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We compute the cohomology of the subalgebra A2(1) of the C,-equivariant
Steenrod algebra A2, This serves as the input to the C,-equivariant Adams
spectral sequence converging to the completed RO(C;)-graded homotopy groups
of an equivariant spectrum koc,. Our approach is to use simpler C-motivic and
R-motivic calculations as stepping stones.
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1. Introduction

The RO(G)-graded homotopy groups are among the most fundamental invariants
of the stable G-equivariant homotopy category. This article is a first step towards
systematic application of the equivariant Adams spectral sequence to calculate
these groups.
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Araki and Iriye [1982; Iriye 1982] computed much information about the Cs-
equivariant stable homotopy groups using EHP-style techniques in the spirit of
Toda [1962]. Our approach is entirely independent from theirs.

We work only with the two-element group C, because it is the most elementary
nontrivial case. In order to compute C;-equivariant stable homotopy groups of the
C,-equivariant sphere spectrum using the Adams spectral sequence, one needs to
work with the full C,-equivariant Steenrod algebra A2 for the constant Mackey
functor F;. As the Cr-equivariant Eilenberg—Mac Lane spectrum for [, is flat [Hu
and Kriz 2001, Corollary 6.45] the E»-term of the Adams spectral sequence is
given by the cohomology of the equivariant Steenrod algebra. In this article, we
tackle a computationally simpler situation by working over the subalgebra A>(1).
This means that we are computing the C;-equivariant stable homotopy groups not
of the sphere but of the C>-equivariant analogue of connective real K-theory ko.
We will explicitly construct this C-equivariant spectrum koc, in Section 10.

Our calculational program is carried out for .A“*(1) in this article as a warmup
for the full Steenrod algebra A to be studied in future work. Roughly speaking, .A
contains Steenrod squaring operations Sq’ with the expected properties, and A€2(1)
is the subalgebra generated by Sq' and Sq®. A key point is that our program works
just as well in theory for A2 as for AC2(1), except that the details are even more
complicated. It remains to be seen how far this can be carried out in practice.

Our strategy is to build up to the complexity of the C,-equivariant situation by
first studying the C-motivic and R-motivic situations. The relevant stable homotopy
categories are related by functors as in the diagram

Ho(Sp®) —2%5 Ho(Sp®)
Re Re
Ho(Sp€?) —~— Ho(Sp)

The vertical functors are Betti realization (see [Heller and Ormsby 2016, Sec-
tion 4.4]). The functor ¢* restricts an equivariant spectrum to the trivial subgroup,
yielding the underlying spectrum.

The C-motivic cohomology of a point is equal to F,[t] [Voevodsky 2003a] (see
also [Dugger and Isaksen 2010, Section 2.1]). The C-motivic Steenrod algebra
AC is very similar to the classical Steenrod algebra, but there are some small
complications related to t. In particular, these complications allow the element
hy in the cohomology of A to be nonnilpotent, detecting the nonnilpotence of the
motivic Hopf map n¢ [Morel 2004, Corollary 6.4.5]. In the cohomology of A®(1),
the nonnilpotence of /4 is essentially the only difference to the classical case.
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The R-motivic cohomology of a point is equal to [z, p] [Voevodsky 2003a]
(again, see the discussion in [Dugger and Isaksen 2010, Section 2.1]). Now an
additional complication enters because Sq'(r) = p. The computation of the co-
homology of the R-motivic Steenrod algebra AR becomes more difficult because
the cohomology of a point is a nontrivial .A®-module. In addition, the R-motivic
Steenrod algebra AR has additional complications associated with terms involving
higher powers of p [Voevodsky 2003b, Theorem 12.6].

A natural way to avoid this problem is to filter by powers of p. In the associated
graded object, Sq'(r) becomes zero and the associated graded Hopf algebroid
is simply the C-motivic Hopf algebra with an adjoined polynomial generator p.
Therefore, the p-Bockstein spectral sequence starts from the cohomology of A®
and converges to the cohomology of A®.

This p-Bockstein spectral sequence has lots of differentials and hidden exten-
sions. Nevertheless, a complete calculation for A% (1) is reasonable. A key point
is to first carry out the p-inverted calculation. This turns out to be much simpler.
With a priori knowledge of the p-inverted calculation in hand, there is just one
possible pattern of p-Bockstein differentials.

Relying on our experience from the R-motivic situation, we are now ready to
tackle the C,-equivariant situation. The C,-equivariant cohomology of a point con-
tains F»[7, p], but there is an additional “negative cone” that is infinitely divisible
by both 7 and p [Hu and Kriz 2001, Proposition 6.2]. Except for the complications
in the cohomology of a point, the C»-equivariant Steenrod algebra A2 is no more
complicated than the R-motivic one [Hu and Kriz 2001, pp. 386-387].

Again, a p-Bockstein spectral sequence allows us to compute the cohomology
of A®2(1). Because of infinite 7-divisibility, the starting point of the spectral se-
quence is more complicated than just the cohomology of .A®(1). Once identified,
this issue presents only a minor difficulty.

The p-inverted calculation determines the part of the cohomology of A (1) that
supports infinitely many o multiplications. Dually, it is also helpful to determine
in advance the part of the cohomology of .A®2(1) that is infinitely p-divisible, i.e.,
the inverse limit of an infinite tower of p-multiplications. We anticipate that this
approach via infinitely p-divisible classes will be essential in the more complicated
calculation over the full Steenrod algebra A2, to be studied in future work.

As for the R-motivic case, the p-Bockstein spectral sequence is manageable,
even though it does have lots of differentials and hidden extensions.

All of these calculations lead to a thorough understanding of the cohomology
of AC2(1). The charts in Section 12 display the calculation graphically.

The next step is to consider the C,-equivariant Adams spectral sequence. For de-
gree reasons, there are no nonzero Adams differentials. The same simple situation
occurs in the classical, C-motivic, and R-motivic cases.
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However, it turns out that there are many hidden extensions to be analyzed. The
presence of so many hidden extensions suggests that the Adams filtration may not
be optimal for equivariant purposes. Unfortunately, we do not have an alternative
to propose.

The final description of the homotopy groups is complicated. Nevertheless,
our computation establishes that the homotopy of koc, is nearly periodic (see
Theorem 11.15). We refer to Section 11 and the charts in Section 12 for details.

1A. Organization. In Section 2, we provide the basic algebraic input to our cal-
culation by thoroughly describing the C,-equivariant cohomology of a point and
the C,-equivariant Steenrod algebra A2, In Section 3, we set up the p-Bockstein
spectral sequence, which is our main tool for computing the cohomology of A2 (1).
In Sections 4 and 5, we carry out the p-inverted and the infinitely p-divisible cal-
culations. In Section 6, we carry out the R-motivic p-Bockstein spectral sequence
as a warmup for the C-equivariant p-Bockstein spectral sequence in Section 7.
Section 8 provides some information about Massey products in the C>-equivariant
cohomology of \A(1), which is used in Section 9 to determine multiplicative struc-
ture that is hidden by the p-Bockstein spectral sequence. Section 10 gives the
construction of the C,-equivariant spectrum whose homotopy groups are computed
by the cohomology of A2(1), and Section 11 analyzes multiplicative structure in
these homotopy groups that is hidden by the Adams spectral sequence. Finally,
Section 12 includes a series of charts that graphically describe our calculation.

1B. Notation. We employ notation as follows:
(1) MY = F,[r] is the motivic cohomology of C with [, coefficients, where 7 has
bidegree (0, 1).

2) MéR = [, [z, p] is the motivic cohomology of R with [, coefficients, where T
and p have bidegrees (0, 1) and (1, 1), respectively.

3) MZC ? is the bigraded equivariant cohomology of a point with coefficients in the
constant Mackey functor [F,. See Section 2A for a description of this algebra.

(4) NC is the “negative cone” part of I\/I]ZC 2. See Section 2A for a precise descrip-
tion.

5 HZiz* (X) is the Cy-equivariant cohomology of X, with coefficients in the con-
stant Mackey functor [F,.

(6) A% AT AR and A€ are the classical, C-motivic, R-motivic, and C>-equivariant
mod 2 Steenrod algebras.

(7) A%n), A(n), ARn), and A€2(n) are the classical, C-motivic, R-motivic,
and C,-equivariant subalgebras generated by Sq', Sq?, S¢*, .. ., qun.
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(8) £%2(1) is the subalgebra of A2 generated by
Qo=Sq' and Q;=Sq'Sq’+Sq¢>Sq".

(9) Ext is the bigraded ring Ext 4a (F2, F2), i.e., the cohomology of AL,
(10) Extc is the trigraded ring Ext 4c (Mg, Mg), i.e., the cohomology of AC.
(11) Extg is the trigraded ring Ext 4r (M5, M?), i.e., the cohomology of AR,
(12) Extc, is the trigraded ring Ext 4c, (Mgz, Mgz), i.e., the cohomology of A2,
(13) Extnc is the Ext 4r-module Ext 4= (NC, M5).
(14) Exte(n) is the bigraded ring Ext 4a, (F2, F2), i.e., the cohomology of Al(n).
(15) Extc(n) is the trigraded ring Ext 4, (Mlg, Mg), i.e., the cohomology of A (n).
(16) Extr(n) is the trigraded ring Ext 4r ;) (M?, M?), i.e., the cohomology of AR (n).
(17) Extc,(n)is the trigraded ring Ext 4c, (n)(Mg 2 MQC ?),i.e., the cohomology of AC2(n).
(18) Extnc(n) is the Extg(n)-module Ext 4z, (NC, M?).
(19) ET is the p-Bockstein spectral sequence

Extc(1)[p] = Extr(1).

See Section 3.

(20) E~ is the p-Bockstein spectral sequence that converges to Extnc(1). See
Section 3.

21 %{y} is the infinitely x-divisible module colim, F,[x]/x", consisting of
elements of the form xlk for k > 1. See Remark 2.1.

(22) koc, is a Cy-equivariant spectrum such that Ha* (koc,) = A/ A2 (1). See
Section 10.

(23) m, «(X) are the bigraded C-equivariant stable homotopy groups of X, com-
pleted at 2 so that the equivariant Adams spectral sequence converges.

(24) I1,(X) is the Milnor-Witt n-stem @@ 71 p.
P

We use grading conventions that are common in motivic homotopy theory but
less common in equivariant homotopy theory. In equivariant homotopy theory,
RO(Cy) = Z[a]/(a2 — 1) is the real representation ring of C,, where o is the
1-dimensional sign representation. The main points of translation are:

(1) Equivariant degree p 4 go will be expressed, according to the motivic con-
vention, as (p + ¢, q), where p + ¢ is the total degree and ¢ is the weight.
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(2) The element t in Mﬂf maps to u [Hill et al. 2016, Definition 3.12] under the
realization map from R-motivic to C,-equivariant homotopy theory. We use
the symbol 7 in both cases.

(3) Similarly, realization takes the R-motivic homotopy class p : S~H~1 — §%.0
to a in w_1,—1 [Hill et al. 2016, Definition 3.11]. We use the symbol p for
both of these homotopy classes, and also for the corresponding elements of
ME and MS>.

We grade Ext groups in the form (s, f, w), where s is the stem, i.e., the total de-
gree minus the homological degree; f is the Adams filtration, i.e., the homological
degree; and w is the weight. We will also refer to the Milnor—Witt degree, which
equals s — w.

2. Ext groups

2A. The equivariant cohomology of a point. The purpose of this section is to
carefully describe the structure of the equivariant cohomology ring MZC ? of a point
from a perspective that will be useful for our calculations. This section is a reinter-
pretation of results from [Hu and Kriz 2001, Proposition 6.2].

Additively, MS? equals

(1) F; in degree (s, w) if s > 0 and w > s,
(2) F; in degree (s, w) if s <Oand w <s — 2,

(3) 0 otherwise.

This additive structure is represented by the dots in Figure 1. The nonzero element
in degree (0, 1) is called 7, and the nonzero element in degree (1, 1) is called p.
We remind the reader that we are here employing cohomological grading. Thus
the class p has degree (—1, —1) when considered as an element of the homology
ring 7w, HF>.

The “positive cone” refers to the part of Mg % in degrees (s, w) with w > 0.
The positive cone is isomorphic to the R-motivic cohomology ring MER of a point.
Multiplicatively, the positive cone is just a polynomial ring on two variables, p
and 7.

The “negative cone” NC refers to the part of MZC * in degrees (s, w) with w < —2.
Multiplicatively, the product of any two elements of NC is zero, so MZC * is a square-
zero extension of MER. Also, multiplications by p and t are nonzero in NC when-
ever they make sense. Thus, the elements of NC are infinitely divisible by both p
and 7.
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Figure 1. MZCZ, with action by Sq', Sq?, and Sq*.

We use the notation —— p ¢ for the nonzero element in degree (—j, —1 — j — k).
This is con51stent with the multlpllcatlve properties descrlbed in the preV1ous para-
graph. So 7 - pj —— equals ot —2 - when k > 2, and p - ] —— equals o L —~r-% When
j=2.

The symbol y, which does not correspond to an actual element of MZC ?, has
degree (0, —1).

The F,[t]-module structure on MZC 2 is essential for later calculations, since we
will filter by powers of p. Therefore, we explore further the F[t]-module structure
on NC.

Remark 2.1. Recall that Fy[t]/7*° is the F[r]-module colim F[t]/ 7%, which
consists entirely of elements that are divisible by . We write M{x} for the
infinitely divisible F;[7]-module consisting of elements of the form - fork > 1.
Note that x itself is not an element of [FZ[’] {x}. The idea is that x represents the
infinitely many relations t* - r— = ( that deﬁne [FZ[T] {x}.

With this notation in place, M22 is equal to

M5 @ NC = MR@@

s>0

Fa[7] {

} -1
o’

as an F,[t]-module.
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2B. The equivariant Steenrod algebra. As a Hopf algebroid, the equivariant dual
Steenrod algebra can be described [Ricka 2015, Proposition 6.10(2)] as

AG = M$? D AL (2-2)
Recall [Voevodsky 2003b] that
AF =M 10, 14 - L E1L &2 1/ (T = T + TE1 + pT0E+1),

with ng(p) = p and ng(r) = v + p1o. The formula for the right unit ng on the
negative cone given in [Hu and Kriz 2001, Theorem 6.41] appears in our notation

as
i k
T’R(p])'/fk) = p;/fk [X(; (§IO> ] ’ 2-3)

i>

Note that the sum is finite because /Yrk -p"=0ifn > j.
We have quotient Hopf algebroids
n—i+1
ARy = MR [t0, .., Ty £t B/ EDTT L TE = T + T+ PTOBLD).
and
EXn) :=M3lw, ..., 1)/(7} = pTit1, 1)

and their equivariant analogues
AS () =M @yr AX(),  ES(n) =M @ur ER(n)  (2-4)

Their duals are the subalgebras A2 (n) € A2 and £%2(n) € A%,
The relationship between the equivariant and R-motivic Steenrod algebras leads
to an analogous relationship between Ext groups.

Proposition 2.2. Suppose that I is a Hopf algebroid over A and that B=A & M
is a I'-comodule which is a square-zero extension of A, meaning that the product of
any two elements in M is zero. Then the A-module splitting of B induces a splitting

Extpg,r(B, B) = Extr(A, A) @ Extr(M, A)

of Extr(A, A)-modules. Furthermore, this is an isomorphism of Extr(A, A)-
algebras, if the right-hand side is taken to be a square-zero extension of Extr(A, A).

Proof. We may express the cobar complex as:
coB*(B, B4 =B (M® ZXBR(BRsIN)®
=B Qs (D).
As the splitting of B is a splitting as ['-comodules, there results a splitting

coB*(A, ") ®coB* (M, T)
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of the cobar complex. This splitting is square-zero, in the sense that the product of
any two elements in the second factor is equal to zero. This observation follows
from the fact that the product of any two elements of M is zero.

In Extpg,r, this yields

Extpg,r = Extr(A, A) @ Extr (M, A).

The multiplication on Extr(M, A) is zero since this is already true in the cobar
complex coB* (M, I'). O

Employing notation given in Section 1B, Proposition 2.2 applies to give isomor-
phisms

Extc, = Extr @ Extne
and

Extc,m) = Extr(n) @© Extnem) -

Thus from the point of view of R-motivic homotopy theory, the cohomology of
the negative cone is the only new feature in Ext 4c, or Ext 4c, ()

3. The p-Bockstein spectral sequence

Our tool for computing R-motivic or Cz-equivariant Ext is the p-Bockstein spec-
tral sequence [Hill 2011; Dugger and Isaksen 2017a]. The p-Bockstein spectral
sequence arises by filtering the cobar complex by powers of p. More precisely, we
can define an AR-module filtration on Mzc ?, where F), (Mg %) is the part of Mg %z con-
centrated in degrees (s, w) with s > p. Dualizing, we get a filtration of comodules
over the dual Steenrod algebra, which induces a filtration on the cobar complex
that computes Extc,.

Recall that the C-motivic cohomology of a point is M$ = [F,[z], and the C-
motivic Steenrod algebra is A® = A®/p [Voevodsky 2003a; 2003b]. For conve-
nience, we write Extc for Ext 4c (M, Mg).

Proposition 3.1. There is a p-Bockstein spectral sequence
C C
E| = Ethrp.ACZ (gr, M2, gr, M;?) = Extc,

such that a Bockstein differential d, takes a class x of degree (s, f, w) to a class
d,(x) of degree (s — 1, f + 1, w). Under the splitting of Proposition 2.2, this
decomposes as
EI’_ = Extc[p] = Extr
and
El_ = Extne,
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where E | belongs to a split short exact sequence

M3 [ v _ M3 [y
@wa{; ®M§CEXT‘C_>E1 —)@TOI'Mg ‘[T.O E ,EXt(]: .
s>0 s>0

Remark 3.2. Beware that the short exact sequence for £, does not split canoni-
cally.

Remark 3.3. The same spectral sequences occur in the same form when A€ AR
and A® are replaced by A2 (n), AR(n), and A®(n).

Proof. See [Hill 2011, Proposition 2.3] (or [Dugger and Isaksen 2017a, Section 3])
for the description of E 1+
For E |, the associated graded of NC is

~ M [y
gprC=€BrTo{;}’
s>0

as described in Section 2A. It follows that the Bockstein spectral sequence begins
with .
M y
~ 2 c y4C

The ring Mg = F,[r] is a graded principal ideal domain (in fact, it is a graded
local ring with maximal ideal generated by 7). Therefore, the Kiinneth split exact
sequence gives

M3 [ ¥ - M3 [ ¥
<@ -L-T.O {; ®Mg EXt@ — El — TOI'Mg @ -L-TOO E , EXtC .
s>0 >0

The first and third terms of the short exact sequence may be rewritten as in the
statement of the proposition because the direct sum in each case is a splitting of
Mg—modules. ]

We shall completely analyze the spectral sequence
E] =Extc(1)[p] = Extg(1)

in Section 6. While nontrivial, this part of our calculation is comparatively straight-
forward.
On the other hand, analysis of the spectral sequence

El_ = Extnc(1)

requires significantly more work. The first step is to compute E;" more explicitly.
In particular, we must describe the Tor groups that arise.
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C
Lemma 3.4. (1) Tor?’\‘/[I ( s MC) equals , concentrated in homological degree
zero.

C
2) Tor (EA]OO, My ) equals -+ ,concentrated in homological degree one.

Proof. (1) This is a standard fact about the vanishing of higher Tor groups for free
modules.

(2) This follows from direct computation, using the resolution

C
M 0.
. o ME L
After tensoring with —%, this gives the map
T

MS M¢
e X e——= )

Y
(l

that takes to zero if a < k. This map is onto, and
its kernel i 1s 1somorphlc to MC /T* (|

Remark 3.5. Lemma 3.4 provides a practical method for identifying the E| in
Proposition 3.1. Copies of MI‘[Z: in Extc(1) lead to copies of the negative cone in
E . On the other hand, copies of Mg /7, such as the submodule generated by />,
lead to copies of Mg /T in E| that are infinitely divisible by p. These copies of
Mg /7 occur with a degree shift because they arise from Tor!.

4. p-inverted Extr(1)

As a first step towards computing Extc, (1), we will invert p in the R-motivic setting
and study Extg(1)[p~']. This gives partial information about Extg(1) and also
about Extc, (1). Afterwards, it remains to compute p¥ torsion, including infinitely
p-divisible elements.

We write A for the classical Steenrod algebra. For convenience, we write Ext,
and Extci(n) for Ext 4a(F2, F2) and Ext 4, (F2, F2) respectively.

Proposition 4.1. There is an injection Extq(n — 1)[p*'] < Extr(n)[p~'] such
that:

(1) The map is highly structured, i.e., preserves products, Massey products, and
algebraic squaring operations.
(2) The element h; of Ext.(n — 1) corresponds to hi11 of Extg(n).

(3) The map induces an isomorphism

on+l1

Extr(n)[p~']1 = Exta(n — D[pT 1@ Fa[c* 1.

(4) An element in Extq(n — 1) of degree (s, f) corresponds to an element in

Extgr(n) of degree 2s + f, f,s + f).
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Proof. The proof is similar to the proof of [Dugger and Isaksen 2017a, Theo-
rem 4.1]. Since localization is an exact functor, we may compute the cohomology
of the Hopf algebroid (M?[p‘l], AR + 1)*[p_1]) to obtain Extgy(n + 1)[,0_1].
After inverting p, we have

1.2, -1
Tr1=p Tp+0 Tk + T0bk+1,

and it follows that

on+l

ARl 1M M0, &1, .., 81/ (F L ED L ED).
This splits as

(M5p~ ", Am)Llp~ ") = (M5, A () @5, (F2, A" (n)),
where
A'(n) = ME[p " lz0l/23
and

A'(n) =Falky, ..., &)/ EE, ... ED).

Because it is isomorphic to the classical Hopf algebra (F,, A(n—1)) with altered
degrees, the Hopf algebra (F,, A”(n)) has cohomology Extc(n — 1).
For the Hopf algebroid (M?[p‘l], A (n)), we have an isomorphism

ME[p "1, A () = Falp* 1 @5, (Falt], Falelix]/x*")
with
n(t) =1, nr(r)=1t+x.

An argument like that of [Dugger and Isaksen 2017a, Lemma 4.2] shows that the
cohomology of this Hopf algebroid is |]:2[‘E2n+] 1. U

Corollary 4.2. Extc,(D[p~ 1= Extg(D[p ' 1= Fa[p*!, o4, Ayl

Proof. The first isomorphism follows from Proposition 2.2, as Extnc is p-torsion.
The second isomorphism follows immediately from Proposition 4.1, given that
Extq(0) = Falhg]. ]

Remark 4.3. Corollary 4.2 implies that the products 74 - hllc are nonzero in Extr(1).
But r4h’1‘ = 0 in Extc (1) when k > 3, so the products s h’l‘ are hidden in the p-
Bockstein spectral sequence for k > 3. We will sort this out in detail in Section 6.

5. Infinitely p-divisible elements of Ext 4c, ;,

Having computed the effect of inverting p in Section 4, we now consider the dual
question and study infinitely p-divisible elements. This gives additional partial
information about Extc,(1). Afterwards, it remains only to compute the p* torsion
classes that are not infinitely p-divisible.
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In fact, this section is not strictly necessary to carry out the computation of
Extc,(1). Nevertheless, the infinitely p-divisible calculation works out rather nicely
and provides some useful insight into the main computation. We also anticipate
that this approach via infinitely p-divisible classes will be essential in the much
more complicated calculation of Extc,, to be studied in further work.

For a F[p]-module M, the p-colocalization, or p-cellularization, is the limit
lim, M of the inverse system

N VR 7

While p-localization detects p-torsion-free elements, the p-colocalization detects
infinitely p-divisible elements.
An alternative description is given by the isomorphism

lim M = Homg,,)(F2[p*'1, M)

because F»[p*!]is isomorphic to colim, F>[p]. It follows that lim, M is an Fo[p*!]-

module, and the functor M > lim, M is right adjoint to the restriction
MOd[FZ[p:tl] —> MOd[Fz[p].

Lemma 5.1. (1) Let M be a cyclic F,[p]-module F>[ p] or [Fz[,o]/pk. Thenlim, M
is zero.

(2) Let M be the infinitely divisible F2[pl-module F1[pl/p>°. Then lim, M is
isomorphic to [Fg[,oil].

Proof. If M is cyclic, then no nonzero element is infinitely p-divisible, which
implies the first statement. For the case M = [F,[p]/p>°, a (homogeneous) element
of the limit is either of the form

1 1
E’W’.“
(0 0,1 L1 )
AR k) 7p’p27--- .

For k > 0, the isomorphism I]:z[,oil] — lim, M sends 0% to the tuple

(0,...,0,1,1,...)
0

having k — 1 zeroes and sends p—lk to (# #, ) O

or of the form

We will now compute the p-colocalization of Extc,(1).
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Proposition 5.2.

Fa[z4]
TOO

lim Exte, (1) = @D Falp*. hl]{ }”[F [ ] ® 128

k>1

Recall that y itself is not an element of lim,, Extc, (1), as described in Remark 2.1.
The main point of Proposition 5.2 is that the elements T)/Th{ are infinitely p-divisible
classes in Extc, (1), and there are no other infinitely p-divisible families in Extc, (1).

Proof. Since the cobar complex coB*(MZC 2 A% (1)) is finite-dimensional in each
tridegree, the inverse systems

- B coB*(MS?, A% (1)) & coB*(ME2, A% (1))
and
-+ 5 Exte, (1) 5 Exte, (1)

satisfy the Mittag-Leffler condition, so that [Weibel 1994, Theorem 3.5.8]

lim,, Extc, (1) = H*(lim, coB*(M$?, A®(1))).

Now we compute
lim coB* (M$?, A®2(1)) = 1i;n(M§2 ®ye: A (D)
~ n;n(rwgz Dz AF(D®*).
The splitting MS> = M% @ NC yields a splitting
(M5 @z A¥(D®*) ® (NC @A™ (™)

of MC2 ME AR(1)®5 as an [, [ p]-module. The first piece of the splitting contributes
nothlng to the p-colocalization by Lemma 5.1(1) because M is free as an Fo[p]-
module.

On the other hand, the [F;[p]-module NC is a direct sum of copies of F»[p]/p>.
By Lemma 5.1(2), we have that lim, (NC ®M§AR(1)®S) is isomorphic to

MBT o~ !
("2 1) mug 2.
Now the argument of Proposition 4.1 provides a splitting
MR o1
207]
0 w( {y}. A”%l))
2

F Folz,
_COBU:Z[r]< ig]{y}, 2[;4 X]>[,0il]®[F2 coBg, (F2, [Fz[gl]/flz),

where x = ptg. The cohomology of the second factor is Fa[/].
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It remains to show that the cohomology of

coBY ., (Fz[f] . Falz, x])

00 x4

is equal to [Fzr[—o’:]{y}. As in Formula (2-3), the comodule structure on [Fgg] {y}is

given by
Y Y x o ox2 3\
NR (_k> = (1 + - + 5t ) .
T T
Now we filter coBf, [T]([FZ[’] {r}, [FZ[T = ]) by powers of x. We then have

E = Fal7]

< {7} ®F, F2[vo, v1l,

where vy = [x] and v; = [x2]. The differential

Y 14
dl( Dh— 1) = ﬁvo

[Fz[ 2]

gives

E, = {v} ®F, F2[v1].

Y YV
d =2y
2 (.E4k—2) TR

F 4
Ey— Bz 27

Finally, the differential

gives

{r} O

-EOO

6. The cohomology of A% (1)

Our next step in working towards the calculation of Extc, (1) is to describe the
simpler R-motivic Extg(1). The reader is encouraged to consult the charts on
pages 616-619 to follow along with the calculations described in this section. This
calculation was originally carried out in [Hill 2011]. We include the details of the
R-motivic p-Bockstein spectral sequence, but we take the approach of [Dugger and
Isaksen 2017a], rather than [Hill 2011], in establishing p-Bockstein differentials.
The point is that there is only one pattern of differentials that is consistent with the
p-inverted calculation of Corollary 4.2. This observation avoids much technical
work with Massey products that would otherwise be required to establish relations
that then imply differentials.
For A®(1), the R-motivic p-Bockstein spectral sequence takes the form

Extc(1)[p] = Extr(1),
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where
Extc(1) = MS[ho, ki, a, b1/ hohy, Thi, hia, a* + hib.

Proposition 6.1. In the R-motivic p-Bockstein spectral sequence, we have differ-

entials

(1) di(t) = pho,
) d>(t?) = p’thy,
3) ds(T°h3) = pa.

All other differentials on multiplicative generators are zero, and E4 equals E .

Proof. By Corollary 4.2, the infinite p-towers that survive the p-Bockstein spectral
sequence occur in the Milnor—Witt 4k-stem. All other infinite p-towers are either
truncated by a differential or support a differential.

For example, the permanent cycle /9 must be p-torsion in Extg (1), which forces
the Bockstein differential

di(t) = ph.

Next, the p-tower on th; cannot survive, and the only possibility is that there is a
differential

dr(t%) = p*thy.

Note that these differentials also follow easily from the right unit formula given
in Section 2B. The p-tower on ‘L'Sh% cannot survive, and we conclude that it must
support a differential

d3(t°h3) = pia.
There is no room for further nonzero differentials, so E4 = FEo. |

Proposition 6.1 leads to an explicit description of the R-motivic p-Bockstein
E-page. However, there are hidden multiplications in passing from E, to Extg(1).

Theorem 6.2. Ext4r(y) is the F>-algebra on generators given in Table 1 with rela-
tions given in Table 2.

The horizontal lines in Table 2 group the relations into families. The first family
describes the p*-torsion. The remaining families are associated to the classical
products h2, hoh;, h?, hoa, hia, and a® + h%b respectively.

Proof. The family of p*-torsion relations follows from the p-Bockstein differentials
of Proposition 6.1.

Many relations follow immediately from the p-Bockstein E,-page because
there are no possible additional terms.
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mw (s, f, w)

generator

(—-1,0,-1)
0,1,0)
1,1,1)
(1,1,0)
©,1,-2)
4,3,2)
4,3,0)
8,4,4)
0,0, —4)

AR DD = O OO

N

0
ho
hy
‘E/’ll
T2h0
a

2a

QS A

4

Table 1. Generators for Extg(1)

mw (s, f,w) relation

2 (—1,1,=3)  p-12hy

1 (—1,1,=2)  p*-th

2 (1,3, —-1) pa

4 0,2,-4)  (?ho)* +t*h

0 1,2, 1) hoh

1 (1,2,0) ho-thy 4+ phy-th
2 (1,2, -1 t2ho - hy + p(thy)?
3 (1,2, -2) 2ho - Thy

1 (3,3,2) h3-thy

2 (3,3, 1) hi(thy)?>+ pa

3 (3.3,0) (thy)?

4 (3,3,-1) ™ hi+p-t2a

4 (4, 4, O) T2h0~a+h0't2a
2 (5,4,3) hia

3 (5,4,2) thy-a

4 5,4, 1 hy-t%a+ p3b

5 (5,4,0) th;-t2a

4 (8,6,4) a’+hkb

6 (8,6,2) a-ta+1t?hg-hob
8 (8,6,0) (t2a)?* +t*hib + p*t*h3b

Table 2. Relations for Extr(1).

583
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mw (s, f, w) X € Extyr(yy gxx € Extery)

0 (=1,0,-1) p P

0 (0,1,0) ho ho

0 ((1,1,D hy 0

1 (1,1,0) Thy PV

2 (0,1,-2) t2hg 2hy

2 (4,3,2) a hov?

4 (4,3,0) t2a t2hov}
4 (8,4,4) b v}

4 (0,0,—4) ¢ T

Table 3. The homomorphism Ext 4r(;) — Exter ).

Corollary 4.2 implies that t# - h?, is nonzero in Extg(1). It follows that there

must be a hidden relation

4 13 2
T-hi=p-17a.

Similarly, there is a hidden relation
hy-t?a = ,03b

because 74 -h‘ll is nonzero in Extg(1). This last relation then gives rise to the extra
term p2r4h%b in the relation for (t2a)? + r4hgb.

Shuffling relations for Massey products imply the remaining three relations,
namely

ho - thy = ho(h1, ho, p) = (ho, h1, ho)p = phy - Thy,

t2ho - hy = (pthi, p, hoYh1 = pthi{p, ho, h1) = p(thi)?,
and
pa = plho, hy, thy -hy) = (p, ho, h1)thy -hy = hi(Th)>.

See Table 6 in Section 8 for more details on these Massey products, whose inde-
terminacies are all zero. O

Remark 6.3. For comparison purposes, we recall from [Hill 2011, Theorem 3.1]
that
Exter(y = Falp, T, ho, T°ho, v1/(pho, p vi1, (t7ho)* +*h).

The p-torsion is created by the Bockstein differentials d; (1) = phg and d3(7?) =
p>v;. The class vy is in degree (s, f,w) =(2,1,1).

Proposition 6.4. The ring homomorphism q, : EXt gz (1) — EXtgr(yy induced by the
quotient q : AR(1),, — ER(1)4 of Hopf algebroids is given as in Table 3.
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Proof. Many of the values g, (x) are already true over C and follow easily from
their descriptions in the May spectral sequence. For instance, b is represented
by h2 |» and vy is represented by 45 1. On the other hand, the value g.(thy) is
most easﬂy seen using the cobar complex. The class T/ in Ext 4r(j) is represented
by t&; + pti. This maps to pt; in the cobar complex for E®(1) and represents the
class pv; there. O

7. Bockstein differentials in the negative cone

We finally come to the key step in our calculation of Extc,(1). We are now ready
to analyze the p-Bockstein differentials associated to the negative cone, i.e., to
the spectral sequence E~ of Proposition 3.1. We already analyzed the spectral
sequence ET in Section 6.

TA. The structure of E]. First, we need some additional information about the
algebraic structure of £ . Since £y =E fr @ E| is defined in terms of Ext groups, it
is aring and has higher structure in the form of Massey products. The subobject E
1s a module over E f“, and it possesses Massey products of the form (xi, ..., x,, y),
where x1, ..., x, belong to E;r and y belongs to E| .

Definition 7.1. Suppose that x is a nonzero element of Extc(1) such that tx is
zero. According to Remark 3.5, for each s > 0, the element x gives rise to a copy
of MC /T in TorMc( =, EXt (1)){ } that is mﬁnltely divisible by p. In particular,
it gives a nonzero element of the Tor group. Let —x be any lift to E| of this
nonzero element.

Remark 7.2. There is indeterminacy in the choice of Qx which arises from the
first term of the short exact sequence for E| in Proposition 3.1.

Lemma 7.3. The element Qx of E| is contained in the Massey product (x, T, %)

Proof. If d(u) = t - x in the cobar complex for Extc(1), then %u is a cycle, since
r% = (0. This cycle %u represents both the Massey product as well as Qx. O
Remark 7.4. The most important example is the element Q43, which is defined
because rh3 equals zero in Extc(1). Another possible name for Qh3 is Zv%, since

v1 is the element of the May spectral sequence that creates the relation rh3

Remark 7.5. Beware that the Massey product description for Qx holds in £, not
in Extc,(1). In fact, we have already seen in Section 6 that = is not a permanent
cycle in the p-Bockstein spectral sequence.

Nevertheless, minor variations on these Massey products may exist in Extc, (1).
For example, (h%, thy, %) equals Qh? in Extc,(1).

We can now deduce a specific computational property of E| that we will need
later.
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muw (s, f, w) element

0 (_1’ 07 _1) P

0 0,1,0) ho

0 (1,1, 1) hy

1 0,0, —1) T

2 4,3,2) a

4 (8,4,4) b

0 4,2, 4) Oh3

—k—1 (0,0,k+1) %

Table 4. Generators for the Bockstein E-page.

Lemma 7.6. In E |, there is a relation hy - Qh% = %a.

Proof. Use Lemma 7.3 and the Massey product shuffle

yzza. O

o @} =holhi, 7, L) = tho, i3, 1) &
T T T

Table 4 gives multiplicative generators for the Bockstein E1-page. The elements
above the horizontal line are multiplicative generators for E fL The elements below
the horizontal generate E| in the following sense. Every element of E|” can be
formed by starting with one of the these listed elements, multiplying by elements
of E ;r, and then dividing by p. The elements in Table 7 are not multiplicative
generators for Extc, (1) in the usual sense, because we allow for division by p.
The point of this notational approach is that the elements of E| and of Extnc are

most easily understood as families of p-divisible elements.

7B. p-Bockstein differentials in E~. Our next goal is to analyze the p-Bockstein
differentials in E~. We will rely heavily on the p-Bockstein differentials for E™*
established in Section 6, using that E~ is an E™-module.

Asan E f—module, E is generated by the elements p}’rk and %h?. This arises
from the observation that the t torsion in Extc(1) is generated as an Extc(1)-
module by h? .

Proposition 7.7 gives the values of the p-Bockstein d; differential on these gen-
erators of E|. All other d differentials can then be deduced from the Leibniz rule
and the £ ;r—module structure.

All of the differentials in £~ are infinitely divisible by p, in the following sense.
When we claim that d, (x) = y, we also have differentials d,(%) = % forall j > 0.
For example, in Proposition 7.7, the formula dl( ) = Y hy implies that

Yy—Xx
pT T

14 Y .
dl(,(ﬂ'”‘[) = ,ofrzho for all j > 0.
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Proposition 7.7. For all k > 0,
Y 14
(1) d1<pfzk+1> - .[2k+2h0’
) d, (glﬁ> =X,
J) 2

These differentials are infinitely divisible by p.

Proof. We give three proofs for the first formula. First, it follows from

S 1 y _ y
q pr2kHl ) T ke

using the relationship between d; and the left and right units of the Hopf algebroid.
Second, we have

_ 2%+1_ 7Y k41 14 14 2%k
0=d <T pt2k+1> =T d1<pt2k+1) + pT2k+1pT ho

_2k+1 4 4
=T dl(pT2k+l) +?h0.

Third, we can use Proposition 5.2 to conclude that the infinitely p-divisible ele-
ments Tzlk’ﬁ cannot survive the p-Bockstein spectral sequence. The only possibility
is that they support a d; differential.

For the second formula, use the first formula to determine that d; (Z—Ta) = T”—zhoa.
Then use the relation of Lemma 7.6. Alternatively, this differential is also forced
by Proposition 5.2. ([

It is now straightforward to compute E, , since the p-Bockstein d; differential
is completely known. The charts in Section 12 depict E, graphically.

Next, Proposition 7.8 gives a p-Bockstein d; differential in E, . This is the
essential calculation, in the sense that the d, differential is zero on all other E; -
module generators of E, .

Proposition 7.8. dg(#) = —tazh for all k > 0. This differential is infinitely
divisible by p.

Proof. As for Proposition 7.7, we give three proofs. First, qu(#) = .
Second, we have

_ k2 Y _ _4k42 Y 2_dk+1 YV
O—dz(t p2.1:4k+2> =T d2(m) Tt p2r4k+2h1

__4k+2 14 Y
=1 d2<p2r4k+2>+1.h1'
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Third, use Proposition 5.2 to conclude that the infinitely p-divisible elements
T&ﬁ cannot survive the p-Bockstein spectral sequence. The only possibility is
that they support a d, differential. (]

At this point, the behavior of E~ becomes qualitatively different from E*. For
E™, there are nonzero d; differentials, and then the Ej-page equals the £ -page.

For E~, it turns out that the d, differential is nonzero for infinitely many values
of r. This does not present a convergence problem, because there are only finitely
many nonzero differentials in any given degree. One consequence is that the orders
of the p-torsion in Extc, (1) are unbounded. In other words, for every s, there exists
an element x of such that p*x is nonzero but p**x is zero for some ¢ > 0. This is
fundamentally different from Extg(1), where p3x is zero if x is not p-torsion free.

Proposition 7.9 makes explicit these higher differentials.

Proposition 7.9. Forall k > 1,

Q 4 k.
Q 14
2) it < P h4k+3> k2 ab’.

These differentials are infinitely divisible by p.

Proof. We know that 4 — and b are permanent cycles. On the other hand, in Extc, (1)
the relation r4h4 = ,o4b gives

k 14
ﬁb ,0 4,4k

b =14

Thus T”ka is hy-divisible, which implies that it must be zero in Extc, (1), as there
is no surviving class in the appropriate degree to support the /-multiplication. The
only Bockstein differential that could hit ﬁbk is the claimed one.

For the second formula, the classes %a and b are permanent cycles, yet

4 k 4 Y pk— 4 Y

4rk—1
bk =pt— L apk =L anth
T4k+2 oA t2 ott 24

in Extc, (1). But hja =0, so %abk must be zero in Extc, (1), forcing the claimed
differential.
Alternatively, one can use Proposition 5.2 to obtain both differentials. U

Table 5 summarizes the Bockstein differentials that we computed in Sections 6
and 7B. The differentials above the horizontal line occur in E*, while the differ-
entials below the horizontal line occur in £~ and are infinitely divisible by p.

The p-Bockstein differentials of Sections 6 and 7 allow us to completely com-
pute the E-page of the p-Bockstein spectral sequence for Extc, (1).
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mw (s, f, w) element r d, proof
1 0,0, —1) T 1 pho Prop. 6.1
2 0,0, =2) 72 2 p’th;  Prop. 6.1
3 2,2, —-1) 3h? 3 pa Prop. 6.1
—2k—2 (1,0,2k+3) e 1 —f=ho  Prop. 7.7
0 (5,2,5) %h? 1 La Prop. 7.7
—4k—3 (2,0, 4k+5) i 2 —¥=hi Prop. 7.8

0 Bk+1,4k—1,8k+1D Hatt 4k Zpb Prop.79
0 (8k + 5, 4k 42, 8k + 5) ng R 4k+1 fsabk Prop. 7.9

Table 5. Bockstein differentials.

7C. p-Bockstein differentials in E~ for £2(1). For comparison, we also carry
out the analogous but easier computation over £2(1) rather than A2 (1). Besides
d; (#) = ¥ ho, the only other Bockstein differential is given in the following
result.

Proposition 7.10. d3(#) =~z v for all k > 0. This differential is infinitely
divisible by p.

Proof. The differential d3(t%) = p>v| of Remark 6.3 gives
_ 42 Y __4k+2 4 34k Y
0=d; (T p3r4k+2> =1 "ds <p3r4k+2> +oT D32 U1

__4k+2 4 4
=T d3<m) +§v1. O

8. Some Massey products

The final step in the computation of Extc, (1) is to determine multiplicative exten-
sions that are hidden in the p-Bockstein E..-page. In order to do this, we will need
some Massey products in Extc,(1). Table 6 summarizes the information that we
will need.

Theorem 8.1. Some Massey products in Extc, (1) are given in Table 6. All have
zero indeterminacy.

Proof. For some Massey products in Table 6, a p-Bockstein differential is displayed
in the last column. In these cases, May’s convergence theorem [May 1969; Isaksen
2014, Chapter 2.2] applies, and the Massey product can be computed with the given
differential. Roughly speaking, May’s convergence theorem says that Massey prod-
ucts in Extc, (1) can be computed with any p-Bockstein differential. Beware that
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mw (s, f, w) bracket contains  proof
1 (1,1,0) (p, ho, hy) Th di(v) = pho
1 2,2,1) (ho, h1, ho) th% classical
2 (4,3,2) (thy-hy, hy, ho) a classical
2 (0,1,-2) (pthi, p.ho)  T?ho dy(t?) = p*th)
4 (8,5,4) (a hl,rhz) hob classical
—4 (0,0,4) (*ho, p. %) 5 di(73) = pt?hy
—4 (0,0,4) (ho. 0. &) % di(r) = pho
-3 (1,0,4) (0. &, thy) e dr(Fz) = Hh
-3 (0,0,3) (othi.p. &) & dr(t%) = pth)
—2 (4,2,6) (5. hi.Thy - hy) p’z’—rh% dg(#):%hl
-2 (0,0,2) (tho. 0. &) L di (t?) = pt?hg
-2 (0,0,2) (ho. p. ) L di(7) = pho
-2 (2,1,4) (h1. ho, L) Zh di(£) = Lho
0 (4,2,4)+ (8k,4k,8k) (p, =, ab¥) /%h‘l”‘” dager1 4k+1h4"+3)
= mabk
0 (8.3,8)+ (8k,4k,8k) (o, ==, K1) pwh T dygea( 4k+4h4k+4)
— bk+1

= 4k+4

Table 6. Some Massey products in Extc, (1).

May’s Convergence Theorem requires technical hypotheses involving “crossing
differentials” that are not always satisfied. Failure to check these conditions can
lead to mistaken calculations.

The proofs for other Massey products in Table 6 are described as “classical”. In
these cases, the Massey product already occurs in Ext,. ([

Remark 8.2. The eight Massey products in the middle Section of Table 6 are
only the first examples of infinite families that are t*-periodic. For example,
(rzho, 0, %) equals rﬁfﬁ for all k > 0, and (,o, Jﬁ, ‘E/’l1> equals Tz&’ﬁ for all
k=>0.

9. Hidden extensions

We now determine multiplicative extensions that are hidden in the p-Bockstein E -
page. We have already determined some of these hidden extensions in Section 6. In
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this section, we establish additional hidden relations on elements associated with
the negative cone. We have not attempted a completely exhaustive analysis of the
ring structure of Extc, (1).

Recall that Extc, (1) is a square-zero extension of Extg(1). This eliminates many
possible hidden extensions. For example, (Qh7)? is zero in Extc, (1).

Proposition 9.1. Forall k > 0,
Q

(1) ho - p_h4k+3 T4)l</+1abk’
) a %hzltkﬁ 4k+1 L pobt,
Proof. (1) hg (,0, % abk> = (ho, 0, ﬁﬂzbk.
(2) Using part (1), we have that
hoa ﬁ —a. %abk _ r‘”‘“hz ket

which is nonzero. Therefore, a - Wh4k+3 must also be nonzero, and tﬁ,f“ hobk+!
is the only nonzero class in the appropriate tridegree. U

Proposition 9.2. Forall k > 1,

2 0 4k+3 _ Y k1 Q s+
(1) R =
s Q ws . Q@ m
2 T 'Whl = e —wal b
3) 2hg - Qh4k+3 sa—
T

Proof. (1) Using Proposition 9.1(1), we have that

2 Q w3 oV ki
ho-t°a _,04kh1 =T“a —T4k+1ab =

which is nonzero. Hence t2a - p—%h‘l‘k” is either —f hob**!

0 h4k+2b

4k—3

On the other hand,

%h?k—F?) — ,0317 Q h4k+3 Q h4k+3b

h1 . ‘L'2a .
p4k 3

2 h4k+3

Therefore, t°a - o h4k+2b

must equal —¥—hob ! + 4k .

(2) Using Proposition 9.1(1), we have that

4 Q w3 _ 4 k 4 k
ho-t p4kh1 =T 4k+1ab t4k—3ab
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which is nonzero. This shows that 74 - %h?kﬂ

one possible value.
2 4 K\ _[.2 Y k
3) T ho<,0, —ir3-ab >_(1: ho. p. T4k+2>ab . O

Proposition 9.3. Forall k > 0,

is also nonzero, and there is just

(D ho - p4g+3 héllkJr4 4k+3 et

2 - Io%!_”h?wﬂ ka-i—l
) ho - p4g+3 = 4k+1 et
4) a- p4g+3 héllk+4 _ # h2 pr+!
5) 24 p4g+3 P — % B3,

Proof. (1) ho(p, . B*M) = (ho. p. =) X
) pthi(p, F, V) = (pthi, p, ).
3) Tho(p. . b = (Tho, o, ) B4

(4) Using part (1), we have that

O spra Pl Yk

hoa - P T 4k+3 T4+

h4k+4

which is nonzero. Therefore, a - p4k 3 must also be nonzero, and there is just

one possibility.

(5) Using part (1), we have that

2 Q . akt4 2 Y k1 _ Y k+1

ho-t%a- p4k+3h =T 4 353 = T4k+1ab g
which is nonzero. This shows that t2a - p4k 3 h4k+4 is also nonzero, and there is
just one possible value. U

Proposition 9.4. Forall k > 0,
14 2 4

D ho - p2.[4k+1h1 = Jud
14 2 Y

@) a- 2] hy = 7443 hob,

3) 2a-—Y 2= Y _pp.

P2k 1 THk+1
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Proof. (1) (. hi, thy - hi) ho = = (b, Thy - by, ho).
(2) Using part (1), we have that

14 2 14

hoa - ———hi=a-———a
o2kt 1 T4k+37

which equals Tj,ﬁh%b modulo a possible error term involving higher powers of p.
Using that 41a = 0, we conclude that the error term is zero.

(3) Using part (1), we have that

14 2 2 14 YV .2
ho-t?a-——h?>=1%a- ———a=——h2b
p2r k1 1 T4k43 TAk+17707
which is nonzero. This shows that t2a - #h% is also nonzero, and there is just

one possible value. ([

Proposition 9.5. For all k > 0,

(1) ho- —2

P .L-4k+1

14 14
@) ho- o2 = THk+2

2
hy,

hy =

hi.

Proof. All of these extensions follow from Massey product shuffles:

(1) ho (1, ho, =) = (ho, hi, ho) =

(2) ho(p,rz&’ﬁ,tm):(ho,p,m)rhl. O
Proposition 9.6. For all k > 0,

14 2 Y
(1) hl'wfh = Tare
y

2) hy - b.

a =
376" T Tak8

Proof. (1) thy - hi{h1, ho, =) = (Thi-hi, hi, ho) . Alternatively, this /)
extension is forced by Lemma 5.1.

(2) We have
14 _ Y 2 14 3, Y
h- P p3r4k+8h1 A= sl b= 0%
where the second equality follows from Table 2. U

Over £¢2(1), the only hidden multiplication is

Proposition 9.7. In Extgc,(yy, we have hg - pzt’;kﬂ v} = vt forall k,n > 0.

14 14 14 14
Proof. hO'W=hO<,OaF,U1>=<hO,P,F)M =§Ul- g
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mw (s, f, w) element

0 (—1,0,—1) p
0 (0, 1, 0) ho
0 (1,1, 1) hy
1 (1, 1,0) thy
2 0,1, =2) w2hy
2 4,3,2) a
4 0,0, —4) T
4 4,3,0) T2a
4 (8,4, 4) b

—k—1 (0,0,k+1) L
0 4,2,4) oh?

Table 7. Generators for Extc, (1).

9A. Extc,(1). The charts in Section 12 depict Extc, (1) graphically. Table 7 gives
generators for Extc,(1). The elements above the horizontal line are multiplicative
generators for Extg(1). The elements below the horizontal generate Extyc in the
following sense. Every element of Extyc can be formed by starting with one of
these listed elements, multiplying by elements of Extr(1), and then dividing by p.

The elements in Table 7 are not multiplicative generators for Extc, (1) in the
usual sense, because we allow for division by p. For example, p’z’—rh% is indecom-
posable in the usual sense, yet it does not appear in Table 7 because p2- %h% = %h%
is decomposable.

The point of this notational approach is that the elements of Extyc are most
easily understood as families of p-divisible elements.

9B. The ring homomorphism q, : Ext 4c, ;) — Extgc,q). Itis worthwhile to con-
sider the comparison to Extgc, ;). We already described the map on the summand
arising from the positive cone in Proposition 6.4. The map on the summand for
the negative cone is given as follows.

Proposition 9.8. The homomorphism g, : Ext 4z 1) (NC, M%) — Extgr;,(NC, M%)
induced by the quotient q : AR(1), — ER(1) of Hopf algebroids is given as in
Table 8.

Proof. For the classes of the form p};k, this is true on the cobar complex. For the

classes of the form %hr{, this follows from the A ¢-extension given in Proposition 9.1
and the value g, (a) = hovf. Similarly, the value on ﬁh% is obtained by combining
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mw (s, f,w) x € Extr(yNC  gyx € Exter() NC
(4,2,4)+k(8,4,4) p% s L b2
(8,3,8) +k@®,4,4)  Lzh{H itk

-2 (0,0,2) % %

-2 2,1,4) %hl %Ul

-2 (4,2,6) e 12

-3 (1,0,4) 2, 7,

-5 (0,0,5) b2 ¥

Table 8. The homomorphism Ext 4&(;)(NC) — Extgr ;) (NC).

Proposition 9.4 with the value of ¢g.(a). Lastly, the value on p%hl follows from
g«(thy) = pvy. O

Remark 9.9. Note that, on the other hand, the hidden hy-extensions on classes
in Ext AC2 (1) such as Qh3, can also be deduced from the homomorphism g, if its
values are determined by other means.

10. The spectrum koc,

Let Sp denoted the category of spectra, and let Sp? denote the category of “gen-
uine” Cy-spectra [May 1996, Chapter XII], obtained from the category of based
C»-spaces by inverting suspension with respect to the one-point compactification
§2:1 of the regular representation (C, z — Z). There are restriction and fixed-point
functors

* : Ho(Sp®?) — Ho(Sp), (=) : Ho(Sp©?) — Ho(Sp)

which detect the homotopy theory of C-spectra, meaning that a map f in Ho(Sp©?)
is an equivalence if and only if (*(f) and f €2 are equivalences in Ho(Sp). More-
over, a sequence X — Y — Z is a cofiber sequence in Ho(Sp?) if and only
if applying both functors (* and (—)? yield cofiber sequences. Both statements
follow from the fact [Schwede and Shipley 2003, Example 3.4(i)] that the pair of
Cy-spectra (X S9, 28, C, 4} give a compact generating set for Ho(Sp©?). Beware
that we are discussing categorical fixed-point spectra here, not geometric fixed-
point spectra.

Recall (see [Lewis 1995, Proposition 3.3]) that for a Cp-spectrum X, the equi-
variant connective cover X (0) 2L Xisa C,-spectrum such that:

(1) t(g) is the connective cover of the underlying spectrum X, and

2) qC2 is the connective cover of X¢2.
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Recall that KOg, is the C»-spectrum representing the K-theory of C,-equivariant
real vector bundles [May 1996, Chapter XIV].

Definition 10.1. Let koc, be the equivariant connective cover KO¢, (0) of KOc,.

We also have a description from the point of view of equivariant infinite loop
space theory.

Theorem 10.2 [Merling 2017, Theorem 7.1]. koc, >~ K¢, (R), where R is consid-
ered as a topological ring with trivial C-action.

The underlying spectrum of koc, is ko.
Lemma 10.3. The fixed-point spectrum of koc, is (koc,)¢? >~ ko V ko.

Proof. This is a specialization of the statement that, if X is any space equipped
with a trivial G-action, then KOg (X) is isomorphic to RO(G) @ KO(X) [May 1996,
Section XIV.2]. Alternatively, from the point of view of algebraic KK-theory, we
have [KCZ([R{)C2 ~ K(R[C3]) [Merling 2017, Theorem 1.2], and R[C;] =R x R. It
follows that

(koc,)? ~ K¢, (R)©? ~ K(R) x K(R) ~ ko V ko. O

We are working towards a description of the C»-equivariant cohomology of koc,
as the quotient A2 // A2(1). This will allow us to express the E,-page of the
Adams spectral sequence for koc, in terms of the cohomology of .A“2(1). The main
step will be to establish the cofiber sequence of Proposition 10.13. In preparation,
we first prove some auxiliary results.

Definition 10.4. Let p be the element of 7_; _; determined by the inclusion $%0 <
St of fixed points.

Note that the element p € m_; _; induces multiplication by p in cohomology
under the Hurewicz homomorphism.

Recall that the real C,-representation ring RO(C») is a rank two free abelian
group. Generators are given by the trivial one-dimensional representation 1 and
the sign representation o. Let A(C;) denote the Burnside ring of C,, defined as
the Grothendieck group associated to the monoid of finite C,-sets. This is also a
rank two free abelian group, with generators the trivial one-point C,-set 1 and the
free Cp-set Cy. As aring, A(C») is isomorphic to Z[Cz]/(C% —2C»).

The linearization map A(C,) — RO(C,) sending a C,-set to the induced per-
mutation representation is an isomorphism, sending the free orbit C; to the regular
representation 1 @ o. Recall that the Euler characteristic moreover gives an iso-
morphism from A(C3) to 70(5%0) [Segal 1971, Corollary to Proposition 1].

Lemma 10.5. The C,-fixed point spectrum of X''koc, is equivalent to ko.
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Proof. Recall the cofiber sequence C; L §0.0 L gLl of C>-spaces. This yields
a cofiber sequence

7 P
Cs 4 Akoc, = koe, = Zl1koc,

of equivariant spectra. Passing to fixed point spectra gives the cofiber sequence

C C
ko 22 ko v ko 2 (2! koe,) €.

In the analogous sequence for the sphere S*°, the map 72 is induced by the split
inclusion Z — A(C») sending 1 to the free orbit C,. It follows that the map 7 is
induced by the split inclusion Z — RO(C>) that takes 1 to the regular representation
pc,» and this induces a splitting of the cofiber sequence. Therefore, (X' 'koc,)©?
is equivalent to ko. U

Recall that kR denotes the equivariant connective cover KR(0) of Atiyah’s K-
theory “with reality” spectrum KR [Atiyah 1966]. The latter theory classifies com-
plex vector bundles equipped with a conjugate-linear action of C,. The underlying
spectrum of kR is ku, and its fixed-point spectrum is ko.

Theorem 10.6 [Merling 2017, Theorem 7.2]. kR >~ K¢, (C), where C is considered
as a topological ring with Cy-action given by complex conjugation.
Definition 10.7. The C,-equivariant Hopf map 7 is
C*— {0} > CP": (x, y) > [x : y],
where both source and target are given the complex conjugation action.

As C = R[C,], the punctured representation C> — {0} is homotopy equivalent
to $*2, and CP! is homeomorphic to S>!. It follows that 7 gives rise to a stable
homotopy class in 7y ;.

Remark 10.8. The element 1 only defines a specific element of 1 ; after choosing
isomorphisms C? — {0} = §%2 and CP' = 52! in the homotopy category. We follow
the choices of [Dugger and Isaksen 2013, Example 2.12]. By Proposition C.5 of
[Dugger and Isaksen 2013], with these choices, the induced map n<2 : §' — S! on
fixed points is a map of degree —2.

Lemma 10.9. The element pn in g9 corresponds to the element Cy —2 of A(C»).

Proof. In g o, we have (r],o)2 = —2np [Morel 2004, Lemma 6.1.2]. The nonzero
solutions to x2 = —2x in A(C,) are x = —2, x = C> — 2, and x = —C5. The only
such solution which restricts to zero at the trivial subgroup is x = C, — 2. O

Lemma 10.10. The induced map ncz : (Zl’lkocz)c2 — (kocz)c2 is equivalent to

ko =L ko v ko.
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Proof. To determine the fixed map 12, we use that a map X %Y of C,-spectra
induces a commutative diagram

¢
X6 L y©e

|

X¢——7Y°
(pe
in which the vertical maps are the inclusions of fixed points. In the case of n on
koc,, this gives the diagram

C:
ko~ (" koe,)? s ko v ko =~ (ko,) 2

0| v

> ko ko

*

tn

where V is the fold map, as both the sign representation o and the trivial repre-
sentation 1 of C; restrict to the 1-dimensional trivial representation of the trivial
group. This shows that n©2 factors through the fiber of V, so that 2 must be of
the form (k, —k) for some integer k. On the other hand, we have the commutative
diagram

ko ® RO(C>) ko ko ® RO(C»)

T

(koc,)? —2— (211koe, )2 ——— (kog,)©2

P

(SO,O)CZ 4 (Sl,l)Cz n (SO,O)CZ

According to Lemma 10.9, on the sphere np induces multiplication by (C; — 2)
under the isomorphism g g = A(C3). The outer vertical compositions induce the
linearization isomorphism A(C;) = RO(C3) on my. It follows that the top row
induces multiplication by (o — 1) on homotopy. We conclude that n2 is (—1, 1).

O

Definition 10.11. The complexification map KO¢, > KR assigns to an equivariant
real bundle E — X the associated bundle C ® g E — X, where C; acts on C via
complex conjugation. We denote by koc, <> kR the associated map on connective
covers.

Remark 10.12. Alternatively, from the point of view algebraic [K-theory, the com-
plexification map can be described as K¢, (), where R - C is the inclusion of
C»-equivariant topological rings.
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Proposition 10.13. The Hopf map n induces a cofiber sequence
= koe, - kog, — kR. (10-1)
Proof. On underlying spectra, this is the classical cofiber sequence

Yko - ko — ku.

On fixed points, according to Lemma 10.5 the sequence (10-1) induces a sequence

nC2 )
ko — ko v ko — ko.

By Lemma 10.10, the map 12 is of the form (—1, 1). For any real C,-representation
V, the construction C ®g V only depends on the dimension of V, which implies
that ¢ is the fold map. So the fixed points sequence is also a cofiber sequence. [

Remark 10.14. From the point of view of spectral Mackey functors [Guillou and
May 2011; Barwick 2017], the cofiber sequence (10-1) is the cofiber sequence of

Mackey functors

(1,-1) v
ko ——— kov ko —— ko

o P ol )e <L)

5! Tko —— ko —— ku
) @) )
sign triv conj

where ku > ko considers a rank n complex bundle as a rank 2z real bundle.

Theorem 10.15. The Cs-equivariant cohomology of koc,, as a module over A,
is

HE;' (ko F2) = AT/ A% (D).

Proof. According to [Ricka 2015, Corollary 6.19], we have H," (kR) = A//£€(1).
Since 1 induces the trivial map on equivariant cohomology, the sequence (10-1)
induces a short exact sequence

0— HE 2 (koey) = A//EC (1) B HEH (koe,) — 0 (10-2)

of A®2-modules.
The cofiber C is a 2-cell complex that supports a Sq” in cohomology. It follows
that the composition

kR ~ koc, A C(n) = T*'koc, — =%koe, A C(n)
induces the map

AC (1) B ACyEC2(1) 1 1 > S,
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In particular, the composition A — AC2//£C2(1) EN H_" (koc,) factors through
ACZ// A€2(1). Given the right £ €2(1)-module decomposition

A =M e s>'e@),

it follows that the sequence (10-2) sits in a diagram

0 —— HE P (kog,) —— A%//EC(1) —— HE(koc,) — 0

J | T

0 —— S2TA A (1) —— ACY (1) —— AY/AC(1) —— 0
The outer two maps agree up to suspension, so they are both isomorphisms. [

Corollary 10.16. The E,-page of the Adams spectral sequence for koc, is
E» = Ext 40, (HE, (koc,), MS?) = Extc, (1).

Proof. This is a standard change of rings isomorphism [Ravenel 1986, Theo-
rem A1.3.12], using that Héz* (koc,) is isomorphic to A2/ A°2(1). Note that the
change of rings theorem applies by [Ricka 2015, Corollary 6.15]. U

Remark 10.17. Working in the 2-complete category, it is also possible to build
koc, using the “Tate diagram” approach. See, for example, [Greenlees 2018] for
a nice description of this approach. According to this approach, one specifies a
C-spectrum X by giving three pieces of data:

(1) an underlying spectrum X¢ with C,-action,
(2) a geometric fixed points spectrum X¢¢2, and

(3) amap X2©2 — (X¢)'“2 from the geometric fixed points to the Tate construc-
tion.

In our case, the underlying spectrum is ko with trivial C-action. The rest of the
Tate diagram information is given by the following result.

Proposition 10.18. The geometric fixed points of koc, is \/kZO s%H7,, and the
map (koc,)8 C2 5 ko2 is the connective cover.

Proof. The Tate construction ko> was computed by Davis and Mahowald [1984,

Theorem 1.4] to be \/,, ez S H Zz. For the interpretation of the Davis—Mahowald

calculation in terms of the Tate construction, see [May 1996, Section XXI.3].
The geometric fixed points sit in a cofiber sequence

ko ARPY >~ koyc, — (koc,)©> — (koc,)*<,
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which we can write as
ko V (ko A RP®) — ko Vv ko — (koc,)*“2.

The left map is a map of ko-modules, and we consider the simpler cofiber sequence

ko A RP® X% ko 5 (koc,)$C2,
where 7 : RP® — S0 is the Kahn-Priddy transfer. As in [Ravenel 1986, Section 1.5],
we write R for the cofiber of ¢, so that (koc, )8 €2 ~ koA R. As Adams explained in
[Adams 1974], the cohomology of R has a filtration as A (1)-modules in which
the associated graded object is D, S A1) //.A(0). Tt follows that ko A R ~
Vw0 S*HZ,. -
S_imilarly, the associated graded for colim, H*(XRP%)) is

@ E4kAC1(1)//AC1(O).

keZ

The map R — holim, XRP%, is surjective on cohomology, and the same is true
for the induced map R A ko — holim, (RP%, A ko). We conclude that the map

\/ =% HZ, ~ (koc,)*? — ko' ~ holim(RP%, A Tko)
k>0

is a split inclusion in homotopy and therefore a connective cover. (]

Remark 10.19. Note that the description of geometric fixed points given here is
confirmed by Corollary 4.2. That is, the geometric fixed points of a C,-spectrum
X are given by the categorical fixed points of §°°° A X, where

) o
§%9%® = colim(§™" & srtlntly,

Thus the geometric fixed points are computed by the p-inverted Adams spectral
sequence. As we recall in the next section, the homotopy element 2 is detected by
the element iy + ph; in Ext. Thus the element pkh’ft‘” of Corollary 4.2 detects
2% in the 4 j-stem of the geometric fixed points.

11. The homotopy ring

In this section, we will describe the bigraded homotopy ring 7. .(koc,) of koc,.
We are implicitly completing the homotopy groups at 2 so that the Adams spectral
sequence converges [Hu and Kriz 2001, Corollary 6.47].

It turns out that the Adams spectral sequence collapses, so that Extc, (1) is an
associated graded object of 7, «(koc,). Nevertheless, the Adams spectral sequence
hides much of the multiplicative structure.
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Recall that the Milnor—Witt stem of X is defined (see [Dugger and Isaksen
2017a]) as the direct sum

M, (X) = @ 7n i (X).

Proposition 11.1. There are no nonzero differentials in the Adams spectral se-
quence for koc,.

Proof. This follows by inspection of the E;-page, shown in the charts in Section 12.

Adams d, differentials decrease the stem by 1, increase the filtration by r, and
preserve the weight. It follows that Adams differentials decrease the Milnor—Witt
stem by 1. Every class in Milnor—Witt stem congruent to 3 modulo 4 is infinitely
p-divisible. As there are no infinitely p-divisible classes in Milnor—Witt stem con-
gruent to 2 modulo 4, it follows that there are no nonzero differentials supported
in the Milnor-Witt (4k+3)-stem.

Every class in Milnor-Witt stem 4k supports an infinite tower of either /¢-
multiples or &;-multiples, while there are no such towers in Milnor-Witt stem
4k + 1. It follows that there cannot be any nonzero differentials emanating from
the (4k+1)-Milnor—Witt-stem. Finally, direct inspection shows there cannot be
any nonzero differentials starting in the Milnor—Witt (4k + 2) or 4k-stems. [l

The structure of the Milnor—Witt n-stem IT,, (koc,) of course depends on n. The
description of these Milnor—Witt stems naturally breaks into cases, depending on
the value of n (mod 4).

The notation that we will use for specific elements of 7, «(koc,) is summarized
in Table 9. The definition of each element is discussed in detail in the following
sections.

11A. The Milnor-Witt 0-stem. Our first task is to describe the Milnor—Witt 0-
stem ITg(koc,). The other Milnor—Witt stems are modules over I1g(koc,), and we
will use this module structure heavily in order to understand them.

Proposition 11.2. Let X be a Cy-equivariant spectrum, and let o belong to mw, i (X).
The element « is divisible by p if and only if its underlying class t*(«) in 7, (1* X)
is zero.

Proof. The C;-equivariant cofiber sequence
Cr . — SO0 L gl
induces a long exact sequence
P z* P
o= T k1 (X) = 0 1 (X) = 70 (X)) = gk (X) = o U

Corollary 11.3. There is a hidden p extension from Qh? to h? in the Adams spec-
tral sequence.
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mw (s, w) element detected by defining relation

0 (=1.-D »p p

0 1,1 n hy

0 “4,4) o Qh? pa =1’

0 0,0) ) ho w=np+2

4 0, —4) T r

0 88 B 2 4B = o

2 0, —=2) ’w t2hg (*w)? =2w-t*
-2 0,2) 2w z ™ 2w =1%w
—4 (0, 4) e &4 =0
—5—4k (0,54+4k) =% == ™ L = ey

1 (1,0) ™ Tthy

2 4,2 ’a a 2% =« - T’

Table 9. Notation for 7, .(koc,).

Proof. Recall that 1> is zero in 73 (ko). Proposition 11.2 implies that 7 in m3.3(koc,)
is divisible by p. The only possibility is that there is a hidden extension from Qh?
to hf. U

Proposition 11.4. The element n in 7y 1(koc,) is detected by h.

Proof. The restriction ¢*(n) of n is the classical n, which is detected by the classical
element /. As all other elements of Ext 4c, ;) in the 1-stem and weight 1 all live
in higher filtration, the result follows. U

Definition 11.5. Let o be an element in 74 4(koc,) detected by Qh? such that
pa =n’.

Corollary 11.3 guarantees that such an element « exists.

There are many elements of w4 4 detected by th because of the presence of
elements in higher Adams filtration. The condition pa = 1> narrows the possibil-
ities, but still does not determine a unique element because of the elements %h’éa
in higher Adams filtration. For our purposes, this remaining choice makes no
difference.

Definition 11.6. Let w be the element no + 2 of Jr(f okoc,).

As for p and 7, the element w comes from the homotopy groups of the equivari-
ant sphere spectrum. Strictly speaking, there is no need for the notation w since it
can be written in terms of other elements. Nevertheless, it is convenient because w
plays a central role. According to Lemma 10.9, w corresponds to the element C»
of the Burnside ring A(C»).
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Note that w is detected by hg, while 2 is detected by kg + ph;. For this reason,
w, rather than 2, plays the role of the zeroth Hopf map in the equivariant (and
R-motivic) context. Also note that w equals 1 — €, where € is the twist

Sl,]/\Sl,l —)Sl’l/\Sl’l

Proposition 11.7. The homotopy class 0> is divisible by 2.

Proof. The relation wn = (0 was established by Morel [2004] in the R-motivic stable
stems, and the equivariant stems agree with the R-motivic ones in the relevant
degrees [Dugger and Isaksen 2017b, Theorem 4.1]. (See also [Dugger and Isaksen
2013] for a geometric argument for this relation given in the motivic context. This
geometric argument works just as well equivariantly.)

Using the defining relation for «, it follows that

—2na = pn*a =1n°. U

Proposition 11.7 was already known to be true in the homotopy of the C;-
equivariant sphere spectrum [Bredon 1968]. The divisibility of the elements n*
is very much related to work of Landweber [1969].

Definition 11.8. Let t* be an element of mo,—4(koc,) that is detected by 4

The element 7# is not uniquely determined because of elements in higher Adams
filtration. For our purposes, we may choose an arbitrary such element.
Proposition 11.9. (1) There is a hidden t* extension from Qh? to t2a.

(2) There is a hidden t* extension from p—%h‘f to b.

Proof. (1) The product pa - T equals v - n°, which is detected by t* - h%. This
last expression equals p - 72a in Ext.
(2) Part (1) implies that there is a hidden t* extension from Qh‘l1 to p>b, since

hy - t%a equals p3b in Ext. This means that there is a hidden t# extension from
p—%h‘f to b, since p° - p—%h‘f equals Qh‘lt in Ext. ([l

Lemma 11.10. The class o in ng.s(koc,) is divisible by 4.

Proof. By Proposition 11.9, the multiplication map
t*: mg g(koc,) = mga(koc,)

is an isomorphism. By considering the effect of multiplication by t* in Ext, we
see that

4. =
7" : g 4(koc,) — mg o(koc,)

is also an isomorphism. Thus it suffices to show that (tH2a? is 4-divisible in
mg.0(koc,). But (%)% - @? is detected by (z2a)? by Proposition 11.9 (1), which

equals (ho + ph1)?t*b in Ext. Finally, observe that /g 4+ ph detects 2. O
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Definition 11 11. Let B be the element of g g(koc,) detected by 14 h4 and satis-
fying 48 = o?

Note that 8 is uniquely determined by «, even though there are elements of
higher Adams filtration, because there is no 2-torsion in g g(koc, ).

Proposition 11.12. p38 = na.
Proof. The defining relation for A implies that 4p38 equals p>«a?, which equals

23 by the defining relation for . Using the relation (170 4 2)n = 0, this element
equals 4noa. Finally, there is no 2-torsion in 75 5(koc,). O

Proposition 11.13. The (2-completed) Milnor—Witt O-stem of koc, is

My(koc,) = Za[n, p, a, B1/(p(np +2), n(np +2), po — 1, p° B — net, a* — 4p),

where the generators have degrees (1, 1), (—1, —1), (4, 4) and (8, 8) respectively.
These homotopy classes are detected by hy, p, Qh3, and in the Adams spectral
sequence.

Proof. The relations p(np +2) and n(np + 2) are already true in the sphere [Morel
2004; Dugger and Isaksen 2013]. The third and fifth relations are part of the
definitions of « and S, while the fourth relation is Proposition 11.12.

It remains to show that ¥ is detected by 3 lh‘”‘ and that of¥ is detected by
h4k+4

4k—1
We assume for induction on k that g is detected by p4k 1h‘”‘ We have the

relation ho = lh‘”‘ = - Y . b* in Ext, so wpk is detected by 3= lbk in Ext. Now b
detects *- B by Proposmon 11.9 (2), so wpkt! is detected by I Y M1 Finally,
— -b*F1 equals 4 s b1 in Ext, which equals 74 hg - p4k g h4k+4

We have now shown that 7 - i - 4%3 h?k+4 detects 74 - wﬁk+1. It follows that
p4k R detects R

A similar argument handles the case of . (]

p

11B. t*-periodicity. Before analyzing the other Milnor-Witt stems of koc,, we
will explore a piece of the global structure involving the element 74 of 10, —4(koc,).

Proposition 11.14. There are hidden t* extensions
(1) from to tzho,

(2) from —h2 to a,

3) from to hy,

4 from 5 to Thy.

Proof. (1) Recall that % -a equals hg - Qh? in Ext, so the hidden t* extension on

Qh? from Proposition 11.9(1) implies that there is a hidden 7# extension from % -a

to 2hoa. It follows that there is a hidden t* extension from % to 72hy.
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(2) Using that h% -1%hg equals p’a in Ext, part (1) implies that there is a hidden
t# extension from %h% to p2a.

(3) Recall that % -b equals hyg - p—%h‘l‘ in Ext, so the hidden t# extension on p—%h‘f
from Proposition 11.9(2) implies that there is a hidden t* extension from % -bto
hob. Tt follows that there is a hidden 7* extension from % to hyg.
(4) Using that pa equals /1 (thy)? in Ext, part (2) implies that there is a hidden t#
extension from p”—rh% to hy(th;)?. Now ;—rh% equals #hl -thy, so there is also a
hidden t* extension on #. O
The homotopy of ko, is nearly t*-periodic, in the following sense.
Theorem 11.15. Multiplication by t* gives a homomorphism on Milnor—Witt stems
I, (koc,) — I,4a(koc,)

which is

(1) injective if n = —4,

(2) surjective (and zero) if n = —35,

(3) bijective in all other cases.

Proof. (1) This is already true in Ext, except in the O-stem. But the O-stem is
handled by Proposition 11.14(3).

(2) There is nothing to prove here, given that I1_; (koc,) = 0.
(3) We give arguments depending on the residue of n modulo 4.

e n=0 (mod 4): If n < —4, this is already true in Ext. For n > 0, this follows
from the relation pa = 1> and the hidden 7# extensions on « and 8 given in
Proposition 11.9.

e n =1 (mod4): For n < —3, this is already true in Ext. For n > —3, this
follows from Proposition 11.14(4).

e n =2 (mod4): For n < —2, this is already true in Ext. For n > —2, this
follows from Proposition 11.14(1) and (2).

e n =3 (mod 4): This is already true in Ext. ([l

Remark 11.16. Another way to view the t*-periodicity is via the Tate diagram
(Proposition 10.18). We have a cofiber sequence

ECy, ANko — koc, = S Akog,.

The homotopy orbit spectrum therefore captures the p-torsion. If x € m, .koc, is
p-torsion, then so is 7#-x. But multiplication by * is an equivalence on underlying
spectra and therefore gives an equivalence on homotopy orbits. This implies the
t*-periodicity in the p-torsion.
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11C. The Milnor-Witt n-stem with n =0 (mod 4). Theorem 11.15 indicates that
t* multiplications are useful in describing the structure of the homotopy groups of
koc,. Therefore, our next task is to build on our understanding of I1y(koc,) and to
describe the subring EBkeZ 4 (koc,) of m, .koc,.

The Ext charts indicate that the behavior of these groups differs for £ > 0 and
for k < 0.

Proposition 11.17. EBkzO 4 (koc,) is isomorphic to Ho(kocz)[t4].
Proof. This follows immediately from Theorem 11.15. (]

Definition 11.18. Define 72w to be an element in 7o _2(koc,) that is detected by
72hy such that (12w)? = 2w - 74

An equivalent way to specify a choice of 72w is to require that the underlying
map ¢*(t%w) equals 2 in (ko).

Definition 11.19. For k > 1, let z be an element of mg 4 detected by - such
that

26(),

(1 -
) -

3) -

w,

";h ”‘mh = Iﬁ

=%whenk25.

According to Theorem 11.15, the elements 1; are uniquely determmed by the
stated conditions. Proposition 11.14 (1) and (3) allow us to choose L= ~ and ; with
the desired properties. As suggested by the defining relations for these elements,

—2—4k r —4—4k r
o for = and © o for .

we will often write T

Proposition 11.20. As a g (kocz)[f“]—madule, EBkeZ 4x (koc,) is isomorphic to
the mo(koc,)[t*]-module generated by 1 and the elements T=**w for k > 0, sub-
Jject to the relations

(1) gy = g
) o 4%y =0,
3) n- 4% =0,
4 e =o.

Proof. This follows by inspection of the Ext charts, together with the defining
relations for T ~4* . (]

11D. The Milnor-Witt n-stem with n = 1 (mod 4).

Definition 11.21. Denote by 77 an element of 71 o(koc,) that is detected by th;.
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Note that t7 is not uniquely determined because of elements in higher Adams
filtration, but the choice makes no practical difference. One way to specify a choice
of 77 is to use the composition

sho _, 0.0 koc,,

where the first map is the image of the classical Hopf map 1 : S' — S, and the
second map is the unit.

Proposition 11.22. Asa Ho(kocz)[t4]-m0dule, there is an isomorphism

D M1 ak(koe,) = (Mo(koe,)[(xH /2, p*. 0. o)) {Tn}.

keZ
Proof. This follows from inspection of the Ext charts, together with Theorem 11.15.

O

11E. The Milnor-Witt n-stem with n =2 (mod 4). Recall from Definition 11.18
that 72w is an element of 1o, —2(koc,) that is detected by 72hy.
Lemma 11.23. The product o - 2w in 14,2(koc,) is detected by hoa.
Proof. The product t# - « - 72w is detected by 7*hga by Proposition 11.9(1). [

Definition 11.24. Define 72« to be an element of m4,2(koc,) that is detected by a

such that 2 - 7%« equals « - T2w.

Proposition 11.25. As a Ho(kocz)[r4]—m0dule, Dz Moyak(koc,) is isomorphic
to the free Ho(kocz)[(r4)il]-module generated by 2w, (tn)?, and T, subject to
the relations

(D 0-T2w=0,
) o -TPo=2 7,
3) p(tn)’ =n-T’o,
(4) 2(tn)* =0,
(5) n(tn)’=p- a,
(6) oz(rn)2 =0,
(7 n-t?a =0,
(8) o-la =2 1w

Proof. Except for the last relation, this follows from inspection of the Ext charts,
together with Theorem 11.15.

For the last relation, use that 2« - 7%« equals 72w - @? by the definition of 72,
and that 72w - @® equals 48 - 72w by the defining relation for B. As there is no
2-torsion in this degree, relation (8) follows. O
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11F. The Milnor-Witt n-stem with n = 3 (mod 4). The structure of

D Maxs3(koc,)
keZ
is qualitatively different than the other cases because it contains elements that are
infinitely divisible by p. The Ext charts show that B, _, IT4x+3(koc,) is concen-
trated in the range k < —2.
The elements 1 are infinitely divisible by both p and t*. We write —— for
T . plt
an element such that p/ - — equals 1.
plt T
By inspection of the Ext charts, we see that &P, <0 Mak—s (koc,) is generated as
an abelian group by the elements ﬁ. The Ho(kocz)[r4]—module structure on
D, <0 Mak—s (koc,) is then governed by the orders of these elements, together with

the relations

o r =-8 r
T4k bk

and ; r ~ r
T4k oS4

The first relation follows from the calculation
r r ; ; b T r
o =ee = o = 00 e =D m = S

The second relation follows from a similar argument, using that 03B = na.

Proposition 11.26. The order of T4£ - IS 20D+ ywhere @(j) is the number of
positive integers 0 < i < j such thati =0, 1,2 or 4 (mod 8).

Proof. Since ho+ ph; detects the element 2, the result is represented by the chart on
page 625, in stems zero to sixteen. As the top edge of the region is (8, 4)-periodic,
this gives the result in higher stems as well. ([

Remark 11.27. Proposition 11.26 is an independent verification of a well-known
calculation. We follow the argument given in [Dugger 2005, Appendix B].
Let R?9 be the antipodal C;-representation on R?. Consider the cofiber se-
quence
S(g.q) — D(q.q) — S,

where S(q,q) C D(q,q) C R?9 are the unit sphere and unit disk respectively.
Since D(q, q) is equivariantly contractible, this gives the exact sequence

Tm0(koc,) < Tntq.q(koc,) < koo 0(S(q. ¢)) < mms1.0(koc,).

If m < —2, the outer groups vanish. Moreover, C, acts freely on S(g, ¢), and the
orbit space is S(g, g)/C> = RP4~!. It follows [May 1996, Section XIV.1] that

ko~ '(S(g. ¢)) = ko™ (RPI)
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when m < —2 and ¢ > 1. In particular,

7 j+s(koc,) = ko (RP/HH),
and the latter groups are known (see [Davis and Mahowald 1979, Section 2]) to be
cyclic of order ¢(j).

Having described all of the Milnor—Witt stems as Ho(kocz)[r4]—modules, it re-
mains only to understand products of the various Ho(kocz)[r4]—m0dule generators.

Proposition 11.28. In the homotopy groups of koc,, we have the relations

(D (rza))2 =2w- 14,
(2) 0w tPa =1 wa,
(3) (T20)? =21* - wB.

Proof. The first relation is part of the definition of 72w.
For the second relation, use the definitions of 72« and of 72w to see that

2

27w tPa = (rza))za =27* wa.

The group m4 ¢(koc,) has no 2-torsion, so it follows that ?w - t%a equals 74 - wa.
The proof of the third relation is similar. Use the definitions of 72« and 8 and
part (2) to see that

2(1205)2 =0 -tPa-a=1* wa® =47*. wp.
The group mg 4(koc,) has no 2-torsion. O

11G. The homotopy ring of kR. We may similarly describe the homotopy of kR.
Since this has already appeared in the literature (see [Greenlees and Meier 2017,
Section 11]), we do not give complete details.

We use the forgetful exact sequence of Proposition 11.2 to define the homotopy
classes listed in Table 10. In each case, the forgetful map is injective, and we
stipulate that 74 restricts to 1, that v; and t—%v; restrict to the Bott element, and
that 72w, T 2w, and T~*w all restrict to 2.

Proposition 11.29. There are t*-extensions

oo =17%0, ™ 1tw=2 1t 4v1 =vj.
Proof. These all follow from the definition of these classes using the forgetful exact
sequence of Proposition 11.2. Since the forgetful map is a ring homomorphism,
we get that
Kt ot w) =@ w) =12 =2,

Since the forgetful map is injective in this degree, we conclude that 7#- 772w = r°w.

The same argument handles the other relations just as well. (]
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In order to describe the Milnor—Witt O-stem of kR, it is convenient to write

2,02 _ 4 3
a=t “wviand B =1 "V V7.

Proposition 11.30. The (2-completed) Milnor-Witt O-stem of kR is
Mo(kR) = Zs[p, @, B1/2p, pat, p*B, & — 4B),
where the generators have degrees (—1, —1), (4,4), and (8, 8) respectively. These

Y
0212

homotopy classes are detected by p, %v%, and vf in the Adams spectral se-

quence.

The other Milnor—Witt stems, aside from those in degree —5 — 4k, can all be
described cleanly as ideals in IT1o(kR). The r4-periodicities asserted in the follow-
ing results all hold already on the level of Ext, except for the t#-multiplications
from Extnc to Extg(1y. Those are handled by Proposition 11.29. We recommend
the reader to consult the diagram on page 630 in order to visualize the following
results.

4

Proposition 11.31. The map T1_4(kR) SN [Ty (kR) is a monomorphism and identi-
fies T1_4(kR) with the ideal generated by 2, ., and B. If k #= —1, then multiplication
by isan isomorphism Ty, (kR) = I4g+1) (kR).

Thus the Milnor—Witt stems of degree 4k break up into two families, which are
displayed as the first two rows of the diagram on page 630.

Proposition 11.32. The map T1_; (kR) N [Ty(kR) is a monomorphism and iden-
tifies T1_ (kR) with the ideal generated by o and B. Multiplication by t is a split
epimorphism

Falp]

P>

4
— TM_s5(kR) = T1_{(kR).

If k # —1, then multiplication by T is an isomorphism T1_j 4 (kR) = T34 (kR).

Proposition 11.33. The map T1_,(kR) N 1(kR) is an isomorphism. Multipli-
cation by ™isan isomorphism Tla;_(kR) = Tyg42(kR) for all k € Z.
3

Proposition 11.34. The map T1_3(kR) 4, [T (kR) is a monomorphism and identi-
fies T1_3(kR) with the ideal generated by B. Multiplication by t* is an isomorphism
Myg—3(kR) = Typ41 kR) forall k € 7.

Combining the information from Table 3 and Table 8 yields the induced homo-
morphism on homotopy groups as described in Table 11. Note that all values c,(x)
are to be interpreted as correct modulo higher powers of 2.

Remark 11.35. Note that the results of this section provide another means of
demonstrating the 7#-periodicity in ko, established in Section 11B. More specif-
ically, the T*-extensions given in Proposition 11.29, together with the homomor-
phism c, as described in Table 11, imply the t*-extensions given in Proposition 11.14.
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mw (s, w) element detected by definition

0 (-1,=-D p P

1 2,1 V1 V1 (V1) =1y

4 (0,-4) * r FrhH =1

2 (0,-2) 70  T?hg H(t2w) =2
-2 (0,2) Tl L Kt w) =2
-4 (0,4 e 4 Gt ) =2
=3 25 Tt 5 Frh) =
-5 (0,5 & 5

T

~

Table 10. Notation for m, . (kR).

mw (s, w) x € My x(koc,) cux € my 4 (kR)

0 (=1,-1) p o

0 (1,1 n 0

0 4,4 o 12w v?

0 (0,0) w 2

4 0,-4) <* 4

0 (8,8) % vl3

2 (0,-2) 7w ’w

-2 (0,2) 2w 2w

-4 (0,4) 4w 4w

=5 (J.J+5) 5 e

1 (1,0) ™ oV
“4,2) Ta 20}

Table 11. The homomorphism m, «(koc,) & 74« (kR), modulo
higher powers of 2.

12. Charts

12A. Bockstein E* and Ext 4rq charts. The charts on pages 616-619 depict
the Bockstein E™ spectral sequence that converges to Ext 4r(j). The details of this
calculation are described in Section 6.

The E;’ -page is too complicated to present conveniently in one chart, so this
page is separated into two parts by Milnor—Witt stem modulo 2. Similarly, the E;r -
page is separated into four parts by Milnor—Witt stem modulo 4. The Ej-page in
Milnor—Witt stems O or 1 modulo 4 is not shown, since it is identical to the E;r -
page in those Milnor—Witt stems. The Ej—page in Milnor—Witt stems 3 modulo 4
is not shown because it is zero.
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Here is a key for reading the Bockstein charts:
(1) Gray dots and green dots indicate groups as displayed on the charts.
(2) Horizontal lines indicate multiplications by p.
(3) Vertical lines indicate multiplications by hq.
(4) Diagonal lines indicate multiplications by /.
(5) Horizontal arrows indicate infinite sequences of multiplications by p.
(6) Vertical arrows indicate infinite sequences of multiplications by hy.
(7) Diagonal arrows indicate infinite sequences of multiplications by /.
Here is a key for the charts of Ext 4z jy:
(1) Gray dots indicate copies of F»[t*] that arise from a copy of F»[t*] in the
EJ -page.
(2) Green dots indicate copies of F2[t*] that arise from a copy of [, and a copy
of F»[7*] in the EZ -page, connected by a t# extension that is hidden in the

Bockstein spectral sequence. For example, the green dot at (3, 3) arises from
a hidden 7# extension from h? to p - T2a.

(3) Blue dots indicate copies of F,[t*] that arise from two copies of [, and one
copy of F»[t*] in the EJ -page, connected by t* extensions that are hidden
in the Bockstein spectral sequence. For example, the blue dot at (7, 7) arises
from hidden t* extensions from hZ to p4h?b, and from ,04h‘;b to p° - t2a - b.

(4) Horizontal lines indicate multiplications by p.
(5) Vertical lines indicate multiplications by hg.
(6) Diagonal lines indicate multiplications by /.

(7) Dashed lines indicate extensions that are hidden in the Bockstein spectral
sequence.

(8) Orange horizontal lines indicate p multiplications that equal t* times a gen-
erator. For example, p - 72a equals t# - h?.

(9) Horizontal arrows indicate infinite sequences of multiplications by p.
(10) Vertical arrows indicate infinite sequences of multiplications by 4.
(11) Diagonal arrows indicate infinite sequences of multiplications by 4.
12B. Bockstein E~ and Extxc charts for A¢2(1). The charts on pages 620-624
depict the Bockstein £~ spectral sequence that converges to Extyc. The details of
this calculation are described in Section 7.
The E, -page is too complicated to present conveniently in one chart, so this

page is separated into two parts by Milnor-Witt stem modulo 2. Similarly, the E; -
page is separated into four parts by Milnor-Witt stem modulo 4. The E, -page
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in Milnor—Witt stems O or 3 modulo 4 is not shown, since it is identical to the
E5 -page in those Milnor-Witt stems. The Ey -page and E -page in Milnor—Witt
stems 1 or 2 modulo 4 is not shown, since it is identical to the E, -page in those
Milnor-Witt stems.

Here is a key for reading the Bockstein charts:

(1) Gray dots and green dots indicate groups as displayed on the charts.
(2) Horizontal lines indicate multiplications by p.

(3) Vertical lines indicate multiplications by Aq.

(4) Diagonal lines indicate multiplications by /.

(5) Horizontal rightward arrows indicate infinite sequences of divisions by p, i.e.,
infinitely p-divisible elements.

(6) Vertical arrows indicate infinite sequences of multiplications by hy.
(7) Diagonal arrows indicate infinite sequences of multiplications by /.

The structure of Extyc is too complicated to present conveniently in one chart,
so it is separated into parts by Milnor—Witt stem modulo 4. Unfortunately, the part
in positive Milnor—Witt stems 0 modulo 4 alone is still too complicated to present
conveniently in one chart. Instead, we display Extc,, including both Ext 4=}y and
Extyxc, for the Milnor—Witt 0-stem and the Milnor—Witt 4-stem.

Here is a key for the charts of Extyc:

(1) Gray dots indicate copies of Fo[t*] /T,

(2) Horizontal lines indicate multiplications by p.
(3) Vertical lines indicate multiplications by hqg.
(4) Diagonal lines indicate multiplications by /.

(5) Dashed lines indicate extensions that are hidden in the Bockstein spectral
sequence.

(6) Dashed lines of slope —1 indicate p extensions that are hidden in the Adams
spectral sequence.

(7) Horizontal rightward arrows indicate infinite sequences of divisions by p, i.e.,
infinitely p-divisible elements.

(8) Vertical arrows indicate infinite sequences of multiplications by hy.

(9) Diagonal arrows indicate infinite sequences of multiplications by /.

12C. Bockstein and Ext charts for £¢>(1). The Bockstein E* and E~ spectral se-
quences that converge to Extgr(jy and Extgr ;) (NC, M"}), respectively, are shown in
the charts on page 627. The details of this calculation are described in Remark 6.3
and Section 7C. For legibility, we have split each of the EX, E, , and Extxc pages
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into a pair of charts, organized by families of v;-multiples rather than by Milnor—
Witt stems.
Here is a key for reading the Bockstein and Extyc charts:

(1) Gray dots indicate groups as displayed on the charts.
(2) Horizontal lines indicate multiplications by p.

(3) Vertical lines indicate multiplications by /. Dashed vertical lines denote /¢-
multiplications that are hidden in the Bockstein spectral sequence

(4) Horizontal rightward arrows indicate infinite sequences of divisions by p, i.e.,
infinitely p-divisible elements.

(5) Vertical arrows indicate infinite sequences of multiplications by hy.

12D. Milnor-Witt stems. The diagrams on pages 629 and 630 depict the Milnor—
Witt stems for koc, and kR in families as described in Section 11.

The top figure on page 629 represents the Milnor—Witt 4k-stem, where k > 0.
The middle three figures represent the t*-periodic classes, as in Theorem 11.15.
The bottom figure represents the Milnor—Witt stem I1,,, where n = 3 (mod 4) and
n<-5.

Here is a key for reading the Milnor—Witt charts:

(1) Black dots indicate copies of [F;.

(2) Hollow circles indicate copies of Z%.

(3) Circled numbers indicate cyclic groups of given order. For instance, the 1-
stem of I[1_s is Z /4.

(4) Blue lines indicate multiplications by 7.

(5) Red lines indicate multiplications by p.

(6) Curved green lines denote multiplications by .

(7) Lines labeled with numbers indicate that a multiplication equals a multiple of
an additive generator. For example, o - n* equals 4108 in .

For clarity, some o multiplications are not shown in the first and last diagrams of
page 629. For example, the o multiplication on 7 is not shown in the first diagram.
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Bockstein charts for A®(1)

3 BOCKSTEIN E; -PAGE
b
ofF;[7] (_Ib
O[Fz q
6
4

2
0
0 2 4 6 8 10 12 14 16
BOCKSTEIN EX -PAGE, mw = 0 (mod 2)

8 2 2

oF,[1?]

O[Fz 4
6
4
2
0

0 2 4 6 8 10 12 14 16

g BOCKSTEIN EJ -PAGE, mw = 1 (mod 2)

oF,[7?]
6

thlb
4
2 ‘—7
Thy

0
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Bockstein charts for A®(1)

BOCKSTEIN Ef = EX,-PAGE, mw =0 (mod 4)

8 <—§
b
oF, (4]
o[FZ 2ab
6
4
T7a
2
0
0 2 4 6 8 10 12 14 16
8 BOCKSTEIN Ef = EX,-PAGE, mw = 1 (mod 4)
oF, (4]
6
thlb
4
2 ,4;7
Thy
0
0 2 4 6 8 10 12 14 16
g BOCKSTEIN Ef -PAGE, mw =2 (mod 4)
4
oF (7] prA
6 ——eo
2h2b
2hob
4
2 *r—9
I rzh%
Tzho
0



618

B.J. GUILLOU, M. A. HILL, D. C. ISAKSEN AND D. C. RAVENEL

Bockstein charts for A®(1)

BOCKSTEIN Ef -PAGE, mw =3 (mod 4)

oF, (4]
-9
3h2b
S
rSh%
2 4 6 8 10 12
BOCKSTEIN E = EX,-PAGE, mw =2 (mod 4)
4
oF (7] prA
*r—0
2h2b
2hob
*r—
rzh%
2 4 6 8 10 12



THE COHOMOLOGY OF C;-EQUIVARIANT A(1) AND THE HOMOTOPY OF koc, 619

Ext charts for A®(1)

Ext

8 AR(I),meO(mod4)

oy [r4]
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Bockstein E~ charts for A€ (1)
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Extnc charts for A€2(1)
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Milnor-Witt modules for koc,
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Milnor—Witt modules for kR

T4
,02 P 1 20 v% t74v‘l‘ 700 v?
W
)
H_4_4k 4y ) v% z'*gvzl1 7104 v?
R A TR AR T
2 4
l_II:|:4k Gt 20 vf r74v? r*(’wvz
4
4 4
I 1+4k rfzwvl 1*41113 ) v? t_4v?
4 4
M5 4 L



THE COHOMOLOGY OF C,-EQUIVARIANT A(1) AND THE HOMOTOPY OF koc, 631

Acknowledgements

We are very grateful to the referees for close readings of our paper and detailed
commentary.

References

[Adams 1974] J. F. Adams, “Operations of the n-th kind in K-theory, and what we don’t know about
RP°°”, pp. 1-9 in New developments in topology (Oxford, 1972), edited by G. Segal, London Math.
Soc. Lecture Note Ser. 11, Cambridge Univ. Press, 1974. MR

[Araki and Iriye 1982] S. Araki and K. Iriye, “Equivariant stable homotopy groups of spheres with
involutions, I”, Osaka Math. J. 19:1 (1982), 1-55. MR Zbl

[Atiyah 1966] M. E. Atiyah, “K-theory and reality”, Quart. J. Math. Oxford Ser. (2) 17 (1966),
367-386. MR Zbl

[Barwick 2017] C. Barwick, “Spectral Mackey functors and equivariant algebraic K -theory, I”’, Adv.
Math. 304 (2017), 646-727. MR Zbl

[Bredon 1968] G. E. Bredon, “Equivariant homotopy”, pp. 281-292 in Proc. Conf. on Transforma-
tion Groups (New Orleans, LA, 1967), Springer, 1968. MR Zbl

[Davis and Mahowald 1979] D. M. Davis and M. Mahowald, “The Euler class for connective ko-
theory and an application to immersions of quaternionic projective space”, Indiana Univ. Math. J.
28:6 (1979), 1025-1034. MR Zbl

[Davis and Mahowald 1984] D. M. Davis and M. Mahowald, “The spectrum (P A bo)_~o", Math.
Proc. Cambridge Philos. Soc. 96:1 (1984), 85-93. MR Zbl

[Dugger 2005] D. Dugger, “An Atiyah—Hirzebruch spectral sequence for K R-theory”, K -Theory
35:3-4 (2005), 213-256. MR Zbl

[Dugger and Isaksen 2010] D. Dugger and D. C. Isaksen, “The motivic Adams spectral sequence”,
Geom. Topol. 14:2 (2010), 967-1014. MR Zbl

[Dugger and Isaksen 2013] D. Dugger and D. C. Isaksen, “Motivic Hopf elements and relations”,
New York J. Math. 19 (2013), 823-871. MR Zbl

[Dugger and Isaksen 2017a] D. Dugger and D. C. Isaksen, “Low-dimensional Milnor-Witt stems
over R”, Ann. K-Theory 2:2 (2017), 175-210. MR Zbl

[Dugger and Isaksen 2017b] D. Dugger and D. C. Isaksen, “Z/2-equivariant and R-motivic stable
stems”, Proc. Amer. Math. Soc. 145:8 (2017), 3617-3627. MR Zbl

[Greenlees 2018] J. P. C. Greenlees, “Four approaches to cohomology theories with reality”, pp.
139-156 in An alpine bouquet of algebraic topology, edited by C. Ausoni et al., Contemp. Math.
708, Amer. Math. Soc., Providence, RI, 2018. MR Zbl

[Greenlees and Meier 2017] J. P. C. Greenlees and L. Meier, “Gorenstein duality for real spectra”,
Algebr. Geom. Topol. 17:6 (2017), 3547-3619. MR Zbl

[Guillou and May 2011] B. Guillou and J. P. May, “Models of G-spectra as presheaves of spectra”,
preprint, 2011. arXiv

[Heller and Ormsby 2016] J. Heller and K. Ormsby, “Galois equivariance and stable motivic homo-
topy theory”, Trans. Amer. Math. Soc. 368:11 (2016), 8047-8077. MR Zbl

[Hill 2011] M. A. Hill, “Ext and the motivic Steenrod algebra over R”, J. Pure Appl. Algebra 215:5
(2011), 715-727. MR Zbl

[Hill et al. 2016] M. A. Hill, M. J. Hopkins, and D. C. Ravenel, “On the nonexistence of elements
of Kervaire invariant one”, Ann. of Math. (2) 184:1 (2016), 1-262. MR Zbl

[Hu and Kriz 2001] P. Hu and I. Kriz, “Real-oriented homotopy theory and an analogue of the
Adams—Novikov spectral sequence”, Topology 40:2 (2001), 317-399. MR Zbl


http://msp.org/idx/mr/0339178
http://projecteuclid.org/euclid.ojm/1200774828
http://projecteuclid.org/euclid.ojm/1200774828
http://msp.org/idx/mr/656233
http://msp.org/idx/zbl/0488.55012
http://dx.doi.org/10.1093/qmath/17.1.367
http://msp.org/idx/mr/206940
http://msp.org/idx/zbl/0146.19101
http://dx.doi.org/10.1016/j.aim.2016.08.043
http://msp.org/idx/mr/3558219
http://msp.org/idx/zbl/1348.18020
http://msp.org/idx/mr/0250303
http://msp.org/idx/zbl/0175.20502
http://dx.doi.org/10.1512/iumj.1979.28.28077
http://dx.doi.org/10.1512/iumj.1979.28.28077
http://msp.org/idx/mr/551168
http://msp.org/idx/zbl/0399.55017
http://dx.doi.org/10.1017/S030500410006196X
http://msp.org/idx/mr/743704
http://msp.org/idx/zbl/0552.55008
http://dx.doi.org/10.1007/s10977-005-1552-9
http://msp.org/idx/mr/2240234
http://msp.org/idx/zbl/1109.14024
http://dx.doi.org/10.2140/gt.2010.14.967
http://msp.org/idx/mr/2629898
http://msp.org/idx/zbl/1206.14041
http://nyjm.albany.edu:8000/j/2013/19_823.html
http://msp.org/idx/mr/3141814
http://msp.org/idx/zbl/1361.14019
http://dx.doi.org/10.2140/akt.2017.2.175
http://dx.doi.org/10.2140/akt.2017.2.175
http://msp.org/idx/mr/3590344
http://msp.org/idx/zbl/1400.14064
http://dx.doi.org/10.1090/proc/13505
http://dx.doi.org/10.1090/proc/13505
http://msp.org/idx/mr/3652813
http://msp.org/idx/zbl/06734575
http://dx.doi.org/10.1090/conm/708/14261
http://msp.org/idx/mr/3807754
http://msp.org/idx/zbl/1412.55011
http://dx.doi.org/10.2140/agt.2017.17.3547
http://msp.org/idx/mr/3709655
http://msp.org/idx/zbl/1391.55009
http://msp.org/idx/arx/1110.3571
http://dx.doi.org/10.1090/tran6647
http://dx.doi.org/10.1090/tran6647
http://msp.org/idx/mr/3546793
http://msp.org/idx/zbl/1346.14049
http://dx.doi.org/10.1016/j.jpaa.2010.06.017
http://msp.org/idx/mr/2747214
http://msp.org/idx/zbl/1222.55014
http://dx.doi.org/10.4007/annals.2016.184.1.1
http://dx.doi.org/10.4007/annals.2016.184.1.1
http://msp.org/idx/mr/3505179
http://msp.org/idx/zbl/1366.55007
http://dx.doi.org/10.1016/S0040-9383(99)00065-8
http://dx.doi.org/10.1016/S0040-9383(99)00065-8
http://msp.org/idx/mr/1808224
http://msp.org/idx/zbl/0967.55010

632 B.J. GUILLOU, M. A. HILL, D. C. ISAKSEN AND D. C. RAVENEL

[Iriye 1982] K. Iriye, “Equivariant stable homotopy groups of spheres with involutions, I1I”’, Osaka
J. Math. 19:4 (1982), 733-743. MR Zbl

[Isaksen 2014] D. C. Isaksen, “Stable stems”, preprint, 2014. to appear in Mem. Amer. Math. Soc.
arXiv

[Landweber 1969] P. S. Landweber, “On equivariant maps between spheres with involutions”, Ann.
of Math. (2) 89 (1969), 125-137. MR

[Lewis 1995] L. G. Lewis, Jr., “Change of universe functors in equivariant stable homotopy theory”,
Fund. Math. 148:2 (1995), 117-158. MR Zbl

[May 1969] J. P. May, “Matric Massey products”, J. Algebra 12 (1969), 533-568. MR Zbl

[May 1996] J. P. May, Equivariant homotopy and cohomology theory, CBMS Regional Conference
Series in Mathematics 91, Amer. Math. Soc., Providence, RI, 1996. MR Zbl

[Merling 2017] M. Merling, “Equivariant algebraic K-theory of G-rings”, Math. Z. 285:3-4 (2017),
1205-1248. MR Zbl

[Morel 2004] F. Morel, “On the motivic 7 of the sphere spectrum”, pp. 219-260 in Axiomatic,
enriched and motivic homotopy theory, edited by J. P. C. Greenlees, NATO Sci. Ser. II Math. Phys.
Chem. 131, Kluwer, Dordrecht, 2004. MR Zbl

[Ravenel 1986] D. C. Ravenel, Complex cobordism and stable homotopy groups of spheres, Pure
and Applied Mathematics 121, Academic Press, Orlando, FL, 1986. MR Zbl

[Ricka 2015] N. Ricka, “Subalgebras of the Z/2-equivariant Steenrod algebra”, Homology Homo-
topy Appl. 17:1 (2015), 281-305. MR Zbl

[Schwede and Shipley 2003] S. Schwede and B. Shipley, “Stable model categories are categories of
modules”, Topology 42:1 (2003), 103-153. MR Zbl

[Segal 1971] G. B. Segal, “Equivariant stable homotopy theory”, pp. 59-63 in Actes du Congrés
International des Mathématiciens (Nice, 1970), tome 2, 1971. MR Zbl

[Toda 1962] H. Toda, Composition methods in homotopy groups of spheres, Annals of Mathematics
Studies 49, Princeton University Press, 1962. MR Zbl

[Voevodsky 2003a] V. Voevodsky, “Motivic cohomology with Z/2-coefficients”, Publ. Math. Inst.
Hautes Etudes Sci. 98 (2003), 59-104. MR Zbl

[Voevodsky 2003b] V. Voevodsky, “Reduced power operations in motivic cohomology”, Publ. Math.
Inst. Hautes Etudes Sci. 98 (2003), 1-57. MR Zbl

[Weibel 1994] C. A. Weibel, An introduction to homological algebra, Cambridge Studies in Ad-
vanced Mathematics 38, Cambridge University Press, 1994. MR Zbl

Received 12 Dec 2018. Revised 15 Jul 2019.

BERTRAND J. GUILLOU:
bertguillou@uky.edu
Department of Mathematics, The University of Kentucky, Lexington, KY, United States

MICHAEL A. HILL:
mikehill@math.ucla.edu
Department of Mathematics, University of California, Los Angeles, CA, United States

DANIEL C. ISAKSEN:

isaksen@wayne.edu
Department of Mathematics, Wayne State University, Detroit, MI, United States

DOUGLAS CONNER RAVENEL:

doug @math.rochester.edu
Department of Mathematics, University of Rochester, NY, United States

:'msp


http://projecteuclid.org/euclid.ojm/1200775536
http://msp.org/idx/mr/687770
http://msp.org/idx/zbl/0511.55013
http://msp.org/idx/arx/1407.8418
http://dx.doi.org/10.2307/1970812
http://msp.org/idx/mr/238313
http://dx.doi.org/10.4064/fm-148-2-117-158
http://msp.org/idx/mr/1360142
http://msp.org/idx/zbl/0853.55004
http://dx.doi.org/10.1016/0021-8693(69)90027-1
http://msp.org/idx/mr/238929
http://msp.org/idx/zbl/0192.34302
http://dx.doi.org/10.1090/cbms/091
http://msp.org/idx/mr/1413302
http://msp.org/idx/zbl/0890.55001
http://dx.doi.org/10.1007/s00209-016-1745-3
http://msp.org/idx/mr/3623747
http://msp.org/idx/zbl/1365.19007
http://dx.doi.org/10.1007/978-94-007-0948-5_7
http://msp.org/idx/mr/2061856
http://msp.org/idx/zbl/1130.14019
http://msp.org/idx/mr/860042
http://msp.org/idx/zbl/0608.55001
http://dx.doi.org/10.4310/HHA.2015.v17.n1.a14
http://msp.org/idx/mr/3350083
http://msp.org/idx/zbl/1333.55014
http://dx.doi.org/10.1016/S0040-9383(02)00006-X
http://dx.doi.org/10.1016/S0040-9383(02)00006-X
http://msp.org/idx/mr/1928647
http://msp.org/idx/zbl/1013.55005
http://msp.org/idx/mr/0423340
http://msp.org/idx/zbl/0225.55014
http://msp.org/idx/mr/0143217
http://msp.org/idx/zbl/0101.40703
http://dx.doi.org/10.1007/s10240-003-0010-6
http://msp.org/idx/mr/2031199
http://msp.org/idx/zbl/1057.14028
http://dx.doi.org/10.1007/s10240-003-0009-z
http://msp.org/idx/mr/2031198
http://msp.org/idx/zbl/1057.14027
http://dx.doi.org/10.1017/CBO9781139644136
http://msp.org/idx/mr/1269324
http://msp.org/idx/zbl/0797.18001
mailto:bertguillou@uky.edu
mailto:mikehill@math.ucla.edu
mailto:isaksen@wayne.edu
mailto:doug@math.rochester.edu
http://msp.org

	1. Introduction
	1A. Organization
	1B. Notation

	2. Ext groups
	2A. The equivariant cohomology of a point
	2B. The equivariant Steenrod algebra

	3. The -Bockstein spectral sequence
	4. -inverted `39`42`"613A``45`47`"603AExtR(1)
	5. Infinitely -divisible elements of `39`42`"613A``45`47`"603AExtAC2(1)
	6. The cohomology of AR(1)
	7. Bockstein differentials in the negative cone
	7A. The structure of E1-
	7B. -Bockstein differentials in E-
	7C. -Bockstein differentials in E- for EC2(1)

	8. Some Massey products
	9. Hidden extensions
	9A. `39`42`"613A``45`47`"603AExtC2(1)
	9B. The ring homomorphism q*:`39`42`"613A``45`47`"603AExtAC2(1) `39`42`"613A``45`47`"603AExtEC2(1)

	10. The spectrum koC2
	11. The homotopy ring
	11A. The Milnor–Witt 0-stem
	11B. 4-periodicity
	11C. The Milnor–Witt n-stem with n 0 6mu (mod4mu4)
	11D. The Milnor–Witt n-stem with n 1 6mu (mod4mu4)
	11E. The Milnor–Witt n-stem with n 2 6mu (mod4mu4)
	11F. The Milnor–Witt n-stem with n 3 6mu (mod4mu4)
	11G. The homotopy ring of kR

	12. Charts
	12A. Bockstein E+ and `39`42`"613A``45`47`"603AExtAR(1) charts
	12B. Bockstein E- and `39`42`"613A``45`47`"603AExtNC charts for AC2(1)
	12C. Bockstein and `39`42`"613A``45`47`"603AExt charts for EC2(1)
	12D. Milnor–Witt stems

	Acknowledgements
	References

