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Abstract

A first principle prediction of the binary nanoparticle phase diagram assembled

by solvent evaporation has eluded theoretical approaches. In this paper, we show

that a binary system interacting through Lennard-Jones (LJ) potential contains all

experimental phases in which nanoparticles are effectively described as quasi hard

spheres. We report a phase diagram consisting of 53 equilibrium phases, whose stability

is quite insensitive to the microscopic details of the potentials, thus giving rise to some

type of universality. Furthermore, we show that binary lattices may be understood as

consisting of certain particle clusters, i.e. motifs, which provide a generalization of the

four conventional Frank-Kasper polyhedral units. Our results show that meta-stable

phases share the very same motifs as equilibrium phases. We discuss the connection
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with packing models, phase diagrams with repulsive potentials and the prediction of

likely experimental superlattices.

Keywords: nanoparticle, crystal gene, motif, material prediction, material design

Compared with atoms, where size, shape and bonding is completely fixed by the electronic

structure, nanocrystals (NCS) offer a degree of tunability as they can be synthesized with any

size or shape and may be functionalized with a wide range of ligands,1 which determine the

bonding and play the same role as electrons in atomic crystals. Just binary NCs systems, for

example, form binary nanoparticle superlattices (BNSLs) and quasicrystals of extraordinary

complexity.2,3

Early theoretical treatments described NCs as hard spheres (HS),2 as a clear correla-

tion was found between the maximum of the packing fraction and BNSL stability.2,4 This

correlation, however, was rather imperfect, as many experimental systems existed far from

the maximum, implying low packing fraction that would likely make those BNSLs unstable.

Still, despite its limitations, HS models do provide a natural starting point to describe the

equilibrium phases of NC systems: All experimentally reported BNSLs except Li3Bi and

AuCu3
4,5 are thermodynamically stable at the peak of the packing fraction, where each NCs

is described as a (quasi)-HS.5

Strict HS models6–13 thus play an important role in the prediction of BNSLs and NC in

general. In Ref.14–16 it was shown that by allowing some compressibility or “softness”, thus

describing NCs as quasi-HS, the thermodynamic stability of the HS binary phases was en-

hanced and agreement with experiments improved. Based on the softer approximation, the

Orbifold Topological Model (OTM)5,17 established the range of validity of the HS approxi-

mation, successfully describing all available experimental data as well as subsequent experi-

ments18 and simulations.19–22 These calculations, however, only compared free energies for a

set of pre-defined structures, and therefore, the question is how many phases would remain

as stable or how many unknown ones would emerge under a general unrestricted structural

search. Another important question is that those quasi-HS particles interact through a repul-
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sive potential, thus it is necessary to appeal to the existence of some type of “universality” to

translate those results into predictions for NC systems. Motivated by these considerations,

in this paper we investigate quasi-HS models with attractive interactions. We will therefore

use the Genetic Algorithm (GA)23,24 to perform an open search in systems of Lennard-Jones

(LJ) particles with additive interactions. We note that although this paper is motivated

by systems in the nanoscale, the results are directly applicable to colloidal systems in the

µ-range25,26 where NCs are well described by quasi-HS throughout.

Another important consideration towards a fully predictive theory for NC structure is the

consideration that all experimental BNSLs reported to date can be described as arrangements

of a small number of pre-defined particle clusters,27 i.e. motifs,28 which generalize the

four motifs (Z12,Z14,Z15,Z16) that describe Frank-Kasper (FK) phases.29–32 We will therefore

investigate the description of equilibrium and metastable structures as arising from a small

subset of motifs as building blocks, not just as a way to construct all possible equilibrium

lattices, but also, to identify metastability and glassy or amorphous structures as systems

arrested on their way to equilibrium.

Model. As a minimal model of attractive quasi-HS we consider an interaction between

particles as described by the LJ potential:

ULJ =


4ε

((σ
r

)12
−
(σ
r

)6)
(r ≤ rcut)

0 (r > rcut)

(1)

We consider two types of particles A and B, with the size of A larger than B (σAA > σBB).

The interaction strength is such that (εAA ≥ εBB), which implements the well documented

requirement that the smaller the NCs,19 the weaker the interaction. All calculations will be

performed at T = 0, and therefore, the parameters εAA = 1 and σAA = 1 are fixed without

loss of generality. Then, the system becomes a function of γ = σBB/σAA, σAB, εAB and εBB.
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We will further assume that interactions are additive so that the parameters are as follows:

σAA = 1.0 εAA = 1.0

σAB =
σAA + σBB

2
=

1 + γ

2
εAB =

εAA + εBB

2
=

1 + εBB

2

σBB = γ εBB = εBB

In this way, starting from 6 parameters (εAA, εBB, εAB, σAA, σAB, σBB) the model is reduced

to two free parameters (εBB and γ).

In addition, we introduce the third parameter to control the stoichiometry, which is

denoted by x. The structures will be presented in the form AxB1−x. In our calculations γ is

varied from 0.3 to 0.9 and εBB from 0.1 to 1.0. The step size for both of them is set to be

0.1. The stoichiometry values are listed in the Table 1.

The LJ potential was cut-off at a value rcut, which was set to be 3.5 times of the radius

of the larger particle: rcut = 3.5σAA = 3.5. It has been shown that accurate values for

thermodynamic quantities are sensitive to the rcut.
33 One should expect minor corrections

on some phase boundaries as a function of the cut-off value, a point that will be elaborated

further elsewhere.

Results and Discussion

We first illustrate the method in some detail for the case εBB = 1.0, and then present the

general results. We also proceed to rigorously characterize the motifs and identify them in

the lattice structures.

In order to name the different phases we searched the Material Project Database 34 to

find a prototype isostructural phase and name the GA calculated lattice accordingly. If no

match is found, then we name the phase according to the following convention:

AmBn
space group
identifier

. (2)
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Table 1: Configuration of stoichiometry in GA search

x n(A):n(B)
0.1 1:9, 2:18

0.143 1:6, 2:12
0.167 1:5, 2:10, 3:15
0.2 1:4, 2:8, 3:12, 4:16
0.25 1:3, 2:6, 3:9, 4:12, 5:15
0.333 1:2, 2:4, 3:6, 4:8, 5:10, 6:12
0.4 2:3, 4:6, 6:9, 8:12
0.5 1:1, 2:2, 3:3, 4:4, 5:5, 6:6, 7:7, 8:8, 9:9, 10:10
0.6 3:2. 6:4. 9:6, 12:8

0.667 2:1, 4:2, 6:3, 8:4, 10:5, 12:6
0.75 3:1, 6:2, 9:3, 12:4, 15:5
0.8 4:1, 8:2, 12:3, 16:4

0.833 5:1, 10:2, 15:3
0.857 6:1, 12:2
0.9 9:1, 18:2

Here m and n are the number of A and B particles within the unit cell. The space group is

determined using the FINDSYM package,35 with the tolerance for lattice and atomic posi-

tions set to 0.05. The identifier is necessary as multiple phases with the same stoichiometry

and space group, differing only in Wyckoff number and positions, are found.

The case εBB = 1.0. Here we consider εBB = εAA = 1.0, while 0.3 ≤ γ ≤ 0.9. We

first compute the energy of the ground state for the pure A and B states, which previous

calculations33,36 have shown to be the hcp phase. Here, however, because of the finite cut-off

of LJ potentials, the fcc phase has lower energy. The identification of equilibrium phases

proceeds by comparing their energy against phase separation into pure A and B. Then, out

this list of putative binary phases that are stable against phase separation, the energies are

compared to establish the resulting true phase diagram equilibrium. This is how the phase

diagram Fig. 1 is built, where there is only one stable BNSL, the MgZn2 Frank-Kasper phase

at γ = 0.8. We should note that maximum of the packing fraction for this phase occurs for

γc =
√

2/3 = 0.8165,5 which is very close.

Since it is common that structures that are metastable at 0 K can be observed in ex-
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periments at finite temperatures, we also considered metastable phases defined to be those

within 0.1ε/particle in energy above the convex hull. As shown in Fig. 1, there are a num-

ber of metastable phases at x = 0.333, which are minor variations of MgZn2 as we analyze

further below in the context of motifs.

Figure 1: Structures searched by GA in εBB = 1.0 and γ = 0.8. (a) Formation ener-
gies (Eform) of structures searched by GA as a function of stoichiometry (x). Each point
corresponds to a structure. The color of points are assigned by the type of motifs in the
corresponding structure. The black solid line is the convex hull of the system, while the
black dash line is the threshold for metastable structures. (b) Structure of the FCC motif
(c) Structure of the MgZn2 motif, which is Frank-Kasper Z16.

General εBB. On physical grounds, it is expected that the smaller the particle the

weaker the interaction, hence we consider εBB ≤ 1. In Fig. 2, we provide a typical calculation

for fixed γ = 0.6 as a function of both εBB and x. As expected, see Fig. 1, the phase diagram

is trivial for εBB = 1. However, three phases TiCu3, AlB2 and CrB at x = 0.25, 0.333, 0.5

are found for εBB = 0.8.
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Figure 2: Two examples of GA results for γ = 0.6. In each figure, the solid line is the convex
hull, while the dashed line is the threshold for metastable structures, see the discussion
above. (a) Structures searched by GA as a function of x when εBB = 1.0: There are no
stable binary structures between x=0 and x=1. (b) Structures searched by GA as a function
of x for εBB = 0.8. There are three stable structures which appear at x = 0.25 (TiCu3),
x = 0.333 (AlB2) and x = 0.5 (CrB).

By repeating the calculations shown in Fig. 2 for the other values of εBB at a fixed

γ = 0.6 (see Table 1), we constructed the phase diagram shown in Fig. 3. In Fig. 3 we note

the appearance of seven additional phases for εBB < 0.6 that could not be matched to any

prototype: Detailed description for these and all other equilibrium phases are collected in

Supporting Information Table S1. A database for all the structures is included in Supporting

Information.
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Figure 3: Phase diagram in x and εBB/εAA for γ = 0.6.

Similarly, the phase diagrams for all other values of γ are also presented in Support-

ing Information Fig. S2. Common to all these phase diagrams is the appearance of many

diffusionless (martensitic), usually incongruent transformations, as a function of the energy

parameter εBB/εAA. In Supporting Information Fig. S3, we have also included phase dia-

grams for all values of εBB/εAA in x and γ.

Motifs. We define motifs as the polyhedron consisted of a center particle and its first-

shell neighbors. The motifs are generated according to the analysis of bond length table

from neighboring particles to the center (see details in Supporting Information Fig. S6). In

this study, we only include motifs with the larger A-particles as the center. We will name

motifs according to

Motif− CN− Identifier , (3)

where CN is the Coordination (the number of particles) and identifier discriminates among

motifs with the same coordination number.
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We identified 187 equilibrium and 102,822 metastable structures. Out of the 187 equi-

librium structures, we removed redundancies by a cluster alignment algorithm28,37leading to

only 53 equilibrium structures. Out of these 53 structures we identified 42 motifs, which are

listed in the order of increasing CN in Supporting Information Fig. S4. 416,391 motifs can

be found in the 102,822 metastable structures. Among them, a vast majority (312,891) of the

motifs of the metastable structures also exist in the equilibrium phases. In Tab 2, we list the

name, CN and the percentage fraction of the ten most frequent motifs present in meta-stable

structures. Note that these ten already account for more than 95% of the 312,891 motifs.

The details about how to identify the motif from a crystal and how to identify if a crystal

has the motif inside have been included in the Supporting Information.

Table 2: Ten most frequent Motifs in metastable structures

Motif CN Frequency
FCC 12 31.4%
HCP 12 18.9%

Octahedron (Motif-6-4) 6 9.8%
Half Hexagonal Prism 1 (Motif-6-2) 6 9.1%

Triangular Prism (Motif-6-3) 6 6.4%
Half Hexagonal Prism 2 (Motif-6-1) 6 5.3%

BCC 8 5.0%
Hexagonal Prism (Motif-12-3) 12 4.8%

Half Truncated Cube (Motif-12-1) 12 2.3%
MoB (Motif-13-1) 13 2.2%

Total 95%

As an illustrative example, we consider the case of εBB = 1 and γ = 0.8, where in Fig. 1

we have shown the two relevant motifs are the FCC and the Frank-Kasper Z16. By coloring

each structure according to the motif, we can confirm that the metastable phases (all in red)

have motifs which are small variations of the Frank-Kasper Z16 and that the vast majority

of the structures found in other searches have motifs which are variations of either FCC or

Frank-Kasper Z16.
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Figure 4: (a) Map of MgZn2 in γ and εBB. The red regime indicates that the structure of
MgZn2 is thermodynamically stable while in blue regime it is metastable. (b) Map for the
Z16 motif with red stable, blue metastable. The red regime is where the stable structure has
Z16 motif inside. Note that the motif has a wider range of both stability and metastability,
as it also appears in other Laves phase, such as the MgCu2 and MgNi2.

In Fig. 4 we show the domain of stability and metastability for the MgZn2 phase and

the Z16 motif. The GA searches were performed on a mesh of γ and εBB with an increment

of 0.1. Here, to improve the resolution of the stability range, we examined the stability of

all GA-found structures and motifs on a finer mesh in the γ-εBB plane with an increment

of 0.02. Rather interestingly, the stability range of the Z16 motif is larger than that of the

MgZn2 phase, indicating this motif is not unique to MgZn2, but shared by other Laves and

Frank-Kasper phases. Similar plots for the four more frequent motifs are shown in Fig. 5.
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Figure 5: Map for first four frequent motifs in γ and εBB excludes the general motif FCC and
HCP. (a) Octahedron (b) Half hexagonal prism 1. (c) Triangular Prism (d) Half hexagonal
prism 2. Red indicates stable structures and blue indicates metastable.

Quite generally, the motifs are far more sensitive to γ than they are to εBB/εAA, con-

firming that the particle size is more important than the actual intensity of the interactions.

It is consistent with all calculations that stable structures with the same values of γ tend

to share motifs. As found for MgZn2 and Z16, the regions for stability and metastability

is wider than the corresponding structures, thus indicating that motifs define very general
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families of structures, like Laves phases. A classification of motifs by Renormalized Angle

Sequences (RAS)38,39 has been included in Supporting Information.

This study has identified 53 equilibrium lattices and 42 motifs (with the larger particle

A as reference). We now discuss the relevance of these results for packing models,8,10 their

connection to the motifs reported in Quasi Frank-Kasper phases17 and their implications for

binary superlattices.

Packing Phase Diagram. We consider the study of Hopkins et al.10 as the reference

phase diagram for packing problems, although it only includes unit cells containing up to 12

particles. Consistently with this study we concentrate on the range 0.3 ≤ γ ≤ 1, also because

for smaller γ there are many phases with narrow stability ranges that are less relevant in

actual experimental systems.

Table 3: Comparison between packing phases10 and our study for 0.3 ≤ γ ≤ 1. (SG=Space
group), The ∗ indicates there are small distortions in the LJ phase, compared with the
packing phase. Motifs in the LJ column indicates that they are not stable in the GA result,
but they have the motif inside in the corresponding γ regime.

Phase γ-range Ref SG LJ Distortion
A3B [0.618, 0.660] 40 59 TiCu3

AlB2 [0.528, 0.620] 191 AlB2

AuTe2 [0.488, 0.528] 8 12 Motif-6-2
(2-2)∗ [0.480, 0.497] 41 11 Motif-6-1
(4-2) [0.488, 0.483] 10 191 Motif-12-3
(5-2) [0.480, 0.483] 10 44
(7-3) [0.468, 0.480] 10 71 Motif-12-3

HgBr2 [0.443, 0.468] 8 36 Motif-6-4
(6-6) [0.414, 0.457] 10 11 Motif-6-4
XY [0.275, 0.414] 10

(6,1)4 [0.352, 0.321] 10 69 A2B12
(139)
(1) ∗

(6,1)6 [0.321, 0.304] 10 139 A2B12
(139)
(1) ∗

(6,1)8 [0.302, 0.292] 10 139 A2B12
(139)
(1) ∗

From Table 3, the packing of binary phase diagram contains 13 phases for the 0.3 ≤ γ ≤ 1

range. For large γ > 0.528 only two phases exist; AlB2 and A3B, which are both found in

binary LJ systems (if allowing for small differences in A3B). For 0.488 < γ < 0.528, however,
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the AuTe2 phase is reported; We did not find such phase, but we do report the Motif-6-

2 as stable for the same range of γ, see Supporting Information, which is present in the

equilibrium phases at γ = 0.5 A4B6
(166)
(9) , BaCu and TePt. Some other phases, which are

reported as packing phases10 but not stable in the GA search, are also identified to have

the motif in the corresponding γ regime. This indicates that these packing phases may be

meta-stable in our calculation. For smaller γ, there is also overlap if allowing for small

distortions.

Other phases that have large packing fractions, such as CrB and S74e/h(KHg2 in our

notation),8 that are metastable in the packing phase diagram become equilibrium, thus

showing that the LJ system augments the number of stable phases as compared with packing

models.

Motifs and Quasi Frank Kasper Phases. In Ref.17 it was shown that all experimental

BNSLs could be described as disclinations of the {3, 3, 5} polytope, thus generalizing well

known four Frank-Kasper motifs Z12,Z14,Z15, Z16
29,30 to include other motifs.

Table 4: Motifs in Quasi Frank Kasper phases17 compared to the ones described in this
work.

QFK17 Z6 Z′′12 Z′14 Z16 Z′′18 Z24

This work Motif-6-4 Motif-12-2 Motif-14-1 Motif-16-2 Motif-18-3 Motif-24-1
or

Motif-24-3

In Table 4 we show the equivalence between Quasi Frank Kasper motifs and the ones

obtained in this work, which only include those with the A-particle as reference. It should

be pointed that the motifs are not completely the same, as in Ref.17 the motifs were defined

by the Voronoi cell and its corresponding neighbors, which is a slightly different definition

than the one used in this paper.

Experimental Results. The list of experimentally reported BNSLs is taken from Ref.,5

where we have excluded two dimensional superlattices and those where nanocrystals cannot

be approximated as spherical, see Ref.3 The comparison between the results obtained in this
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paper and experimental BNSLs is provided in Table 5.

Table 5: Experimentally determined structures. NA: Phase not available in this study. NF:
Phase not found in this study. The DDQC/AT is a quasicrystal phase. The bccAB6 phase

is also known as C60K6 and is denoted as AB6
(229)
(1) in this paper.

Experiment Binary LJ
BNSL γ-range γ-range εBB-range
NaCl [0.41, 0.60] [0.2, 0.5] [0.1, 0.8]
CsCl [0.71, 0.90] NF
AuCu [0.58, 0.71] NF

DDQC/AT [0.41, 0.43] NA
AlB2 [0.45, 0.70] [0.4, 0.7] [0.1, 0.9]

MgZn2 [0.60, 0.81] [0.7, 1.0] [0.1, 1.0]
AuCu3 [0.40, 0.60] NF
Li3Bi [0.53, 0.56] NF
Fe4C [0.55, 0.65] NF

CaCu5 [0.60, 0.80] [0.6, 0.8] [0.1, 0.9]
CaB6 [0.43, 0.47] [0.3, 0.5] [0.1, 0.8]

bccAB6 [0.45, 0.50] [0.4, 0.6] [0.1, 0.5]
cubAB13 [0.55, 0.60] NF
NaZn13 [0.47, 0.70] [0.6] [0.1, 0.6]

Seven of the experimentally reported BNSLs, namely NaCl, AlB2, MgZn2, CaCu5, CaB6,

bccAB6 and NaZn13 are found as equilibrium phases in the LJ system essentially for the

same range of γ. The fact that in our results the stability is roughly independent of εBB in

certain regions provides some support for the idea that microscopic details of the potential

are unimportant in this region (“universality”). Further making this point is that the same

phases are stable for soft repulsive potentials in the same γ-range.14–16

We now analyze the phases reported in experiments that are not equilibrium in our study.

One of them is beyond the scope of our calculation; DDQC/AT, which is a quasicrystal. The

Li3Bi and also the AuCu3 are stabilized by large deformations of the ligands, i.e. vortices,17

and therefore are not possible to obtain from a quasi HS approximation. The Fe4C phase

was observed in 2006,42 and since then, it has not been reported in any further study, which

may suggest is metastable, and furthermore, it can only be stabilized by vortices. 5 The CsCl

phase has a very narrow range of stability around γc =
√

3 − 1 = 0.732,5 which is likely
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missed by the discretization of γ values in our study. Finally, AuCu occurs when there is

ligand loss17,43 and is stabilized through a different mechanism involving the non-spherical

shape of the nanocrystal. We therefore conclude that the binary LJ model successfully

predicts those experimentally reported phases that can be described as quasi-hard spheres.

This is in contrast to packing models, where MgZn2 or CaCu5 phases, widely reported in

experiments are not equilibrium phases (maximum of the packing fractions). See Fig. 6 for

a visual summary of this discussion.

Figure 6: Summary of the main results of the paper: The experimental phases are classified
according to: Hard sphere, OTM/hard sphere (exist when NCs are modeled as hard spheres
but are stabilized by vortices),17 pure OTM(only stable with vortices), and other (observed
in special cases, such as ligand detachment43). See also Table 5. Consistent with the LJ
assumptions, only the hard sphere phases are found in our work. The Experiment Pred
includes those strong candidates to be found experimentally, as discussed below.
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Conclusions

By the use of Genetic Algorithm (GA), we have been able to predict stable structures under

different sizes of particles and strengths of interaction (γ ∈ [0.3 to 0.9], εBB ∈ [0.1 to 1.0]).

We report 53 stable phases, which cover a significant part of currently reported structures.

Besides that, we also predict 35 stable structures which are not in Material Project database.

We find that the type of stable structures strongly depends on γ, but weakly on εBB < 1,

providing evidence that the stability of the lattices has a weak dependence on the potential

details (universality). By comparing our results with other theoretical and experimental

works, it is shown that regardless of potential details, the same γ regime has the same stable

structure, which reinforce that the stable structure has a weak dependence on the potential

details.

There are two aspects about the limitations of the hard sphere description: The first is

that it does not provide a free energy: the observed phases are not the ones with maximum

packing fraction,10 but rather, ones where the packing fractions is maximum for the particular

structure. This is where the Binary LJ becomes important: the stable phases are the ones

that minimize the free energy (modeled as the LJ potential). The second limitation is that

it does not model large deformations of the ligand shell: these cases go beyond the LJ model

and is evident from Fig. 6, showing that these phases are absent.

The crystalline motifs are employed to describe the large amount of metastable structures.

We find that metastable structures mostly can be described from the motifs present in

equilibrium structures, thus suggesting the possibility of building superlattices by patching

all motifs that can tile the 3D space, as similarly done in the more restricted case of Frank-

Kasper phases.44 It also raises the possibility of motifs being present within the liquid11 as

a way to anticipate the emergent crystalline structure.

Comparing with available experimental results, see Table 5 and Fig. 6, the binary LJ

model captures all the equilibrium phases where nanocrystals can be faithfully described as

quasi hard spheres: NaCl, AlB2, MgZn2, CaCu5, CaB6, bccAB6 and NaZn13. The other
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phases reported in experiments either require the presence of vortices, as predicted by the

OTM,5,17 or are stable over a very narrow range of γ values, likely missed by the necessary

discrete number considered in our study.

Packing phase diagram models reported 14 equilibrium phases in the interval γ ∈ [0.3, 1),

see Table 3, while our study reports 53, thus showing that binary LJ have a more complex

phase diagram. Rather interestingly, phases such as MgZn2 or CaCu5, which are very com-

mon in experiments, are absent in the packing phase diagram; Although very useful in

identifying at which γ values a phase is likely to appear, packing models give very poor

predictions on which, among all possible phases, will actually be observed.

The two guiding principles for stability of BNSLs in experiments are high packing frac-

tion (or low Lennard-Jones Energy) and tendency towards icosahedral order, as reflected

in the motifs.5,18 Therefore, we expect that those equilibrium Lennard-Jones phases with

Quasi Frank-Kasper motifs, for example, the BNSLs A2B4
(227)
(1) and A2B12

(139)
(1) (Motif-16-2),

or Zr2Cu
(139)
(1) (Motif-14-1), will be excellent candidates to search for BNSLs, see Fig. 6. Def-

initely, these ideas will be developed further in the near future, where the 53 stable lattices

will be studied with more realistic nanocrystal models described at the atomic level.

In this work we focused on spherically symmetric potentials with additive interactions,

as described by relations like

εAB =
1

2
(εAA + εBB) . (4)

It is of interest to consider more general models, where these restrictions are lifted. This,

however, will be the subject of another study.

Methods

The crystal structure searches with GA were only constrained by stoichiometry, without any

assumption on the Bravais lattice type, symmetry, atom basis or unit cell dimensions (up to

a maximum of particles per unit cell). During the GA search, energy was used as the only

17



criteria for optimizing the candidate pool. At each GA generation, 64 structures are gener-

ated from the parent structure pool via the mating procedure described in Ref.23,24,45 The

mating process was based on real-space “cut-and-paste” operations that was first introduced

to optimize cluster structures.23 This process was extended to predict low-energy crystal

structures by Oganov45 and reviewed in Ref.24 Here, we follow the same procedure that was

described in detail in Ref.24 and was implemented in the Adaptive Genetic Algorithm (AGA)

software.

With a given set of LJ parameters, we performed three GA searches independently, with

each GA search running for 1000 generations. The maximum number of particles per unit

cell used in each search was 20, and thus, phases with large unit cells, the most relevant being

NaZn13, could not be included. Therefore, we include NaZn13 into our calculation manually.

All energy calculations and structure minimizations were performed by the LAMMPS code46

with some cross checks using HOOMD-Blue47 with FIRE minimization.48 The database of

binary lattices in HOODLT33 was also used.
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