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The complexity of distributed edge coloring depends heavily on the palette size as a function of the maximum
degree ∆. In this article, we explore the complexity of edge coloring in the LOCAL model in different palette
size regimes. Our results are as follows.

Lower Bounds: First, we simplify the round elimination technique of Brandt et al. [16] and prove that
(2∆ − 2)-edge coloring requires Ω(log∆ logn) time with high probability and Ω(log∆ n) time de-
terministically, even on trees. Second, we show that a natural approach to computing (∆ + 1)-edge
colorings (Vizing’s theorem), namely, extending an arbitrary partial coloring by iteratively recol-
oring subgraphs, requires Ω(∆ logn) time.

Upper Bounds on General Graphs: We give a randomized edge coloring algorithm that can use

palette sizes as small as ∆ + Õ (
√
∆), which is a natural barrier for randomized approaches. The

running time of our (1 + ϵ )∆-edge coloring algorithm is usually dominated by O (log ϵ−1) calls
to a distributed Lovász local lemma (LLL) algorithm. For example, using the Chung-Pettie-Su

LLL algorithm, we compute a (1 + ϵ )∆-edge coloring in O (logn) time when ϵ ≥ (log3 ∆)/
√
∆, or

O (log∆ n) + (log logn)3+o (1) time when ϵ = Ω(1). When ∆ is sublogarithmic in n the performance
is improved with the Ghaffari-Harris-Kuhn LLL algorithm.

Upper Bounds on Trees: We show that the Ω(log∆ logn) lower bound can be nearly matched
on trees. To establish this result, we develop a new distributed Lovász local lemma algorithm
for tree-structured dependency graphs, which arise naturally from O (1)-round probabilistic algo-
rithms run on trees. Specifically, our (1 + ϵ )∆-edge coloring algorithm for trees takesO (log(1/ϵ )) ·
max{ log logn

log log logn , loglog∆ logn} timewhen ϵ ≥ (log3 ∆)/
√
∆, orO (max{ log logn

log log logn , log∆ logn}) time

when ϵ = Ω(1).
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1 INTRODUCTION

In this article, we consider the complexity of the edge coloring problem in the well-known LOCAL
model of distributed computation [48, 59]. A k-edge coloring of a graph G = (V ,E) is a function
ϕ : E → {1, . . . ,k } such that edges sharing an endpoint are colored differently; the parameter k is
called the palette size. The distributed complexity of computing a k-edge coloring depends heavily
on the value of k relative to themaximum degree ∆ andwhether vertices can generate random bits.

The LOCAL Model. In the LOCAL model, the input graph G = (V ,E) is identical to the under-
lying distributed network; vertices are identified with processors and edges with bi-directional
communication links; time is divided into synchronized rounds, and in each round each processor
can perform unlimited computation and communicate an unbounded-length message to each of
its neighbors, which is delivered before the next round. Depending on the problem the vertices
may carry additional input labels. The output of a LOCAL algorithm is typically a labeling ofV or
E satisfying some constraints.

For clarity, we bifurcate the LOCAL model into RandLOCAL and DetLOCAL depending on
whether random bits are available. In the RandLOCAL model the output labeling is correct with
high probability (w.h.p.) (i.e., 1 − 1/poly(n)). In the DetLOCAL model each vertex is assigned a
unique O (logn)-bit ID; the output labeling must always be correct.

We assume eachv ∈ V initially knows deg(v ), a port-numbering of its incident edges, and global
parameters such as n = |V | and ∆ = maxv ∈V deg(v ), or upper bounds on them if the exact param-
eters are not common knowledge. The assumption that global parameters are common knowledge
can sometimes be removed; see Korman et al. [46].

Distributed Coloring. The two primary design objectives for distributed coloring algorithms
are (i) minimizing the number of colors (palette size) and (ii) minimizing the number of rounds
(time complexity). A modest standard for efficient algorithm in the LOCAL model is O (poly logn)
time. However, there are now many examples of locally checkable labeling problems with
O (poly(log logn)) randomized complexity [19, 35, 36, 40, 42, 60], and in some circumstances,
O (log∗ n) complexity [20, 29, 48, 61].

For the case of vertex coloring, it is well-known that a (∆ + 1)-vertex coloring can be found

in O (logn) time [1, 49] in RandLOCAL or 2O (
√
logn) time in DetLOCAL [57]. The randomized

complexity was recently improved toO (
√

log∆) + 2O (
√
log logn) [43], and then to 2O (

√
log logn) [20].

These randomized upper bounds imply that a vertex coloring with palette size ∆ + 1 can be
computed efficiently. In general, the palette size of ∆ + 1 cannot be further reduced, since there
exists a graph (a complete graph with ∆ + 1 vertices) that cannot be ∆-colored.

Edge Coloring. The case of edge coloring is more complicated. Edge coloring can be interpreted as
a vertex coloring problem on the line graph L(G ), in which edges becomes vertices and two edges

are adjacent if they share an endpoint; the line graph has maximum degree ∆̂ = 2∆ − 2. Therefore,
an edge coloring with palette size ∆̂ + 1 = 2∆ − 1 can be computed efficiently. The current state-

of-the-art for (2∆ − 1)-edge coloring is Õ (log3 logn) time1 for all ∆ [42], andO (log∗ n) time when

1Here, Õ (f (n)) = O (f (n) · poly(log f (n))).
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∆ > log1+o (1) n [29]. Vizing’s theorem [63] guarantees the existence of a (∆ + 1)-edge coloring for
all graphs; but it is unknown whether such a coloring can be efficiently computed in LOCAL.
The number “2∆ − 1” is the smallest palette size with the property that any partial edge coloring

can be extended to a total coloring, by the trivial greedy algorithm. Below the greedy threshold

2∆ − 1, iterative coloring algorithms must be more careful in how they proceed. In particular,
at intermediate stages in the algorithm, edges must keep their available palettes relatively large
compared to the size of their uncolored neighborhood.
Using the Rödl nibble technique, Dubhashi et al. [26] gave a RandLOCAL algorithm for (1 + ϵ )∆-

edge coloring in O (logn) time, provided that ∆ is sufficiently large, e.g., even when ϵ is constant,
∆ > (logn)1+γ . Elkin et al. [29] gave RandLOCAL algorithms for (1 + ϵ )∆-edge coloring that are
faster when ∆ is large and work for all ∆ via a reduction to the distributed Lovász local lemma

(LLL). The (1 + ϵ )∆-edge coloring problem is solved inO (log∗ n) · � logn

∆1−o (1) � time. The running time

of the Dubhashi-Grable-Panconesi and Elkin-Pettie-Su algorithms depend polynomially on ϵ−1. In
both algorithms it is clear that ϵ need not be constant, but it is not self-evident how small it can
be made as a function of ∆.

The � logn

∆1−o (1) �-factor in the time complexity of Reference [29] is due to the Chung-Pettie-Su LLL
algorithm [22], which holds for all ∆. The Ghaffari-Harris-Kuhn [35] and Fischer-Ghaffari [30] LLL
algorithms are faster when ∆ = (logn)o (1) ; see Section 1.4 and Table 2.

New Results. In this article, we present new upper and lower bounds on the complexity of edge
coloring in the regimes between palette size ∆ + 1 and 2∆ − 2, i.e., strictly below the “greedy”
threshold 2∆ − 1.

From the lower bound side, we prove that (2∆ − 2)-edge coloring requires Ω(log∆ logn) time
w.h.p. and Ω(log∆ n) time deterministically, even on trees. This result is attained via the round

elimination technique of Brandt et al. [16]. Second, we consider a natural approach to comput-
ing (∆ + 1)-edge colorings (Vizing’s theorem) via extending partial colorings by iteratively re-
coloring parts of the graph via “alternating paths.” We prove that this approach may be viable, but
in the worst case requires recoloring subgraphs of diameter Ω(∆ logn). This stands in contrast to
distributed algorithms for Brooks’ theorem [56], which exploit the existence of O (log∆ n)-length
alternating paths.
From the upper bound side, we give an efficient randomized edge coloring algorithm that can

use palette sizes as small as ∆ + Õ (
√
∆), which is a natural barrier for randomized approaches.

Notice that with a palette of size ∆ + Θ(
√
∆), we have a constant probability of being able to color

an arbitrary edge e , given a random feasible coloring of its neighborhood. Edge coloring with this
palette sizewas achieved in 1987 by Karloff and Shmoys [45] in the context of parallel (PRAM) algo-
rithms, but has not been achieved in the LOCALmodel before. We also show that the Ω(log∆ logn)
lower bound can be nearly matched on trees by developing a new distributed LLL algorithm for
tree-structured dependency graphs.

1.1 Tools

Randomized distributed algorithms in the LOCALmodel are often composed of iterations ofO (1)-
round routines that commit to a partial labeling [13, 26, 29, 60]. A vertex may proceed to the
next iteration only if it satisfies some property or invariant, which typically holds with probability
1 − 1/poly(∆).

Graph Shattering. In the graph shattering framework [13, 14] of algorithm design, the bad ver-

tices that violate the require property are temporarily removed from consideration in the subse-
quent iterations of the randomized algorithm. If it can be shown that at the end of the randomized
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algorithm the connected components induced by the bad vertices have size at mostO (poly(logn)),
then one can revert to the best available deterministic algorithm and solve the problem on each
component of the “shattered” graph in parallel. The randomized part is called the pre-shattering
phase; the deterministic part is called the post-shattering phase.
In some applications, we cannot tolerate the existence of a bad vertex. For example, when the

palette size is below the greedy threshold 2∆ − 1, not every partial edge coloring can be extended
to a total edge coloring. In this case, we need to resort to a distributed Lovász local lemma (LLL)
algorithm, which can guarantee a global success (i.e., there is no bad vertex) with probability 1 −
1/poly(n) (using a randomized LLL algorithm) or even 1 (using a deterministic LLL algorithm).2

Lovász Local Lemma. Consider a set of independent random variablesV and a set of bad events
E, where each A ∈ E depends on a subset vbl(A) ⊂ V . Define the dependency graph as GE =
(E, {(A,B) | vbl(A) ∩ vbl(B) � ∅)}). Symmetric versions of the Lovász local lemma are stated in
terms of d , the maximum degree inGE , and p = maxA∈E Pr[A]. A standard version of the LLL says

that if ep (d + 1) < 1 then Pr[∩A∈EA] > 0, i.e., it is possible to avoid all bad events. The constructive
LLL problem is to assign values to all variables inV such that no event in E happens.

Distributed Lovász Local Lemma. In the distributed LLL problem the communications network is
identical toGE . Every nodeA is identified with an event, which is aware of the distribution on the
random variables vbl(A) ⊆ V . The goal is to collectively assign values to all variables in V such
that no event in E happens.

In distributed coloring algorithms it is typical to see d = poly(∆) and p = exp(−dΩ(1) ), i.e., any
polynomial LLL criterion of the formp (ed )c < 1where c = O (1) is good enough. Chung, Pettie, and
Su [22] provided anO (log1/epd2 n) time algorithm under the LLL criterion epd2 < 1. This remains

the fastest distributed LLL algorithm under a polynomial criterion when d is arbitrary. There are
faster LLL algorithms [30, 35] whend is small, and slower LLL algorithms [22, 34] under the stricter
criterion ep (d + 1) < 1; see Section 1.4 and Table 2.

1.2 New Lower Bounds

Round Elimination. In Section 2, we show a lower bound on (2∆ − 2)-edge coloring that follows
the same lines as Brandt et al.’s [16] lower bound on ∆-vertex coloring. Both proofs establish
hardness for a coloring problem by reduction from sinkless orientation,3 but one subtlety here is that
we are dealing with two irreconcilable versions of sinkless orientation. Brandt et al. [16] prove that
sinkless orientation on a graph that comes equipped with a ∆-edge coloring is reducible to ∆-vertex
coloring on the same graph. Hence, any lower bound on sinkless orientation (that is aware of the
edge coloring) extends to ∆-vertex coloring.We show that sinkless orientation on a bipartite graph
that comes equipped with (i) a 2-vertex coloring, and (ii) a (2∆ − 1)-edge coloring, is reducible to
(2∆ − 2)-edge coloring on the same graph. We then prove that this version of sinkless orientation
takes Ω(log∆ logn) time in RandLOCAL and Ω(log∆ n) time in DetLOCAL, matching [16, 19].4

Roughly speaking, the idea of Brandt et al. [16] is to convert any randomized t-round algo-
rithm with local error probability p into a (t − 1)-round algorithm with error probability ≈ p1/∆.

2However, applying an LLL algorithm does not mean we have circumvented the graph shattering method! All known

distributed LLL algorithms with a sublogarithmic dependence on n ([30, 35] and Section 5) use graph shattering inter-

nally. One interpretation of Chang, Kopelowitz, and Pettie’s derandomization [19, Theorem 3.1] is that graph shattering is

intrinsic to fast randomized algorithms in the LOCAL model and cannot be completely avoided.
3Orient the edges of the (undirected) input graph so that no vertex is a sink.
4It is impossible to reconcile these two versions of sinkless orientation. The problem can be solved without communication,

given a 2-vertex coloring and a k-edge coloring for any k ∈ [∆, 2∆ − 2].
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By iterating the procedure they obtain a 0-round algorithm with error probability ≈ p∆t . If any
0-round algorithm must have constant probability of failure, then t = Ω(log∆ logp

−1). By setting
p = 1/poly(n), we get Ω(log∆ logn) RandLOCAL lower bounds for some problems, e.g., sinkless
orientation.
Our proof uses a simplified round elimination technique that appears to give quantitatively

worse bounds but that can be automatically strengthened to match those of Reference [16]. Rather
than try to shave one round off the running time of every processor, it is significantly sim-
pler to do it piecemeal, which leads us to the useful concept of an irregular time profile. Sup-
pose that the graph is initially (2∆ − 1)-edge colored. An algorithm has irregular time profile
t = (t1, . . . , t2∆−1) if edges with input color i choose their output color by examining only their
ti -neighborhood. In our round-elimination method, we show that any algorithm with time profile
(t , t , . . . , t
︸����︷︷����︸

i

, t − 1, . . . , t − 1
︸������������︷︷������������︸

(2∆−1)−i

) and error probability p can be transformed into one with time profile

(t , t , . . . , t
︸����︷︷����︸

i−1

, t − 1, . . . , t − 1
︸������������︷︷������������︸

(2∆−1)−i+1

) and error probabilityO (p1/3), only by changing the algorithm for edges

initially colored i . By iterating this process, we arrive at Ω(∆−1 log logp−1) lower bounds, which
has a weaker dependence on ∆ than Reference [16]. By following the proofs of Chang, Kopelowitz,
and Pettie [19], any randomized lower bound of this type implies Ω(log∆ n) lower bounds in
DetLOCAL [19, Theorem 5], which then implies Ω(log∆ logn) lower bounds in RandLOCAL [19,
Theorem 3].

Lower Bound for Distributed Vizing’s Theorem. Suppose that a distributed (∆ + 1)-edge coloring
algorithm begins with a partial coloring and iteratively recolors subgraphs, always increasing the
subset of colored edges. If this algorithmworks correctly given any partial coloring, then we prove
in Section 3 that it takes Ω(∆ logn) time in the LOCAL model, with or without randomization.
More generally, any (∆ + c )-coloring that is based on recoloring subgraphs takes Ω( ∆

c
logn) time.

This establishes a quantitative difference between the “locality” of Vizing’s theorem and Brooks’
theorem [56].

Subsequent Work. Subsequent to the initial publication of Reference [18], Ghaffair, Kuhn,
Maus, Uitto [39] showed that a ∆ +O (logn · log(2 + ∆/ logn))-edge coloring can be computed
in DetLOCAL inO (poly(logn,∆)) rounds. Very recently, Su and Vu [62] improved this bound and
showed that inO (poly(logn,∆)) rounds, it is possible to compute a ∆ +O (log∆ n)-edge coloring in
DetLOCAL or a (∆ + 2)-edge coloring in RandLOCAL, which is only one color away from Vizing’s
theorem. All these upper bounds have time complexity of the form O (poly(logn,∆)). It is still an
intriguing open question as to whether an edge coloring with palette size significantly smaller

than ∆ + Õ (
√
∆) can be computed in O (poly logn) time, regardless of ∆.

1.3 New Upper Bounds

Upper Bounds on General Graphs. The (1 + ϵ )∆-edge coloring algorithms of References [26, 29]
are slow (with a polynomial dependence on ϵ−1) and have limits on how small ϵ can be, as a
function of ∆. In Section 4, we prove that the most “natural” randomized algorithm (One-Shot-
Coloring) converges exponentially faster with ϵ−1 and can achieve palette sizes close to the min-

imum of ∆ + Õ (
√
∆) allowed by the nibble method. In particular, for any ϵ = Ω̃(1/

√
∆), we show

that (1 + ϵ )∆-edge coloring is reducible to O (log ϵ−1) instances of the Lovász local lemma with
local failure probability p = exp(−ϵ2∆1−o (1) ), plus one instance of O (∆)-edge coloring, which can
be solved quickly using [13, 29, 37]. When ϵ2∆ � logn the local failure probability is already
1/poly(n); otherwise, we can invoke a distributed LLL algorithm [22, 30, 35, 53].
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The running time of our algorithm varies for different choices of ∆ and palette size. It can
be shown that our algorithm computes a (1 + ϵ )∆-edge coloring in at most O (logn) time when

ϵ ≥ (log3 ∆)/
√
∆, or at most O (log∆ n) + (log logn)3+o (1) time when ϵ = Ω(1). These times re-

flect the use of Chung, Pettie, and Su’s LLL algorithm [22]. Applying one of the Ghaffari-Harris-
Kuhn LLL algorithms [35] leads to a (1 + ϵ )∆-edge coloring algorithm running inO (log ϵ−1 · ∆6

+

2O (
√
log logn) ) time.5 Our (∆ + Õ (

√
∆))-edge coloring algorithm is simple, but tricky to analyze, and

requires a general distributed LLL algorithm to be made efficient. Resolving the complexity of the
distributed LLL problem is a major open problem [21] but one that is unlikely to be completely
settled any time soon, given its connection to computing general network decompositions [30, 38].

Upper Bounds on Trees. There is still a significant gap between the upper bound of our (1 +
ϵ )∆-edge coloring RandLOCAL algorithm on general graphs in Section 4 and our Ω(log∆ logn)
RandLOCAL lower bound in Section 2, which applies even to trees. We prove that this lower
bound can be matched when the underlying network is a tree, at least when ϵ = Ω(1) and ∆ <

poly(log logn). In particular, our (1 + ϵ )∆-edge coloring algorithm for trees takes O (log(1/ϵ )) ·
max{ log logn

log log logn , loglog∆ logn} time when ϵ ≥ (log3 ∆)/
√
∆, or O (max{ log logn

log log logn , log∆ logn}) time

when ϵ = Ω(1).
This improvement is achieved by developing a new distributed LLL algorithm for tree structured

dependency graphs, which appears in Section 5. Specifically, if T = (V ,E) is a tree and r = O (1),
then we say that T r

= (V , {(u,v ) | distT (u,v ) ≤ r }) is tree-structured. This type of dependency
graph arises naturally when we run O (1)-round probabilistic algorithms on trees.
Our new LLL algorithm is based on the graph shattering framework.We first apply a randomized

algorithm that fixes the output of most of the vertices such that each connected component of the
remaining part of the graph is small. We then apply a new deterministic LLL algorithm for tree-
structured instances to each component in parallel.
Fischer and Ghaffari [30] showed that one can obtain a DetLOCAL LLL algorithm using a

network decomposition algorithm as a black box. Based on this idea, we give a deterministic
O (max{logλ n, logn/ log logn})-time LLL algorithm for tree-structured instances under criterion

p (ed )λ < 1, λ ≥ 2. The algorithm is based on two new network decomposition algorithms for tree-
structured graphs, presented in Section 6.

For the randomized part of the graph shattering routine, the goal is to design an algorithm to
compute a good partial assignment ϕ such that the connected components induced by the unas-
signed part of the dependency graph are small. We give an algorithm for tree-structured instances
that achieves this goal in timeO (logλ logn), improving theO (d2 + log∗ n)-time shattering routine
of Reference [30] when d is not too small. At a high level, our approach is to consider the follow-
ing process. First, draw a total assignment ϕ to V according to the distribution of the variables.
Whenever the probability that a bad event E (v ) occurs under the current partial assignment ϕ is
higher than a certain threshold, updateϕ by unsetting all variables in vbl(E (v )). This can be viewed
as a contagion dynamic played out on the dependency graph. Vertices that have unset their vari-
ables are said to have been infected, and infected vertices can cause nearby neighbors to become
infected. If this contagion process were actually simulated, then it would take Ω(logn) parallel
steps to reach a stable state, which is too slow. We develop a different method to achieve a stable
state that is exponentially faster, by avoiding a direct simulation.
By composing these results, we obtain a randomizedO (max{logλ logn, log logn/ log log logn})

LLL algorithm for tree-structured instances, when λ is at least a sufficiently large constant

5The running time of Reference [35] is (at least) quadratic in the degree d of the dependency graph, and in our case

d = Θ(∆3).
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depending on r . Our upper bound essentially matches the RandLOCAL lower bound of Brandt
et al. [16], which is of the form Ω(loglogp−1 logn) under the LLL criterion p · f (d ) ≤ 1 for any

f (d ) ≤ 2d .
A major open problem is to extend this contagion dynamic idea to general dependency graphs,

and show that they, too, can be shattered in O (log logn) time. In light of References [16, 19], this
is a necessary first step towards proving Conjecture 1 from Chang and Pettie [21], namely, that
the RandLOCAL complexity of the LLL under a polynomial criterion is O (log logn).

Additional Results on Trees. In Section 7, we prove some additional results on the complexity of
edge coloring trees. We design anO (log∆ n)-time DetLOCAL algorithm for ∆-edge coloring a tree
T with maximum degree ∆ ≥ 3. A tree is said to be oriented if the tree is rooted and each vertex
that is not the root knows its parent. We show that a (∆ + 1)-edge coloring of an oriented tree can
be found in O (log∗ n) time, but ∆-edge coloring takes Ω(log∆ n) time.

Remark. After the initial publication of this work in Reference [18], we learned that Molloy and

Reed [51] also obtained a similar bound of ∆ +O (
√
∆ log4 ∆) on the palette size for edge coloring.

Their algorithm was more general in that it extends to k-uniform hypergraphs (with palette size
∆ +O (∆1−1/k log4 ∆)) and applies to list edge coloring. The main difference between our work and
theirs [51] is the analysis.We use a concentration bound [27, Equation (8.5)] that takes into account
the variance of each variable. The analysis of Reference [51] is based on Talagrand’s concentration
inequality. Our result is slightly better in terms of the polylog-factor, and it also improves the
existential bound on the palette size for list edge coloring. Specifically, if each edge is given a list

of (1 + ϵ )∆ with ϵ = ω ((log2.5 ∆)/
√
∆) colors, then the graph admits a proper list edge coloring.

1.4 Related Work

In this section, we walk though the rich history of distributed edge coloring and the distributed
LLL.
We begin with reviewing previous edge coloring algorithms; see Table 1 for a summary. Edge

coloring can be interpreted as a vertex coloring problem on the line graph L(G ), which has has

maximum degree ∆̂ = 2∆ − 2. Applied to L(G ), Linial’s [48] vertex coloring algorithm will com-

pute anO (∆̂2)-edge coloring inO (log∗ n − log∗ ∆̂ + 1) time. Using the fastest deterministic (∆̂ + 1)-

vertex coloring algorithms [32, 57], (2∆ − 1)-edge coloring is solved in min{2O (
√
logn), Õ (

√
∆) +

O (log∗ n)} time. Barenboim et al. [12] gave deterministic algorithms for (2k∆)-edge coloring

(k ≥ 2) in Õ (k∆1/2k ) +O (log∗ n) time.
Barenboim et al. [13] proved that O (log∆) iterations of the natural randomized (2∆ − 1)-edge

coloring algorithm effectively shatters the graph into uncolored components of n′ = poly(logn)
vertices; then we can employ a deterministic list coloring algorithm to color these components in

2O (
√
logn′)

= 2O (
√
log logn) time [57]. Thus, the total time complexity is O (log∆) + 2O (

√
log logn) .

Elkin et al. [29] proved that when ∆ > (logn)1+γ (for some constant γ ), (2∆ − 1)-edge col-
oring can be solved in O (log∗ n) time in RandLOCAL. Recently, Fischer et al. [31] proved that
(2∆ − 1)-edge coloring can be solved in O (log7 ∆ logn) time in DetLOCAL. This bound was

later improved to O (log4 ∆ log2 n) by Ghaffari [35], and then to Õ (log2 ∆ logn) by Harris [42].

Together with References [13, 29], this implies a RandLOCAL algorithm taking Õ (log3 logn)
time. Using a slightly larger palette of (2 + ϵ )∆ colors, ϵ > 1/ log∆, Ghaffari et al. [37] gave an
O (ϵ−1 log2 ∆ log log∆(log log log∆)1.71 logn)-time DetLOCAL edge coloring algorithm, improv-
ing a previous work [40].
We cannot hope to use fewer than ∆ + 1 colors on general graphs. Vizing [63] proved that ∆ + 1

suffices for any graph, and Holyer [44] proved that it is NP-hard to tell if a graph is ∆-colorable.
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Table 1. A History of Notable Edge Coloring Algorithms and Lower Bounds,

in Descending Order by Palette Size

Palette Size Time (Rand) Notes References

f (∆) Ω(log∗ n) R ∆ = O (1) [48, 54]

O (∆2) O (log∗ n − log∗ ∆ + 1) � Vertex coloring L(G ) [48]

∆1+ϵ O (log∆ + log∗ n) � [10]

O (∆ logn) O (log4 n) [24]

t (2∆ − 2) (∆/t )O (1) ·O (logn) Vertex coloring L(G ) [9]

2k∆ Õ (k∆1/2k ) +O (log∗ n) � k ≥ 2 [12]

(2 + ϵ )∆
O (ϵ−3 log11 n) [40]

O (ϵ−1 log∆2+o (1) logn) ϵ > 1/ log∆ [37]

2∆ − 1

2O (
√
logn ) Vertex coloring L(G ) [57]

Õ (
√
∆) +O (log∗ n) � Vertex coloring L(G ) [32]

O (log∆) + 2O (
√
log logn ) R Vertex coloring L(G ) [13]

O (log∗ n) R� ∆ > (logn)1+o (1) [29]

2O (
√
log logn ) R [29]

O (log7 ∆ logn) [31]

O (log4 ∆ log2 n) [35]

Õ (log2 ∆ logn) � [42]

Õ ((log logn)3) R� [13]+[29]+[42]

2∆ − 2
Ω(log∆ logn) R new

Ω(log∆ n) new

1.6∆ O (logn) R ∆ > log1+o (1) n [58]

(1 + ϵ )∆

O (ϵ−1 log ϵ−1 + logn) R ∆ > (logn)1+γ (ϵ ) [26]

O
(

(ϵ−2 log ϵ−1 + log∗ ∆)
⌈

logn

ϵ 2∆1−o (1)

⌉)
R ∆ > ∆ϵ [29]

O
(

log ϵ−1
⌈

logn

ϵ 2∆1−o (1)

⌉
+ log∗ n

)

R� ϵ∆ > (logn)1+o (1) new

O
(

log ϵ−1
⌈

logn

ϵ 2∆1−o (1)

⌉
+ (log logn)3+o (1)

)

R� ϵ = ω ((log2.5 ∆)/
√
∆) new

∆ +O (log∆ n) O (∆6+ϵ log3 n) � [62]

∆ + 2 O (∆13 log3 n) R� [62]

∆ + 1 diameter(G ) � [63]

Some (2∆ − 1)-edge coloring algorithms that follow from vertex coloring L(G ), such as References [3, 8, 11, 47],

have been omitted for brevity. RandLOCAL algorithms are marked with R; all others work in DetLOCAL. Those

algorithms that are the “best” in any sense are marked with a �.

The best sequential (∆ + 1)-edge coloring algorithms [2, 33] run in O (min{∆m logn, m
√

n logn})
time and are not suited for implementation in the LOCAL model. When the palette size is small
a natural way to solve the coloring problem [2, 33] is to begin with any maximal partial color-
ing, and then iteratively recolor portions of the graph (e.g., along “alternating paths”) so that at
least one uncolored edge can be legally colored. This approach was successfully employed by Pan-
conesi and Srinivasan [56] in their distributed algorithm for Brooks’ theorem, which states that
any graph with ∆ ≥ 3 having no (∆ + 1)-cliques is ∆-vertex colorable. They proved that for any
partial coloring, there exists an alternating path with length O (log∆ n), and that given a (∆ + 1)-

vertex coloring, a ∆-vertex coloring could be computed in O (log2 n log∆ n) additional time. This
boundwas recently improved byGhaffari et al. [36], which offers some improved∆-vertex coloring
algorithms.
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Table 2. A Survey of Distributed LLL Algorithms (with a Symmetric LLL Criterion)

Criterion Time Rand/Det Notes Reference

ep (d + 1) < 1

O (MIS · log1/ep (d+1) n) Rand also asymmetric criterion [53]

O (WeakMIS · log1/ep (d+1) n) Rand also asymmetric criterion [22]

O (logd · log1/ep (d+1) n) Rand also asymmetric criterion [34]+[22]

epd2 < 1 O (log1/epd 2 n) Rand also asymmetric criterion [22]

p2dpoly(d ) < 1 O (logn/ log logn) Rand [22]

p (ed )λ < 1 O (n1/λ · 2O (
√
logn ) ) Det Any λ ≥ 1 [30]

p (ed )4λ < 1 O (d2) + (logn)1/λ · 2O (
√
log logn ) Rand Any λ ≥ 8 [30]

p (ed )32 < 1 2O (
√
log logn ) Rand d ≤ (log logn)1/5 [30]

20000pd8 < 1 exp(i )
(

O

(

logd +

√

log(i+1) n

))

Rand i ≥ 1. [35]

p (ed )d
2
+1 < 1 O (d2

+ log∗ n) Det [30]

Lower Bounds (apply to tree-structured instances)

p · f (d ) ≤ 1 Ω(log∗ n) Rand Any f [22]

p · f (d ) ≤ 1 Ω(loglog(1/p ) logn) Rand Any f (d ) ≤ 2d [16]

p · f (d ) ≤ 1 Ω(logd n) Det Any f (d ) ≤ 2d [19]

LLL for Tree-Structured Instances

p (ed )2 < 1 O (logn) Det new

p (ed )λ < 1 O (max{logλ n,
logn

log logn }) Det λ ≥ 2 new

p (ed )λ < 1 O (max{logλ logn,
log logn

log log logn }) Rand λ ≥ 2(4r + 8r ) new

MIS = O (min{d + log∗ n, logd + 2O (
√
log logn ) }) [11, 34] is the complexity of computing amaximal independent

set in a graph with maximum degree d .WeakMIS = O (logd ) [34] is the task of finding an independent set I such

that the probability that v is not in/adjacent to I is 1/poly(d ). If T = (V , E ) is a tree, then T r = (V , {(u, v ) :

distT (u, v ) ≤ r }) is tree-structured, where r = O (1). All lower bounds apply even to tree-structured instances.

We do not try to optimize the LLL criterion λ ≥ 2(4r + 8r ) in the last line.

Lower Bounds. Linial’s Ω(log∗ n) lower bound for O (1)-coloring the ring [48, 54] implies that
f (∆)-edge coloring also cannot be computed ino(log∗ n) time, for any function f . To the best of our
knowledge, none of the other published lower bounds applies directly to the edge coloring prob-

lem. Kuhn, Moscibroda, and Wattenhofer’s Ω(min{ log∆
log log∆ ,

√
logn

log logn }) lower bounds apply to MIS

and maximal matching, but not to any vertex or edge coloring problem. Linial’s Ω(log∆ n) lower
bound [48] (see Reference [60, p. 265]) on o(∆/ ln∆)-vertex coloring trees does not imply any-
thing for edge coloring trees. The lower bounds of Brandt et al. [16] (RandLOCAL Ω(log∆ logn))
and Chang, Kopelowitz, and Pettie [19] (DetLOCAL Ω(log∆ n)) for sinkless orientation and ∆-vertex
coloring trees do not naturally generalize to edge coloring.

Distributed Lovász Local Lemma. Table 2 summarizes distributed LLL algorithms under different
symmetric criteria p · f (d ) < 1, where p is the local probability of failure and d is the maximum
degree in the dependency graph. Chang and Pettie [21] conjectured that the RandLOCAL com-
plexity of the LLL under some polynomial LLL criterion is O (log logn), matching the Brandt et
al. [16] lower bound. If this conjecture were true, due to the necessity of graph shattering [19,
Theorem 3], then an optimal randomized LLL algorithm should be structured as follows. It must
combine anO (logn)-time deterministic LLL algorithm and anO (log logn)-time randomized graph
shattering routine to break the dependency graph into poly(logn)-size LLL instances. Fischer and
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8:10 Y.-J. Chang et al.

Ghaffari [30] exhibited a deterministic n1/λ+o (1)-time algorithm for LLL criterion p (ed )λ < 1, and
anO (d2 + log∗ n) routine to shatter the dependency graph into poly(logn)-size components. More
recently, Ghaffari et al. [35] developed a generic derandomization method for the LOCAL model

that implies randomized LLL algorithms running in time exp(i ) (O (logd +

√

log(i+1) n)), for any

i ≥ 1. For example, when d < 2O (
√
log logn) , their LLL algorithm runs in 2O (

√
log logn) time.

1.5 Organization

In Section 2, we give lower bounds on (2∆ − 2)-edge coloring. In Section 3, we give lower bounds
on a class of “recoloring” algorithms for Vizing’s theorem. In Section 4, we give a randomized
(1 + ϵ )∆-edge coloring algorithm, which requires a distributed LLL algorithm when ϵ2∆ is suffi-
ciently small. In Section 5, we give new LLL algorithms for tree-structured dependency graphs. In
Section 6, we present new network decomposition algorithms for trees, which are used in Section 5.
In Section 7, we prove some new bounds on the complexity of ∆- and (∆ + 1)-edge coloring trees,
both in the oriented and unoriented cases. Much of the analysis of the randomized edge-coloring
algorithm (Section 4) appears in Appendix A.

2 LOWER BOUND FOR (2∆ − 2)-EDGE COLORING

The sinkless orientation problem [16] is to direct the edges such that no vertex has out-degree
zero. Since this problem becomes harder with fewer edges, in this section, we write ∆min and
∆max to denote the minimum and the maximum degree. We follow the method of References [16,
19], who proved that ∆-coloring graphs (even trees) requires Ω(log∆ logn) in RandLOCAL and
Ω(log∆ n) in DetLOCAL. Brandt et al. [16] begin by reducing the sinkless orientation problem, in
which nodes initially know a ∆-edge coloring of the graph, to ∆-vertex coloring. Having the ∆-
edge coloring available is essential for making the reduction work, and intuitively it leaks no
information helpful for solving either problem. In Theorem 1, we begin with a similar reduction,
showing that sinkless orientation on bipartite graphs, in which nodes initially know a proper 2-

vertex coloring, is reducible to (2∆ − 2)-edge coloring. We then proceed to prove lower bounds on
sinkless orientation, given the aforementioned 2-vertex coloring, and even given a proper (2∆ − 1)-
edge coloring. (By Theorem 1, reducing the edge-coloring palette to 2∆ − 2 would trivialize the
sinkless orientation problem.)

Theorem 1. Suppose Ae .c . is a t-round (2∆ − 2)-edge coloring algorithm with local failure prob-

ability p on graphs with maximum degree ∆max ≤ ∆. There is a (t + 1)-round sinkless orientation

algorithm As .o . for 2-vertex colored bipartite graphs with minimum degree ∆min ≥ ∆ whose local

failure probability is p.

Proof. Ae .c . produces a proper partial (2∆ − 2)-edge coloring ϕ : E → {1, . . . , 2∆ − 2,⊥} such
that for all v ∈ V , Pr[∃(u,v ) : ϕ (u,v ) = ⊥] ≤ p, i.e., a vertex errs if not all of its edges are colored.
Suppose we are given a bipartite graphG = (V ,E) with a 2-coloringV → {0, 1} and minimum de-
gree ∆min ≥ ∆. In the first round of As .o . , each vertex selects ∆ of its incident edges arbitrarily
and notifies the other endpoint whether it was selected. LetG ′ = (V ,E ′) be the subgraph of edges
selected by both endpoints. The algorithm As .o . runs Ae .c . on G ′ for t rounds to get a partial
coloring ϕ : E ′ → {1, . . . , 2∆ − 2,⊥}, and then it orients the edges as follows. Recall that the un-
derlying graph G is 2-vertex colored. Let e = {u0,u1} ∈ E be an edge with uj colored j ∈ {0, 1}. If
both u0 and u1 do not select e , then e is oriented arbitrarily. Otherwise,As .o . orients e as follows:
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As .o . ({u0,u1}) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

0→ 1
if {u0,u1} ∈ E ′ and ϕ (u0,u1) ∈ {1, 2, . . . ,∆ − 1,⊥},
or if only u0 selected {u0,u1}.

0← 1
if {u0,u1} ∈ E ′ and ϕ (u0,u1) ∈ {∆, . . . , 2∆ − 2},
or if only u1 selected {u0,u1}.

The only way a vertex v can be a sink is when (i) v has degree exactly ∆ in G ′, (ii) v is colored
1, and (iii) each edge e incident to v has ϕ (e ) ∈ {1, 2, . . . ,∆ − 1,⊥}. Criterion (iii) only occurs with
probability at most p. �

Thus, any lower bound for sinkless orientation on 2-vertex colored bipartite graphs also applies
to (2∆ − 2)-edge coloring.

Infinite∆-regular TreeT∆. DefineT∆ to be an infinite∆-regular treewhose vertices are properly 2-
colored by {0, 1} and whose edges are assigned a proper (2∆ − 1)-edge coloring as follows. Pick an
edge and assign it a random color, then iteratively pick any vertexu with one incident edge colored,

choose ∆ − 1 colors at random from the ( 2∆−2
∆−1 ) possibilities, then assign them to u’s remaining

uncolored edges uniformly at random.

Information Stored in the Processors. For simplicity, we suppose that the edges host processors,
and that two edges can communicate if they are adjacent in the line graph L(T∆). Define N t (e ) to
be all edges within distance t of e in the line graph; we also use N t (e ) to refer to all information

stored in the processors within N t (e ); this includes edge coloring, vertex coloring, and the random
bits.
Randomized algorithms that run on T∆ know the edge coloring and how it was generated. Thus,

the probability of failure depends on the random bits generated by the algorithm, and those used
to generate the edge coloring.

Irregular Time Profile. We say that an algorithm on a k-edge colored graphG has irregular time
profile t = (t1, . . . , tk ) if edges with input color i decide their output by examining only their ti -
neighborhood. By definition, a time-t algorithm has time profile (t , t , t , . . . , t ). In the subsequent
discussion, we will apply this concept to T∆. Recall that the edges in T∆ are properly (2∆ − 1)-edge
colored, and so an irregular time profile for an algorithm on T∆ is a (2∆ − 1)-tuple.

Lemma 1 (Round Elimination Lemma). SupposeAs .o . is a sinkless orientation algorithm for T∆
with local error probability p and time profile (t , t , . . . , t

︸����︷︷����︸
i

, t − 1, . . . , t − 1
︸������������︷︷������������︸

(2∆−1)−i

), i.e., edges colored {1, . . . , i}

halt after t rounds and the others after t − 1 rounds. There exists a sinkless orientation algorithmA ′s .o .
for T∆ with local error probability 3p1/3 and time profile (t , t , . . . , t

︸����︷︷����︸
i−1

, t − 1, . . . , t − 1
︸������������︷︷������������︸

(2∆−1)−(i−1)

).

Proof. Only edges colored i modify their algorithm; all others behave identically under A ′s .o .
and As .o . . Let e0 = {u0,u1} be an edge colored i with uj colored j ∈ {0, 1} and let the remaining
edges incident to u0 and u1 be {e1, . . . , e∆−1} and {e∆, . . . , e2∆−2}, respectively. Consider the follow-
ing two events regarding the output of As .o . .

E0 : ∀j ∈ [1,∆ − 1],As .o . (ej ) = 0← 1, i.e., u0 has outdegree 0 in G − {e0},
E1 : ∀j ∈ [∆, 2∆ − 2],As .o . (ej ) = 0→ 1, i.e., u1 has outdegree 0 in G − {e0}.
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Fig. 1. The algorithm for e0 inspects its (t − 1)-neighborhood A = N t−1 (e0) and estimates the probability

that E0 and E1 occur. Observe that E0 is a function of
⋃

j ∈[1,∆−1] N t (ej ), which is completely contained

in A ∪ B, and E1 is a function of
⋃

j ∈[∆,2∆−2] N t (ej ), which is completely contained in A ∪C . Hence, after
conditioning on E�0 ∩ E

�
1 (which depends only on A), E0 and E1 become independent, since B ∩C = ∅.

If both events hold, then either u0 or u1 must be a sink, so

Pr[E0 ∩ E1] ≤ 2p. (1)

On edge e0, A ′s .o . gathers its (t − 1)-neighborhood N t−1 (e0) and evaluates whether the following
two events E�0 ,E�1 occur. Intuitively, E�0 indicates that E0 is dangerously likely to happen, condi-
tioned on N t−1 (e0), and likewise with E�1 and E0. See Figure 1.

E�0 :
[
Pr[E0 | N t−1 (e0)] ≥ p1/3

]
, E�1 :

[
Pr[E1 | N t−1 (e0)] ≥ p1/3

]
.

Notice that if we inspect N t−1 (e0), and condition on the information seen in N t−1 (e0), the events
E0 and E1 become independent, since they now depend on disjoint sets of random variables. Specif-
ically, E0 depends on

⋃

j ∈[1,∆−1] N
t (ej )\N t−1 (e0) and E1 depends on

⋃

j ∈[∆,2∆−2] N
t (ej )\N t−1 (e0).6

Thus,

Pr[E0 ∩ E1 | N t−1 (e0)] = Pr[E0 | N t−1 (e0)] · Pr[E1 | N t−1 (e0)]. (2)

Since E�0 ,E�1 are determined by N t−1 (e0), Equation (2) implies that Pr[E0 ∩ E1 | E�0 ∩ E�1 ] ≥ p2/3,
and with Equation (1), we deduce that

Pr[E�0 ∩ E�1 ] ≤ 2p1/3. (3)

The algorithm A′s .o . orients e0 as follows:

A ′s .o . (e0) =
{

0→ 1 if E�0 holds,
0← 1 otherwise.

6Here, the analysis relies on the following fact, which is a consequence of how we generate the (2∆ − 1)-edge coloring of

T∆ . Conditioning on the colors of the edges in N t−1 (e0), the colors of the edges in
⋃

j∈[1,∆−1] N
t (ej )\N t−1 (e0) and the

colors of the edges in
⋃

j∈[∆,2∆−2] N
t (ej )\N t−1 (e0) are independent.
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We now calculate the failure probabilities of u0 and u1:

Pr[u0 is a sink] = Pr[E�0 ∩ E0]

≤ Pr[E0 | E�0 ] ≤ p1/3, by definition of E�0
Pr[u1 is a sink] = Pr[E�0 ∩ E1]

≤ Pr[E�0 ∩ E�1 ] + Pr[E1 ∩ E�1 ]
≤ 2p1/3 + p1/3 = 3p1/3, by Equation (3) and the definition of E�1 .

The failure probability of the remaining vertices (those not incident to any edge colored i) is the
same under As .o . and A ′s .o . . �

Lemma 2. Any sinkless orientation algorithm for T∆ with local error probability p has time com-

plexity Ω(∆−1 log logp−1).

Proof. Let As .o . be a t-round algorithm with error probability p, i.e., it has time profile
(t , t , . . . , t ). Applying Lemma 1 t (2∆ − 1) times, we get an algorithm A ′s .o . with time profile

(0, 0, . . . , 0) and error probability p0 = O (p3
−t (2∆−1)

). We now claim that p0 must also be at least 8−∆.
Any 0-round orientation algorithm can be characterized by a real vector (q1, . . . ,q2∆−1), where qi
is the probability that an edge colored i is oriented as 0→ 1. Without loss of generality, suppose
that q1, . . . ,q∆ ≥ 1/2. Fix any v ∈ V (T∆) labeled 1. The probability that v is a sink is at least the
probability that its edges are initially colored {1, . . . ,∆} and that they are all oriented to v ; hence,

p0 ≥ ( 2∆−1
∆

)−1 · 2−∆ ≥ 2−3∆. Combining the upper and lower bounds on p0, we have

23∆ ≥ p−10 = Ω

(

(p−1)3
−t (2∆−1)

)

,

and taking logs twice, we have

log(3∆) ≥ log logp−1 − t (2∆ − 1) log 3 −O (1),

which implies that t = Ω(∆−1 log logp−1). �

Theorem 2. Even on 2-vertex colored trees or 2-vertex colored graphs of girth Ω(log∆ n), sinkless
orientation and (2∆ − 2)-edge coloring require Ω(log∆ logn) time in RandLOCAL and Ω(log∆ n)
time in DetLOCAL.

Proof. Consider any sinkless orientation or (2∆ − 2)-edge coloring algorithm with local prob-
ability of failure p. Lemma 2 applies to any vertex v and any radius t such that N t (v ) is consis-
tent with a subgraph of T∆. Thus, on degree-∆ trees or graphs of girth Ω(log∆ n) [15, 25], we get
Ω(min{∆−1 log logp−1, log∆ n}) lower bounds. Following the same proof as Reference [19, The-
orem 5], this implies an Ω(log∆ n) lower bound in DetLOCAL, which, according to Reference
[19, Theorem 3], implies an Ω(log∆ logn) lower bound in RandLOCAL. In other words, the weak
RandLOCAL lower bound Ω(∆−1 log logn) implied by Lemma 2 automatically implies a stronger
lower bound. �

3 LOWER BOUNDS FOR RECOLORING-TYPE ALGORITHMS

In this section, we show that for c ∈ [1, ∆3 ], any algorithm for (∆ + c )-edge coloring based on ex-

tending partial colorings by recoloring subgraphs needs Ω( ∆
c
log cn

∆
) rounds.

Theorem 3. Let ∆ be the maximum degree and c ∈ [1, ∆3 ]. For anyn, there exists ann-vertex graph
G = (V ,E) and a partial edge coloring ϕ : E → {1, . . . ,∆ + c,⊥}, with exactly one uncolored edge e0
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Fig. 2. An example of the construction when ∆ = 5, c = 1, k = 3, k ′ = 2, and � ≥ 7. Edges colored by palette

S0 = {1, 2, 3} are blue, and edges colored by palette S1 = {4, 5, 6} are pink. Leftover vertices in layer i − 2 are
also depicted (hollow) in layer i , and joined by a dashed curve. They represent the same vertex, not two

different vertices.

(ϕ (e0) = ⊥) satisfying the following property. For any total edge coloring ϕ ′ : E → {1, . . . ,∆ + c} of
G, ϕ and ϕ ′ differ on a subgraph of diameter Ω( ∆

c
log( cn

∆
)).

Suppose that G is a partially (∆ + c )-edge colored graph, where an edge e0 in uncolored. A
natural approach to color e0 is to find an “alternating path” e0e1 · · · e� , and then recolor the path.
That is, for 0 ≤ i ≤ � − 1, let the new color of ei be the old color of ei+1, and then color the last
edge e� by choosing any available color (if possible). This type of approach has successfully led to a
distributed algorithm for Brooks’ theorem [56]. Specifically, given a (∆ + 1)-vertex coloring, it was
shown in Reference [56] that a ∆-coloring can be computed in poly(logn) time, independent of ∆.
See Ghaffari et al. [36] for several faster algorithms. However, Theorem 3 implies the existence of
a graph where any alternating subgraph has diameter Ω( ∆

c
log cn

∆
), which is expensive for large

∆. The remainder of this section is a proof of Theorem 3.

Construction. Without loss of generality, assume that ∆ + c is even, and let k = ∆+c
2 . We divide

the color palette {1, . . . ,∆ + c} into two equal-size sets S0 = {1, . . . ,k } and S1 = {k + 1, . . . ,∆ + c}.
(One may refer to Figure 2 for an example, with ∆ = 5, c = 1. In the figure, blue edges are colored
from palette S0 and pink edges from S1.) Let k

′
= ∆ − k .

The graphG∗ (�,∆, c ) consists of one uncolored edge e0 = {u0,v0}; all other vertices are arranged
in layers 1, . . . , � and all other edges connect two vertices in adjacent layers or layers i and i + 3,
for some i . In G∗ (�,∆, c ), e0 is a bridge and the subgraphs attached to u0 and v0 are structurally
isomorphic, but colored differently. Thus, we focus on the half of G∗ attached to u0.

Base Case. Layer 1 consists of k vertices attached to u0. They are initially colored with distinct
colors from S0.

Inductive Step. The (i + 1)th layer is constructed as follows. We take all the vertices at layer i and
the leftover vertices at layer i − 2 and partition them into groups of size k ′; any ungrouped vertices
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are called leftovers at level i . (In Figure 2, a leftover vertex in layer i − 2 is drawn twice, solid in
layer i − 2 and hollow when it is promoted to layer i; they are connected by a dashed line.) The
grouping is arbitrary, so long as all vertices promoted from layer i − 2 are grouped. Each group
forms the left-hand side of a complete bipartite graph Kk ′,k . Layer i + 1 consists of the right-hand
side of all the (disjoint) copies of Kk ′,k . All the edges in these graphs are properly colored with Sb
where b = i mod 2. (The subgraph attached to v0 is constructed in the same way, except that we
flip the parity: the complete bipartite graphs are colored with Sb , b = (i + 1) mod 2.)

Define ni and li as the number of layer-i vertices and layer-i leftover vertices.7 According to the
construction, (ni ) and (li ) satisfy the following recurrences:

n1 = k,

l−1 = l0 = 0,

ni+1 = k

⌊
ni + li−2

k ′

⌋
for i + 1 ≥ 2,

li = (ni + li−2) modk ′ for i ≥ 1.

Clearly,ni = Θ((k/k ′)i ). Define ϵ = 2c
∆−c so thatk/k

′
=

∆+c
∆−c = 1 + 2c

∆−c = 1 + ϵ . The total number

of vertices inG∗ (�,∆, c ) is n = Θ(ϵ−1n� ) = Θ(ϵ−1 (1 + ϵ )� ) and � = Θ(log1+ϵ (ϵn)) = Θ( ∆
c
log cn

∆
). In

particular, when c is constant and ∆ < n1−Ω(1) , � = Ω(∆ logn). The diameter of the graph is at least
�/3, since, by construction, no edge crosses more than three layers. We remark that the purpose
of the requirement c ≤ ∆/3 in the statement of Theorem 3 is to make ϵ ≤ 1. Our construction still
applies to the case of c > ∆/3, but it gives a worse bound on � when c is close to ∆.
Let ϕ be the initial partial edge-coloring of G∗ (�,∆, c ), with e0 left uncolored, and ϕ ′ be any

total edge-coloring. We claim that ϕ ′ recolors at least one edge in the subgraph induced by layers
� − 5, . . . , �. Suppose otherwise. Fix any vertex v in layer � − 6. It has exactly k neighbors in a
higher layer, either � − 5 (if v is not a leftover vertex) or � − 3 (if v is a leftover vertex); each such
neighbor u is adjacent to k edges to a higher layer, all of which are colored from the palette S1
(without loss of generality, assume � is even). That means that all edges connecting v to a higher
layer must be colored from S0. By a reverse induction from � − 6 down to 0, it follows that all edges
fromu0 to layer 1 must be colored with S0. A symmetric argument onv0’s side shows that all edges
from v0 to layer 1 must be colored with S1; hence, e0 cannot be properly colored by ϕ ′.

4 RANDOMIZED EDGE COLORING ALGORITHM

Elkin et al. [29] showed that for any constant ϵ > 0, there is a number ∆ϵ (depending only on ϵ)
such that for ∆ > ∆ϵ , ∆(1 + ϵ )-edge coloring can be solved in

O (TLLL (n, poly(∆), exp(−ϵ2∆/poly(log∆))) +T ∗ (n,O (∆)))

rounds in the RandLOCAL model, where

• TLLL (n,d,p) is the RandLOCAL complexity for constructive LLL with the parameters d and
p on an n-vertex dependency graph;

• T ∗ (n,∆′) is the RandLOCAL complexity for 5∆′-edge coloring on ann-vertex graph of max-
imum degree ∆′.

It is unclear to what extent the algorithm of Reference [29] (or its predecessor, Reference [26])
still works if we allow ϵ = o(1). For instance, is it possible to solve (∆ + ∆0.7)-edge coloring in
RandLOCAL in O (poly logn) time?

7The leftover vertices at layer i − 2 are still considered as layer i vertices, even though they have been promoted to layer i .
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Challenges to Reducing the Number of Colors. The analysis of our algorithm is substantially more
involved than all previous edge coloring algorithms [26, 29, 58]. Here, we give a short technical
review of the types of issues faced in distributed edge coloring.
Previous algorithms [26, 29] are based on the Rödl Nibble method. In each round, every un-

colored edge nominates itself to be colored with probability O (ϵ ) and remains idle otherwise; a
self-nominated edge picks a free color from its available palette and permanently colors itself if the
colors selected by adjacent edges do not conflict with it. The goal is to show that natural quanti-
ties (palette size, degree of vertices in the uncolored graph, etc.) are sharply concentrated around
their expectations. The first issue is finding the right concentration bound. Chernoff bounds are
insufficient for several reasons, one of which is the need for independence (or negative depen-
dence [27, 28]) between the events of interest. Azuma’s inequality and variants fall short due to
the weakness of Lipschitz properties (bounded differences).8 The algorithm of Dubhashi, Grable,
and Panconesi [26] used a specialized concentration inequality of Grable [41], whereas our algo-
rithm and that of Elkin, Pettie, and Su [29] use one [27, Theorem (8.5)] that is syntactically closer
to Chernoff/Hoeffding/Azuma-type inequalities. (It is restated as Theorem 13 in Appendix A.)
The purpose of the “self-nomination” step in References [26, 29] is to simplify certain aspects

of the analysis. For example, the probability that an edge is successfully colored, conditioned on it

nominating itself, is a very high 1 −O (ϵ ). Because of this, we can afford to toss out any color c from
e’s palette if any self-nominated edge e ′ adjacent to e selects c—regardless of whether e ′ successfully
colors itself. This type of subtle change generally makes things simpler. Some events that would
ordinarily be dependent become independent, and some variables (e.g., a vertex’s c-degree) now
depend on Θ(∆2) variables rather than Θ(∆3). The downside of this approach is that Ω(ϵ−1) steps
are necessary to color a large fraction of the graph, and with each coloring step the quantities we
are monitoring (c-degree, palette size, etc.) deviate further from their expectations. When ϵ−1 is
polynomial in ∆, the accumulated deviation errors make it impossible to achieve palette sizes as

small as ∆ + Õ (
√
∆).

Our Approach. Our algorithm is more “natural” than References [26, 29]. Roughly speaking, in
each step each edge chooses a color uniformly at random from its available palette and perma-
nently colors itself if there are no local conflicts (One-Shot-Coloring). That is, we dispense with
the low probability self-nomination step. Let pi be a lower bound on the palette size after i such
steps, and di , ti be upper bounds on uncolored degree and c-degree of any vertex, respectively. It
is straightforward to show that if everything behaves precisely according to expectation, the (di )
sequence shrinks by a (1 − e−2) factor in each step and both (pi ), (ti ) shrink by a (1 − e−2)2 factor.
In reality these quantities do deviate from their expectations, and even tiny, (1 + o(1))-factor de-
viations compound themselves and spin out of control. One reason our analysis is more complex
than References [26, 29] is that we look at concentration up to lower order terms. For example,
although pi ≈ ti , we bound βi =

pi
ti
− 1, which captures accumulated errors beyond the leading

constants.

The Use of the Distributed LLL. As in Reference [29], we obtain good concentration on di ,pi , ti
with probability 1 − exp(−ϵ2∆/ log4+o (1) ∆), which is 1 − 1/poly(n) if ∆ and ϵ are sufficiently large.
If not, then we must invoke a distributed LLL algorithm to make sure each random coloring ex-
periment introduces bounded deviation errors in di ,pi , ti . A constant fraction of the edges are
colored in each step. For many parameter regimes the running time is dominated by O (log ϵ−1)

8This can be seen by considering the problem of bounding the c-degree of a vertex v (the number of edges incident to

v with color c in their palettes). This quantity potentially depends on the choices of Ω(∆3) edges within distance 3 of v ,

and each such choice could affect v ’s c-degree by 1 or more. The sum of these Lipschitz constants completely dwarfs the

expected c-degree, which makes Azuma-type inequalities inapplicable.

ACM Transactions on Algorithms, Vol. 16, No. 1, Article 8. Publication date: November 2019.



Distributed Edge Coloring and Lovász Local Lemma 8:17

calls to an distributed LLL algorithm, as our algorithm needs to run One-Shot-Coloring for this
many iterations.

4.1 Our Result

In this section, we prove the following theorem, which improves upon the algorithms of Refer-
ences [26, 29]. Here, T ∗ (n,∆′) is the RandLOCAL complexity of the 5∆′-edge coloring problem,
and TLLL (n,p,d ) is the complexity of distributed LLL with parameters p and d .

Theorem 4. Let ϵ = ω (
log2.5 ∆√

∆
) be a function of ∆. There is a RandLOCAL algorithm for (1 + ϵ )∆-

edge coloring in time

O (log(1/ϵ )) ·TLLL (n,d,p) + T ∗ (n,O (ϵ∆)) ,

where p = exp(−ϵ2∆/ log4+o (1) ∆) = exp(−ω (log∆)) and d = O (poly(∆)).

The statement of Theorem 4 guarantees that whenever ϵ and ∆ satisfy the specified condition,

we always have exp(−ϵ2∆/ log4+o (1) ∆) = exp(−ω (log∆)), and so we may use a distributed LLL
algorithm under any criterion p (ed )λ < 1. There is an inherent tradeoff between the palette size
and the runtime in Theorem 4. Selecting smaller ϵ allows us to use fewer colors, but it leads to a

higher p = exp(−ϵ2∆/ log4+o (1) ∆), which may increase the runtime of the LLL algorithm.

Runtime of 5∆′-edge Coloring. It is known thatT ∗ (n,∆′) is at mostO (log∆′) plus theDetLOCAL
complexity of 3∆′-edge coloring on poly(logn)-size graphs. This is achieved by applying the

(∆̃ + 1)-vertex coloring algorithm of Reference [13] to the line graph, where ∆̃ = 2∆′ − 2 is the
maximum degree of the line graph.

For the special case of ∆′ = log1+Ω(1) n, (2∆′ − 1)-edge coloring can be solved in RandLOCAL

O (log∗ n) rounds [29]. The state-of-the-art DetLOCAL algorithm [37] for (2 + x )∆′-edge coloring
has complexity

O (log2 ∆′ · x−1 · log log∆′ · log1.71 log log∆′ · logn)
for any x > 1/ log∆′. Thus, combining References [13, 29, 37] with x = 1, we have

T ∗ (n,∆′) = O (log3 logn · log log logn · log1.71 log log logn) = (log logn)3+o (1) .

This is achieved as follows. If ∆′ = Ω(log2 n), then we run the O (log∗ n)-time RandLOCAL algo-
rithm of Reference [29]. Otherwise, we run the RandLOCAL graph shattering phase of Reference
[13] (using the first 2∆′ colors) followed by the DetLOCAL algorithm of Reference [37] (using the
remaining 3∆′ colors) on each component.

4.2 Time Complexity Analysis

We calculate the time complexity for Theorem 4 in different parameter regimes of ∆ and ϵ .

Running Time on General Graphs. Our algorithm computes a (1 + ϵ )∆-edge coloring inO (logn)

time when ϵ = ω (log2.5 ∆)/
√
∆). Observe that in this parameter regime, we have log(1/ϵ ) =

O (log∆). Applying the distributed LLL algorithm of Chung, Pettie, and Su [22] under the criterion
epd2 < 1, we obtain TLLL (n,d,p) = O (log1/ep (d+1) n) = O (log∆ n), as log(1/p) = ω (log∆). There-

fore, O (log(1/ϵ )) ·TLLL (n,d,p) = O (logn). By applying one of the Ghaffari-Harris-Kuhn LLL al-

gorithms [30, 35], the cost per LLL is O (d2 + 2O (
√
log logn) ) = O (∆6

+ 2O (
√
log logn) ).

The termT ∗ (n,O (ϵ∆)) = (log logn)3+o (1) can become the dominant term when ∆ is sufficiently
large. In particular, when ϵ = Ω(1), we have log(1/ϵ ) = O (1), and so our algorithm is able to finish
in O (log∆ n) + (log logn)3+o (1) time.
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Runtime on Trees. Consider running our algorithm on a tree with palette size (1 + ϵ )∆, where

ϵ = Ω(
log2.5+x ∆√

∆
), for some positive constant x . Then the LLL parameters are d = poly(∆) and

p = exp(−ϵ2∆/ log4+o (1) ∆) in Theorem 4, which satisfy the criterion p (ed )λ < 1 with λ =

Ω(logx ∆). Using our randomized LLL algorithm for tree-structured dependency graphs (Sec-
tion 5), we have

TLLL
(

n, poly(∆), exp
(

−ϵ2∆/ log4+o (1)
))

= O

(

max

{

log logn

log log logn
, loglog∆ logn

})

.

We claim thatT ∗ (n,∆′) = O (log∗ ∆′ + log∆′ logn) on trees. This is achieved as follows. First, do a
O (log∗ ∆′)-time randomized procedure to partially color the graph using the first 2∆′ colors so that
the remaining uncolored components have size poly(logn). This can be done using the algorithm
of [29] without invoking any distributed LLL algorithm. Then, apply our deterministicO (log∆′ ñ)-
time algorithm for ∆′-edge coloring trees (Section 7) to each uncolored component separately,
using a set of ∆′ fresh colors.

To sum up, the time complexity of (1 + ϵ )∆-edge coloring trees is

O

(

log(1/ϵ ) ·max

{

log logn

log log logn
, loglog∆ logn

}

+ log∗ ∆ + log∆ logn

)

= O

(

log(1/ϵ ) ·max

{

log logn

log log logn
, loglog∆ logn

})

.

This nearly matches our Ω(log∆ logn) lower bound (Section 2).
For the case ϵ = Ω(1), our algorithm runs faster, as we can use λ = ∆/poly log∆, and so the run-

ning time of the distributed LLL becomesO (max{ log logn
log log logn , log∆ logn}). In this case, our algorithm

finds a (1 + ϵ )∆-edge coloring in O (max{ log logn
log log logn , log∆ logn}) time.

4.3 The Algorithm and Its Invariants

Our algorithm has two phases. The goal of the first phase is to color a subset of the edges using

the colors from C1
def
= {1, . . . ,∆(1 + ξ )} such that the subgraph induced by the uncolored edges has

degree less than ∆′ = 1
5 (ϵ − ξ )∆ = Θ(ϵ∆). The first phase consists of O (log(1/ϵ )) executions of a

distributed Lovász Local Lemma algorithm. The second phase colors the remaining edges using

the colors from C2
def
= {∆(1 + ξ ) + 1, . . . ,∆(1 + ϵ )} using the fastest available coloring algorithm,

which takes T ∗ (n,∆′) time.

Algorithm. In what follows, we focus on the first phase. We writeGi to denote the graph induced
by the set of uncolored edges at the beginning of the ith iteration. Each edge e in Gi has a palette
Ψi (e ) ⊆ C1. We write degi (v ) to denote the number of edges incident to v in Gi and degc,i (v ) to
denote the number of edges incident to v that have color c in their palettes. For the base case, we
set G1 = G and Ψi (e ) = C1 for all edges. In the graph Gi , we maintain the following invariantHi .

InvariantHi : For each edge e , vertex v , and color c , we have

degi (v ) ≤ di ,

degc,i (v ) ≤ ti ,

|Ψi (e ) | ≥ pi .

Parameters. Given two numbers η ≥ 1 and ξ ∈ (0, ϵ ) (which are functions of ∆), we define three
sequences of numbers {di }, {ti }, and {pi } as follows.

ACM Transactions on Algorithms, Vol. 16, No. 1, Article 8. Publication date: November 2019.



Distributed Edge Coloring and Lovász Local Lemma 8:19

Base case (i = 1):

d1
def
= ∆, t1

def
= ∆, p1

def
= ∆(1 + ξ ).

Inductive step (i > 1):

di
def
= (1 + δi−1)d

�
i−1, d�i−1

def
= di−1 ·

(

1 − (1 − 1/pi−1)2(ti−1−1)
)

,

ti
def
= (1 + δi−1)t

�
i−1, t �i−1

def
= ti−1 ·

(

1 − ti−1
pi−1

(1 − 1/pi−1)2ti−1
)
(

1 − (1 − 1/pi−1)2ti−1
)

,

pi
def
= (1 − δi−1)p�i−1, p�i−1

def
= pi−1 ·

(

1 − ti−1
pi−1

(1 − 1/pi−1)2ti−1
)2

.

Drifts (all i):

δi
def
=

βi

η
, βi

def
=

pi

ti
− 1 (Notice that β1 = ξ ).

The choice of parameters are briefly explained as follows. Consider an ideal situation where
degi−1 (v ) = di−1, degc,i−1 (v ) = ti−1, and |Ψi−1 (e ) | = pi−1 for all c , e , and v . Consider a very simple
experiment called One-Shot-Coloring in which each uncolored edge attempts to color itself by
selecting a color uniformly at random from its available palette. An edge e successfully colors
itself with probability (1 − 1/pi−1)2(ti−1−1) , since there are 2(ti−1 − 1) edges competing with e for
c ∈ Ψi−1 (e ), and each of these 2(ti−1 − 1) edges selects c with probability 1/pi−1. Thus, by linearity
of expectation, the expected degree of v after One-Shot-Coloring is d�i−1, and the parameter di is
simply d�i−1 with some slack. The parameters {t �i−1, ti ,p�i−1,pi } carry analogous meanings. The term
βi represents the second-order error. We need control over {βi }, since it influences the growth of
the three sequences {di }, {ti }, and {pi }.
For the base case, it is straightforward to see that we have deg1 (v ) = ∆, degc,1 (v ) = ∆, and
|Ψ1 (e ) | = ∆(1 + ξ ), and thus G1 satisfies the invariantH1. For the inductive step, given thatHi is
met in Gi , we use a distributed LLL algorithm (based on One-Shot-Coloring) to color a subset of
edges in Gi so that the next graph Gi+1 induced by the uncolored edges satisfiesHi+1.

Termination of the First Phase. The number of iterations of our algorithm will be i� − 1 =
O (log(1/ϵ )) (Lemma 4). We will later see that after the (i� − 1)th iteration, the degree of the
vertices in the remaining uncolored part of the graph Gi� satisfies the “terminating condition”
di� ≤ 1

5 (ϵ − ξ )∆. Then, we proceed to the second phase.
The purpose for requiring this condition is to create a sufficiently large gap between the maxi-

mum degree ∆′ (in the remaining uncolored part of the graph) and the number of available colors
(the colors C2 = {∆(1 + ξ ) + 1, . . . ,∆(1 + ϵ )} reserved for the second phase), so that we can run a
5∆′-edge coloring algorithm to color all remaining edges in the second phase of the algorithm.

Analysis. Recall that ϵ = ω (
log2.5 ∆√

∆
). We set η to be any function of ∆ that is ω (log∆) such that

ϵ ≥ η2.5√
∆
. We set ξ = ϵ

6η . The following lemma shows that under certain criteria, the parameters

{di }, {ti }, {pi }, and {βi } are very close to their “ideal” values. The proof is deferred to Section 4.5.

Lemma 3. Consider an index i > 1. Suppose min{di−1, ti−1,pi−1} = ω (log∆), βi−1 = o(1/ log∆),
and δi−1 = o(βi−1/ log∆). Then the following four equations hold:

di = di−1 · (1 ± o(1/ log∆)) · (1 − e−2),
ti = ti−1 · (1 ± o(1/ log∆)) · (1 − e−2)2,
pi = pi−1 · (1 ± o(1/ log∆)) · (1 − e−2)2,
βi = βi−1 · (1 ± o(1/ log∆)) / (1 − e−2).
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Based on Lemma 3, we have the following lemma.

Lemma 4. Let i� = O (log(1/ϵ )) = O (log∆) be the largest index such that βi�−1 ≤ 1/η. Then the

following four equations hold for any 1 < i ≤ i�:

di = (1 ± o(1/ log∆))i−1∆(1 − e−2)i−1 = (1 ± o(1))∆(1 − e−2)i−1,
ti = (1 ± o(1/ log∆))i−1∆(1 − e−2)2(i−1) = (1 ± o(1))∆(1 − e−2)2(i−1),
pi = (1 ± o(1/ log∆))i−1∆(1 − e−2)2(i−1) = (1 ± o(1))∆(1 − e−2)2(i−1),
βi = (1 ± o(1/ log∆))i−1ξ/(1 − e−2)i−1 = (1 ± o(1))ξ/(1 − e−2)i−1.

Proof. To prove the lemma, it suffices to show that the condition of Lemma 3 is met for all
indices 1 < i ≤ i�. We prove this by an induction on i . By the induction hypothesis the four equa-
tions hold at index i − 1. We show that the condition of Lemma 3 is met for the index i , and so the
four equations also hold for index i . Due to 1/η = o(1/ log∆), we already have βi−1 = o(1/ log∆)
and δi−1 = o(βi−1/ log∆). It remains to prove that min{di−1, ti−1,pi−1} = ω (log∆).

min{di−1, ti−1,pi−1}
≥ (1 ± o(1))∆(1 − e−2)2(i−1) (Induction hypothesis for di−1, ti−1,pi−1)

= (1 ± o(1))∆(1 − e−2)2(i−2) (1 − e−2)2

= (1 ± o(1))∆ ·
(

(1 − e−2 ± o(1))ξ
βi−1

)2

(Induction hypothesis for βi−1)

≥ (1 − e−2 ± o(1))ξ 2η2∆ (βi−1 ≤ 1/η)

= Ω(η5)

(

ξ = Ω

(

η1.5
√
∆

))

= ω (log∆) �

It remains to show that (i) the terminating condition di� ≤ 1
5 (ϵ − ξ )∆ is satisfied at the end of

the (i� − 1)th iteration, and (ii) in each iteration, in TLLL (n, poly(∆), exp(−ϵ2∆/ log4+o (1) ∆)) time,
invariantHi can be maintained. By Lemma 4, we have

di� = (1 ± o(1))∆(1 − e−2)i�−1 (Lemma 4 for di� )

= (1 ± o(1))∆ · ξ/βi� (Lemma 4 for βi� )

≤ (1 ± o(1))ξη∆. (βi� > 1/η)

For our choices of η and ξ , we have di� ≈ ξη∆ = ϵ∆
6 . Since 1

5 (ϵ − ξ )∆ >
ϵ∆
6 , the condition di� ≤

1
5 (ϵ − ξ )∆ is satisfied.
For each 1 < i ≤ i�, we have

δ 2i ·min{di , ti ,pi } = β2i ti/η
2 (Definition of δi )

= (1 ± o(1)) ·
(

ξ/(1 − e−2)i−1
)2 ·
(

∆(1 − e−2)2(i−1)
)

/η2 (Lemma 4 for ti , βi )

= (1 ± o(1)) · ∆(ξ/η)2

= Ω(ϵ2∆/η4) (Definition of ξ )

= ω (log∆). (Definition of ϵ)

We will later see in Section 4.4 that this implies that any LLL algorithm with parameters d =
poly(∆) and p = exp(−Ω(∆ϵ2/η4)) suffices to maintain the invariant in each iteration. Notice that

if we select η = log1+o (1) ∆, then p = exp(−ϵ2∆/ log4+o (1) ∆), as desired.
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4.4 Maintenance of the Invariant

In this section, we show how to apply a distributed LLL algorithm, with parameters d = poly(∆)
and p = exp(−Ω(δ 2i ·min{di , ti ,pi }), to achieve the following task: given a graph Gi meeting the
property Hi , color a subset of edges of Gi so that the graph induced by the remaining uncolored
edges satisfies the propertyHi+1. We write Ψ(e ) = Ψi (e ) for notational simplicity.

Achieving Uniform Progress. Consider the following modifications to the underlying graph Gi :

• Each edge e discards some arbitrary colors from its palette to achieve uniform palette size
pi .

• Each vertex v locally simulates some imaginary subtrees attached to v and obeying Hi to
achieve uniform color degree ti . That is, if a color c appears in the palette of some edge
incident to a vertex v , then c must appear in the palette of exactly ti edges incident to v .

These modifications to the underlying graph are introduced to enforce broadly uniform progress
in every part of the graph.9

Observe that ifHi applies to the imaginary graph it also applies to the true graph as well, since
we are concerned with lower bounds on palette sizes and upper bounds on c-degrees.

To increase the c-degree of each vertex v to ti , we might need to add so many imaginary edges
to v such that the degree of v exceeds di if we take into account these imaginary edges. This is
fine, as we will later see that we only consider the real edges when we analyze the shrinking rate
of the degree.10

One Shot Coloring. Our analysis focusses largely on how the following O (1)-round procedure
affects the imaginary graph.

One-Shot-Coloring.

(1) Each edge e selects a color Color�(e ) ∈ Ψ(e ) uniformly at random.
(2) An edge e successfully colors itself Color�(e ) if no neighboring edge also selects

Color�(e ).

Wewrite S (v ) to denote the set of real edges incident tov , andwewriteNc (v ) to denote the set of
real and imaginary edges incident tov that have c in their palettes. Let S�(v ) (respectively, N �c (v ))
be the subset of S (v ) (respectively, N �c (v )) that are still uncolored after One-Shot-Coloring. Let
Ψ�(e ) be the result of removing all colors c fromΨ(e ) such that some edge incident to e successfully
colors itself by c .

9The algorithm will likely work if it is run on the actual graph (that is, without hallucinating imaginary subtrees), but we

do not see a way to enforce the same invariants. For example, suppose a vertex v inGi has degree exactly di , but because

the palettes in v ’s neighborhood happen to be advantageously configured, v ’s degree after one coloring step is likely to

be much less than di+1. Surely, this is a good outcome! Yet, if more edges are colored than we expect, then the remaining

edges will lose more colors from their palettes than we expect, possibly violating the lower bound on pi+1. These concerns

motivate us to enforce more uniform progress, hence the introduction of imaginary trees.
10In particular, if we want to increase the c-degree of v by k , then we can add k imaginary edges e1, . . . , ek incident to v

such that the palette of each newly added edge contains c . Other than the color c , there is no overlap between the palettes

of the newly added edges and other edges incident to v .
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The following concentration bound implies thatHi+1 holds with high probability in the graph
induced by the real uncolored edges afterOne-Shot-Coloring, and thus we can apply a distributed
LLL algorithm to obtain Gi+1 that meets the invariantHi+1. See Appendix A for proof.

Lemma 5. Suppose thatHi holds. The following concentration bounds hold for any δ > 0.

Pr
[|S�(v ) | > (1 + δ )d�i

]

= exp
(

−Ω(δ 2di )
)

,

Pr
[|N �c (v ) | > (1 + δ )t �i | N �c (v ) � ∅

]

= exp
(

−Ω(δ 2ti )
)

,

Pr
[|Ψ�(e ) | < (1 − δ )p�i | e remains uncolored

]

= exp
(

−Ω(δ 2pi )
)

.

We write N k (v ) to denote the set of all vertices within distance k of v . It is straightforward to see

that (i) S�(v ) depends only on the colors selected by the edges whose endpoints are both in N 2 (v ), (ii)

N �c (v ) depends only on the colors selected by the edges whose endpoints are both in N 3 (v ), and (iii)

Ψ�(e ) depends only on the colors selected by the edges whose endpoints are both in N 2 (u) ∪ N 2 (v ),

where e = {u,v}.
Thus, the parameters for the LLL are d = poly(∆) and p = exp(−Ω(δ 2i ·min{di , ti ,pi })) by

Lemma 5. Recall from the calculation in Section 4.3 that δ 2i ·min{di , ti ,pi } = Ω(ϵ2∆/η4). We obtain

the bound p = exp(−ϵ2∆/ log4+o (1) ∆) = exp(−ω (log∆)) required in the statement of Theorem 4 by

selecting η = log1+o (1) ∆.

4.5 Proof of Lemma 3

In this section, we prove Lemma 3. We assume min{di−1, ti−1,pi−1} = ω (log∆), βi−1 = o(1/ log∆),
and δi−1 = o(βi−1/ log∆). The two terms (1 − 1/pi−1)2ti−1 and ti−1

pi−1
(1 − 1/pi−1)2ti−1 show up in the

definition of d�i−1, t
�
i−1, and p�i−1. We begin by showing that these two terms are both e−2 (1 +

o(1/ log∆)). We use the fact that ti−1
pi−1
=

1
βi−1+1

in the following calculation:

(1 − 1/pi−1)2ti−1 = e−2ti−1/pi−1 (1 −O (ti−1/p
2
i−1)) (Taylor expansion of ex )

= e−2 · e2(1−ti−1/pi−1 ) (1 −O (ti−1/p
2
i−1))

= e−2 · e2(1−ti−1/pi−1 )
(

1 −O
(

1

(1 + βi−1)pi−1

))

(Defn. βi−1)

= e−2 · e2(1−ti−1/pi−1 ) (1 − o(1/ log∆)) (pi−1 = ω (log∆))

= e−2 · e2βi−1/(βi−1+1) (1 − o(1/ log∆)) (Defn. of βi−1)

= e−2 · (1 +O (2βi−1/(βi−1 + 1))) (1 − o(1/ log∆))
= e−2 · (1 + o(1/ log∆))(1 − o(1/ log∆))
= e−2 (1 + o(1/ log∆)). (∗)

ti−1
pi−1

(1 − 1/pi−1)2ti−1 = e−2 · ti−1
pi−1

· (1 + o(1/ log∆)) by (*)

= e−2 (1 + o(1/ log∆))/(1 + βi−1)

= e−2 (1 + o(1/ log∆))/(1 + o(1/ log∆))

= e−2 (1 ± o(1/ log∆)). (∗∗)
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We are in a position to derive the first three equations in Lemma 3 (i.e., estimates of di , ti , and
pi ). Recall that δi−1 = o(1/ log

2 ∆) and 1/pi−1 = o(1/ log∆):

di = di−1 · (1 + δi−1)
(

1 − (1 − 1/pi−1)2(ti−1−1)
)

= di−1 · (1 + o(1/ log2 ∆))
(

1 − e−2 (1 + o(1/ log∆))/(1 − 1/pi−1)2
)

By (*)

= di−1 · (1 + o(1/ log2 ∆))
(

1 − e−2 (1 + o(1/ log∆))
)

= di−1 · (1 ± o(1/ log∆))(1 − e−2).

ti = ti−1 · (1 + δi−1)
(

1 − ti−1
pi−1

(1 − 1/pi−1)2ti−1
)
(

1 − (1 − 1/pi−1)2ti−1
)

= ti−1 · (1 + o(1/ log2 ∆))
(

1 − e−2 (1 ± o(1/ log∆))
)2

By (**)

= ti−1 · (1 ± o(1/ log∆))(1 − e−2)2.

pi = pi−1 · (1 − δi−1)
(

1 − ti−1
pi−1

(1 − 1/pi−1)2ti−1
)2

= pi−1 · (1 − o(1/ log2 ∆))
(

1 − e−2 (1 ± o(1/ log∆))
)2

By (**)

= pi−1 · (1 ± o(1/ log∆))(1 − e−2)2.
Finally, we derive the last equation in Lemma 3: an estimate of the second-order error βi .

βi =
pi

ti
− 1

=

(1 − δi−1)p�i−1
(1 + δi−1)t �i−1

− 1

= (1 −O (δi−1)) ·
pi−1
ti−1
·
1 − ti−1

pi−1
(1 − 1/pi−1)2ti−1

1 − (1 − 1/pi−1)2ti−1
− 1 Definition of p�i−1 and t

�
i−1

= (1 −O (δi−1)) ·
pi−1
ti−1
− (1 − 1/pi−1)2ti−1

1 − (1 − 1/pi−1)2ti−1
− 1

=

(
pi−1
ti−1
− 1
)

+O (δi−1)
(

−pi−1
ti−1
+ (1 − 1/pi−1)2ti−1

)

1 − (1 − 1/pi−1)2ti−1

=

(
pi−1
ti−1
− 1
)

+O (δi−1)
(

−pi−1
ti−1
+ (1 − 1/pi−1)2ti−1

)

1 − e−2 (1 + o(1/ log∆)) by (*)

=

βi−1 −O (δi−1)

(1 − e−2) (1 − o(1/ log∆)) −pi−1
ti−1
+ (1 − 1/pi−1)2ti−1 = −Θ(1)

=

βi−1 (1 − o(1/ log2 ∆))
(1 − e−2) (1 − o(1/ log∆)) δi−1 = o(1/ log

2 ∆)

= βi−1 · (1 ± o(1/ log∆))/(1 − e−2).

5 DISTRIBUTED LOVÁSZ LOCAL LEMMA ON TREES

Tree-structured Dependency Graphs. In this section, we study the distributed LLL on tree-
structured dependency graphs, which we define as follows. Let T be a tree. Each vertex v holds
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some variablesV (v ) and is associated with a bad event E (v ) that depends only on variables within
distance r/2 of v ; that is, vbl(E (v )) =

⋃

u ∈N r /2 (v )V (u). If S is a subset of the vertices, then we use
vbl(S ) to be short for

⋃

v ∈S vbl(E (v )) =
⋃

v ∈S
⋃

u ∈N r /2 (v )V (u). We assume that r is a constant,
and we do not analyze the dependence on r in the time complexity.

The dependency graph for the set of bad events E is exactly T r , which is the graph obtained
by adding edges to all pairs of vertices of distance at most r in T . Thus, the maximum degree of
the dependency graph is at most ∆r , where ∆ is the maximum degree of T . We fix the parameter
d = ∆r .

The tree-structured dependency graphs (with parameter r ) arise naturally from any r/2-time
RandLOCAL experiment that is run on a treeT . Throughout this section, we assume r/2 ≥ 1 is an
integer and that ∆ ≥ 3.

5.1 Deterministic LLL Algorithm

Network Decomposition. A (λ,γ )-network decomposition is a partition of the vertex set into
V1, . . . ,Vλ such that each connected component induced by each Vi has diameter at most γ . Fis-
cher and Ghaffari [30] showed that given a (λ,γ )-decomposition of G2

E , an LLL instance satis-

fying p (ed )λ < 1 is solvable in O (λ(γ + 1)) time. We use a slight generalization of standard net-
work decompositions. A (λ1,γ1, λ2,γ2)-network decomposition is a partition of the vertices into
V1, . . . ,Vλ1 ,U1, . . . ,Uλ2 such that connected components induced by Vi have diameter at most γ1
and those induced byUi have diameter at most γ2.

Strong and Weak Diameter. For a subgraph H = (V ′,E ′) of G, its weak diameter is defined as
maxu,v ∈V ′ distG (u,v ), whereas its strong diameter is maxu,v ∈V ′ distH (u,v ). Though strong diame-
ter is used in the above definition of a (λ,γ )-network decomposition, we remark that weak diam-
eter suffices for the purpose of applying Lemma 6.

Lemma 6 (Fischer and Ghaffari [30]). Suppose that a (λ1,γ1, λ2,γ2)-network decomposition

of G2
E is given. Any LLL instance on GE satisfying p (ed )λ1+λ2 < 1 can be solved in DetLOCAL in

O (λ1 (γ1 + 1) + λ2 (γ2 + 1)) time.

The proof of Theorem 5 is based on the network decompositions for trees found in Section 6. A
distance-d dominating set of a graphG is a vertex set S such that for each vertex v in the graphG,
there exists u ∈ S such that dist(u,v ) ≤ d .

Theorem 5. Any tree-structured LLL satisfyingp (ed )λ < 1with λ ≥ 2 can be solved inDetLOCAL

inO (max{logλ s,
log s

log log s } + log
∗ n) time, where s ≤ n is the size of any distance-O (1) dominating set

of the tree T .

Proof. Recall that the dependency graph is T r for some tree T and constant r . In Section 6,
we show that a standard (2,O (log s ))-decomposition for (T r )2 = T 2r is computable in O (log s +
log∗ n) time, and if λ = Ω(1) is sufficiently large, a (1,O (logλ s ),O (λ2), 0)-decomposition forT 2r is
computable inO (logλ s + log

∗ n) time, i.e., one part of the partition has diameterO (logλ s ) and the
remaining graph is properly O (λ2)-colored.
If we want to use Lemma 6 to solve the given LLL instance satisfying p (ed )λ < 1, then we need

a (λ1,γ1, λ2,γ2)-network decomposition of T 2r satisfying λ1 + λ2 ≤ λ, i.e., the number of parts is
at most λ.

When λ = O (1) is sufficiently small, we apply Lemma 6 with the first network decomposition.
Because the decomposition has two parts, this works with LLL criterion p (ed )λ < 1 for any λ ≥ 2.
The resulting LLL algorithm takes time O (log s + log∗ n).
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When λ is sufficiently large, we compute a (1,O (log
λ̂
s ),O (λ̂2), 0)-decomposition in O (log

λ̂
s +

log∗ n) time, where λ̂ is chosen as the largest number such that λ̂ ≤
√

log s
log log s and the number parts

λ1 + λ2 = O (λ̂2) in the decomposition is at most λ. We have λ̂ = min{O (
√
λ),
√

log s
log log s }. We solve

the LLL by applying Lemma 6, which takes timeO (λ̂2 + log
λ̂
s + log∗ n) = O (max{logλ s,

log s
log log s } +

log∗ n). Observe that because of the λ̂2 term, we cannot benefit from LLL instances with λ �
log s

log log s . �

Notice that the time bound for Theorem 5 is in terms of s rather thann. We will apply Theorem 5
after performing a graph shattering step, the output of which creates many disjoint tree-structured
instances with size ∆O (1) ·O (logn), each of them admitting a distance-O (1) dominating set of size
at most s = O (logn). We want the time bound to be in terms of s = O (logn), independent of ∆.

For a given LLL instance with criterion p (ed )λ < 1, the shattering routine of Fischer and
Ghaffari [30] achieves the above requirement in time O (d2 + log∗ n) in such a way that the re-
sulting LLL instances after the shattering routine satisfy the criterion p (ed )λ/2 < 1. If we combine

this with Theorem 5, then we obtain a O (d2 +max{logλ logn,
log logn

log log logn )-time RandLOCAL LLL

algorithm for criterion p (ed )λ < 1, λ ≥ 4, which is efficient only when d is small. Notice that we
need λ/2 ≥ 2 to apply Theorem 5 on LLL instances with criterion p (ed )λ/2 < 1.

In Section 5.2, we present a new method (Lemma 7) for computing a partial assignment to the
variables that effectively shatters a large dependency graph into many independent subproblems,
each satisfying a polynomial LLL criterion w.r.t. the unassigned variables.

5.2 Randomized LLL Algorithm

Consider a tree-structured LLL instance T r with LLL criterion p (ed )λ < 1. In subsequent discus-
sion, unless otherwise stated, the underlying graph is, by default, assumed to beT . Our shattering
routine will work towards finding a good partial assignment.

Definition 1. A partial assignment ϕ to the variables in the LLL system is good if it satisfies the
following two properties.

(1) Conditioned on the partial assignment ϕ, the probability of any bad event E (v ) is at most
p ′ =

√
p.

(2) LetV ′ be the set of all vertices v such that vbl(E (v )) contains some unassigned variables.
Each connected component C induced by V ′ has size at most ∆O (1) ·O (logn), and C con-
tains a distance-2r dominating set with size at most O (logn).

Due to Definition 1(1), conditioned on a good partial assignment ϕ, the bad events in each con-
nected component C induced by V ′ form an LLL system with the LLL criterion p ′(ed )λ/2 < 1.
Definition 1(2) guarantees that each component is of small size. Thus, a good partial assignment ϕ
is able to shatter the tree T into small components, each of which is an independent LLL system.
In Sections 5.3–5.5, we prove the following efficient “shattering lemma.”

Lemma 7. Suppose we are given a tree-structured LLL instanceT r satisfying LLL criterionp (ed )λ <

1, where λ ≥ 2(4r + 8r ). There is a RandLOCAL algorithm that computes a good partial assignment

ϕ in O (logλ logn) time.

The overall algorithm is obtained by composing Lemma 7 and Theorem 5, which is summarized
in Theorem 6. In particular, the algorithm has the usual two-phase graph shattering structure.
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Shattering.Given the LLL instance with dependency graphT r , find a good partial assignment
ϕ ′ using Lemma 7. Each component induced by events having at least one unset variable
has size poly(∆) ·O (logn) and contains a distance-2r dominating set with size O (logn).
Moreover, each such component is an LLL instance with parameters d and p ′ =

√
p satis-

fying criterion p ′(ed )λ/2 < 1.
Post-shattering. We extend ϕ ′ to a total assignment by independently fixing the variables

in each component of the shattered LLL instance. By Theorem 5, this can be done in

O (max{logλ/2 s,
log s

log log s }) time, where in our case s = O (logn).

Theorem 6. Let T r be a tree-structured LLL instance satisfying criterion p (ed )λ < 1 with λ ≥
2(4r + 8r ). This LLL can be solved in RandLOCAL in O (max{logλ logn,

log logn
log log logn }) time.

We briefly overview the ideas behind the proof of Lemma 7. The goal is to design an algorithm
to compute a good partial assignment ϕ. Consider the following process. First, draw a total as-
signment ϕ to V according to the distribution of the variables in the underlying LLL instance. If
any bad event E (v ) occurs under ϕ, then update ϕ by unsetting all variables in vbl(E (v )). More
generally, whenever Pr[E (v ) |ϕ] exceeds √p, update ϕ by unsetting all variables in vbl(E (v )). This
can be viewed as a contagion dynamic played out on the dependency graph. Bad events that occur
under the initial total assignment are infected, and infected vertices can cause nearby neighbors
to become infected. At the end of the contagion process, we obtain a partial assignment satisfying
Definition 1(1).
If this contagion process were actually simulated, then it would take Ω(logn) parallel steps to

reach a stable state, which is too slow. We will provide a different method to compute a stable
state (i.e., a partial assignment satisfying Definition 1(1)) that is exponentially faster, by avoiding
a direct simulation.
The proof of Lemma 7 appears at the end of Section 5.4. It uses Lemma 9, which concerns

the problem of finding a stable state in a contagion process, and Lemma 10, which connects the
problem of shattering a dependency graph T r to a contagion played out on T r .

5.3 Criterion for Infection

Let u be a vertex in the undirected treeT . ThenT − {u} consists of deg(u) subtreesT1, . . . ,Tdeg(u ) ;
we call Tk the kth subtree of u. Define Cu (k, [i, j]) to be the set of vertices in the kth subtree of
u whose distance to u lies in the interval [i, j]. For example, Cu (k, [1, 1]) only contains the kth

neighbor of u. For any vertex set S , define d̂egS (u) as follows:

d̂egS (u) = |{k : Cu (k, [1, r ]) ∩ S � ∅}| .
In other words, it is the number of distinct subtrees of u containing at least one S-vertex within
distance r .
Let μ ≥ 4 and λ′ ≥ 1 be two integers such that λ ≥ 2(μr + λ′). The following bad events B (S,v )

and B (v ) are defined w.r.t. the following process. First, we fix a total assignment ϕ to the variables,
then progressively add vertices to the set S . All variables in vbl(S ) are considered unset; for exam-
ple, conditioning on “vbl(E (v ))\ vbl(S )” means keeping ϕ’s assignment to vbl(E (v ))\ vbl(S ) and
resampling vbl(S ) according to their distribution in the underlying LLL instance:

B (S,v ) :
[
Pr [E (v ) | vbl(E (v ))\ vbl(S )] ≥ (ed )−λ/2

]
,

B (v ) :
⎡⎢⎢⎢⎢⎣

⋃

S ⊂N r (v ), |S | ≤μr
B (S,v )

⎤⎥⎥⎥⎥⎦ .
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In other words, B (S,v ) is the event that, if we were to resample vbl(S ), then the probability that
E (v ) occurs is at least (ed )−λ/2. The event B (v ) occurs if it is possible to find a subset S of cardinality
at most μr such that B (S,v ) occurs.
We can now consider the probability that these events occur, over a randomly selected initial

total assignment ϕ:

Pr
ϕ
[B (S,v )] ≤

Prϕ [E (v )]

Prϕ [E (v ) | B (S,v )]
≤ (ed )−λ

(ed )−λ/2
= (ed )−λ/2 ≤ (ed )−(μ

r
+λ′) .

By a union bound over the |N r (v ) |μr ≤ dμ
r
choices of S (recall that d = ∆r ),

Pr
ϕ
[B (v )] ≤

∑

S

Pr
ϕ
[B (S,v )] < (ed )−λ

′
.

Intuitively, B (v ) is the event that E (v ) is too close to happening. That is, relatively few variables
need to be resampled to give E (v ) a likely probability of happening. Lemma 8 shows that the

criterion for infection “d̂egS (v ) > μ” is a good proxy for the harder-to-analyze criterion “E (v ) is
too close to happening.”

Lemma 8. Fix a total variable assignment ϕ. Let S be any vertex set such that, for each vertex v ,

if B (v ) occurs under ϕ or d̂egS (v ) > μ, then v must be in S . Then Pr[E (v ) | vbl(E (v )) \ vbl(S )] <
(ed )−λ/2 for each vertex v .

Proof. If v ∈ S , then the probability of seeing E (v ) after resampling vbl(S ) is, according to the
original LLL criterion, at most p < (ed )−λ . In what follows, we assume v � S .
To prove the lemma, it suffices to show that there exists a vertex set S ′ such that (i) S ′ ⊂ N r (v ),

(ii) |S ′ | ≤ μr , and (iii) vbl(S ′) ∩ vbl(E (v )) = vbl(S ) ∩ vbl(E (v )). Notice that (iii) implies that re-
sampling vbl(S ′) is equivalent to resampling vbl(S ) from v’s point of view. Since v � S , by as-
sumption, event B (v ) does not occur. Since |S ′ | ≤ μr , event B (S ′,v ) does not occur. Hence,
Pr[E (v ) | vbl(E (v )) \ vbl(S ′)] < (ed )−λ/2, as desired.
Root the tree at v . We call a vertex u ∈ S “highest” if u is in N r (v ) and no ancestor of u is in

S . Observe that if H is the set of highest vertices, then vbl(S ) ∩ vbl(E (v )) = vbl(H ) ∩ vbl(E (v )).
To see this, observe that if u ′ ∈ S is not highest, and is a descendant of some highest u ∈ S , that
vbl(E (u ′)) ∩ vbl(E (v )) is contained in vbl(E (u)) ∩ vbl(E (v )).

Thus, we only need to bound |H | by μr . Suppose, for the sake of contradiction, that |H | ≥ μr + 1.
Define the path (v = v0,v1, . . . ,vr ) by selecting vi as the child of vi−1 that maximizes the number
of vertices inH contained in the subtree rooted atvi . We prove by induction that the subtree rooted
atvi contains at least μ

r−i
+ 1H -vertices. The base case i = 0 holds by assumption. If there are μ + 1

subtrees ofvi containingH -vertices, thenvi would be infected. Thus, by the pigeonhole principle,
the number ofH -vertices in the subtree rooted atvi+1 must be at least �(μr−i + 1)/μ� = μr−(i+1) + 1.
Hence, the subtree rooted atvr contains μ

0
+ 1 = 2H -vertices; this is a contradiction, since the only

vertex in this subtree eligible to be in H is vr itself. �

5.4 Contagion Process

A (q0, r , μ )-contagion process on an n-vertex treeT is played out as follows. Initially, each vertex is
infected with probability q0, and these events are independent for vertices at distance greater than

r . If S is the set of infected vertices at some time and d̂egS (v ) > μ, thenv becomes infected. In this
section our goal is, given the initially infected vertices, to compute a superset of those vertices that
is stable and small, defined as follows.

Definition 2. Let S0 be the initially infected vertices and S ⊃ S0.
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• S is called stable if it causes no more infection.
• S is called small if each connected component induced by

⋃

v ∈S N
r (v ) contains a distance-

2r dominating set of size at most O (logn).

In Lemma 9, we show that one can efficiently compute a set S that is both stable and small.

Lemma 9. Consider a (q0, r , μ )-contagion process played on an n-vertex tree T with maximum

degree ∆. There is a RandLOCAL algorithm that computes a small stable set S inO (logμ logn) time,

where r is constant, q0 ≤ (ed )−8r , d = ∆r , and μ ≥ 4.

The proof of Lemma 9 is deferred to Section 5.5. Lemma 10 connects the contagion problem to
finding a good partial assignment.

Lemma 10. Suppose there is a τ -round RandLOCAL algorithm for finding a small stable set S for

a ((ed )−λ
′
, r , μ )-contagion process. Then there exists a (τ +O (1))-round RandLOCAL algorithm for

finding a good partial assignment ϕ to a tree-structured LLL instance with criterion p (ed )λ < 1, where
λ ≥ 2(μr + λ′).

Proof. Letq0 = (ed )−λ
′
. Consider the (q0, r , μ )-contagion process defined by choosing a random

assignment ϕ ′ to the variables in the LLL system and initially infecting all verticesv such that B (v )
occurs. The lower bound on λ implies Pr[B (v )] ≤ q0 = (ed )−λ

′
. Given the small stable set S , we let

ϕ be the result of unassigning all variables in vbl(S ) =
⋃

v ∈S vbl(E (v )) =
⋃

v ∈S
⋃

u ∈N r /2 (v )V (u).
We now verify that ϕ is a good partial assignment. Since S is stable, for each vertex v , if B (v )

occurs under ϕ or d̂egS (v ) > μ, then v must be in S . By Lemma 8, Pr[E (v ) | vbl(E (v ))\ vbl(S )] <
(ed )−λ/2 <

√
p for each vertex v , and so Definition 1(1) is satisfied. Let V ′ =

⋃

v ∈S N
r (v ) be the

set of all vertices v such that vbl(E (v )) contains some unassigned variables. Since S is small, each
connected component C induced by V ′ contains a distance-2r dominating set with size at most
O (logn). Since 2r = O (1), the cardinality ofC is at most poly(∆) ·O (logn). Hence, Definition 1(2)
is also satisfied. �

We are now in a position to prove Lemma 7.

Proof. Recall that the LLL criterion of in Lemma 7 is λ ≥ 2(4r + 8r ). We pick the largest even
integer μ such that λ ≥ 2(μr + 8r ), and we set λ′ = 8r . Notice that μ ≥ 4 and log μ = Θ(log λ).
By Lemma 9, a small stable set S for the ((ed )−8r , r , μ )-contagion process can be computed in
O (logμ logn) = O (logλ logn) time. By Lemma 10, this implies a O (logλ logn)-time RandLOCAL

algorithm to finding a good partial assignment ϕ under the LLL criterion p (ed )λ < 1. �

5.5 Finding a Small Stable Set

We prove Lemma 9 in this section. The algorithm for Lemma 9 simulates a more virulent contagion
process for τ steps using threshold μ/2 rather than μ, then simulates a reverse-contagion for τ steps,
where vertices become uninfected if they were not initially infected and they have nearby infected
vertices in at most μ subtrees. We prove that when τ = Θ(logμ logn), the final infected set S = Lτ
is both stable and small. This process is called Find-Small-Stable-Set. The sets generated by this
process satisfy thatU0 ⊆ · · · ⊆ Uτ = L0 ⊇ · · · ⊇ Lτ .

Find-Small-Stable-Set.

(1) U0 ← {u ∈ V |u is initially infected}. That is, u ∈ U0 if B (u) occurs initially.

(2) For 1 ≤ i ≤ τ , do Ui ← Ui−1 ∪ {u ∈ V | d̂egUi−1 (u) > μ/2}.
(3) L0 ← Uτ .

(4) For 1 ≤ i ≤ τ , do Li ← Li−1 \ {u ∈ Li−1 \U0 | d̂egLi−1 (u) ≤ μ}.
(5) Return Lτ .
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We show that S = Lτ is stable in Lemma 15. Let Lτ+1 be the set of all vertices u such that

d̂egLτ (u) > μ. Our goal is to show that if u � Lτ , then d̂egLτ (u) ≤ μ (i.e., u � Lτ+1) with high
probability.
RootT at an arbitrary vertex, and letT ′ refer to the rooted version. DefineT ′u to be the subtree of

T ′ rooted at u, and defineC ′u (k, [i, j]) asCu (k, [i, j]) ∩T ′u . Given a vertex setW , define deg′W (u) as
the number of different k such thatC ′u (k, [1, r ]) ∩W � ∅. Although the original contagion process
is played on T , it is easier to analyze a similar process played on T ′, where only descendants can
cause a vertex to become infected.
In general, if {X (u)}u ∈V is an ensemble of events associated with vertices andW a subset of

vertices, then we write X (W ) to denote the event
⋃

u ∈W X (u); i.e., there exists u ∈W such that
X (u) occurs. We write X to denote the set of vertices {u ∈ V |X (u) occurs}. For any two events A
and B, we write A⇒ B to denote A ⊆ B, i.e., A implies B. With respect to a vertex u, consider the
following three sequences of events:

(Fi (u)) : for each 0 ≤ i ≤ τ , let Fi (u) be (u � Ui ) ∧ (u ∈ Li+1).
(Hi (u)) : let H0 (u) be (u ∈ U0); for each 0 ≤ i < τ , let Hi+1 (u) be H0 (u) ∨ (deg′Hi

(u) ≥ μ/2).

(F̃i (u)) : let F̃0 (u) be Hτ (u); for each 0 ≤ i < τ , let F̃i+1 (u) be deg
′
F̃i
(u) ≥ μ/2.

Lemma 11. No vertex can belong to both Uτ \ Lτ and Lτ+1.

Proof. Suppose there were such a vertex u. If u ∈ Lτ+1, then it must have more than μ neigh-
bors in Lτ , which were also in Lτ−1 ⊆ · · · ⊆ L0 = Uτ . But if u ∈ Uτ , then it would also remain in
L0, . . . ,Lτ , contradicting the assumption that u ∈ Uτ \ Lτ . �

By Lemma 11, to prove that S = Lτ is stable, it suffices to prove that

Pr[Fτ (u)] = Pr[(u � Lτ ) ∧ (u ∈ Lτ+1)] = 1/poly(n).

Lemma 12 connects the true contagion process on T to an imagined one played on T ′.

Lemma 12. For each vertex u in T , and for each 0 ≤ i ≤ τ , we have Fi (u) ⇒ F̃i (u).

Proof. We first show that (u ∈ Ui ) ⇒ Hi (u), for each 0 ≤ i ≤ τ . The base case (i = 0) follows
from the definition of H0 (u). Assume by inductive hypothesis that (u ∈ Ui−1) ⇒ Hi−1 (u). We have

(u ∈ Ui \U0) ⇒
(

d̂egUi−1 (u) > μ/2
)

⇒
(

deg′Ui−1 (u) ≥ μ/2
)

⇒
(

deg′Hi−1 (u) ≥ μ/2
)

.

This implies (u ∈ Ui ) ⇒ Hi (u), since (u ∈ U0) ⇒ H0 (u) ⇒ Hi (u).

Next, we prove by induction that Fi (u) ⇒ F̃i (u), for each 0 ≤ i ≤ τ . The base case i = 0 follows
from the above result:

F0 (u) ⇒ (u ∈ L1) ⇒ (u ∈ L0 = Uτ ) ⇒ Hτ (u) ⇒ F̃0 (u).

Assume inductively that Fi−1 (u) ⇒ F̃i−1 (u). Let u be any vertex in Li+1 \Ui ; i.e., the event Fi (u)
occurs. Since u � Ui ⊇ U0, the only way Find-Small-Stable-Set could put u ∈ Li+1 \Ui is if

d̂egLi (u) > μ,

and d̂egUi−1 (u) ≤ μ/2,

which implies

d̂egFi−1 (u) = d̂egLi (u) − d̂egUi−1 (u) > μ/2, and hence

and hence

deg′Fi−1 (u) ≥ μ/2.
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By inductive hypothesis, we have

(

deg′Fi−1 (u) ≥ μ/2
)

⇒
(

deg′
F̃i−1

(u) ≥ μ/2
)

⇒ F̃i (u),

which completes the induction. �

For brevity, define pi = maxu Pr[F̃i (u)] and qi = maxu Pr[Hi (u)]. We prove two auxiliary lem-
mas.

Lemma 13. pτ ≤ (∆2((r 2/2)+1)p0)
(
μ
2 )

τ /(r /2)
.

Proof. Suppose that u is a vertex such that F̃i (u) occurs. Then, by definition of F̃i (u), there

exist μ/2 different indices k such that F̃i−1 (C ′u (k, [1, r ])) occurs. A consequence of this observation
is that

F̃i−1 (C
′
u (k, [1, r ])) ⇒ F̃i−2 (C

′
u (k, [2, 2r ])) ⇒ F̃i−3 (C

′
u (k, [3, 3r ])) · · · ⇒ F̃i−(r /2) (C

′
u (k, [r/2, r

2/2])).

Therefore, if F̃i (u) occurs, then there must exist μ/2 indices k such that

F̃i−(r /2) (C
′
u (k, [r/2, r

2/2])) occurs. The μ/2 events {F̃i−(r /2) (C ′u (k, [r/2, r 2/2]))} are indepen-

dent, since F̃i (v ) depends only on vbl(T ′v ) =
⋃

w ∈N r /2 (v )∪T ′v V (w ). This independence property is
one reason why it is easier to analyze a contagion on T ′ rather than T .

By a union bound over all vertices in C ′u (k, [r/2, r
2/2]), we have

Pr
[
F̃i−(r /2) (C

′
u (k, [r/2, r

2/2]))
]
≤ ∆r 2/2−1pi−(r /2) .

Taking a union bound over at most
(
∆
μ/2

)

choices of μ/2 distinct indices k , we infer that

pi ≤ ∆μ/2
(

∆r 2/2−1pi−(r /2)
) μ/2
≤
(

∆(r 2/2)pi−(r /2)
) μ/2

for each r/2 ≤ i ≤ τ . Assume τ is a multiple of r/2, and recall μ/2 ≥ 2. We can bound pτ as follows:

pτ ≤ p
(
μ
2 )

τ /(r /2)

0 ·
τ /(r /2)∏

j=1

(

∆(r 2/2)
) (

μ
2 )

j

≤
(

∆r 2p0
) (

μ
2 )

τ /(r /2)

. �

Lemma 14. p0 = qτ ≤ ∆r /2q0.

Proof. Recall that Hi (u) is (u ∈ H0) ∨ (deg′Hi−1 (u) ≥ μ/2). This implies that

Hi−1 (C
′
u (k, [1, r ])) ⇒ H0 (C

′
u (k, [1, r ])) ∨ Hi−2 (C

′
u (k, [2, 2r ])).

Repeating this (r/2) − 1 times, Hi−1 (C ′u (k, [1, r ])) implies that

H0 (C
′
u (k, [1, r (r/2 − 1)]) ∨ Hi−(r /2) (C

′
u (k, [r/2, r

2/2])).

Since H0 (C
′
u (k, [1, r (r/2 − 1)]) ⇒ Hi−(r /2) (C

′
u (k, [r/2, r

2/2])), we conclude that

Hi−1 (C
′
u (k, [1, r ])) ⇒ H0 (C

′
u (k, [1, r/2 − 1]) ∨ Hi−(r /2) (C

′
u (k, [r/2, r

2/2])).

Thus, if Hi (u) occurs, then either (i) H0 (N
r /2−1 (u)) occurs, or (ii) there exist μ/2 different indices

k such that Hi−(r /2) (C
′
u (k, [r/2, r

2/2])) occurs. The events Hi−(r /2) (C
′
u (k, [r/2, r

2/2])) for all k are
independent, since Hi (v ) depends only on vbl(T ′v ) =

⋃

w ∈N r /2 (v )∪T ′v V (w ).
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By a union bound, Pr[Hi−(r /2) (C
′
u (k, [r/2, r

2/2]))] ≤ ∆r 2/2−1qi−r /2. Suppose that τ is a multiple

of r/2. Taking a union bound over at most
(
∆
μ/2

)

choices of μ/2 distinct indices k , we have

qτ ≤ Pr
[
H0 (N

r /2−1 (u))
]
+

(

∆

μ/2

)

· ∆r 2/2−1qτ−(r /2)

≤ ∆r /2−1q0 + ∆
μ/2
(

∆r 2/2−1qτ−(r /2)
) μ/2

≤ ∆r /2−1q0 +
(

∆r 2/2qτ−(r /2)
) μ/2

≤ ∆r /2−1q0 + q
(
μ
2 )

τ /(r /2)

0 ·
τ /(r /2)∏

j=1

(

∆r 2/2
) (

μ
2 )

j

≤ ∆r /2−1q0 +
(

∆2(r 2/2)q0
) (

μ
2 )

τ /(r /2)

(μ/2 ≥ 2)

≤ ∆r /2−1q0 +
(

∆2(r 2/2)q0
)2

((μ/2)τ /(r /2) ≥ 2)

≤ ∆r /2−1q0 + ∆
4(r 2/2)−8r 2q0 (q0 ≤ (ed )−8r and d = ∆r )

≤ ∆r /2q0. �

We are now ready to prove that S = Lτ is stable.

Lemma 15. For each vertex u � Lτ , d̂egLτ (u) ≤ μ with high probability, and so Lτ is stable.

Proof. It suffices to show that Pr[Fτ (u)] = 1/poly(n). By Lemma 12, Pr[Fτ (u)] ≤ Pr[F̃τ (u)] =
pτ . We show that pτ = 1/poly(n).

pτ ≤
(

∆r 2p0
) (

μ
2 )

τ /(r /2)

(Lemma 13)

≤
(

∆r 2+r /2q0
) (

μ
2 )

τ /(r /2)

(Lemma 14)

≤
(

∆r 2+r /2−8r 2 ) (
μ
2 )

τ /(r /2)

(q0 ≤ (ed )−8r and d = ∆r )

≤
(

∆−27
) (

μ
2 )

τ /(r /2)

(r ≥ 2)

≤
(

∆−27
)Θ(logn)

(τ = Θ(logμ logn) and r = O (1))

≤ 1/poly(n). �

In Lemma 17, we prove thatUτ is small, which implies that S = Lτ ⊆ Uτ is also small. We write
T [a,b] to denote the graph defined by the vertex set V (T ) and the edge set {{u,v} | distT (u,v ) ∈
[a,b]}. We first prove an auxiliary lemma.

Lemma 16. Fix a c ≥ 1. With probability 1 − n−Ω(c ) , the graph H = T [r+1,4r ] has no connected

subgraph D such that (i) |D | ≥ c logn, and (ii) there is a subset D ′ ⊆ D ∩U0 containing at least half

of the vertices in D, and distT (u,v ) > r for distinct u,v ∈ D ′.

Proof. The proof is similar to that of Reference [13, Lemma 3.3]. Suppose that suchD exists, and

consider a tree T̂ inH spanningD. There are at most 4c logn different rooted unlabeled c logn-node
trees; and each of them can be embedded into H in less that n · ∆4r (c logn−1) ways. Moreover, there
are at most 2c logn ways of selecting a subset D ′ ⊆ D. Since |D ′ | ≥ c logn/2 and distT (u,v ) > r for

distinct u,v ∈ D ′, the probability that such T̂ exists is at most q
c logn/2
0 .
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Recall that q0 ≤ (ed )−8r , d = ∆r , r ≥ 2, and ∆ ≥ 3. A union bound over all possibilities of T̂
implies that such D exists with probability at most

p ′ = 4c logn · n · ∆4r (c logn−1) · 2c logn · qc logn/20

≤ n3c+1∆−4c (r
2−r ) logne−4cr logn

≤ n(4−4(r
2−r ) log∆−4 log e )c

≤ n−14c . �

Recall from Definition 2 thatUi is small if each connected component induced by
⋃

v ∈Ui N
r (v )

contains a distance-2r dominating set of size at most O (logn).

Lemma 17. With high probability, each connected component induced by
⋃

v ∈Uτ N
r (v ) contains a

distance-2r dominating set of size at most O (logn), and soUτ is small.

Proof. Let C be any connected component induced by
⋃

v ∈Uτ N
r (v ). We pick a distance-

2r dominating set D of C greedily, preferring vertices in U0 over U1, and U1 over U2, and so
on. Each time a vertex v is picked, we remove from consideration all vertices in N r (v ). Re-
call that U0 ⊆ · · · ⊆ Uτ . The set D is obviously a distance-r dominating set of Uτ ∩C . Since
Uτ ∩C is itself a distance-r dominating set of C , the set D is a distance-2r dominating set
of C .

We write ui to denote the ith vertex added to D, and define Di = {u1, . . . ,ui }. Letmi denote the
number of connected components induced by Di in the graph T [r+1,2r ] (rather than T ). We claim
that if ui � U0, then mi < mi−1. This implies that at least half of the vertices in D belong to U0.
Observe that the set D is connected in H = T [r+1,4r ] (since D is a distance-2r dominating set ofC),
and so by Lemma 16, |D | = O (logn) with high probability.

We prove the above claim in the remainder of the proof. Consider the moment some ui � U0

is added to D. We will show that the connected component of Di in the graph T [r+1,2r ] that
contains ui is formed by merging ui with at least two connected components of Di−1 in the
graph T [r+1,2r ].
The algorithm Find-Small-Stable-Set added ui to Uj , because ui had at least μ/2 ≥ 2 subtrees

containing Uj−1-vertices that are within N r (ui ). Let T1 and T2 be any two such subtrees. For each
k = 1, 2, let vk be a Uj−1-vertex contained in both Tk and N r (ui ). Then there must be a vertex
wk ∈ N r (vk ) such that wk has been already added to D, since otherwise the greedy algorithm
should prefervk overui . Observe thatw1 andw2 belong to separate connected components ofDi−1
in the graph T [r+1,2r ], since ui � N

r (w1) ∪ N r (w2); but w1, w2, and ui are in the same component
of Di in the graph T [r+1,2r ], sincewk ∈ N r (vk ) ⊆ N 2r (ui ), for both k = 1, 2. �

We have proven (Lemmas 15 and 17) that the algorithm Find-Small-Stable-Set computes a set
S = Lτ that is stable and small, in O (logμ logn) time. Lemma 10 shows that any such algorithm

can be used to find a good partial assignment to the variables in any tree-structured LLL instance
with p (ed )λ < 1 and λ ≥ 2(4r + 8r ).11 The stability criterion is used to show that the derived LLL
instances satisfy p ′(ed )λ/2 < 1 and p ′ =

√
p. The smallness criterion implies that the instances have

size poly(∆) logn and logn-size, distance-O (1) dominating sets. Because log μ = Θ(log λ), the time
to find the good partial assignment is O (logλ logn).

11It is possible to replace 2(4r + 8r ) with 2(4r + cr ) for some smaller c , but not too small. We do not attempt to optimize

this coefficient.
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6 NETWORK DECOMPOSITION OF TREES

Our interest in network decompositions stems from Lemma 6 due to Reference [30], which shows
that they imply non-trivial deterministic LLL algorithms. Most work on network decomposi-
tions [57] has focussed on arbitrary graphs.

Recall that a (λ,γ )-network decomposition is a partition of the vertices into λ parts V1, . . . ,Vλ
such that each Vi induces connected components with diameter at most γ ; and a (λ1,γ1, λ2,γ2)-
network decomposition is a partition of the vertices into λ1 + λ2 partsV1, . . . ,Vλ1 ,U1, . . . ,Uλ2 such
that each Vi (respectively,Ui ) induces connected components with diameter γ1 (respectively, γ2).
In this section, we present two network decomposition algorithms for T k where T = (V ,E) is

an n-vertex tree that contains a distance-d dominating set S of size s . In our application d and
k are constants. We assume all vertices agree on the numbers (d,k, s ). We do not need a specific
dominating set S to be given as input.
We emphasize that the network decomposition that we would like to compute is with respect

to T k , but the communication network is T .

6.1 A Simple Network Decomposition

We first design a simple decomposition that partitions any tree-structured graph T k into 2 parts.

Theorem 7. LetT be a tree containing a distance-d dominating set of size s . There is a DetLOCAL

algorithm A that computes a (2,O (log s + d/k ))-network decomposition of T k in O (k log s + d +
k log∗ n) time, i.e., O (log s + log∗ n) time when d = O (1) and k = O (1).

In what follows, we prove Theorem 7. We assume the underlying communications network isT
rather thanT k . Consider the following two tree operations. They are similar to the ones described
in Reference [21], which are inspired byMiller and Reif [50]. The second operation is parameterized
by an integer � ≥ 2. In our application, we set � = Θ(k ).

Rake: Remove all leaves and isolated vertices.
Compress: Remove all vertices that belong to some path P such that (i) all vertices in P have

degree at most 2, and (ii) the number of vertices in P is at least �.

Let A ′ be the algorithm on the tree T defined as follows. (1) Do 3d + 1 Rake operations;
(2) repeat the following sequence log s times: perform one Compress and then � − 1 Rake op-
erations.

Lemma 18. Algorithm A ′ removes all vertices in T .

Proof. Let S be any size-s distance-d dominating set ofT . RootT at an arbitrary vertex and let
size(v ) be the number of vertices in the subtree Tv rooted at v that belong to S . For any vertex
v ∈ V , we prove by induction that (i) if size(v ) ≤ 1, then v is removed in Step (1) of A ′, and (ii) if
1 < size(v ) ≤ 2i , then v is removed on or before the ith iteration of Step (2) of A ′.
For the case size(v ) ≤ 1, observe that the height of the subtree Tv rooted at v is at most 3d .

Suppose the height of Tv is at least 3d + 1, then there is a path P connecting v and a leaf that
has at least 3d + 2 vertices. We claim that for any distance-d dominating set S of T , we need to
have |S ∩Tv | ≥ 2. For each u ∈ S ∩Tv , u can dominate at most 2d + 1 vertices in P , and so there
must be at least one vertex x in P that is not dominated by u and its distance to v is at least d . To
dominate x , we need another vertex in S ∩Tv , and so |S ∩Tv | ≥ 2, contradicting the assumption
size(v ) ≤ 1. Therefore, the entire subtreeTv (including v) must be removed after the initial 3d + 1
Rake operations.

Consider the case 2i−1 < size(v ) ≤ 2i . By the inductive hypothesis, all vertices u with size(u) ≤
2i−1 have been removed before the ith iteration of Step (2). With respect to the vertex v , defineV ′
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to be the set of all vertices u such that (i) size(u) > 2i−1, and (ii) u is in the subtree Tv rooted at
v . The set V ′ induces a path with one endpoint at v , since otherwise size(v ) > 2 · 2i−1 = 2i . Let C
be a connected component induced by vertices in V ′ that are not removed yet. If |C | ≥ �, then all
vertices in C are removed after 1 Compress. Otherwise, all vertices in C are removed after � − 1
Rake operations. �

In the following discussion, the notions of connected components and degrees are with respect
to T . To compute a (2,O (log s + d/k ))-network decomposition of T k , it suffices to compute a par-
tition V = V1 ∪V2 meeting the following two conditions.

• (C1) For both labels c ∈ {1, 2}, any two vertices u and v in two distinct connected compo-
nents ofVc must have distT (u,v ) > k . This guarantees that the set of connected components
of Vc remains unaltered if we change the underlying graph from T to T k .

• (C2) For both labels c ∈ {1, 2}, each connected component of Vc has diameter at most
O (k log s + d ). This implies the diameter upper bound of O (log s + d/k ) when the under-
lying graph is T k .

Recall thatA ′ performs Lr = (3d + 1) + (� − 1) log s Rake and Lc = log s Compress operations;
let L = Lr + Lc = (3d + 1) + � log s . We write Ui to denote the set of all vertices that are removed
during the ith operation. We are now in a position to present the algorithm A. The algorithm A
begins by computing the decompositionV =

⋃L
i=1Ui usingA ′. Then, for i = L down to 1, label all

vertices v ∈ Ui by {1, 2} as follows.
Case 1. If the ith operation is Rake, then label Ui as follows. Let v ∈ Ui . For the case that v is

of degree-1 in the subgraph induced by
⋃L

j=i Uj , let u be the unique neighbor of v in
⋃L

j=i Uj . If

u � Ui , then v adopts the same label as u. Otherwise, u ∈ Ui must also be of degree-1 in
⋃L

j=i Uj ;

we give both u and v the same label c ∈ {1, 2}. For the case that v is an isolated vertex of
⋃L

j=i Uj ,
we label v by any c ∈ {1, 2}.
Case 2. If the ith operation is Compress, then label Ui as follows. Let P be a path that is a

connected component of Ui . The number of vertices in P is at least � = Θ(k ). Compute a labeling
of the vertices in P meeting the following conditions: (i) each connected component induced by
vertices of the same label has size within [k, 7k], (ii) if v is an endpoint of P that is adjacent to a
vertex u ∈ ⋃L

j=i+1Uj , then the label of v is the same as the label of u.
Such a labeling of P can be computed in O (k ) time if we are given an independent set I of P

such that each connected component of P \ I has size within [3k, 6k]. Suppose that we already have
such a set I . For each v ∈ I , we find an arbitrary subpath Pv ⊆ P that contains v and has exactly k
vertices. All vertices in

⋃

v ∈I Pv are labeled 1, and the remaining vertices in P are labeled 2. At this
moment, each connected component induced by vertices of label 1 has size k , and each connected
component induced by vertices of label 2 has size within [3k − 2(k − 1), 6k] = [k + 2, 6k]. If there
is a component C violating Condition (ii) of the previous paragraph, then we flip the label of all
vertices inC (i.e., from 1 to 2 or from 2 to 1). If � ≥ ck for some large enough universal constant c ,
then we obtain a labeling satisfying both Condition (i) and Condition (ii).
The computation of the independent set I can be done inO (k log∗ n) time, as we explain below.

Suppose that we have an independent set I ′ of P such that each connected component of P \ I
has size within [α , 2α]. We show that in O (α log∗ n) time we can compute an independent set
I ′′ of P such that each connected component of P \ I has size within [β, 2β], for any prescribed

number β ≤ 2α + 1. Let P̃ be the “imaginary path” formed by contracting all vertices in P \ I . A
maximal independent set Ĩ of P̃ can be computed inO (α log∗ n) time. At this point, each connected

componentC of P \ Ĩ has size within [2α + 1, 4α + 2]. The component size constraint [β, 2β] can be
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met by adding new vertices to Ĩ to subdivide the oversized components. The desired independent
set I can be computed by logk iterated applications of the above procedure, and the runtime is
∑logk

i=1 O (2i log∗ n) = O (k log∗ n).

Time Complexity. The total running time of A is O (Lr + kLc ) +O (k log∗ n) = O (k log s + d +
k log∗ n), since the independent set computation of paths removed by the Compress operation can
be computed in O (k log∗ n) time in parallel.

Validity of Labeling. We now verify that the labeling resulting from A satisfies the two con-
ditions (C1) and (C2). Consider two distinct connected components C and C ′ induced by V1. In
view of Case 2 of algorithm A, any path P ′ connecting a vertex in C and a vertex in C ′ in T must
contain a subpath P ′′ consisting of k vertices in V2. The same is true if we swap V1 and V2, and so
(C1) holds. Consider a connected component C by V1 or V2. Let i

� be the largest index i such that
Ui ∩C � ∅, and let v� be any vertex in C ∩Ui� . We show that for any vertex u ∈ C , the unique
path P connecting u andv� inT containsO (Lr + kLc ) = O (k log s + d ) vertices, and so (C2) holds.
Consider any index i ∈ [1, i�]. If the ith operation is Rake, then we have |P ∩Ui | ≤ 2 (in view of
Case 1). If the ith operation is Compress, then we have |P ∩Ui | ≤ 7k (in view of Case 2). Thus,
indeed |P | = O (Lr + kLc ).

6.2 A Mixed-Diameter Network Decomposition

In this section, we show how to compute a network decomposition where one part has diameter
roughly logλ s and the remaining portion of the graph is properly O (λ2)-colored, i.e., they form
O (λ2) parts with diameter zero. Here λ = Ω(k ) is a sufficiently large parameter.

Theorem 8. LetT be a tree containing a distance-d dominating set of size s . There is a DetLOCAL

algorithm A that computes a (1,O (logλ/k s + (d/k )),O (λ2), 0)-network decomposition of T k in

O (k logλ/k s + d + k log
∗ n) time, where λ = Ω(k ) is sufficiently large, i.e., λ ≥ ck for some univer-

sal constant c . When k = O (1) and d = O (1) the time bound is O (logλ s + log
∗ n).

In what follows, we prove Theorem 8. We write Ti to denote the set of vertices that are not
removed during the first i − 1 tree operations. Consider the following two tree operations applied
to Ti .

Rake: Remove all leaves and isolated vertices.
Compress: Remove all vertices v such that |N 2.5k (v ) ∩Ti | ≤ λ.

We set m = λ
2.5k − 1. Let A∗ be the algorithm on the tree T defined as follows. (1) Do 3d + 1

Rake operations; (2) repeat the following sequence logm s times: do one Compress followed by
2.5k Rake operations.

Lemma 19. Algorithm A∗ removes all vertices in T .

Proof. Let S be any size-s distance-d dominating set ofT . RootT at an arbitrary vertex, and let
size(v ) be the number of vertices in the subtree rooted atv that belong to S . We prove by induction
that (i) if size(v ) ≤ 1, then v is removed in Step (1) of A∗, and (ii) if 1 < size(v ) ≤ mi , then v is
removed within the first i iterations in Step (2) of A∗.
For the case of size(v ) ≤ 1, the height of the subtree rooted at v is at most 3d , and so the en-

tire subtree (including v) must be removed after 3d + 1 Rake operations. For the case of mi−1 <
size(v ) ≤ mi , we assume by induction that all vertices u with size(u) ≤ mi−1 have been removed
within the first i − 1 iterations of Step (2). Letv be any vertex with size(v ) ∈ (mi−1,mi ], and define
V ′ to be the set of all vertices u such that (i) size(u) > mi−1, and (ii) u is in the subtree rooted at v .
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Notice that all descendants ofv other than those inV ′ have been removedwithin the first i − 1 iter-
ations of Step (2). Therefore, the set V ′ induces a subtree rooted at v having at mostm − 1 leaves.
For those vertices u ∈ V ′ with distT (u,v ) ≥ 2.5k , we have |N 2.5k (u) ∩Ti | ≤ m(2.5k ) + 1 ≤ λ, so
they will be removed after one Compress. The rest of the vertices in V ′ will be removed during
the next 2.5k Rake operations.

The above inequality |N 2.5k (u) ∩Ti | ≤ m(2.5k ) + 1 can be derived as follows. Consider the sub-
graph induced by the vertices in V ′ that are within distance 2.5k to u. This subgraph can be seen
as a tree rooted at u of height at most 2.5k with at most (m − 1) + 1 =m leaves, which clearly has
at mostm(2.5k ) + 1 vertices. Notice that this analysis relies on the assumption thatu ∈ V ′ satisfies
distT (u,v ) ≥ 2.5k , since otherwise N 2.5k (u) ∩Ti may contain vertices that are ancestors of v . �

Now, we present our network decomposition algorithmA. First, we runA∗ onT . Then, for any
vertex v removed by Compress, we mark all vertices in N k/2 (v ); i.e.,

M = {u | ∃v removed by Compress, u ∈ N k/2 (v )}
is the set of all marked vertices. We let T̃ be the graph defined as V (T̃ ) =M, and {u,v} ∈ E (T̃ ) if
distT (u,v ) ≤ k .
The (1,O (k logλ/k s + d ),O (λ2), 0) network decomposition ofT k is computed by assigning color

0 to all unmarked vertices, and coloring the remaining vertices in T̃ with {1, . . . ,O (λ2)}. We next

show that (i) ∆(T̃ ) ≤ λ, and so theO (λ2)-coloring can be computed using Linial’s algorithm [48] in
O (k log∗ n) time, and (ii) each connected component induced by unmarked vertices (inT k ) has di-
ameterO (logλ/k s + (d/k )). Thus,A indeed computes a (1,O (logλ/k s + (d/k )),O (λ2), 0)-network

decomposition of T k in O (k logλ/k s + d + k log
∗ n) time.

Proof of (i). For any marked vertexv , we claim that |N k (v ) ∩M| ≤ λ (inT ), and so ∆(T̃ ) ≤ λ. Let
u be the first vertexmarked inN k (v ). The vertexu is added toM due to the removal of a vertexw ∈
N k/2 (u) in a Compress operation (it is possible that u = w). Suppose that w was removed in i�th
tree operation. Then, we have |N 2.5k (w ) ∩Ti� | ≤ λ. We claim that N k (v ) ∩M ⊆ N k (v ) ∩Ti� ⊆
N 2.5k (w ) ∩Ti� , and this implies |N k (v ) ∩M| ≤ λ, and so ∆(T̃ ) ≤ λ. Since the i�th tree operation
is the first iteration such that a vertex in N k (v ) is marked due to the removal of another vertex
during the i�th tree operation, N k (v ) ∩Ti� contains all marked vertices within distance k of v .
Since dist(v,w ) ≤ dist(v,u) + dist(u,w ) ≤ 1.5k , we have N k (v ) ∩Ti� ⊆ N 2.5k (w ) ∩Ti� .

Proof of (ii). The diameter of each connected component (in T ) induced by the unmarked ver-
tices isO (k logλ/k s + d ), since the total number of Rakes isO (k logλ/k s ) + 3d + 1, and all vertices
removed by Compress are marked. We show that the set of connected components induced by the
unmarked vertices remains the same if we change the underlying graph fromT toT k . This implies
the diameter upper bound O (logλ/k s + (d/k )) when the underlying graph is T k .
Consider any pair of unmarked verticesu andv . Notice thatu andv must be removed by Rakes.

Suppose that u and v are not connected in T after deleting those vertices removed by Compress

from T . Assume the first time they become disconnected in T is iteration i , which is due to the
removal of a vertexw in Compress. Since all vertices in N k/2 (w ) are marked, the unique shortest
path in T connecting u and v must have a subpath consisting of at least 2(k/2) + 1 > k marked
vertices. Thus, u and v are also disconnected in T k after deleting all marked vertices.

Discussion. We briefly discuss how we choose the parameters r1 = 2.5k used in the Compress

operation and r2 = 0.5k used in definingM. Notice that the correctness of Lemma 19 is indepen-
dent of the choice of these parameters. The proof of (i) relies on the fact that r1 ≥ 2k + r2. The
proof of (ii) relies on the fact that 2r2 + 1 ≥ k . We select the smallest possible values of r1 and r2
to make these proofs work.

ACM Transactions on Algorithms, Vol. 16, No. 1, Article 8. Publication date: November 2019.



Distributed Edge Coloring and Lovász Local Lemma 8:37

7 DETERMINISTIC ALGORITHMS FOR EDGE COLORING TREES

LetT = (V ,E) be a tree with n vertices and N + (v ) = N (v ) ∪ {v} be the inclusive neighborhood of
v . We decomposeT using another variation onMiller and Reif’s [50] rake and compress operations,
the second of which is parameterized by an integer k ≥ 2.

Rake: Remove all leaves and isolated vertices from T .
Compress: Remove the set {v ∈ V | for every u ∈ N + (v ), degT (u) ≤ k } from T .

Theorem 9. Alternately applying Compress and Rake 1 + logk n times removes all vertices from

any n-vertex tree T .

Proof. Root T at an arbitrary vertex and let size(v ) be the number of vertices in the subtree
rooted atv . We prove by induction that if size(v ) ≤ ki ,v will be removed after the first i + 1 rounds
of Compress and Rake. The claim is trivially true when i = 0. Assume the claim is true for i − 1.
Let v be any vertex with size(v ) ∈ (ki−1,ki ], and define V ′ to be the set of all vertices u such that
(i) size(u) ∈ (ki−1,ki ] and (ii) u is in the subtree rooted at v . Notice that each vertex u ∈ V ′ has
degV ′ (u) ≤ k , since otherwise size(u) > ki . By the inductive hypothesis, all descendants of v that
are not in V ′ have been removed after i rounds of Compress and Rake. The (i + 1)th Compress

will remove all remaining vertices in V ′ − {v}. Hence, all descendants of v have been removed
after the (i + 1)th Compress. However, the degree of the parent of v is unbounded, so v may not
be removed. If v still remains, then the (i + 1)th Rake will remove it. �

Theorem 10. There is an O (log∆ n)-time DetLOCAL algorithm for ∆-edge coloring a tree T with

maximum degree ∆ ≥ 3.

Proof. Let β be the constant such that Linial’s algorithm [48] finds a β∆2-edge coloring in
O (log∗ n − log∗ ∆ + 1) time. We begin by decomposing T with Compress and Rake steps, using
parameter k = max{2, �(∆/β )1/3�}. Define Ti = (Vi ,Ei ) to be the forest before the ith round of
Compress and Rake, and let V c

i and V r
i be those vertices removed by the ith Compress and Rake,

respectively.
We edge color the trees T1+logk n , . . . ,T1 = T in this order. Given a coloring of Ti+1, we need to

color the remaining uncolored edges in Ti . Let u ∈ Ti+1 be a vertex, and let v1, . . . ,vx ∈ V r
i be the

vertices adjacent to u removed by the ith Rake. At this point u is incident to at most ∆ − x colored
edges. We assign to {u,v1}, . . . , {u,vx } any distinct available colors from their palettes.
We now turn to the vertices removed by the ith Compress. First, suppose that ∆ is large enough

such that k = �(∆/β )1/3�. Let ϕ be a βk2-edge coloring of the (as yet uncolored) subgraph of Ti
(i.e., the edges that are incident to some vertices inV c

i ). We argue that this subgraph has maximum
degree at most k , and so we are able to apply Linial’s algorithm [48] to find a βk2-edge coloring.
Suppose e = {u,v} is in this subgraph, but either degTi (u) > k or degTi (v ) > k . If this were true,
then neither u nor v could have been removed by the ith Compress, contradicting the fact that e
is incident to some vertices in V c

i .
Partition the palette {1, . . . ,∆} into βk2 parts P1, . . . , Pβk2 . Each part has size ∆/(βk2) ≥ k . Each

v ∈ V c
i colors each edge {v,u} any available color in Pϕ ( {v,u }) . Since degTi (u) ≤ k , at most k − 1

of its incident edges may already be colored, and so there must be at least one available color
in Pϕ ( {v,u }) for {v,u} to use. All calls to Linial’s βk2-edge coloring algorithm can be executed in
parallel, so the overall time is O (logk n + log

∗ n − log∗ k ) = O (log∆ n).
When k = 2, the subgraph induced byV c

1 ∪ · · · ∪V c
1+logk n

consists of a set of paths. InO (log∗ n)

time, we find an initial 3-edge coloring of these paths. We now colorT1+logk n , . . . ,T1 in this order.
Coloring the edges removed during a Rake is done as before. The setV c

i removed in one Compress

induces some paths, each end-edge of which may be adjacent to one (previously colored) edge in
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Ti+1. If the initial color of an end-edge conflicts with the coloring of Ti+1, then we recolor it any
available color. When k = 2 this procedure takes O (log∗ n + logk n) = O (log∆ n) time. �

An oriented tree is a rooted tree where each vertex that is not the root knows its parent. We
show that a (∆ + 1)-edge coloring of an oriented tree can be found in O (log∗ n) time, but ∆-edge
coloring takes Ω(log∆ n) time.

Theorem 11. Any oriented tree T can be (∆ + 1)-edge colored in O (log∗ n) time.

Proof. Initially pick color ϕ0 ({u, parent(u)}) = i if ID(u) is the ith largest ID among its siblings.
Observe that for any i , ϕ−10 (i ) is a subgraph consisting of oriented paths, and that ϕ−10 (∆) is at most
one edge, attached to the root. For each i ∈ {1, . . . ,∆ − 1}, in parallel, recolor ϕ−10 (i ) using the color
set {i,∆,∆ + 1} in such a way that the most ancestral edge in each path remains colored i . This
takes O (log∗ n) time [23, 48].
The result is a legal (∆ + 1)-edge coloring. It is clear that for each i ∈ {1, . . . ,∆ − 1}, no two

edges with color i are adjacent. Now consider i ∈ {∆,∆ + 1}. Suppose there exist two adjacent
edges e = {u,v} and e ′ = {v,w } that are both colored i . Let j ∈ {1, . . . ,∆} be the original color of e
before recoloring, and let P be the j-color (before recoloring) oriented path containing e . Similarly,
let j ′ ∈ {1, . . . ,∆} be the original color of e ′ before recoloring, and let P ′ be the j ′-color (before
recoloring) oriented path containing e ′. Then the two paths P and P ′ intersect only at v , and so
at least one of e and e ′ is the most ancestral edge of the corresponding path. This contradicts
the assumption that they are colored by i ∈ {∆,∆ + 1} (after recoloring). Thus, all edges colored
i ∈ {∆,∆ + 1} are not adjacent to each other. �

Theorem 12. Any ∆-edge coloring algorithm for oriented trees takes Ω(log∆ n) time in

RandLOCAL.

Proof. LetT be an oriented∆-regular tree with heighth = Θ(log∆ n) andA be an edge coloring
algorithm running in h/3 time. The color of {u, parent(u)} is uniquely determined by the colors
of the edges incident to leaf-descendants of u. Let V ′ denote the set of leaf-descendants of u. In
general, N h/3 (u) and

⋃

v ∈V ′ N
h/3 (v ) do not intersect. In this case, u only has a 1/∆ chance of

guessing the correct edge color; if it guesses incorrectly, there must be a violation somewhere in
the subtree rooted at u. �

8 CONCLUDING REMARKS

The focus of this article has been on the complexity of distributed edge-coloring, on general graphs
and trees, with and without randomization. Nonetheless, we took several extended detours into
apparently unrelated topics such as the distributed Lovász local lemma (Section 5) and network
decompositions (Section 6). A recent line of work on developing a complexity theory for the LOCAL
model [4–7, 16, 17, 19, 21, 30, 35, 38, 55] explains why these particular detours are natural and
perhaps unavoidable in the pursuit of optimal LOCAL algorithms.

The appearance of the distributed Lovász local lemma (LLL) is no surprise at all, given that it
generalizes a problem related to (1 + ϵ )∆-edge coloring, namely, sinkless orientation (Theorem 1),
is complete for sublogarithmic time [21, Theorem 4.1], and is a generally useful tool for finding
objects that cannot be generated by a greedy algorithm [22, 29, 30, 52, 60]. The structure of the LLL
algorithm in Sections 5 and 6 also turns out to be quite natural. Chang, Kopelowitz, and Pettie’s
derandomization [19, Theorem 3.1] justifies why we must apply the graph shattering method to
solve the LLL in randomizedO (log logn) time, and that any such algorithm must contain within it
a deterministic O (logn)-time algorithm. Our O (logn)-time deterministic LLL algorithm for trees
(Theorem 5) follows Fischer and Ghaffari [30], who showed how to solve LLL instances using
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network decompositions. Ghaffari, Kuhn, and Maus [38] show that this choice also turns out to
be natural, in the sense that you cannot solve the LLL deterministically without computing good
network decompositions deterministically.12

APPENDIX

A PROOF OF LEMMA 5

In this section, we prove the concentration bounds of Lemma 5. For notational simplicity, we ignore
all subscripts i , i.e., p,d, t are the palette size, degree, and c-degree before the ith round of coloring,
all of which satisfy invariantHi . Recall that we introduce imaginary edges, if necessary, to ensure
that the entire graph has uniform c-degree t and uniform palette size p. S (v ) is the set of real
edges incident to v , |S (v ) | ≤ d , and Nc (v ) the set of real and imaginary edges incident to v with
c in their palettes. The arguments of this section do not differentiate between real and imaginary
edges. From Lemma 3, we use the fact that t = Θ(p); i.e., t and p are interchangeable in those parts
of the proof that are not sensitive to the leading constant.
We make extensive use of Theorem 13 and Lemma 20 to prove Lemma 5. Theorem 13 is from

Dubhashi and Panconesi’s book [27] on the concentration of measure, where it is called themethod

of bounded variances. Ignoring the leading constant in the exponent, Theorem 13 is strictly more
powerful than Chernoff-Hoeffding and Azuma-type inequalities, and is best suited in applications
that have the following two features:

• We are interested in deviations of f (Xn ) from its expectation (up to±s) that are significantly
smaller than the number of underlying random variables (n) times the Lipschitz bound sat-
isfied by the martingale (M). This feature renders Azuma’s inequality too weak to be of any
use.13

• The Lipschitz bound is pessimistic: although Di = E[f |Xi ] − E[f |Xi−1] can be as large as
M , its variance (σ 2

i ) conditioned on any Xi−1 is substantially smaller.

For example, in the first round of coloring, the c-degree of a vertexv depends on Θ(∆3) random
variables (colors chosen by edges in the 3-neighborhood), but we are interested in deviations from
the expected c-degree that are s = O (∆). Any single edge could have a significant effect on v’s
c-degree (M = Θ(1)), but the variances of these effects are substantially smaller. In particular, the
sum of variances

∑

i σ
2
i will be O (∆).

Theorem 13 ([27, Eqation (8.5)]). Let X1, . . . ,Xn be an arbitrary set of random variables. Let

f (X1, . . . ,Xn ) be such that E[f ] is finite. We write Di
def
= E[f |Xi ] − E[f |Xi−1]. Suppose that there

existM and values {σ 2
i }1≤i≤n meeting the following conditions.

• For any assignment to the random variables Xi−1, Var[Di |Xi−1] ≤ σ 2
i .

• For any assignment to the random variables Xi , |Di | ≤ M .

Then Pr[f > E[f ] + s] ≤ exp(− s2

2(
∑n
i=1 σ

2
i +Ms/3)

).

Lemma 20 follows from straightforward calculation.

Lemma 20. LetX be a random variable such that (i) E[X ] = 0, (ii) Pr[X = a] = α and Pr[X = b] =
1 − α , and (iii) |a − b | ≤ k . Then, we have the following.

12In particular, the distributed LLL is PSLOCAL-hard as it generalizes the PSLOCAL-complete problem of Weak Local

Splitting [38, Theorem 1.4]. As a consequence, any deterministic poly(logn) LLL algorithm can also be used to compute

(poly(logn), poly(logn))-network decompositions deterministically.
13A vector (X1, . . . , Xi ) of random variables is written Xi .
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• Var[X ] ≤ α (1 − α )k2 ≤ αk2.

• |b | ≤ αk .

• |a | ≤ (1 − α )k ≤ k .

Throughout this section, we use the following notation. For each edge e and each color c , define
ze,c as the indicator random variable that e successfully colors itself c , thus ze,c = 0 if c � Ψ(e ).

A.1 Concentration of Vertex Degree

Let v• be a vertex. We claim that E[|S�(v•) |] ≤ d�. An edge e successfully colors itself with prob-
ability (1 − 1/p)2(t−1) , since there are 2(t − 1) edges competing with e for Color�(e ), and each of
these 2(t − 1) edges selects Color�(e ) with probability 1/p. Thus, by linearity of expectation,

E[|S�(v•) |] = (1 − (1 − 1/p)2(t−1) ) |S (v•) | ≤ (1 − (1 − 1/p)2(t−1) )d = d�.

For brevity, we write S
def
= S (v•), S�

def
= S�(v•), and z

def
= |S | − |S� |. The goal of this section is to

show that Pr[z < E[z] − s] = exp(−Ω(s2/|S |)), which implies the desired concentration bound
Pr[|S�(v•) | > (1 + δ )d�] = exp(−Ω(δ 2d )), by setting s = δd�.

Notations. We write ze
def
=

∑

c ∈Ψ(e ) ze,c and zc
def
=

∑

e ∈S ze,c . In other words, ze is the indicator
random variable that e successfully colors itself; zc is the indicator random variable that some
edge in S successfully colors itself by c . We can express z as z =

∑

e ∈S ze or z =
∑

c zc , where the
summation is over all colors c ∈ ⋃e ∈S Ψ(e ).

Let S ′ denote the set of edges such that e ′ ∈ S ′ if there exists e = {v•,u} ∈ S such that (i) Ψ(e ) ∩
Ψ(e ′) � ∅, and (ii) e ′ is incident to e . For each edge e ′ ∈ S ′ and for each color c ∈ Ψ(e ′), we define
R (e ′, c ) as the subset of S such that e ∈ R (e ′, c ) if (i) e is incident to e ′, and (ii) c ∈ Ψ(e ). We write
w (e ′, c ) = |R (e ′, c ) | andw (e ′) =

∑

c ∈Ψ(e ′)w (e ′, c ). Notice that the valuew (e ′, c ) may exceed 2 when

e ′ � S is an imaginary edge incident to v•. Intuitively,w (e ′) measures the influence of Color�(e ′)
on z. Notice that

∑

e ′∈S ′w (e ′) ≤ 2|S |pt .
We consider the sequence of random variables (X1, . . . ,X |S |+ |S ′ | ), where the initial |S ′ | variables

are the colors selected by the edges in S ′, in arbitrary order, and the remaining |S | variables are the
colors selected by the edges in S , in arbitrary order. We let z = f (X1, . . . ,X |S |+ |S ′ | ) in Theorem 13.
To prove the desired concentration bound, it suffices to show that we can setM = O (1) and σ 2

i to

achieve
∑ |S |+ |S ′ |

i=1 σ 2
i = O ( |S |). In what follows, we analyze the effect of exposing the value of the

random variable Xi , given that all variables in Xi−1 have been fixed.

Exposing an Edge in S ′. Consider the casewhereXi = Color�(e�) is the color selected by the edge
e� ∈ S ′. Recall Di = E[z |Xi ] − E[z |Xi−1]. Our goal is to show that Var[Di |Xi−1] = O (w (e )/(pt ))

and |Di | = O (1). Hence, we set σ 2
i = O (w (e )/(pt )), which implies

∑

1≤i≤ |S ′ | σ
2
i = O ( |S |), as desired.

By linearity of expectation, Di =
∑

c (E[zc |Xi ] − E[zc |Xi−1]), where the summation ranges over
all colors c that appear in

⋃

e ∈S Ψ(e ). We write Di,c = E[zc |Xi ] − E[zc |Xi−1], and make the follow-
ing observations:

• Di,c � 0 only if c ∈ Ψ(e�). For each c ∈ Ψ(e�), Di,c depends only on whether e� selects the
color c , which occurs with probability 1/p. In particular, Di,c < 0 only if e� selects c , and
Di,c > 0 only if e� does not select c . Thus, Cov[Di,c ,Di,c ′ |Xi−1] ≤ 0 for all color pairs {c, c ′}.

• For each e ∈ S , both E[ze,c |Xi ] and E[ze,c |Xi−1] are within [0, 1/p], since ze,c = 1 only if
c ∈ Ψ(e ) and e selects c , which occurs with probability 1/p. Thus, maxXi

Di,c −minXi
Di,c ≤

w (e�, c )/p.
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By Lemma 20 (with k ≤ w (e�, c )/p and α = 1/p), we have Var[Di,c |Xi−1] ≤ (1/p) (w (e�, c )/p)2.
We bound the variance Var[Di |Xi−1] as follows:

Var[Di |Xi−1] =
∑

c

Var[Di,c |Xi−1] +
∑

c,c ′
Cov[Di,c ,Di,c ′ |Xi−1]

=

∑

c

O ((w (e�, c )/p)2/p) Cov[Di,c ,Di,c ′ |Xi−1] ≤ 0

=

∑

c

O (w (e�, c )/p2) w (e�, c ) < t = Θ(p)

= O (w (e�)/p2)

= O (w (e�)/(pt )).

We bound |Di | as follows. Consider c ∈ Ψ(e�). Recall that we already have the bound |Di,c | ≤
w (e�, c )/p ≤ (t − 1)/p. If c is not selected by e�, which occurs with probability 1 − 1/p, then we
have a tighter bound |Di,c | ≤ w (e�, c )/p2 ≤ (t − 1)/p2 by Lemma 20 with k ≤ w (e�, c )/p and α =
1/p. Therefore,

|Di | ≤
∑

c

|Di,c | ≤ 1 · t − 1
p
+ (p − 1) · t − 1

p2
= O (1).

Exposing an Edge in S . Consider the case whereXi = Color�(e�) is the color selected by the edge
e� ∈ S . Suppose that Xi = c

�. Recall Di =
∑

c Di,c . It is straightforward to see that (i) |Di,c | ≤ 1 if
c = c�, (ii) |Di,c | ≤ 1/p if c ∈ Ψ(e�) − {c�}, and (iii) |Di,c | = 0 otherwise. Thus, |Di | = O (1), and
Var[Di |Xi−1] = O (1). We set σ 2

i = O (1), and so
∑

|S ′ |<i≤ |S |+ |S ′ | σ
2
i = O ( |S |).

A.2 Concentration of Palette Size

Let e• = {u,v} be an edge, and let c• = Color�(e•) be the color selected by e•. We do not consider
c• as a random variable in the analysis (i.e., we expose the color selected by e• first). Let E be the
event that e• does not successfully color itself. Since e• remains uncolored with at least a constant
probability, we are allowed to ignore the condition “e• remains uncolored” in Lemma 5 in the sub-
sequent calculation. To prove the desired concentration bound regarding palette size Pr[|Ψ�(e ) | <
(1 − δ )p� | eremains uncolored] = exp(−Ω(δ 2p)), it suffices to show that (i) | E[|Ψ�(e•) |] − p� | =
O (1), and (ii) Pr[|Ψ�(e•) | < (1 − δ ) E[|Ψ�(e•) |]] = exp(−Ω(δ 2 E[|Ψ�(e•) |])).

Notations. We write Su (respectively, Sv ) to denote the set of edges e incident to e• on u (re-
spectively, v) such that Ψ(e ) ∩ Ψ(e•) − {c•} � ∅. We write S ′ to denote the set of edges such
that e ′ ∈ S ′ if there exists e ∈ Su ∪ Sv meeting the following conditions: (i) e ′ is incident to
e , (ii) e ′ � Su ∪ Sv ∪ {e•}, and (iii) Ψ(e ) ∩ Ψ(e ′) ∩ Ψ(e•) − {c•} � ∅. Notice that Ψ�(e•) is deter-
mined by the colors selected by the edges in Su ∪ Sv ∪ S ′. We have |Su | ≤ (p − 1) (t − 1) < pt ,
|Sv | ≤ (p − 1) (t − 1) < pt , and |S ′ | ≤ 2(p − 1) (t − 1)2 < 2pt2.

Expected Value. In what follows, consider a color c ∈ Ψ(e•) − {c•}.

• Let e ∈ Su ∪ Sv such that c ∈ Ψ(e ). We have E[ze,c ] =
1
p
(1 − 1

p
)2t−3. Notice that e• selects

c• � c , so there are 2t − 3 (rather than 2t − 2) edges competing with e for the color c .
• Let e ′ = {u,x } ∈ Su and e ′′ = {v,y} ∈ Sv such that c ∈ Ψ(e ′) ∩ Ψ(e ′′). We define

ze ′,e ′′,c
def
= ze ′,c · ze ′′,c . If x = y, then ze ′,e ′′,c = 0. Otherwise, x � y and E[ze ′,e ′′,c ] =

1
p2
(1 − 1

p
)4t−6−b (e

′,e ′′) , where b (e ′, e ′′) ≤ 3 is the number of edges e such that (i) e � e•, and

(ii) e is incident to both e ′ and e ′′.
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Let zc be the indicator random variable that some edge incident to e• successfully colors itself
by c , that is,

zc
def
=

∑

e : e ∈Su∪Sv , c ∈Ψ(e )
ze,c −

∑

e ′,e ′′ : e ′∈Su , e ′′∈Sv , c ∈Ψ(e ′)∩Ψ(e ′′)
ze ′,e ′′,c .

The number of edges e ∈ Su ∪ Sv such that c ∈ Ψ(e ) is exactly 2t − 2. The number of pairs (e ′ =
{u,x } ∈ Su , e ′′ = {v,y} ∈ Sv ) such that c ∈ Ψ(e ′) ∩ Ψ(e ′′) and x � y is at least (t − 1)2 − (t − 1) and
at most (t − 1)2. By linearity of expectation (recall t = Θ(p)),

E[zc ] =
2t

p
(1 − 1/p)2t − t2

p2
(1 − 1/p)4t ±O (1/p).

Define z
def
=

∑

c ∈Ψ(e• )−{c• } zc . Then, we have

E[|Ψ�(e•) |] = |Ψ(e•) | − E[z] |Ψ�(e•) | = |Ψ(e•) | − z

= p ·
(

1 − 2t

p
(1 − 1/p)2t + t2

p2
(1 − 1/p)4t ±O (1/p)

)

= p ·
(

1 − 2t

p
(1 − 1/p)2t + t2

p2
(1 − 1/p)4t

)

±O (1)

= p� ±O (1). Definition of p�

Hence, | E[|Ψ�(e•) |] − p� | = O (1).

Concentration Bound. Consider the sequence of random variables (X1, . . . ,X |Su |+ |Sv |+ |S ′ | ), where
the initial |S ′ | variables are the colors selected by the edges in S ′, in arbitrary order, and the
remaining |Su | + |Sv | variables are the colors selected by the edges in Su ∪ Sv , in arbitrary
order. Let z = f (X1, . . . ,X |Su |+ |Sv |+ |S ′ | ) in Theorem 13. To prove the desired concentration bound
Pr[|Ψ�(e•) | < (1 − δ ) E[|Ψ�(e•) |]] = exp(−Ω(δ 2 E[|Ψ�(e•) |])), it suffices to show that Pr[z >
E[z] + s] = exp(−Ω(s2/p)), by setting s = δ E[|Ψ�(e•) |], and recall that E[|Ψ�(e•) |] = p� ±O (1) =
Θ(p). In view of Theorem 13, we only need to show that we can set M = O (1) and σ 2

i such that
∑ |Su |+ |Sv |+ |S ′ |

i=1 σ 2
i = O (p).

Exposing an Edge in S ′. Consider the case where Xi = Color�(e�) is the color selected by the
edge e� ∈ S ′. Our goal is to show that |Di | = O (1/t ). This implies Var[Di |Xi−1] = O (1/t2), and so

we may set σ 2
i = O (1/t2). Since |S ′ | = O (pt2), we have

∑ |S ′ |
i=1 σ

2
i = O (p).

Let R denote the set of edges in Su ∪ Sv that are incident to e�. Notice that 1 ≤ |R | ≤ 2.We define

z
(i )
c

def
=

∑

e ′ : e ′∈R, c ∈Ψ(e ′)
ze ′,c −

∑

e ′,e ′′ : e ′∈Su , e ′′∈Sv , c ∈Ψ(e ′)∩Ψ(e ′′), {e,e ′′ }∩R�∅
ze ′,e ′′,c .

Intuitively, z
(i )
c is the result of subtracting all terms from the definition of zc not involving edges

in R. We now argue that E[zc |Xi ] − E[zc |Xi−1] = E[z
(i )
c |Xi ] − E[z (i )c |Xi−1]. This is due to the two

observations: (i) If e � R, then E[ze,c |Xi ] = E[ze,c |Xi−1]. (ii) If {e ′, e ′′} ∩ R = ∅, then E[ze ′,e ′′,c |Xi ] =
E[ze ′,e ′′,c |Xi−1].
Consider a color c ∈ Ψ(e�) ∩ Ψ(e•) − {c•}. The probability that some edge in R selects c is at

most |R |/p ≤ 2/p. Thus, the conditional expectations E[z
(i )
c |Xi ] and E[z

(i )
c |Xi−1] must be within

[0, 2/p], and so | E[z (i )c |Xi ] − E[z (i )c |Xi−1]| ≤ 2/p. For the case of c � Xi , which occurs with prob-

ability 1 − 1/p, we have a tighter bound | E[z (i )c |Xi ] − E[z (i )c |Xi−1]| ≤ 2/p2 by Lemma 20 with
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k ≤ 2/p and α = 1/p. We bound |Di | as follows:

|Di | ≤
∑

c ∈Ψ(e• )−{c• }
| E[zc |Xi ] − E[zc |Xi−1]|

=

∑

c ∈Ψ(e� )∩Ψ(e• )−{c• }
| E[z (i )c |Xi ] − E[z (i )c |Xi−1]|

≤ (2/p) + (2/p2) ( |Ψ(e�) ∩ Ψ(e•) − {c•}| − 1)
= O (1/p) = O (1/t ).

Exposing an Edge in Su ∪ Sv . Consider the case where Xi = Color�(e�) is the color selected

by the edge e� ∈ Su ∪ Sv . We define w (e�)
def
= |Ψ(e�) ∩ Ψ(e•) − {c•}|. The goal is to show that (i)

|Di | = O (1) and (ii) Var[Di |Xi−1] = O (w (e�)/p). By setting σ 2
i = O (w (e�)/p), we achieve

|S ′ |+ |Su |+ |Sv |∑

i= |S ′ |+1
σ 2
i =

∑

e ∈Su∪Sv
O (w (e )/p) = O (pt/p) = O (t ) = O (p).

By the linearity of expectation, Di =
∑

c ∈Ψ(e� )∩Ψ(e• )−{c• } Di,c , where Di,c = E[zc |Xi ] −
E[zc |Xi−1]. Since both E[zc |Xi ] and E[zc |Xi−1] are within [0, 1], we have |Di,c | ≤ 1. We have a
tighter bound |Di,c | ≤ 1/p in the event that Color�(e�) � c (by Lemma 20 with k ≤ 1 and α = 1/p).
Thus, |Di | ≤ 1 + (w (e�) − 1)/p = O (1).

To prove that Var[Di |Xi−1] = O (w (e�)/p), we need the following two observations.

• Consider a color c ∈ Ψ(e�) ∩ Ψ(e•) − {c•}. Recall that |Di,c | ≤ 1/p for the case c is not se-
lected by e�, which occurs with probability 1 − 1/p. Thus, E[Di,c · Di,c |Xi−1] ≤ (1/p) · 1 +
(1 − 1/p) · 1/p2 = O (1/p).

• Consider two distinct colors c and c ′ in Ψ(e�) ∩ Ψ(e•) − {c•}. If e� selects c or c ′ (which
occurs with probability 2/p), then Di,c · Di,c ′ ≤ 1 · (1/p). Otherwise, Di,c · Di,c ′ ≤ (1/p) ·
(1/p). Therefore, E[Di,c · Di,c ′ |Xi−1] ≤ (2/p) · 1/p + (1 − 2/p) · 1/p2 = O (1/p2).

We now bound Var[Di |Xi−1] as follows:

Var[Di |Xi−1] ≤
∑

c ∈Ψ(e� )∩Ψ(e• )−{c• }

∑

c ′∈Ψ(e� )∩Ψ(e• )−{c• }
E[Di,c · Di,c ′ |Xi−1]

≤ w (e�) ·O (1/p) +w (e�) (w (e�) − 1) ·O (1/p2)

= O (w (e�)/p).

A.3 Concentration of Color Degree

For the remainder of this section, fix a vertexv• and a color c• in the paletteΨ(e ) for some e incident

to v•. For convenience, we write R
def
= Nc• (v

•). Define R� as the subset of R such that e = {v•,u} ∈
R� if (i) e is not successfully colored by a color in Ψ(e ) − {c•}, and (ii) no edge incident to e on u

successfully colors itself c•. We write z
def
= |R \ R� |. Let E ′ be the event that N �c• (v•) � ∅. Observe

that if E ′ occurs, then no edge incident to v• successfully colors itself c•. Thus, conditioning on
E ′ happening, R \ R� equals N �c• (v•).
Our goal is to show that (i) Pr[z < E[z] − s] = exp(−Ω(s2/t )), and (ii) E[|R� |] = |R | − E[z] =

t � ±O (1). Since E ′ occurswith constant probability, the above (i) and (ii) together imply the desired
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concentration bound Pr[|N �c• (v•) | > (1 + δ )t � | E ′] = exp(−Ω(δ 2t )), by setting s = δt � ±O (1). Re-
call that t � = Θ(t ).

Expected Value. With respect to an edge e = {v•,u} ∈ R, we define the following notations based
on parts (i) and (ii) of the definition of R�.

• Define zae as the indicator random variable that some edge incident to e on u successfully
colors itself c•. We have E[zae ] = (t − 1) · 1

p
(1 − 1

p
)2t−2 = t

p
(1 − 1

p
)2t ±O (1/p).

• Define zbe as the indicator random variable that e is successfully colored by a color in Ψ(e ) −
{c•}. We have E[zbe ] = (p − 1) · 1

p
(1 − 1

p
)2t−2 = (1 − 1

p
)2t ±O (1/p).

Let za,be
def
= zae · zbe . Notice that zae and zbe are nearly independent but not independent. Let ze

def
=

zae + z
b
e − za,be , and so we have z = |R \ R� | = ∑e ∈R ze . We calculate E[za,be ] as follows. Let e ′ be

any edge incident to e such that c• ∈ Ψ(e ′), and let c be any color in Ψ(e ) − {c•}. With respect to
(e, e ′, c ), we define the following two sets:

• Sa is the set of all edges e
′′ such that (i) e ′′ � e, e ′, (ii) e ′′ is incident to e ′, and (iii) c• ∈ Ψ(e ′′).

Intuitively, Sa is the set of all edges other than e that contend with e
′ for the color c•. Notice

that |Sa | = 2t − 3, since Ψ(e ) must contain c•.
• Sb is the set of all edges e ′′ such that e ′′ ∈ Sb if (i) e ′′ � e, e ′, (ii) e ′′ is incident to e , and

(iii) c ∈ Ψ(e ′′). Intuitively, Sb is the set of all edges other than e ′ that contend with e for the
color c . Notice that 2t − 3 ≤ |Sb | ≤ 2t − 2, since Ψ(e ′) may or may not contain c . The extent
to which Sa and Sb intersect is unknown.

Fixing the edge e incident to v•, let x (c, e ′) denote the probability that (i) e ′ successfully colors
itself c• and (ii) e successfully colors itself c . In view of the definition of Sa and Sb , we have

x (c, e ′) =
1

p2

∏

e ′′∈Sa\Sb
(1 − 1/p)

∏

e ′′∈Sb \Sa
(1 − 1/p)

∏

e ′′∈Sa∩Sb
(1 − 2/p)

=

1

p2
(1 − 1/p) |Sa\Sb | (1 − 1/p) |Sb \Sa | (1 − 2/p) |Sa∩Sb |

=

1

p2
(1 − 1/p) |Sa\Sb | (1 − 1/p) |Sb \Sa | (1 − 1/p)2 |Sa∩Sb |

(

1 −O
(

|Sa ∩ Sb |
p2

))

=

1

p2
(1 − 1/p) |Sa |+ |Sb | (1 −O (1/p)) (Notice that |Sa ∩ Sb | < t = Θ(p).)

=

1

p2
(1 − 1/p)4t−O (1) (1 −O (1/p))

=

1

p2
(1 − 1/p)4t ±O (1/p3).

We now calculate E[za,be ] and show that E[|R� |] = |R | − E[z] = t � ±O (1).

E[za,be ] =
∑

(c,e ′) : e ′ incident to e ,
c• ∈ Ψ(e ′), c ∈ Ψ(e ) − {c• }

x (c, e ′) (union of disj. events)

= (t − 1) (p − 1) ·
(

1

p2
(1 − 1/p)4t ±O (1/p3)

)

=

t

p
(1 − 1/p)4t ±O (1/p).
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E[|R� |] = |R | − E[z]
= t −

∑

e ∈R

(

E[zae ] + E[z
b
e ] − E[za,be ]

)

= t ·
(

1 − t

p
(1 − 1/p)2t − (1 − 1/p)2t + t

p
(1 − 1/p)4t ±O (1/p)

)

= t ·
(

1 − t

p
(1 − 1/p)2t − (1 − 1/p)2t + t

p
(1 − 1/p)4t

)

±O (1)

= t � ±O (1). Definition of t �

Concentration Bound. We have established that |R� | has the correct expectation and now need
to prove that it has sufficiently good concentration around that expectation. The analysis here be-
comesmore complicated, because we have to consider the colors selected in some 3-neighborhood.
The palette size and degree analyses focussed only on 2-neighborhoods.

Based on the definition of zae and zbe , we define the following sets.

• Recall that R = Nc• (v
•). Let R1 be the set of all edges e such that (i) e � R, (ii) c• ∈ Ψ(e ), and

(iii) e is incident to some edge in R. Similarly, let R2 be the set of all edges e such that (i)
e � R ∪ R1, (ii) c

• ∈ Ψ(e ), and (iii) e is incident to some edge in R1. Notice that the value z
a
e ,

for any e ∈ R, is determined by the information about which edges in R ∪ R1 ∪ R2 select c
•.

We write α = |R ∪ R1 ∪ R2 |.
• Let R′ be the set of all edges e ′ such that (i) e ′ � R and (ii) there exists e ∈ R such that

Ψ(e ) ∩ Ψ(e ′) − {c•} � ∅. Notice that the the value zbe , for any e ∈ R, is determined by the
colors selected by the edges in R ∪ R′. We write β = |R ∪ R′ |.

For each e ∈ R, zae is simply the summation of ze ′,c• over all edges e
′ ∈ R1 incident to e . For each

e ′′ ∈ R2, we write w (e ′′) to denote the number of edges in R1 incident to e ′′. Intuitively, w (e ′′)
measures the influence of Color�(e ′′) on

∑

e ∈R z
a
e .

We consider the sequence of random variables (X1, . . . ,Xα+β ), where the initial α random vari-
ables reveal which edges in R ∪ R1 ∪ R2 select the color c

• according to the ordering R2,R1,R, and
the remaining β random variables reveal the colors selected by the edges in R ∪ R′ according to
the ordering R′,R. We let z = f (X1, . . . ,Xα+β ) in Theorem 13. To prove the desired concentration

bound Pr[z < E[z] − s] = exp(−Ω(s2/t )), it suffices to show that we can setM = O (1) and σ 2
i such

that
∑α+β

i=1 σ 2
i = O (t ). In what follows, we analyze the effect of exposing the value ofXi , given that

all variables in Xi−1 have been fixed.

Revealing whether c• is Selected by an Edge in R ∪ R1 ∪ R2. Consider the case where Xi reveals
whether c• is selected by the edge e� ∈ R ∪ R1 ∪ R2. Notice that Xi is binary, and recall that Di =

E[z |Xi ] − E[z |Xi−1]. There are at most two distinct outcomes ofDi |Xi−1, in which one occurs with
probability 1/p. Thus, by Lemma 20, we have

Var[Di |Xi−1] ≤
(

max
Xi

Di |Xi−1 −min
Xi

Di |Xi−1

)2

/p = O (max
Xi

|Di |2/p).

Thus, to achieve
∑α

i=1 σ
2
i = O (t ) andM = O (1) it suffices to show the following:

• For the case e� ∈ R2, we must prove |Di | = O (w (e�)/p).14 Since w (e�) < t = Θ(p),
Var[Di |Xi−1] = O ((w (e�)/p)2/p) = O (w (e�)/p2), so we can set σ 2

i = O (w (e�)/p2).

14Intuitively, if e� chooses color c•, it preventsw (e�) edges in R1 from successfully coloring themselves c•, but the prior
probability of these edges coloring themselves c• was onlyO (1/p ), hence the total influence on the expectation of z should

be O (w (e�)/p ).
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• For the case e� ∈ R ∪ R1, we must prove |Di | = O (1). Hence, we may set σ 2
i =

Var[Di |Xi−1] = O (1/p).

Notice that
∑

e�∈R2
w (e�) < t3, |R1 | < t2, and |R | = t . Thus,

∑α
i=1 σ

2
i = O (t ). With respect to the

edge e� ∈ R ∪ R1 ∪ R2, we make the following definitions:

Y a def
= {e ′ ∈ R1 : e ′ = e� or e ′ is incident to e�}, Da

i
def
=

∑

e ′∈Y a

(

E[ze ′,c• |Xi ] + E[ze ′,c• |Xi−1]
)

,

Yb def
= {e ∈ R : e = e� or e is incident to e�}, Db

i
def
=

∑

e ∈Y b

| E[zbe |Xi ] − E[zbe |Xi−1]|.

Intuitively, Y a and Yb are the subsets of R1 and R that are “relevant” to Di in the following sense:

E[ze ′′,c• |Xi ] = E[ze ′′,c• |Xi−1] for all e ′′ ∈ R1 \ Y a ,

E[zbe ′ |Xi ] = E[zbe ′ |Xi−1] for all e ′ ∈ R \ Yb .

Our plan of bounding |Di | is as follows. First, we show that |Di | ≤ 4Da
i + D

b
i in Claim 1, and then

we bound Da
i and Db

i separately in Claims 2 and 3. The three claims together establish a desired
bound on |Di |.

Claim 1. |Di | ≤ 4Da
i + D

b
i .

Proof. We define the following notations:

P1
def
= {(e, e ′) : e ∈ R \ Yb , e ′ ∈ Y a , e is incident to e ′},

P2
def
= {(e, e ′) : e ∈ Yb , e ′ ∈ R1 \ Y a , e is incident to e ′},

P3
def
= {(e, e ′) : e ∈ Yb , e ′ ∈ Y a , e is incident to e ′},

Q j
def
= −∑(e,e ′)∈Pj

(

E[ze ′,c• · zbe |Xi ] − E[ze ′,c• · zbe |Xi−1]
)

(for each j = 1, 2, 3),

Fj
def
=

∑

e ∈R
(

E[z je |Xi ] − E[z je |Xi−1]
)

(for each j = a,b).

The definitions of P1, P2, and P3 depend onY
a andYb , which depend on the edge e�. For instance,

if e� ∈ R, then Yb
= R, which implies that P1 = ∅. Recall that the edge e� can be any edge in

R ∪ R1 ∪ R2, and the proof of this claim applies to all choices of e� ∈ R ∪ R1 ∪ R2.
Notice that for any pair (e ∈ R, e ′ ∈ R1) such that e is incident to e ′ but (e, e ′) � P1 ∪ P2 ∪ P3, we

must have E[ze ′,c• · zbe |Xi ] = E[ze ′,c• · zbe |Xi−1] due to the definition of Y a and Yb . We rewrite the
term Di as follows:

Di = E[z |Xi ] − E[z |Xi−1]

=

∑

e ∈R
(E[ze |Xi ] − E[ze |Xi−1])

=

∑

e ∈R

((

E[zae |Xi ] − E[zae |Xi−1]
)

+

(

E[zbe |Xi ] − E[zbe |Xi−1]
)

−
(

E[zae · zbe |Xi ] − E[zae · zbe |Xi−1]
))

(recall that zae is the summation of ze ′,c• over all edges e
′ ∈ R1 incident to e)

= Fa + Fb −
∑

(e,e ′) : e ∈R, e ′∈R1, e ′ incident to e

(

E[ze ′,c• · zbe |Xi ] − E[ze ′,c• · zbe |Xi−1]
)
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(any pair (e, e ′) � P1 ∪ P2 ∪ P3 contributes zero to this summation)

= Fa + Fb +Q1 +Q2 +Q3.

To prove this claim it suffices to show that (i) |Fa +Q1 | ≤ 2Da
i , (ii) |Fb +Q2 | ≤ Db

i , and (iii) |Q3 | ≤
2Da

i . We expand Fa using the fact that z
a
e is the summation of ze ′,c• over all edges e

′ ∈ R1 incident
to e:

|Fa +Q1 | ≤
�������Q1 +

∑

(e,e ′) : e ∈R, e ′∈R1, e ′ incident to e

(

E[ze ′,c• |Xi ] − E[ze ′,c• |Xi−1]
)

������� .
Since any pair (e, e ′) � P1 ∪ P3 contributes 0 in the summation,

≤
�������Q1 +

∑

(e,e ′)∈P1∪P3

(

E[ze ′,c• |Xi ] − E[ze ′,c• |Xi−1]
)

������� ,
and by definition of Q1,

≤
∑

(e,e ′)∈P1

���E[ze ′,c• (1 − zbe ) |Xi ] − E[ze ′,c• (1 − zbe ) |Xi−1]
���

+

∑

(e,e ′)∈P3

��E[ze ′,c• |Xi ] − E[ze ′,c• |Xi−1]�� .
When e � R \ Yb , E[zbe |Xi−1] = E[zbe |Xi ], so

≤
∑

(e,e ′)∈P1
(1 − E[zbe |Xi−1]) ��E[ze ′,c• |Xi ] − E[ze ′,c• |Xi−1]��

+

∑

(e,e ′)∈P3

��E[ze ′,c• |Xi ] − E[ze ′,c• |Xi−1]�� ,
and since 0 ≤ 1 − E[zbe |Xi−1] ≤ 1,

≤
∑

(e,e ′)∈P1∪P3

��E[ze ′,c• |Xi ] − E[ze ′,c• |Xi−1]�� .
Finally, any edge e ′ ∈ R1 is incident to at most two edges in R, so

≤ 2
∑

e ′∈Y a

��E[ze ′,c• |Xi ] − E[ze ′,c• |Xi−1]��
≤ 2Da

i .

For each e ∈ Yb , we write B (e ) to denote the set of all edges e ′ ∈ R1 \ Y a that are incident to e ,
i.e., {e} × B (e ) ⊆ P2. Notice that 0 ≤ E[

∑

e ′∈B (e ) ze ′,c• |Xi−1] = E[
∑

e ′∈B (e ′) ze ′,c• |Xi ] ≤ 1, since e =
{v•,u} and all edges in B (e ) share the vertex u, and so at most one could be successfully colored
c•. By definition, none are incident to e�. We can now bound |Fb +Q2 | as follows:

|Fb +Q2 | ≤
�������Q2 +

∑

e ∈Y b

E[zbe |Xi ] − E[zbe |Xi−1]

������� .
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According to the definition of B (e ) and Q2,

≤
∑

e ∈Y b

�������E
⎡⎢⎢⎢⎢⎢⎣z
b
e
���1 −

∑

e ′∈B (e )
ze ′,c•

���
�������Xi

⎤⎥⎥⎥⎥⎥⎦ − E
⎡⎢⎢⎢⎢⎢⎣z

b
e
���1 −

∑

e ′∈B (e )
ze ′,c•

���
�������Xi−1

⎤⎥⎥⎥⎥⎥⎦
������� .

For every e ′ ∈ R1 \ Y a , we have E
[

ze ′,c• |Xi
]

= E
[

ze ′,c• |Xi−1
]

, which implies

≤
∑

e ∈Y b

���1 − E
⎡⎢⎢⎢⎢⎢⎣
∑

e ′∈B (e )
ze ′,c•

�������Xi−1

⎤⎥⎥⎥⎥⎥⎦
��� ·

���E[zbe |Xi ] − E[zbe |Xi−1]
���

≤
∑

e ∈Y b

���E[zbe |Xi ] − E[zbe |Xi−1]
���

= Db
i .

Our last task is to bound the absolute value of Q3:

|Q3 | ≤
∑

(e,e ′)∈P3

(

E[ze ′,c• · zbe |Xi ] + E[ze ′,c• · zbe |Xi−1]
)

≤
∑

(e,e ′)∈P3

(

E[ze ′,c• |Xi ] + E[ze ′,c• |Xi−1]
)

.

Since any edge e ′ ∈ R1 is incident to at most 2 edges in R,

≤ 2
∑

e ′∈Y a

(

E[ze ′,c• |Xi ] + E[ze ′,c• |Xi−1]
)

≤ 2Da
i . �

Claim 2. If e� ∈ R2, then Da
i = O (w (e�)/p). If e� ∈ R ∪ R1, then Da

i = O (1).

Proof. We first consider the case that e� ∈ R2. In this case |Y a | = w (e�). Recall that Y a ⊆ R1,
and so all e ∈ Y a have not yet decided whether to select c• when Xi is revealed. Therefore, both
E[ze,c• |Xi ] and E[ze,c• |Xi−1] are within the range [0, 1/p], and soDa

i = O (w (e�)/p). Next, consider
the case that e� ∈ R ∪ R1. All edges in Y a must share a vertex with e�, and so at most two edges
in Y a can successfully color themselves by c•. Hence,

Da
i ≤
∑

e ∈Y a

(

E[ze,c• |Xi ] + E[ze,c• |Xi−1]
) ≤ 2 + 2 = 4 = O (1). �

Claim 3. If e� ∈ R1 ∪ R2, then Db
i = O (1/p). If e� ∈ R, then Db

i = O (1).

Proof. Recall that zbe =
∑

c ∈Ψ(e )−{c• } ze,c for any edge e ∈ Yb , and so

Db
i ≤
∑

e ∈Y b

∑

c ∈Ψ(e )−{c• }
| E[ze,c |Xi ] − E[ze,c |Xi−1]|.

We first show that | E[ze,c |Xi ] − E[ze,c |Xi−1]| = O (1/p2) if e� � e . We write k1 (respectively, k2) to
denote the number of edges incident to e that have decided to select c• (respectively, have decided
to not select c•) by the time Xi is revealed:

E[ze,c |Xi−1] =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 (e has decided to select c•)
1

p−1 · (1 − 1/p)2t−1−k1−k2 · (1 − 1/(p − 1))k2 (e has decided to not select c•)
1
p
· (1 − 1/p)2t−1−k1−k2 · (1 − 1/(p − 1))k2 (e has not made any decision).
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In any case, E[ze,c |Xi−1] = O (1/p). There are two possibilities of E[ze,c |Xi ] based on Xi , i.e.,
whether e� selects c•:

E[ze,c |Xi ] =

{

E[ze,c |Xi−1]/(1 − 1/p) (e� selects c•)
E[ze,c |Xi−1] · (1 − 1/(p − 1))/(1 − 1/p) (e� does not select c•).

In any case, | E[ze,c |Xi ] − E[ze,c |Xi−1]| = O (1/p2). We are now in a position to bound Db
i . For the

case that e� ∈ R1 ∪ R2, we have |Yb | ≤ 2 and e� � Yb , and so Db
i ≤ 2 · (p − 1) ·O (1/p2) = O (1/p).

For the case that e� ∈ R, we have |Yb | = |R | = t and e� ∈ Yb , and so Db
i ≤ 1 + (t − 1) · (p − 1) ·

O (1/p2) = O (1). �

Revealing the Color Selected by an Edge in R ∪ R′. Next, we analyze the effect of exposing the
value of Xi , where α < i ≤ α + β , given that all variables in Xi−1 have been fixed.

Observe that zae , for all e ∈ R, are already determined by {X j : j ∈ [α]}. If zae = 1, then ze = 1

regardless of the value of zbe ; if z
a
e = 0, then ze = zbe . For those edges e ∈ R such that ze is not

determined by {X j : j ∈ [α]}, the random variable ze = zbe behaves the same as ze in the analysis
of concentration of vertex degree, so the analysis in Appendix A.1 can be applied here (think of
S = R and S ′ = R′).

In more detail, for each edge e ′ ∈ R′, we definew ′(e ′) as∑e ∈R, e ′ incident to e |Ψ(e ′) ∩ Ψ(e ) − {c•}|.
We have

∑

e ′∈R′w
′(e ′) ≤ |R |(p − 1) (t − 1) < pt2. Now consider the colorXi = Color�(e�) selected

by the edge e� ∈ R ∪ R′. From the analysis in Appendix A.1, we infer the following:

• If e� ∈ R′, then |Di | = O (1) and Var[Di |Xi−1] = O (w ′(e�)/(pt )). Hence, we can set σ 2
i =

O (w ′(e�)/(pt )).
• If e� ∈ R, then |Di | = O (1) and Var[Di |Xi−1] = O (1). Hence, we can set σ 2

i = O (1).

Thus,
∑α+β

j=α+1 σ
2
i = O (t ), as desired.
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