8Z
since p1 (M1) > 1/4 from Lemma 3.5. Similarly, conditioned
on any specific mi1 € ./\/ll, by Markov’s inequality, there
exists a subset of messages My C M, with MQ(MQ) >
u2(Mz2)/2 > 1/8 such that each message mo € M, satisfies
Zoy < 271/ pa(Ma) < 827y. In general, conditioned on any

specific partial transcript m1,...,m;_1 such that m; € M\j/
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holds for every 7 < J, there exists a subset of messages
M; C M; with p;(Mjy) > pj(M;)/2 > 1/8 such that each
message Mm; € M\j satisfies Z; < 877;.
__ After repeating the same argument r times, we get
Myi, ..., M; in sequence. _For any sampled transcript
mu, ..., m, such that m; € M, for all j <r, we have
Zr < STZ() < 237’ . 270.15CE < 270.12cE < i’
asr < cFE/100 and cE > 100. Further, one more application
of Markov’s inequality shows that there exists a subset of
values X’ C [t} with D™(X') = « > 1/2 such that
D eN (@) D" (y) < 1/2 holds for every = € X'.

As a result, we can then lower bound the final error
probability as follows, where 3 = 15(")(/\?0 nx’.

> D@D @)+ 3 D@ 1= 3 D)

TzEXy TEX] yEN (x)

> Y D@D (a1,)

z€(XoNX')

+ > D@ [1- Y Dy
ze(X1NX’) yeN (z)
1
i X

z€(XoNX')

A%

D) (2)D (x1,)

+ > D@ [1- Y Py
ze(X1NX’) yEN (z)
1 S () A 1 S
> > D@D @) +g Y D)
z€(XoNX') ze(X1NX’)

In order to minimize the above expression, we can now
assume without loss of generality that the partition between
XoNX’ and X1 NX’ depends solely on 1, as only the relative
magnitude of ﬁg) (z1,.)/4 and 1/2 matters. Continuing,

2 2
>f87 a7ﬁ>0‘7>il
4t 2 — 4t T 16t

Finally, we are ready to transfer the error probability
back in exactly the same manner as we did in the proof of
Lemma 3.8. Using a similar argument, the existence of M;
guarantees that

1 T
Perr 2 TGt + €xXp <_4Ir - ZWJ)
j=1
= exp (—CE —4 —4r — Z’ﬁ) > Z_E,

Jj=1
since

- 14cE  32¢E = 44cE
E+4+4 < cE E.
cE+4+4r+> v, <cE+ o0 T 100t 100 <

j=1

O

Proof. [Proof of Theorem 3.2] Similarly to the proof of
Theorem 3.1, Theorem 3.2 follows from Lemma 3.9 and a
direct application of Yao’s minimax principle. 0

4 Upper Bounds on
ExistsEqual

EqualityTesting and

In this section, we prove upper bounds on both
Equality Testing and ExistsEqual. We first give a (log™ (k/E)+
r)-round EqualityTesting protocol (Theorem 4.1) that uses
O(k + rEk'Y"™) bits of communication and errs with prob-
ability at most pey = 27F. The log*(k/E) term can-
not be completely eliminated, due to the lower bounds
of [ST13, BCK"16]. Our lower bound implies that when
E >k (so log™(k/E) = 0), the second term is optimal up to
a factor of r.

A natural goal is to achieve optimal communication
O(k+ FE) and minimize the number of rounds subject to that
constraint. When E > k our lower bound says r = Q(log k),
but in this case the algorithm of Theorem 4.1 only achieves
O(Elog k) communication. Theorems 4.2 and 4.3 illustrate
two ways to shave off this factor of ». Theorem 4.2 applies to
the easier ExistsEqual problem, and Theorem 4.3 applies to
the general EqualityTesting problem, but blows up the round
complexity to log™(k/E) + O(r).

THEOREM 4.1. There exists a (log*(k/E) + r)-round ran-
domized protocol for EqualityTesting on wvectors of length k
that errs with probability perr = 27 F, using O(k + rEkl/T’)
bits of communication.

THEOREM 4.2. There exists a (log*(k/E) + r)-round ran-
domized protocol for ExistsEqual on vectors of length k that
errs with probability perr = 27 F, using O(k + Ekl/r) bits of
communication.

THEOREM 4.3. There ezists a (log*(k/E) + O(r))-round
randomized protocol for Equality Testing on vectors of length
k that errs with probability perr = 278, using O(k + Ekl/T)
bits of communication.

REMARK 4.1. The log*(k/E) terms in the round complezity
of Theorems 4.1-4.3 are not absolute. They can each be
replaced with max{0, log*(k/E) — log*(C)}, at the cost of
increasing the communication by O(Ck).

4.1 Generic Protocols We start by giving a generic
protocol for EqualityTesting. The protocol uses a simple
subroutine for ExistsEqual/EqualityTesting when k& = 1.
Suppose Alice and Bob hold z,y € U = {0, 1}1, respectively.
Alice picks a random w € {0,1}" from the shared random
source and sends Bob & = (z,w) mod 2, where (-,-) is the
inner product operator. Bob computes § = (y,w) mod 2
and declares “z = y” iff £ = . Clearly, Bob never errs if
x = y; it is straightforward to show that the probability of
error is exactly 1/2 when x # y. We call this protocol an
inner product test and &,y test bits. A b-bit inner product
test on x and y refers to b independent inner product tests
on z and y.
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The entire protocol is divided into several phases. Be-
fore phase j, j > 1, Alice and Bob agree on a subset I;_1 of
coordinates on which all previous inner product tests have
passed. In other words, they have not yet witnessed that
any of the coordinates in I;_; are not equal. Each coordi-
nate ¢ € I;_; represents either an actual equality (z; = y;),
or a false positive (x; # y;). At the beginning of the proto-
col, Ip = [k]. In phase j, we perform [; independent inner
product tests on each coordinate in I;_; and let I; C I;
be the remaining coordinates that pass all their respective
inner product tests. Notice that each coordinate in I;_;
corresponding to equality will always pass all the tests and
enter I;, while those corresponding to inequalities will only
enter I; with probability 27% . At the end of the protocol, we
declare all coordinates in I, equal and all other coordinates
not equal.

This finishes the description of our generic protocol.
Theorems 4.1-4.3 all use the framework of the generic
protocol and mainly differ in the details, such as how Alice
and Bob exchange their test bits, how they decide [;, and
when the protocol terminates.

4.1.1 A protocol for exchanging test bits For
EqualityTesting, it is possible that a constant fraction of the
coordinates are actually equalities, which makes |I;| = ©(k)
for every j. The naive implementation explicitly exchanges
all [;|I;_1| test bits and uses Q(kE) bits of communication
in total. All the test bits corresponding to equalities are
“wasted” in a sense.

For our application, it is important that the communi-
cation volume that Alice and Bob use to exchange their test
bits in phase j be proportional to the number of false posi-
tives in I;_1, instead of the size of I;,_1. We will use a slightly
improved version of a protocol of Feder et al. [FKNNO95] for
exchanging the test bits.

Imagine packing the test bits into vectors &, 9 € B!fi-1!
where B = {0,1}%. Lemma 4.1 shows that Alice can
transmit & to Bob, at a cost that depends on an a priori
upper bound on the Hamming distance dist(z,9), i.e., the
number of the coordinates in I;_1 where they differ.

LEMMA 4.1. (CF. FEDER ET AL. [FKNNO95].) Suppose Al-
ice and Bob hold length-K vectors x,y € BX, where B =
{0,1}*. Alice can send one O(dL + dlog(K/d))-bit message
to Bob, who generates a string ©' € B such that the fol-
lowing holds. If the Hamming distance dist(z,y) < d then
x =x'; if dist(z,y) > d then there is no guarantee.

Proof. Define G = (V,E) to be the graph on V = B¥
such that {u,v} € E iff dist(u,v) < 2d. The maximum
degree in G is clearly at most A = (5;) - 224 gince there
are (1) ways to select the 2d indices and 2°"¢ ways to
change the coordinates at those indices so that there are
at most 2d different coordinates. Let ¢ : V — [A + 1] be
a proper (A + 1)-coloring of G. Alice sends ¢(z) to Bob,
which requires log(A + 1) = O(dL + dlog(K/d)) bits. Every
string in the radius-d ball around y (w.r.t. dist) is colored
differently since they are all at distance at most 2d, hence if
dist(z,y) < d, Bob can reconstruct x without error. ]

COROLLARY 4.1. Suppose at phase j, it is guaranteed
that the number of false positives in I;_1 s at most
kj—1. Then phase j can be implemented with O(k;j—1l; +
kj_1log(k/kj—1)) bits in 2 rounds.

A naive implementation of the protocol requires 2r
rounds if the generic protocol has r phases. In fact, the
protocol can be compressed into exactly r rounds in the
following way. At the beginning, both parties agree that
Iy = [k]. Alice generates her I1|Io| test bits 2 for phase 1
and communicates them to Bob; Bob first generates his own
test bits gj(l) for phase 1 and determines [;, then generates
Io|I1] test bits §? for phase 2 and transmits both §* and
gj<2) to Alice. Alice computes I, generates 2® ., computes
I>, generates §c<3), and sends 2 and 2® to Bob, and so
on. There is no asymptotic increase in the communication
volume.

4.1.2 Reducing the number of false positives
Our protocols for Equality Testing and ExistsEqual are divided
into two parts. The goal of the first part is to reduce the
number of false positives from at most k to at most E; if
E > k, we can skip this part. Since the number of false
positives is large in this part, we can use standard Chernoff
bounds to control the number of false positives surviving
each phase. The details are very similar to the upper bound
in Saglam and Tardos [ST13].

THEOREM 4.4. Let (z,y) be an instance of ExistsEqual with
|z| = |y| = k. Inlog™(k/E) rounds, we can reduce this to
a new instance (z',y’) of ExistsEqual where |2'| = |y'| < E,
using O(k) commaunication. The failure probability of this
protocol is at most 27 (F+1) |

For EqualityTesting, we can reduce the initial instance
to a new instance (z',y") such that the Hamming distance
dist(2’,y') < E, with the same round complexity, communi-
cation volume, and error probability.

Proof. We first give the protocol for ExistsEqual, then apply
the necessary changes to make it work for Equality Testing.

The protocol for ExistsEqual uses our generic protocol,
and imposes a strict upper bound k; on |I;|. Whenever
|I;| exceeds this upper bound, we halt the entire protocol
and answer yes. We set the parameters k; and [; for any
j € [1,log"(k/E)] as follows.

ko =k,

k
= — ____E
& max{?ﬂ—lexpme)’ }
l, =3+ exp(jfl)(2).

Now suppose the input vectors share no equal coordi-
nates. We know that |I;_1| < k;_1 at the beginning of phase
j. The probability of any particular coordinate in I;_; pass-
ing all tests in phase j is exactly p; = exp(—l;). Thus, the
expected size of I; is at most

k Lk
202 expli—1(2) 23expl)(2) — 8"

kj_1p; =
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Let X; be the indicator variable that the 7th coordinate
in I;_1 survives to I; and let X =}, X;. By the following
Chernoff bound:

o 0
PriX > (14 6)u] < (W) ;
we have:

Pr[X > kj] <0.3% <2717,

Hence, the probability that there are at least k; co-
ordinates remaining after phase j is at most 2717 and
the probability this happens in any phase is at most
Zj 2-L7ki < 9= (E+1) " Notice that when z and y share
at least one equal coordinate, the error probability of this
protocol is 0 because if it fails to reduce the number of coor-
dinates to E it (correctly) answers yes. The communication
volume of the protocol is asymptotic to

D ULl <) likioa =Y O(k/27) = O(k).

For EqualityTesting, we use the same k; as an upper
bound on the number of false positives in I;, instead of the
size of I;. Since the number of false positives is at most
k at the beginning, we can still use the same argument to
show that with the same choice of k; and [}, after log*(k/FE)
phases, the number of false positives is at most E with error
probability 2~ (F+1 By Corollary 4.1, the number of bits we
need to exchange in phase j is O(k;j—1l; + k;j—1 log(k/k;j—1)).
Notice that log(k/kj—1) = j — 2 + exp¥~2(2) = O(l;), so
the total communication volume is still O(k). a

In all of our protocols, we first apply Theorem 4.4 to
reduce the number of coordinates (in the case of ExistsEqual)
or false positives (in the case of EqualityTesting) to be at
most E. This requires no communication if £ > k to
begin with. Hence, with log*(k/FE) extra rounds and O(k)
communication, we will assume henceforth that all instances
of ExistsEqual have E > k and instances of EqualityTesting
have dist(z,y) < E.

4.2 An O(k+rFEk'/")-bit EqualityTesting Protocol
In light of Theorem 4.4, we can assume that the input
vectors to Equality Testing are guaranteed to differ in at most
ko = min{k, E} coordinates.

THEOREM 4.5. Fix any kK > 1, E > 1, and r €
[1, (log ko)/2], where ko = min{k, E}. There exists a ran-
domized protocol for EqualityTesting length-k wvectors x,y
with Hamming distance dist(z,y) < ko that uses r rounds,
Ok + TEk(lJ/T) bits of communication, and errs with proba-
bility perr = 27 FHD,

Proof. (Sketch) The proof for Theorem 4.5 is almost identi-
cal to the one for Theorem 4.4 except we use the following
parameters k; and [;.

kj =ky ",
l; =4EK)/ ™

Combining Theorem 4.4 and Theorem 4.5, we obtain a
(log* (k/E) 4+ r)-round randomized protocol for Equality Test-

ing.
4.3 An O(k + Ek'/7)-bit ExistsEqual Protocol

4.3.1 Overview of the protocol In this section,
we show that we can obtain a (log*(k/E) + r)-round,
O(k 4 Ek/7)-bit protocol for ExistsEqual. This matches the
lower bound of Theorem 3.2, asymptotically, when E > k.
Theorem 4.4 covers the first part of the protocol, so we
assume without loss of generality that £ > k.

Suppose the inputs z and y share no equal coordinates.
Imagine writing down all the possible results of the inner
product tests in a matrix A of dimension (E + logk) X k,
where A; ; is “=" if x;, y; pass the jth inner product test, and
“£" otherwise. By a union bound, with probability 1 —27F,
each column contains at least one “#”. Now consider the
area above the first “#£” in each column. The probability
that this area is at least E’ is, by a union bound, at most

/
(4.4) (E ,j_kl_ 1)2—E’ < exp(klog(e(E' + k)/k) — E').
For E' = E + O(klog(E/k)) = O(E), this probability is
< 27, In our analysis it suffices to consider a situation
where an adversary can decide the contents of A, subject
to the constraint that its error budget (the area above the
curve defined by the first “£” in each column) never exceeds
E’ = O(E). The notion of an error budget is also essential
for analyzing the protocol of Section 4.4.

In the jth phase, 7 > 1, our protocol exposes the
fragment of A consisting of the next [; rows of columns in
I;_1. The set I; consists of those columns without any “#”
exposed so far. The communication budget for phase j is
equal to [;|I;—1|. In the worst case, the first exposed value
in each column of I;_1 \ I; is “#”, so the adversary spends
at least [;|I;| of its error budget in phase j.

If we witness at least one “#£” in every column, we can
correctly declare there does not exist an equal coordinate and
answer no. Otherwise, if the adversary has not exceeded his
error budget but there is some column without any “Z£”,
we answer yes. If the adversary ever exhausts his error
budget, we terminate the protocol and answer yes. Recall
that the notion of an error budget tacitly assumed that x and
y differ in all coordinates. If they do not, the protocol always
answers correctly, whether it halts prematurely or not. The
probability that the error budget is exhausted when = and y
differ in all coordinates (a false positive) is < 2%, according
to Eqn. (4.4).

4.3.2 Analysis In this section we give a formal proof to
the following Theorem:

THEOREM 4.6. Fizanyk > 1, E >k, andr € [1, (logk)/2].
There exists an r-round randomized protocol for ExistsEqual
on wvectors of length k that errs with probability perr =
2~ (B “using O(EEY™) bits of communication.
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Proof. The number of tests per coordinate in phase j is [;:
l; = 2EK/"7

Define E; = Z;,:l lj7]1;1] to be the portion of the error
budget spent in phases 1 through j. We can express the
asymptotic communication cost of the protocol in terms of
the error budget as follows.

S LIl < bl + KT 11 L= kY"1,
Jj=1 j=2
< 2EKY" + E,_ kYT Defn. of E,_;.

Recall that the protocol terminates immediately after phase
j if E; > E’, which indicates E,_1 < E’. Hence, the total
cost is bounded by

< (2E+ ENEY" = O(EKM").

The protocol can only err if x and y differ in every
coordinate. In this case, there are two possible sources of
error. The first possibility is that the protocol answers yes
because |I.| > 1. By a union bound, this happens with
probability at most

k2~ Xi=1li < g9,

The second possibility is that the protocol terminates
prematurely and answers yes if E; > E’ for some j € [1,r].
The probability of this event occuring is also < 27F; see
Eqn. (4.4). This concludes the proof. O

Proof. [Proof of Theorem 4.2] Theorem 4.2 follows directly
by combining Theorem 4.4 and Theorem 4.6. O

REMARK 4.2. By applying the reduction of Theorem 1.1 to
Theorem 4.6, we conclude that SetDisjointness can be solved
in r + 1 rounds using O(EEY") bits of communication. In
this particular case we actually do not need Theorem 1.1; it
is possible to solve SetDisjointness directly in r rounds with
O(Ekl/r) communication by an algorithm along the lines of
Theorem 4.6 or [ST13]. Theorem 1.1 can also be applied to
Theorem 4.5 to yield a Setintersection protocol using r + 1
rounds and O(rEkY") communication, but here we do not
see how to solve the problem directly in v rounds. It seems
we would need some analogue of Lemma 4.1 tailored to the
Setlintersection problem.

4.4 A Communication Optimal EqualityTesting
Protocol Finally, we give an EqualityTesting protocol that
achieves the optimal communication complexity O(Ek'/™)
and uses O(r) rounds (instead of 7). Due to lack of space,
we defer details of the protocol to the full version of the
paper [HPZZ19].

THEOREM 4.7. Fix any kK > 1, E > 1, and r €
[1, (log ko)/6], where ko = min{k, E}. There exists a ran-
domized protocol for EqualityTesting length-k wvectors x,y
with Hamming distance dist(z,y) < ko that uses O(r)
rounds, O(k + Eké/r) bits of communication, and errs with
probability perr = 2~ F+D

Theorem 4.3 can then be obtained by combining Theo-
rem 4.4 and Theorem 4.7.

5 Application in Distributed

Enumeration

Triangle

One way to solve local triangle enumeration in the
CONGEST model is to execute, in parallel, a Setlntersection
protocol across every edge of the graph, where the set as-
sociated with a vertex is a list of its neighbors. Since there
are at most An/2 edges, we need the Setlntersection error
probability to be 2% E = ©(logn), in order to guar-
antee a global success probability of 1 — 1/poly(n). Our
lower bound says any algorithm taking this approach must
take Q((A + EAY7")/logn + r) rounds since each round of
CONGEST allows for one O(log n)-bit message. The hardest
situation seems to be when A = E = O(logn), in which
case the optimum choice is to set r = log A, making the tri-
angle enumeration algorithm run in O(log A) = O(log log n)
time. In Theorem 5.1 we show that it is possible to han-
dle this situation exponentially faster, in O(loglog A) =
O(logloglogn) time, and in general, to solve local trian-
gle enumeration [IG17] in optimal O(A/logn) time so long
as A > lognlogloglogn.

THEOREM 5.1. Local triangle enumeration can be solved in
a CONGEST network G = (V, E) with mazimum degree A in
O(A/logn+loglog A) rounds with probability 1 —1/poly(n).
This is optimal for all A = Q(lognlogloglogn).

Proof. The algorithm consists of min{loglog A, log loglog n}
phases. The goal of the first phase is to transform the
original triangle enumeration problem into one with max-
imum degree A; < (logn)°®, in O(log* n) rounds of com-
munication. The goal of every subsequent phase is to re-
duce the maximum degree from A’ < /logn to VA/, in
O(1) rounds of communication. Thus, the total number of
rounds is O(loglog A) rounds if the first round is skipped,
and O(log™ n + loglog(A1)) = O(logloglog n) otherwise.
Phase One. Suppose A > y/logn. Each vertex u is
identified with the set A, = {ID(v) | {v,u} € E} having
size A. For each {u,v} € E we reduce Setlntersection
to EqualityTesting by applying Theorem 1.1, then run the
two-party EqualityTesting protocol of Theorem 4.1, with
k = max{A,logn},r = log"n, and E = r YT (Le,
if A < logn we imagine padding each set to size logn
with dummy elements.) One undesirable property of this
protocol is that it can fail “silently” if the preconditions
of Lemma 4.1 are not met. When the Hamming distance
between two strings exceeds the threshold d, Bob generates
a garbage string ¥’ # z but fails to detect this. To rectify this
problem, we change the Lemma 4.1 protocol slightly: Alice
sends the color ¢(x) of her string, as well as an O(logn)-
bit hash h(z). Bob reconstructs =’ as usual and terminates
the protocol if h(z) # h(z'). Clearly the probability of
an undetected failure (i.e., * # ' but h(z) = h(z')) is
1/poly(n). Define G1 = (V, E1) such that {u,v} € F; iff
the Setlntersection protocol over {u, v} detected a failure. In
other words, with high probability, all triangles in G have
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been discovered, except for those contained entirely inside
G1. The probability that any particular edge appears in F;
is 278 = 9=k TR /log" n and independent of all other
edges. In particular, if A > (logn)'*/1°¢" ™ then no errors
occur, with probability 1 — 1/poly(n). Define A; to be the

maximum degree in G1. Thus,

Pr[A; > (logn)*]

ST

< n - exp(O((logn)*“loglogn)) - ge(logn)! = (log m)**
< 1/poly(n).

Phases Two and Above. Suppose that at some
round, we have detected all triangles except for those
contained in some subgraph G’ = (V, E’) having maximum
degree A’ < y/logn. Express A’ as (logn)”, where v < 1/2.
We execute the Equality Testing protocol of Theorem 4.5 with
k=A',r=2 and E = C(logn)*~"/? for a sufficiently large
constant C. Note that 1 —v/2 > v, so E > k, as required by
Theorem 4.5. The protocol takes O(Ek'/? /logn+r) = O(1)
rounds since the communication volume is O(Ek'/?) =
O(logn) and r = 2. Let G” be the subgraph of G’ consisting
of edges whose protocols detected a failure and A” be the
maximum degree in G”. Once again,

e=1/r =1/log" n.

Pr [A" > (log n)V/Q}

A _ g\ (logm)?/2
=n <(logn)7/2) ' (2 )

< n-exp(O((log n)7/2 loglogn)) - 9= Cllogn)! /2. (log n)?/2
< 1/poly(n).

Thus, once A < y/logn, loglog A < logloglogn — 1 of these
2-round phases suffice to find all remaining triangles in G.

0

Theorem 5.1 depends critically on the duality between
edges and SetIntersection instances, and between edge end-
points and elements of sets. In particular, when an execution
of a Setlntersection over {u,v} is successful, this effectively
removes {u,v} from the graph, thereby removing many oc-
currences of ID(u) and ID(v) from adjacent sets.

Consider a slightly more general situation where we
have a graph of arboricity A (but unbounded A), witnessed
by a given acyclic orientation having out-degree at most .
Redefine the set A, to be the set of out-neighbors of u.

Ay ={ID(v) | {u,v} € E with orientation v — v}.

By definition |A,| < A. Because the orientation is acyclic,
every triangle on {z,y,z} is (up to renaming) oriented as
r — vy, © — 2, y — z. Thus, it will only be detectable by
the Setlntersection instance associated with {x,y}.

THEOREM 5.2. Let G = (V,E) be a CONGEST network
equipped with an acyclic orientation with outdegree at most
M. We can solve local triangle enumeration on G in
O(X/logn + log ) time.

Proof. We apply Theorem 1.1 to reduce each Setlntersection
instance to an EqualityTesting instance, then apply The-
orem 4.3 with E = ©O(logn) and r = log\ to solve
each with O(A + EAY") = O(A + E) communication in
O((A+ E)/logn + 1) = O(A/logn + log A) time. Note that
the dependence on A here is exponentially worse than the
dependence on A in Theorem 5.1. O

It may be that G is known to have arboricity A,
but an acyclic orientation is unavailable. The well known
“peeling algorithm” (see [CN85] or [BE10]) computes a CA
orientation in O(logy n) time for C sufficiently large, say
C > 3. Using this algorithm as a preprocessing step,
we can solve local triangle enumeration optimally when
X = Q(log? n).

THEOREM 5.3. Let G = (V,E) be a CONGEST network
having arboricity A (with no upper bound on A). Local
triangle enumeration can be solved in optimal O(X/logn)
time when X = Q(log?n), and sublogarithmic time
O(log n/log(log® n/\)) otherwise.

Proof. The algorithm computes a - - A orientation in
O(log, n) time and then applies Theorem 5.2 to solve local
triangle enumeration in O(yA/logn + log(yA)) time. The
only question is how to set v. If A = Q(log? n) we set v = 3,
making the total time O(\/logn), which is optimal [IG17].
Otherwise we choose 7 to balance the log, n and Y\ /logn
terms, so that
ylogy = log® n/A

Thus, the total running time is slightly sublogarithmic
O(logn/log(log?n/))). Specifically, it is O(logn/loglogn)
whenever \ < log?~¢n. O

6 Conclusions and Open Problems

We have established a new three-way tradeoff between
rounds, communication, and error probability for many
fundamental problems in communication complexity such
as SetDisjointness and EqualityTesting. Our lower bound
is largely incomparable to the round-communication lower
bounds of [ST13, BCK™16], and stylistically very differ-
ent from both [ST13] and [BCK'"16]. We believe that
our method can be extended to recover Saglam and Tar-
dos’s [ST13] tradeoff (in the constant error probability
regime), but with a more “direct” proof that avoids some
technical difficulties arising from their round-elimination
technique. It is still open whether EqualityTesting can be
solved in r rounds with precisely O(Ekl/ ") communication
and error probability 27 < 27%. Our algorithms match
this lower bound only when r = O(1) or r = Q(log k), or for
any 7 when solving the easier ExistsEqual problem.

We developed some CONGEST algorithms for triangle
enumeration that employ two-party Setlntersection proto-
cols. It is known that this strategy is suboptimal when
A > n'/? [CPZ19, CS19]. However, for the local trian-
gle enumeration problem”, our O(A/logn + loglog A) algo-

Every triangle must be reported by one of its three constituent

vertices.
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rithm is optimal [IG17] for every A = Q(lognlogloglogn).
Whether there are faster algorithms for triangle detection® is
an intriguing open problem. It is known that 1-round LOCAL
algorithms must send messages of Q(Alogn) bits deter-
ministically [ACKL17] or (A) bits randomized [FGKO18].
Even for 2-round triangle detection algorithms, there are no
nontrivial communication lower bounds known.

A Reductions and Near Equivalences

Brody et al. [BCK'16] proved that Setlntersection on sets
of size k is reducible to EqualityTesting on vectors of length
O(k), at the cost of one round and O(k) bits of communi-
cation. However, the reduction is randomized and fails with
probability at least exp(—O(v/k)). This is the probability
that when k balls are thrown uniformly at random into k
bins, some bin contains w(v/k) balls.
Recall the statement of Theorem 1.1:

Eq(k, T, perr) < SetInt(k, T, perr),
3Eq(k, 7, perr) < SetDisj(k, r, Derr),
Setint(k,r + 1, perr) < Eq(k, 7, perr) + C,
SetDisj(k, 7 4+ 1, perr) < JEq(k, 7, perr) + ¢,

where ¢ = O(k+loglog perr) In other words, under any error
regime perr, the communication complexity of Setlntersection
and EqualityTesting are the same, up to one round and
O(k +loglog pe,t) bits of communication, and that the same
relationship holds between SetDisjointness and ExistsEqual.
The proof is inspired by the probabilistic reduction of Brody
et al. [BCK™16], but uses succinct encodings of perfect hash
functions rather than random hash functions.

Proof. [Proof of Theorem 1.1] The leftmost inequalities have
been observed before [ST13, BCK116]. Given inputs x,y
to ExistsEqual or EqualityTesting, Alice and Bob generate
sets A ={(1,z1),...,(k,zx)} and B = {(1,11),...,(k,yx)}
before the first round of communication and then proceed to
solve Setlntersection or SetDisjointness on (A, B). Knowing
ANB or whether ANB = () clearly allows them to determine
the correct output of Equality Testing or ExistsEqual on (z,y).

The reverse direction is slightly more complicated. Let
(A, B) be the instance of Setlntersection or SetDisjointness
over a universe U with size at most |U| = O(k?/perr).
Alice examines her set A, and picks a perfect hash function
h: U +— [k] for A, i.e., his injective on A. (This can be done
in O(k) time, in expectation, using only private randomness.
In principle Alice could do this step deterministically, given
sufficient time.) Most importantly, h can be described
using O(k + loglog|U|) = O(k + loglog pst) bits [SS90],
using a variant of the Fredman-Komlés-Szemerédi [FKS84]
2-level perfect hashing scheme.” Alice sends the O(k +

8At least one vertex must announce there is a triangle; there

is no obligation to list them all.

9We sketch how the encoding of h works, for completeness.
First, pick a function A’ : U — [O(k?)] that is collision-free on A.
Fredman et al. [FKS84] proved that a function of the form h/(z) =
(axz mod p) mod O(k?) works with constant probability, where

loglogpe_ri)-bit description of h to Bob. Bob calculates
B; = BNh™!(j) and responds to Alice with the distribution
|Bol, |Bil, - - ., |Bk—1|, which takes at most 2k bits. They
can now generate an instance of Equality Testing where the
k equality tests are the pairs Ag X Bo, A1 X B1,...,Akx—1 X
Bjy_1. By construction, A; = AN h™'(j) is a l-element
set. There is clearly a 1-1 correspondence between equal
pairs and elements in A N B. We have Bob speak first in
the EqualityTesting/ExistsEqual protocol; thus, the overhead
for this reduction is just 1 round of communication and
O(k + loglog po,i) bits. O
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