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ARTICLE INFO ABSTRACT

Early detection and risk assessment of complex chronic disease based on longitudinal clinical data is helpful for
doctors to make early diagnosis and monitor the disease progression. Disease diagnosis with computer-aided
methods has been extensively studied. However, early detection and contemporaneous risk assessment based on
partially labeled irregular longitudinal measurements is relatively unexplored. In this paper, we propose a
flexible mixed-kernel framework for training a contemporaneous disease risk detector to predict the onset of
disease and monitor the disease progression. Moreover, we address the label insufficiency problem by identi-
fying the pattern of disease-induced progression over time with longitudinal data. Our method is based on a
Structured Output Support Vector Machine (SOSVM), extended to longitudinal data analysis. Extensive ex-
periments are conducted on several datasets of varying complexity, including the contemporaneous risk as-
sessment with simulated irregular longitudinal data; the identification of the onset of Type 1 Diabetes (T1D) with
irregularly sampled longitudinal RNA-Seq gene expression dataset; as well as the monitoring of the drug long-
term effects on patients using longitudinal RNA-Seq dataset containing missing time points, demonstrating that
our method enhances the accuracy in both early diagnosis and risk estimation with partially labeled irregular
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longitudinal clinical data.

1. Introduction

The rapid advancement of sensor and information technologies in
recent decades such as the high-throughput next generation sequencing
and imaging techniques provide unprecedented opportunities for us to
develop methods for early diagnosis and contemporaneous monitoring
of the disease. For example, a dynamic biological process of living or-
ganisms can be manifested by the changes in the gene expression,
whose dysfunction and variation help better understand disease pro-
gression. The positron emission tomography (PET) scan imaging tech-
nique shows characteristic changes in the brains of patients with
Alzheimer’s disease (AD), and in prodromal and even presymptomatic
states that can help estimate the AD pathophysiological process [25].
Early diagnosis is beneficial for disease prevention and early treatment
as it plays an important role to raise cure rates, achieve better care and
quality of life, and/or extend survival for chronic diseases which pro-
gress over time or have persistent and long-lasting in its effect [38,15].
For example, type 1 diabetes (T1D), a genetic chronic disease, whose
disease progression can be subdivided into multiple stages while the
symptoms only appear at the last stage as shown in Fig. 1[27]. Early
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detection can also be applied to the longitudinal study of the clinical
responses to drug therapy. Identifying pre-existing and drug-induced
signatures is important to predict the clinical response to the drugs
[69].

Besides early diagnosis, contemporaneous monitoring of the disease
progression is also critical for the care management of the patients with
chronic conditions. One of the most important properties of chronic
disease is that, as defined by the U.S. National Center for Health
Statistics, the disease persists for long time. The speed of progression of
the chronic diseases such as Alzheimer’s disease and diabetes, varies
greatly across patients due to different factors including genetics,
physiology, social-economics, gender, and behavior. Contemporaneous
monitoring of the disease progression can help patients get more ap-
propriate care and treatments. Furthermore, contemporaneous mon-
itoring of the disease progression can be very helpful in the study of
drug response as well. E.g., it’s crucial for doctors to have the capability
of tracking the drug’s longitudinal effects to provide reliable re-
commendations for the continual usage of medications to treat the
disease.

To develop early diagnosis and contemporaneous disease
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Fig. 1. T1D can be subdivided into three stages: stage 1 is characterized by the presence of autoantibodies and the absence of dysglycaemia; stage 2 is characterized
by the presence of both autoantibodies and dysglycaemia; and symptoms only appear at stage 3, which corresponds to symptomatic T1D [27].

monitoring methods, we also need to overcome the following chal-
lenges:

o Difficulty in disease detection at the early stage

One property of the chronic disease is that they are slow to develop
and may progress over time. This property makes early diagnosis dif-
ficult since patients at the early stage of diseases behave similarly as
healthy people. E.g., for Alzheimer’s disease patients at the early stage,
their cognitive functions and living functions usually maintain as
normal aging individuals. Fig. 2 provides a simple schematic example
with the data containing 2 features (x1 and x2). In Fig. 2, there are two
subjects with repeated observations: the patient (orange points) and the
normal control (blue points). The patient can go through multiple
stages: mild, moderate and severe. Most points at the early stage of the
patient cannot be separated from those of the normal control. Early
diagnosis is thus challenging at the early stage of the disease.

o Lack of information regarding disease progression

Another challenge is the lack of label information to specifically
point out the stages of the disease progression. Labeling subjects by the
trained medical professionals at each time point, i.e., the information
regarding the stage in Fig. 2a, is almost impossible and expensive. In
many cases, the only given label information for a subject’s longitudinal
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(a) The patient at the early stage behave similarly

as the normal control.

data is the final diagnosis at the end of a clinical study. Furthermore,
subjects’ irregular and asynchronous visits as well as the varying dis-
ease progression rates make the problem more intractable. For long-
itudinal dataset with label only on the last time point, it’s difficult to
apply existing classification methods on the data points observed prior
to the last one, since we have no information indicating from which
time point the patients start to behave differently from the normal
controls.

In contrast to existing methods that need labels of the patients on all
the time points, here, we develop an approach that can extract the
“change” information from the original data points, and seek to learn
the disease progression over time. We have the intuition that although
patients at the early stage may not be separable from the normal con-
trols using static measurements if we focus on the magnitude or scale of
the measurements, the change patterns over time may separate the two
groups, as presented in Fig. 2b.

Fig. 3 demonstrates that such a transformation from the original
data to the changes over time enables clear separation between the two
classes. Moreover, the changes accumulated over larger time intervals
are more separable between the two classes, since they contain more
information regarding the disease progression. Meanwhile, since the
“change” information is measured based on the different time points
within the same subject, the synchronization of the visits across the
subjects is not required.

To articulate this intuition, this paper proposes a flexible mixed-
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Fig. 2. How can we train a detector (i.e., for early diagnosis and risk monitoring) with the dataset where most points are not separable?
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Fig. 3. New data is generated based on the same data in Fig. 2 by transforming
the original time points to the change over time: X}, = §®(x/, x/), t > t'. XL is
the transformed data point, x; and x/ are two original data points from subject
i, and 6@ can be any function for measuring the change from t' to ¢t In this
figure, it’s simply X, = x! — x/.. The size of the points indicates the length of the
time intervals. It can be shown that the change accumulated over large time
intervals is more obvious between the two classes.

kernel method, called EDRA (Early Detection and Risk Assessment),
which is based on the Structured Output Support Vector Machine
(SOSVM) [60] extended to longitudinal data analysis with partial label
information. By capturing the pattern of the disease progression over
time instead of looking at a single data point, our method is able to
achieve better disease diagnosis at the early stage. Another contribution
of our method is that it can provide contemporaneous risk assessment of
the disease. Meanwhile, EDRA inherits the advantages of SOSVM, in-
cluding the rescaling of the penalty placed on the misclassification,
which enables the smooth and monotonic trajectories for the predicted
scores with the proper selections of loss rescaling functions. The
properties of smoothness and monotonicity are crucial to reflect the
contemporaneous underlying risk over time for slowly progressive
diseases such as chronic diseases.

EDRA has the following advantages. First, it achieves early diag-
nosis with high accuracy. Second, it addresses the disease label/in-
formation inefficiency problem for the chronic disease with long-
itudinal data. Third, it enables contemporaneous risk assessment for
tracking the disease/drug-induced progression. Last but not least, it
provides a flexible mixed-kernel framework which constructs the kernel
as a linear combinations of weighted “sub-kernels” each containing one
feature or a subset of features, to take advantage of the prior knowledge
about the features. Experiments of varying complexities were con-
ducted to analyze our method performance, including (1) early detec-
tion and contemporaneous risk assessment using the simulated irre-
gular and partially-labeled longitudinal data with features that are
equally/differently predictive; (2) early detection and con-
temporaneous risk estimation with irregular longitudinal T1D RNA-Seq
gene expression data; (3) monitoring of drug’s long-term effect on pa-
tients based on longitudinal RNA-Seq gene expression data with missing
time points. Our paper is organized as follows. In Section 2, we will
review and discuss the related works in literature. In Section 3, the
proposed mix-kernel framework for training contemporaneous disease
risk detector with longitudinal data will be presented and the corre-
sponding algorithm will be derived. Specifically, in Section 3.4, we will
analyze and discuss the properties of the trained risk detector. In Sec-
tion 4, the performance of our method will be demonstrated and vali-
dated on two synthetic datasets and two real-world applications as
described above. Finally (Section 5), we will conclude our work and
introduce the directions of our future study.

2. Related works

Our method is related to the topics in literature of computer-aided
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diagnosis methods, longitudinal clinical data analysis, and structured-
output learning. Different from these methods, our method can handle
irregular longitudinal data with partial label information, focusing on
not only early diagnosis, but also contemporaneous monitoring of the
disease progression.

2.1. Computer-aided diagnosis methods

Classification methods are widely used in computer-aided diagnosis.
Many classification methods care about finding optimal hyperplanes to
best separate data from different groups, whereas other methods such
as Bayesian methods achieve classification based on probabilistic
models. Classic classification methods are frequently applied in DNA
micro-array and RNA-seq gene expression data analysis, among which
there are statistical methods such as Linear Discriminant Analysis (LDA)
[49,1], Quadratic Discriminant Analysis (QDA) [3] and Optimal
Scoring (0OS) [14,20], which seek to find another space where the be-
tween-class covariance is maximized while the within-class covariance
is minimized; Bayesian methods including Naive Bayes and Bayesian
Networks classifier apply Bayes rule for the inference of classes
[56,50,36]; Machine learning methods like Support Vector Machine
(SVM) [28,1,46,42] and ensemble learning methods such as Random
Forest (RF) [7,47,35], representing modern techniques, are commonly
applied in computer-aided disease diagnosis because of their robust
performance. More complicated models are considered to address di-
verse range of challenges and specific complexities in some applica-
tions. For example, Zhou et al. formulate the prediction problem as a
multi-task regression problem to predict the longitudinal outcomes for
Alzheimer’s disease based on the static baseline MRI features [70].
Multi-model frameworks are proposed to combine data of different
types, e.g., Chen et al. propose a convolutional neural network (CNN)-
based multimodel disease prediction algorithm using structured and
unstructured data [12]. In [68], Zhang et al. propose a multimodel
classifier combining three modalities of biomarkers to classify Alzhei-
mer’s disease (AD) or its prodromal stage (i.e., mild cognitive impair-
ment (MCI)) from the healthy controls. Various recurrent neural net-
works (RNN)-based approaches have been developed for temporal data
analysis. GRU-D, that is based on Gated Recurrent Unit (GRU), pro-
posed by Che et al. to address the missing values problem in time series
data by utilizing the missing patterns to achieve better prediction re-
sults [9]. Choi et al. propose Doctor Al, a temporal model using re-
current neural networks (RNN) that was applied to longitudinal time
stamped electronic health record (EHR) data to leverage large historical
data to make multilabel predictions (one label for each diagnosis or
medication category) for patients’ subsequent visits [13].

Nevertheless, most of the methods discussed above are supervised
learning, it’s difficult to directly apply these methods on partially la-
beled data. Moreover, comparing to these methods, our objectives are
different, since we not only aim at discriminating classes, but also
contemporaneously estimating the underlying risk scores with the ir-
regular longitudinal data.

2.2. Longitudinal clinical data analysis

Longitudinal study is widely used in diagnosis, prediction and
monitoring of the disease, that involves repeated observations of same
variables over short/long period of time. There exist many time series
models applied in longitudinal clinical data analysis. State-spaced
models focusing on latent states inference, such as HMM and Linear
Dynamic Systems (LDS) with its variants including Kalman filter, have
been proved to be useful for the prediction of the disease progression
[34,41,40]. Among this line of efforts, HMM-based methods are widely
used in clinical data analysis. For instance, Wang et al. propose a
continuous-time HMM-based model that learns a continuous-time pro-
gression model from discrete-time observations with non-equal inter-
vals to address the problems like irregularity and the incompleteness of
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the observation [64]. Jackson et al. develop a multistage Hidden
Markov Model and apply it to an aneurysm screening study [23].
Sukkar et al. apply Hidden Markov Model to Alzheimer’s disease [58].
Trajectory studies including Fixed/Random/Mixed-effect models, La-
tent Growth Mixture Modeling (LGMM), Latent Class Growth Modeling
(LCGM) have been increasingly recognized for their usefulness for
identifying homogeneous subpopulations within the larger hetero-
geneous population [44,51,26,57,19,54]. However, most of these
methods aim at either prediction or discrimination, which is not enough
to cover our objectives, nor are they feasible for the cases where the
clinical data is of high dimension. Ke et al. exploit the low-rank prop-
erty of a spatial-temporal matrix via the bilinear formalism and further
use the matrix completion technique to fill the missing data for pre-
dicting the time to SSI onset by using dynamic data [29]. A least-square
loss function as well as a squared hinge loss function are contained in
their proposed bilinear formulation to obtain an unbiased learning
formulation with complete and censored samples. Although their pro-
blem shows some relevance to ours, they put more focus on prediction.
Meanwhile, the continuous measurements are required for constructing
the spatial-temporal matrix, whereas our method focuses more on
contemporaneous risk assessment and can deal with data points with
irregular time intervals.

In the field of temporal predictive pattern learning, there have been
efforts to extend supervised learning to time series data analysis to
summarize and represent this complex time-series data in order to make
them amenable to statistical analysis and modeling. Temporal pre-
dictive pattern mining techniques are developed to improve the clas-
sification of time series data and can be applied on the identification of
the onset of disease. They usually aim to mining the predictive temporal
patterns or extracting the time series shapelets to be the alternatives of
the original features. These methods are usually applied as a pre-
processing step prior to classification or regression, or sometimes can be
directly used as the detectors [69,4,67,59].

Most of these methods, however, hold the assumptions that the data
points are sampled on regular time points. Thus they are not suitable for
the data with irregular time intervals, asynchronous visits and varying
disease progression rates like our case. What’s more, the underlying risk
of disease we seek to monitor is not directly observed, so that it cannot
be easily captured by temporal predictive pattern learning techniques.
More importantly, high dimensionality of the time series data poses
great challenge to this line of methods since mining high dimensional
time series data directly is very expensive in terms of both processing
and storage cost.

To address the challenges brought by the high dimensionality of the
time series data, various works are presented in literature on devel-
oping representation techniques that can reduce the dimensionality of
time series, while still preserving the fundamental characteristics of a
particular data set [65]. High-level representations such as Discrete
Fourier Transformation (DFT) [17], Singular Value Decomposition
(SVD), Discrete Wavelet Transformation (DWT) [8], Piecewise Ag-
gregate Approximation (PAA) [31], Adaptive Piecewise Constant Ap-
proximation (APCA) [32] were considered previously. In conjunction of
these techniques, different similarity-based approaches represent a
promising direction of time series analysis. For instance, Dynamic Time
Warping (DTW), introduced by Berndt and Clifford [30], and its var-
iants such as Weighted DTW (WDTW) that adopts a weighting scheme
[24] and Derivative DTW (DDTW) that uses the difference between
consecutive time values [33], are classical speech recognition tools al-
lowing a time series to be “streched” or “compressed”, that are con-
sidered to be strong for many time series data problems [6]. Another
group of similarity measures for time series such as LCSS (Longest
Common SubSequence) [63], EDR (Edit Distance on Real sequence)
[11] and ERP (Edit Distance with Real Penalty) [10] have been de-
veloped based on the concept of the edit distance for strings [65]. More
recent works for similarity measurement adopt tree-based methods to
increase the robustness and the parameters tuning problems. TCK (time
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series cluster kernel) proposed by Mikalsen et al., leverages the missing
data handling properties of Gaussian mixture models (GMM) aug-
mented with informative prior distributions, and uses an ensemble
learning approach to ensure robustness to parameters by combining the
clustering results of many GMM to form the final kernel [43]. Baydogan
et al. propose a method to model the dependency structure in time
series that generalizes the concept of autoregression to local autopat-
terns, which generates a pattern-based representation along with a si-
milarity measure called learned pattern similarity (LPS). Moreover, it
adopts a tree-based ensemble-learning strategy that is fast and in-
sensitive to parameter settings [5].

Another category of methods for longitudinal data analysis builds
upon principal component analysis [41,45,53]. The general idea is to
use a factor-analytic, or principal-component type analysis to first re-
duce the dimensionality of the response vector, and then, use standard
longitudinal models for the analysis of the latent variables [62]. The
drawback of these methods is that when applied to longitudinal data,
bias will be introduced in principal factors by the within-individual
effects, since the estimated covariance is the sum of the covariance of
interest caused by disease progression and the unwanted covariance of
the within individual effects due to the repeated measurements.

2.3. Structured-output learning

Since our method is based on SOSVM, we review the previous works
on structured-output learning methods and their applications in this
section.

Let us first review the basic idea of Support Vector Machine (SVM).
SVM is a popular supervised learning method for classification by
looking for optimal hyperplanes so that the projected data from dif-
ferent groups could have the largest separations. SVM allows mis-
classification by including “slack variables” for each training sample,
and aims at minimizing the sum of the slack variables in the objective
function. Given a training dataset (X, y;), ...,(Xs, y,), where y. is the
label indicating the class that the data point x; belongs to, and x; is a p
dimensional vector. Let F (x;, y;;w, b) be the score of x;, where w denotes
the parameter vector, and b is the intercept, the objective function of a
soft-margin SVM can be written as:

n
DI
i=1

st. FQg,yw, b)21-¢, §>20
Vi=1,..,n (@]

2

. 1
min =

w
wg 2

Here we may ask two questions: (1) Instead of assigning labels, can we
also give a confidence level about the classification results? (2) Given
partial information about the labels, how can we apply it in semi-su-
pervised scenarios where the label information is not available for each
time point?

Tsochantarid et al. propose SOSVM [60], a general framework
which extends SVM to the scenario where there exists some structure of
the output classes. SOSVM’s approach is to rescale the slack variables
according to the loss incurred in each of the linear constraints:

§
A Y) 2

ViVy e\ f(xnyi;W) —f(xi,y;W) >1-

where f(x;, y;;w) is the same as the score function F (x;, y;;w, b) with the
intercept parameter b excluded and A(y, y) is the slack variable re-
scaling function, which measures the loss incurred by the mis-
classification of the true label y, by y € ¥\y.

Methods related to learning using privileged information are ex-
tensively studied recently (e.g. [37,48,61]). Although these methods
take output structures into account, not only the labels but also the
privileged information such as the rankings of the labels are required
for the training, and most of them are not specifically designed in
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longitudinal data analysis. Hoai et al. [21] adopt the idea from SOSVM
and apply it on computer vision for early detection of temporal events.
However, it’s difficult to directly apply their method since the detailed
label information about the target events for training is needed. Huang
et al. [22] consider longitudinal data with partial labels, but they apply
same weights for all slack variables and don’t take the advantage of
rescaling loss functions as the SOSVM-based methods mentioned above
to model the irregular time intervals.

3. Early disease detector and risk estimator

As we described above, most existing methods are not designed for
early diagnosis and risk assessment of disease with partially labeled
longitudinal data. In this section, we propose a learning formulation to
address this problem.

3.1. Notations

Let (X4, yY), ....(X%, D), ..(X", y") be the set of longitudinal data with
the diagnosis result made on the last time point, where y' € [1, —1] is
the final diagnosis result for the ith patient and X' is a matrix drawn
from the input domain X € R"*P, which includes the measurements for

i
Xp

subject i with T; visits in total. X' can thus be represented as X' = s
Xir,

in which x,il € RP denotes the p measurements of the Ith visit at time ¢,
for patient i.

There’s a record of the visiting times for each subject:
T ={T[1], ..,T[n]}, where T|[i] records the visiting time of patient i,
i.e, T[i] = [to, &, &, ...,t5]. For instance, T can be the number of months
for each follow up after the initialization of the drug therapys; it can also
be the number of months prior to the diagnosis. Please note that the
visiting times of a patient can be irregular and asynchronous.

3.2. Feature representation in mixed kernel space

In order to provide a flexible framework for taking advantage of the
prior knowledge about the rankings of features’ discriminating power,
apart from directly applying “kernel trick” on the original data to
project it to the kernel space, we constructed a kernel as the linear
combinations of “sub-kernels” each containing only one feature:
K@, x") = Yh_ BiKa(x, xX') = Yh_| By(@ax), ®4(x)), where @y
(x) = ®(xy), only works on the dth feature of x. § is a vector of di-
mension p for the feature weights, and it satisfies Zfi): By=1

To measure the augmented information till time #;,, we check both
the cumulative moving average and the running total in our experi-
ments to obtain the information augmented until time ¢, which have
been applied in the implementation of MMED (Max-Margin Early Event
Detectors) [21]. However, we decide to use the cumulative moving
average to obtain the augmented information in our method for the
following reasons: (1) we would like to smooth out the short-term
fluctuations; and (2) different from MMED that aims at localizing the
interval for an event, we care more about the risk at a time point given
the cumulative information prior to that. The representation can be
written as:

1
S — 1 .
Xi =X =7 25 %
s=1
Let fD(Xf,) denotes the projection of Xfl in the kernel space:

q>l(thl)

<1>(X,il) = diag ¢E, 4..,\//3:
Dy(X})
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With this representation, the similarity assessment of the informa-
tion between the two subjects i and j at the time points [ and /', re-
spectively, can be represented by K (X}, X;,) = 5:15de X, X)) =

T Ba®a(X) @a(X1).
3.3. Learning with longitudinal data

Recall that instead of learning individual data points, we identify
the signatures of the disease/drug-induced changes to address the
problem of inseparability and label insufficiency.

First consider a linear function g(8®;(t), ty);w) = (w, 6@;(t;, tr)),
where 8;(ty, ty) is the shorthand defined as
80i(4, ty) = ©(X})) — ©(X,,), which is for measuring the changes of the
ith subject from time ¢y to f; in the mixed-kernel space. The function
g([6d;(t;, ty);w) is expected to have the following properties:

Vi v [l,’ l] L. {g(acbi(rz, tyw) >0,y =1
0,y'=-1

NV

)
g6 (t, tr);w)

where L; = {[1, 2], [1, 3], ...,[T; — 1, T;]} U {[0, T;]} contains all the pair-
wise combinations of the visit index for subject i, for i in 1, ...,n.

In the framework of SOSVM, the loss of misclassifying x' to a class
y € Y\)' is rescaled by a non-negative weight function A(y, »), i.e.,
A Y x Y — R, and it quantifies the loss associated with a prediction y,
if the true output value is y[60]. It’s saying that with the prior
knowledge about the structure of the output y and ), we put greater
penalty for the misclassification if A(y, ;) is large when training the
classifier.

In our early detection case on longitudinal data, A(y, y,) here can be
a function with respect to the time interval between two time points:
u(t, ty). More strict classification rules should be applied for larger time
intervals, so that the penalty u(t, ty) placed on the misclassification
should be greater when the two time points are far from each other. The
design of function u will be discussed in detail in the later context.

The desired constraints then become:

Vi, V|I,lleL, yg|léo|n tfw|=1- &
u(l, tr) 3)

Together with the goal of max-margin hyperplane, we obtain the
following objective function:

w

2 n
C
+o 26
i=1

s.t. yi<W, 54’{% fz')> 21— ﬁ, g(q’( fo);W) =-b, £20
Vi, VI eL

P
min -
w,&.b 2

()]

The constraints containing b are active only for cases [I', ] = [0, T],
where I’ = 0 is a virtual time point, so that the constraints for cases
[, 1] = [0, T;] shrink to the constraints of a standard soft-margin SVM.

3.4. Properties of EDRA

In this section, let us analyze several properties of the scores as-
signed by the risk detector learned with the above objective function.

e Monotonicity

To develop EDRA, we focus on the early detection and con-
temporaneous risk estimation for the disease/drug-induced progression
prior to the diagnosis, for which we utilize the monotonic progression
characteristic (either towards disease or recovery) as the model as-
sumption to learn EDRA. For instance, as shown in Fig. 1, functional
beta-cell mass declines as T1D progresses. For the degenerative disease
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conditions such as Alzheimer’s disease, the underlying disease de-
gradation process is also monotonic. This generative nature leads to the
monotonic assumption of EDRA.

Here we may ask such question: After we obtain the reliable de-
tection of the changes from the time intervals of a subject, how can the
risk scores reflect the progressive property of the underlying disease
progression for each time point?

Based on the linear property of function g, the constraints (4) can be
rewritten as:

. ’ i iy. iy, §
Vi, V [l ) l] €L, Yy {g(tb(X,l),w) - g(tb(th,),w)} >1- PO

5)
The learning formulation actually naturally enforces monotonicity of
the detector function. Moreover, the function u is desired to have the
following properties: (1) u(t, ty) € (0, 1), and (2) u(, ty) < |t; — ty], to
serve as a rescaling function to adjust the penalty for the mis-
classification based on the distance between two time points. In our

2
(=t
study, we set u|t, ty|=1—e ( o ) , where o is a tuning parameter.

The proposed learning formulation achieves the monotonicity with
respect to the information contained within the time intervals ac-
counting for the disease/drug-induced progression. Such learning for-
mulation provides a flexible framework that is able to deal with irre-
gular time intervals, and enables not only the property of monotonicity,
but also the property of smoothness for the trajectories of the predicted
scores, which will be discussed in the following context. Both of these
properties reflect the progressive property of the chronic disease and
drug response.

e Smoothness

A smooth trajectory of the risk scores assigned to one subject over
time is desired, since usually in the real case, the disease progresses
gradually, so that the difference between the risk scores of two close
neighbor time points should be relatively small. The smoothness of the
trajectory can be controlled by the design of the slack variable rescaling

function u, which is used to adjust the penalty of the misclassification in
-y’
(3) and (4). Since ,u(tl, tp) =1- e_( c ) , when two time points are

very close, the penalty of the misclassification is close to zero, i.e.,
u(t, ty) = 0, when ty — t,. This enables the smoothness of the risk score
trajectories for the subjects, since the disease/drug-induced progression
contained in a very small time interval is very limited, so that the dif-
ference between the predicted scores of two very close time points
should be relatively small compared to the ones of the large intervals.

With the linear property of function g g@®;(t, ty)w) =
g(@(X})w) — g((X,,);w), so that we have:

RX}) = R(X,) = g6t ty);w) — 0 (6)

for the cases when (t; — ty) — 0
e Separation

The risk scores can be wrongly estimated if we only care about the
difference of the scores between two time points since either one of
them can start from or end up in a random place. It’s important to “fix”
at least one point of the whole trial so that the predicted score of which
can separate the two classes. In our study, the detector should be
trained to be able to classify the last single time point, since the only
label we have is the diagnosis at the end of the clinical trial.

In contrast to the smoothness property with the rescaling penalty
function u(t’,t) > 0 when t' — t, the penalty placed on the mis-
classification is scaled to be the highest for the greatest time interval of
the ith subject, i.e., [I', I] = [0, T], since the information augmented
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from the initial time point till the last one reaches the maximum.

Recall that we have the constraint g(®( fo);w) = —b, so that the
constraints regarding [I, [] = [0, T;] in (4) turn out to be the constraints
of a soft-margin SVM:

yig(cid){tTi, to);w) =yt <w, <I>(X,i7_i) — @ f0)>

=y (w, cb(XtiT_) +b|21- %
1 | TL
1-e ( i ) (7)
The problem thus shrinks to a standard SVM classifier training
problem. This constraint is to model the real case where the diagnosis is
only available at the end of the study. With constraint (7) the trajec-

tories of the two groups are enforced to depart from each other as the
disease progresses.

3.5. Optimization: dual problem and algorithm

To solve the primal problem (4), first we move the constraints to the
objective function to obtain the Lagrangian form:

maxminL(w, b, ¢ a, {)

a,$ wb,E
2 n n
=3 + % DE+Y X af1- “([fi[,) -y w, 60| t, ty
> L

i=1 i=1 [I.l]eL;

n
- z gigz
i=1
st. Vi, VI[I,IleL §>0, ¢>0, 0‘1{1'20

(8)
The third part which is related to « is the sum of the terms regarding
the changes detection and the last time point classification:

n

Z i & i
< rm Y w, Ol b b
i=1 [1,]1€Li\ [0,7]

+ a}'iyo[l - #(j‘ > —yi(<w, cp(x;i)> + b]]
i=1 . 9)

To derive the dual problem, we need to minimize the Lagrangian
form with respect to w, b and & to get:

max z O‘z{z'

13
ar Ll leL

1 i
-3 Z Z ylyjazl,z'“l{p 00| 4, ty |, 05| t7, L
illneL; j[T.T]eL;

i n
. oy c ii
st. Vi 0< Z s < Z yiak,=0
[, eL; i=1 (10)

The inner product of 6®;(#, ty) and d®(t7, t7) can be expanded as:
(ODi(t, ty), 5D;(t7, t7))

:K(X;’I, XZJ;N) - K(X;',, XZJ;N,) - K(Xfl,, X,g) + K(X},,Xé,) an

Specifically, all terms K (Xtil,, -) with I’ = 0 are set to be zero, since
I' = 0 is the virtual time point. When [l I] = [0, T;] and [7, T1=1o, T,

we have <5<I>i(tTi, to), 5CI>j(tTj, t0)> = <@(Xtin} @(thTj) >, which is of

the same form as a standard SVM problem.

One challenge of the above dual problem is that the number of
constraints is very large and thus the computation complexity of the
optimization is high. To relieve this problem and speed up the
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algorithm, we use constraint generation (cutting plane algorithm) [29]
to handle the large set of constraints in the original problem (4). The
outline of the algorithm is described as Algorithm 1.

4. Experiments

This section describes our experiments on two synthetic datasets
and two real-world datasets of varying complexity: (1) Simulated
longitudinal data considering irregularity in observation time with
features of equal/different predictive power; (2) Irregularly sampled
T1D longitudinal RNA-Seq gene expression dataset from TrialNet; (3)
Longitudinal RNA-Seq gene expression dataset with missing time points
for IFN drug response. In this paper, both the real-world longitudinal
datasets used in our experiments to evaluate the performance are RNA-
Seq data, but our method can also be applied to other clinical data
where the longitudinal data analysis is involved. The performance of
our method is evaluated regarding how early the detection of the dis-
ease can be made and how well the risk scores reflect the actual disease
progression.

4.1. Evaluation

In our experiments, we evaluate the performance of our method
based on two criteria: (1) The earliness of detection, (2) The correlation
between the risk scores with the disease progression. We use the area
under the ROC curve (AUC) over the normalized time points for
benchmarking the earliness of detection when comparing our method
with other algorithms, and we plot the risk scores over time for eval-
uating the performance of our method as a contemporaneous risk
monitoring tool for the disease progression.

Algorithm 1. Algorithm for solving the dual problem (10) of EDRA

Input:(X', y1), ..., (X", y"), B, T, L, C, €.
Output:a, b.

1: Initialize: o, ¢ < 0 and S <« &

2: repeat

3 Ve

4: fori =1 to ndo

5: Compute the loss for all [I', I] € L;

H, D =Q - yw, 6@, tr)Du(a, tr)
6: where w = Y7, Yirer alfl,yi5®i[tl, 11']

7: Find the most violated constraint:

|:f’ IA:I = max H(l’, l]
[I'lleL;

8: &y = max{o, H(IA', )

9: if (§im,w > & + €) then

10: &« ginew

11: vevo((l, 13

12: a <« optimize dual problem (10) over S =SuU V
13: untilvV = @

4.2. Time normalization

Since the visiting times of subjects can be irregular and asynchro-
nous in many cases, the visiting time is normalized as the fraction of the
whole trial to get better evaluation. For instance, the normalized time
for the Ith visit of the subject i can be represented as: t =1 — [T‘_tl,
where L is the length of the whole trial, i.e., the maximum length of all
the subjects, so that the normalized time ¢ € [0, 1]. Since often in
clinical settings the delta time to an event is more useful as it provides

Journal of Biomedical Informatics 96 (2019) 103231

Subject 1f ¥ 3k 3k 3k 3k Kk ¥k ¥k K F 3k
Subject 2 X

X X ¥k ¥ % ¥k dk ¥k k 3k

Subject3} ¥ X X ¥ X ¥ ¥k ¥k ¥k ¥ ¥ A

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Normalized Time
Fig. 4. Time Normalization: Asterisk symbol “x” denotes the available visits;

Cross symbol “x” denotes the unavailable visits. Subject 1: early starting time
without skipped visits; Subject 2: late starting time; Subject 3: skipped visits.

how early the event of interest can be estimated, we also consider to
evaluate the performance based on the normalized delta time to an
event (such as diagnosis/recovery) in our experiments, which can be
represented as: At = % When the subject reaches the last time point
and receives the diagnosis (f; = t3), the normalized time ¢t = 1(At = 0).
At the initiation of the trial, t = 0(At = 1) for the subjects whose length
of study equal L. This set up is for the cases where some of the subjects
start to take the test early while some of them start late. For the subjects
with late starting time or skipped visits, they may not be available on
some certain normalized time points according to their actual skipped
visits. Fig. 4 illustrates the time normalization for three subjects of
different cases.

4.3. Simulation

We first validate the performance of our method on the synthetic
longitudinal data. The synthetic longitudinal data is generated for 100
subjects in total, and each subject has different number of time points
ranging from 12 to 14. The prior for the class of disease equals the prior
for the class of the normal controls, which is 0.5. The disease pro-
gression is modeled by 4 different stages: Stage 0 (Normal), Stage 1
(Mild), Stage 2 (Moderate) and Stage 3 (Severe). For normal controls,
they only stay in Stage 0 and will never proceed to the other three
stages.

For patients, however, the disease progression is modeled by a
Markov Chain model starting from either Stage 0, Stage 1, or Stage 2
and can proceed to more severe stages as disease develops, or it can
start from one stage and skip the adjacent stage to directly jump to any
one of the more severe stages (e.g., jump from Stage O to Stage 2/Stage
3). Specifically, to evaluate the robustness of the proposed approach on
irregular longitudinal data, we randomly skipped the time points within
one subject to model the irregularity in the observations, as shown in
Fig. 6.

The Ith visit of the ith subject’s can be represented as:

X =p +e+gf a2

where y, is a vector of mean values for the measurements including 4
features for the stage corresponding to the Ith visit of the ith patient.
The design of u follows the structure of the stages. Further, linear and
nonlinear co-existing predictive relationships are considered for gen-
erating the synthetic data. Fig. 5 illustrates the design of u, in our ex-
periments.

The individual effects and the technical noise are modeled by ¢! and
¢!, respectively. For longitudinal dataset, it’s necessary to model the
“baseline” information ¢ for each subject, that won’t change over re-
peated measurements, and is shared by all the time points of the subject
i. The technical noise is modeled by ¢/, which varies among all the data
points. Both ¢’ and ¢ are drawn from multivariate normal distribution.
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Fig. 5. Generation of synthetic data: design of u for the 4 features as disease progresses over time. u of variable 1 and variable 3 are designed to model the nonlinear
predictive relationship, while variable 2 and variable 4 follow linear predictive relationship with different progression rates. The probability of choosing the pattern
of the blue line is same as the red line, which equals 0.5. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of

this article.)

We randomly divide the synthetic data into training and testing
dataset. 80 percent of the generated synthetic data is contained in the
training dataset, and the rest 20 percent is used as testing data for
evaluating the performance.

In the first experiment, we evaluate the performance using the
synthetic data with all features contributing to the discrimination of the
two classes. The feature weights g, are set to be same for the 4 features
in the experiments of this synthetic dataset: 8, = 0.25, k =1, ...,4.

We first investigate the performance of the risk assessment. Since we
know the ground truth about the stages, the stage information is illu-
strated by different colors for better illustration. However, please note
that the information regarding the stage is only used for demonstration,
and it’s not available when we train the models.

Fig. 6 provides two subjects from the testing dataset to illustrate
how the trained detector monitors disease progression in longitudinal
study for (1) a normal control stays at the “Normal” stage and (2) a
patient goes through different stages over time. The curve of the risk
scores over time is relatively flat for the normal control, and the pre-
dicted scores throughout the trial are less then zero. Nevertheless, for
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Fig. 6. Synthetic data experiments: Risk scores over time for the two subjects.
Top: a normal control without disease; Bottom: a patient with 4 different stages.

the patient with increasingly severe situation, the risk score increases as
the disease progresses, and turns out to be positive since the third
normalized time point of the trial.

To further evaluate the effect of the mixed-kernel framework with
consideration of the prior knowledge about the feature discriminating
power, another synthetic dataset containing features with different
predictive power is discussed in the following experiments. This syn-
thetic dataset is simulated with two additional inactive features whose
mean values for the measurements stay the same over different stages,
to the original feature set. Therefore the feature weights for the kernel
construction are: §, = 0.25, for k=1, ..,4 and 8, =0, for k=5, 6.
Table 1 provides the detailed information about how g, is determined
for this experiment.

We analyze the earliness and accuracy of the detection by EDRA. We
repeat our experiments 50 times and record the average performance.
We randomly divide the synthetic data for training and testing each
time as described above. To obtain better evaluation of the perfor-
mance, we compare our method with three other popular classifiers:
Linear SVM, Naive Bayes (NB) and Kernel SVM (RBF). When we train
Linear SVM, Kernel SVM and Naive Bayesian classifier, since the only
information about the label for the longitudinal data we have is the
final diagnosis, we apply the final diagnosis result to the time points
prior to the last one, i.e., given the time points of the subject
it x{, x3, ....xf;, we assign the label y;. for the last time point xj as the
label to the other time points prior to that. Specially, since linear SVM,
Naive Bayes (NB) and Kernel SVM are not designed for longitudinal
data, we treat the data points independently, without considering the
temporal structure within them.

In addition to the methods mentioned above, since our method is
inspired by SOSVM, we compare our methods to SOSVM and another
SOSVM-based method Max-Margin Early Event Detectors (MMED),
which are more state-of-the-art approaches specifically designed for the
early detection of temporal data analysis. We train and evaluate MMED

Table 1
Synthetic data experiment: Feature information
D Varl Var2 Var3 Var4 Var5 Var6
Active T T T T F F
B 0.25 0.25 0.25 0.25 0 0
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Fig. 7. Synthetic data experiments: AUC over the normalized delta time to the diagnosis.

and SOSVM the same way the authors of MMED did in their experi-
ments [21]. During the training of MMED and SOSVM, since both
methods require the starting and ending time of an event to train the
model for localizing the event of interest, so that we set the first time
point as the starting point and the last one as the ending point of the
event for an subject with disease; for healthy controls, we set the time
interval for the event of interest to be empty. We follow MMED’s im-
plementation to perform the detection with MMED and SOSVM: given a
data point at time t, we calculate the scores for all the data points prior
to t, and use the highest score as the risk score indicating if an event has
been happening until time t.

When applying the trained classifiers to the testing dataset, AUCs
are calculated on each normalized delta time point. The curves of AUC
over the normalized delta time points are depicted in Fig. 7. Fig. 7a
demonstrates the AUC trajectories over the normalized delta time to the
diagnosis based on the synthetic dataset with 4 active features. Fig. 7b
provides the AUC trajectories over the normalized delta time to the
diagnosis based on the synthetic dataset with features of different
predictive power.

In Fig. 7a, at the beginning of the trial, EDRA performs similarly
with Naive Bayes method but better than the other SVM-based
methods. However, EDRA outperforms all the other methods at the last
three time points of the trial, with AUC reaching 0.96 + 0.05 at the end
of the trial, while the AUCs of the other methods are
0.88 + 0.08, 0.88 + 0.07, 0.87 + 0.09, 0.85 + 0.11, 0.90 + 0.07 for MMED,
SOSVM, Linear SVM, Kernel SVM (RBF) and Naive Bayes, respectively.
What’s more, it can be seen that the SOSVM-based methods considering
temporal structure, such as EDRA, MMED and SOSVM, successfully
capture the disease progression with the smoothly increasing trajec-
tories of AUCs over time, while the other methods failed in this point.

In Fig. 7b, EDRA outperforms the other methods by a large margin
after the third normalized time point, which is much earlier than
Fig. 7b. The AUC of EDRA keeps increasing till the last time point and
ends up at 0.96 + 0.04, while the AUCs for MMED, SOSVM, Linear SVM,
Kernel SVM and Naive Bayes are: 0.91 +
0.06, 0.88 + 0.06, 0.89 + 0.06, 0.83 + 0.09 and 0.87 + 0.06, respectively.

Comparing the earliness and the accuracy of the detection, EDRA
outperforms the other methods. Regarding the contemporaneous risk
assessment, it can be shown that the models considering the structure
within the temporal data such as EDRA, MMED and SOSVM, capture
the risk progression better with the smoother and increasing AUC tra-
jectories over time, compared to the relatively fluctuating AUC trajec-
tories by Linear SVM, Kernel SVM (RBF) and Naive Bayes. With the
synthetic data incorporating different rates of irregularity in observa-
tions, the experiments show that the proposed method is robust to ir-
regularly-sampled longitudinal data. The experiments also demonstrate

that the mixed-kernel framework incorporating the prior knowledge
about the features’ discriminative power improves the performance
compared to the methods without such consideration. For the experi-
ments on this dataset, we perform 5-fold cross validation for de-
termining the hyperparameter C for the SVM-based methods and the
tuning parameter o for the kernel construction.

4.4. Longitudinal T1D RNA-Seq data from TrialNet

This section describes our experiments on RNA-Seq gene expression
dataset from TrialNet, which includes 42 subjects with the final diag-
nosis of T1D, and 37 subjects as normal controls. For each subject di-
agnosed to have diabetes, there are at least 3 time points and at most 11
time points. There’s only one time point for each normal control. The
pattern of the visiting time of the patients with multiple time points is
irregular and asynchronous, and the time stamps are recorded by the
months prior to the diagnosis, as illustrated in Fig. 8.

Since there are 16618 genes contained in the original dataset, we
first perform differential expression test by edgeR [55] to identify 50
differential expressed genes (DEGs) that show differences in expression
level between conditions for our experiments. The importance of each
DEG is measured by the absolute value of the fold change (FC). The
weight of the kth DEG is calculated based on the absolute value of the
dth DEG’s log, FC and is normalized by the sum of the absolute values of

. bs (log, FCy)
Fi .e. = Bk
log, FC of all DEGs, i.e., B, T abs logaFC)

In this experiment, since the only information regarding the disease
situation is the medical diagnosis made at the last time point for each
subject, how early our method can detect the disease prior to that time
point is of great interest. To investigate the performance of our method

Subject 4 * ¥ ¥* ¥* *
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Fig. 8. Visiting time points (Months prior to diagnosis): “«” denotes the avail-
able visits.
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for early disease detection, we plot the curves of AUC over the nor-
malized delta time points for benchmarking the earliness of the detec-
tion.

Similar to the simulation, we randomly divide the dataset for
training and testing. The training dataset contains 80 percent of the
whole data, and the testing dataset contains the rest 20 percent. We
repeat our experiments 50 times and record the average performance.

During the testing, since each normal control only has one time
point, we use the predicted scores for the single time point of the
subjects without disease as the baseline scores, and compare the scores
assigned for the patients at each normalized delta time point against the
baseline scores. AUCs thus can be calculated for each normalized delta
time point. The curves of AUC over the normalized delta time are de-
picted as Fig. 9a.

In this dataset, it’s difficult to classify patients from the normal
controls at the beginning due to the slow progression property of the
chronic disease. However, at the second normalized time point (the
eighth normalized delta time point), EDRA is able to detect the disease
with the AUC of 0.84 + 0.15, while the AUCs for MMED, SOSVM, SVM-
kernel, SVM-linear and Naive Bayes at that time point are:
0.78 + 0.17, 0.77 =+ 0.16 and 0.74 + 0.17, 0.58 + 0.23 and 0.69 + 0.19 re-
spectively. In the end, EDRA still performs best, whose AUC is
0.94 + 0.07, while MMED, SOSVM and kernel SVM perform slightly
worse with AUCs as 0.83 + 0.11, 0.83 + 0.11 and 0.84 + 0.10. Regarding
the earliness and accuracy of the detection, EDRA outperforms all the
other classifiers for most extent of the trial. For the experiments on this
dataset, the hyperparameter C for the SVM-based methods and the
tuning parameter o are selected based on 5-fold cross validation.

4.5. Longitudinal RNA-Seq data from IFNf Drug Response Study

This section describes our experiment on the longitudinal RNA-Seq
data from a drug therapy called Recombinant human interferon beta
(rIFNB), which is routinely used to control exacerbations in multiple
sclerosis patients with only partial success, mainly because of adverse
effects and a relatively large proportion of non-responders [3]. There-
fore, early prediction and contemporaneous monitoring of the drug
responses based on gene expression is important for doctors or re-
searchers who would like to identify the suitable recipients of the
specific drug therapy as well as to learn the long-term drug-induced
effects.

The IFNS drug response dataset is a longitudinal 70-gene expression
dataset that contains the longitudinal gene expression data of 53 sub-
jects. Patients with relapsing-remitting multiple sclerosis (MS) were

10

followed for at least 2y after the initiation of therapy with IFNS.
Patients were classified as either good (33) or poor (20) responders at
the end of therapy based on strict criteria [3]. Blood sample was ob-
tained during each clinical follow-up every 3 months after the in-
itialization of the therapy with IFNg in the 1, year, and every 6 months
in the 2,4 year. In the previous research, there are 23 genes identified as
predictive [3,18]. For the detailed information about the genes identi-
fied as being predictive, readers can refer to the supplementary docu-
ment of the work [18]. The weights for the features for constructing the
kernels for EDRA are therefore determined based on the prior knowl-
edge about the predictive power of the features, i.e., the genes identi-
fied as not being predictive in literature are viewed as inactive features
for the kernel construction. The AUC curves over the normalized delta
time points prior to the recovery of EDRA and the other methods are
depicted in Fig. 9b.

The experiments of IFNS drug response dataset differ from the
above experiments in the sense that there are pre-existing signatures
that are able to separate good and poor responders before the initiation
of the drug therapy, so that all the methods perform similarly well at
the beginning. However, EDRA captures the long-term drug-induced
progression via the increasing performance for classifying the good
responders from the poor ones over time, while the other methods are
not able to reflect the progression by the increased classification ability.
This experiment demonstrates EDRA’s contemporaneous risk evalua-
tion performance. The hyperparameter C for the SVM-based methods
and the tuning parameter o for the kernel construction are selected
based on 5-fold cross validation for this experiment.

5. Conclusions

This paper addresses problems of early detection and con-
temporaneous risk assessment for the diseases with irregular long-
itudinal data. We propose EDRA, a contemporaneous risk detector that
is trained with the aim of identifying signatures of disease/drug-in-
duced progression instead of individual data points. Our method is
particularly suitable for the chronic disease with slow progression,
which is hard to detect at the early stage. Experiments of varying si-
tuations from synthetic data to gene expression data of T1D study and
gene expression data of drug response study are adopted to evaluate the
performance of the proposed methods. Specifically, to evaluate the
robustness of the proposed method on irregular longitudinal data, we
consider irregularity and label insufficiency problems for synthesizing
the data. The results obtained from the experiments demonstrate that
EDRA enables early detection and contemporaneous risk assessment on
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irregular and partially labeled longitudinal data. It is not only able to
detect the onset of disease earlier with higher accuracy compared with
the other methods, but also monitor the disease progression con-
temporaneously in difficult classification situation, such as in the early
stage of the disease. What’s more, the experiments also demonstrate the
advantage of the methods that consider the temporal structure within
data for capturing the disease/drug-induced progression over the other
methods. Furthermore, we propose a flexible mixed-kernel framework,
which incorporates the prior knowledge about features’ discriminating
power for the kernel construction. In future, we plan to improve our
method to consider dynamic kernel selection by learning the correla-
tion between the prediction outcomes with the individual sub-kernels,
to simultaneously perform prediction as well as dynamic feature se-
lection. Although there exist approaches enabling simultaneous kernel
selection and prediction, such as MKL (Multiple Kernel Learning), HKL
(Hierarchical Kernel Learning), Sparse Additive Models (SpAM) and
HSIC (Hilbert-Schmidt independence criterion) Lasso, they are not
specifically designed for longitudinal data analysis and thus they
usually assume that the importance of the features to the classification
is fixed for all the data points over time [39,2,52,66]. However, dy-
namic kernel/feature selection is needed in many applications. For in-
stance, in the pathogenesis of chronic diseases, the features could play
distinct roles between different stages [16]. In this paper, we illustrate
the benefits of EDRA in the context of disease early detection and risk
assessment, but our method can also be applied in many other domains
where the longitudinal data analysis is involved.
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