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ABSTRACT. We study stability of unidirectional flows for the linearized 2D
a-Euler equations on the torus. The unidirectional flows are steady states
whose vorticity is given by Fourier modes corresponding to a vector p € Z2.
We linearize the a-Euler equation and write the linearized operator Lp in
£2(Z?) as a direct sum of one-dimensional difference operators Lg 4 in €2(Z)
parametrized by some vectors q € Z2 such that the set {q +np : n € Z}
covers the entire grid Z2. The set {ad+ np : n € Z} can have zero, one, or
two points inside the disk of radius ||p||. We consider the case where the set
{a+ np : n € Z} has exactly one point in the open disc of radius p. We show
that unidirectional flows that satisfy this condition are linearly unstable. Our
main result is an instability theorem that provides a necessary and sufficient
condition for the existence of a positive eigenvalue to the operator Lp g in
terms of equations involving certain continued fractions. Moreover, we are also
able to provide a complete characterization of the corresponding eigenvector.
The proof is based on the use of continued fractions techniques expanding
upon the ideas of Friedlander and Howard.

1. INTRODUCTION AND BASIC SETUP

1.1. Introduction. The study of eigenvalues of the differential operators obtained
by linearizing the Euler and Navier Stokes equations about a steady state using
the methods and techniques of continued fractions was initiated by Meshalkin and
Sinai in the 1960s in their paper [16], and since then has been pursued by many
authors, for example [3, 7, 8]. We caution the reader that this is a non exhaustive
sample of the literature. See [2, 4, 5, 6, 9, 14] for related work on the stability of
steady state solutions to the Euler equations.

In this paper we continue the work in this direction, and study stability of a
special steady state, the unidirectional flow, of the 2D «-Euler equations on the
torus written for the Fourier coefficients of vorticity. The a-Euler equations are
an inviscid regularization of the classical Euler equations. They were introduced
and studied in a series of foundational papers by C. Foias, D. Holm, J. Marsden,
T. Ratiu, E. Titi and others; see [10], [11], [12] and references therein. The uni-
directional steady state has exactly two nonzero Fourier mode corresponding to a
twodimensional vector p € Z? with integer components and its negative —p. We
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linearize the a-Euler equation and write the linearized operator Lp in ¢?(Z?) as a
direct sum of one-dimensional difference operators Lp q in (?(Z) parametrized by
some vectors q such that the set {q +np : n € Z} covers the entire grid Z2, see
[5, 14, 15]. The set {q+np : n € Z} can have zero, one or two points inside the disk
with radius ||p|| centred at the origin. We primarily consider the second case, and
apply continued fractions to the study of spectral properties of the respective differ-
ence operator Lp o, cf. [7, 14, 16]. We show the existence of a positive eigenvalue
for Lp q in this case, which implies that Lp has unstable spectrum. Therefore,
the unidirectional steady states that have one point inside the disk of radius ||p||
are linearly unstable. Our main result is an instability theorem that provides a
necessary and sufficient condition for the existence of a positive eigenvalue to the
operator Lp q in terms of equations involving certain continued fractions. More-
over, we are also able to provide a list of additional properties of the corresponding
eigenvectors.

More details and a precise formulation are given in Theorem 2.9 in Section 2.
Section 3 contains some results on continued fractions that are used in the proofs
of the instability theorem in Section 2. In Section 4, following the ideas presented
in [15], we characterize the essential spectrum of the linearized operator Lg and
prove the spectral mapping theorem for the group generated by Lp.

1.2. Basic setup and governing equations. We consider two dimensional a-
FEuler equations for incompressible ideal fluid on the torus written in vorticity form,

%—jJrv.vw:o, V.v=0¢€T? (1.1)

where w is the vorticity of the fluid and v the smoothed velocity, v = (v, v2),x =
(z,y) € T? = R?/27Z2. Here
w = curl(1 — a?A)v, (1.2)

where o > 0 is a positive real number. Since V - v = 0, there exists a stream
function ¢, such that v = —V+¢, where V- = (—0y,05). This means that

w=—-A(l-a*A)é. (1.3)

Assuming [, wdzdy = 0 allows one to solve (1.3) for the stream function ¢, and in
addition, by imposing the condition sz ¢dzxdy = 0 one obtains a unique solution.
Using the Fourier series

wx)= Y we™ dx) = Y gre™,

kez2\{0} kez2\ {0}
and equation (1.3), one obtains the following relationship among the Fourier modes
of w and ¢,

P = |[k]| 72 (1 + |k *) e (1.4)
for every k # 0. Here || - || denotes the standard Euclidean norm in R?. Using the

Fourier series expansion one can re-write the first equation in (1.1) for each Fourier
mode wy of w as

dw
71( = § B(k - q, q)wquwq7 k € ZQ \ {0}7 (15)
q€z?\{0}
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where the coefficients 3(p, q) for p,q € Z? are defined as

1 _ _ _ _
50 = 5 (lal 21+ el = o]0+ o?Bl2) o Aa) (10
for p #0,q # 0, and B(p,q) = 0 otherwise. Here

pAq=det[b: 2] for p = (p1,p2) and q = (q1,¢2). (1.7)

The derivation of (1.5) is given in the Appendix. We refer to [14] for equation (1.5)
in the Euler case when o = 0.

The choice of spaces for the sequences (wx)kezz depends on the choice of vorticity
in (1.1). For instance, if w € H*(T?), the Sobolev space, then (wy) € (2(Z?), the
space of sequences square summable with the weight (14 ||k||?*)*/2. In what follows
we will mainly consider the case s = 0, that is, w € L?(T?) and (wk) € (*(Z?) as
the case s # 0 is analogous.

1.3. Unidirectional flows. A unidirectional flow is the flow induced by a time
independent solution w® of (1.1) that has only one nonzero Fourier mode, that is,

w’(x) = Re(T'e’P™) for a given p € Z*\ {0} and T € C, (1.8)
i.e., the Fourier coefficients w’(x) are given by
r/2 ifk=p,
wy =< T/2 ifk=—p, (1.9)
0 if k # +p,

where T is the complex conjugate of I'.

A well-known example of the unidirectional flow is given by the Kolmogorov flow
with vorticity w®(x) = cos(mz1), m =1,2,..., (see, e.g., [16]); this corresponds to
the choice p = (m,0) and I' = 1. In the case when m = 1 the steady state solution
of the Euler equation is called in [2] a bar-state. Unidirectional flows by definition
are special cases of shear flows. A shear flow has a general Fourier series but still
only a flow in one direction.

The unidirectional flows have been studied by many authors, see e.g. [2, 5, 6,
14, 15] and the literature therein. We demonstrate that the unidirectional flow is
indeed a steady state of (1.5) in Lemma 5.2 in the Appendix.

We use notation Lg, where B stands for the “bar state”, for the linearization of
(1.5) about the steady state (1.8), that is, we linearize (1.5) about the unidirectional
flow and consider in ¢?(Z?) the following operator,

Lp : (wi)keze = (B(pk — p)Twi—p — B(P, k + P)TwWicip)  cpo (1.10)

(see the Appendix for derivation of formula (1.10)).

Our objective is to show that the spectrum of the operator Lp contains an
unstable eigenvalue (i.e., an eigenvalue that has a positive real part) provided ||p||
is sufficiently large.

We remark that our results also pertain to the 2D Euler case by formally putting
a = 0 in the a-Euler setting. Although this paper is written for the a-Euler
equations, all the ideas, techniques and results of this current paper will carry over
to the a = 0 Euler case. One can thus claim instability of unidirectional steady
states for the Euler equations using the same techniques of the current paper.
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2. INSTABILITY OF THE UNIDIRECTIONAL FLOWS

In this section we first review some results regarding the operator Lpg defined in
(1.10). We use the approach taken in [5, 6, 14, 15]. Next, we show the existence of
a positive eigenvalue of L. Our main result is Theorem 2.9 proved below.

2.1. Decomposition of subspaces and operators. In this subsection we follow
[5, 14, 15] and explain how to decompose the operator Lp acting in ¢?(Z?) into the
direct sum of operators Lp q, q € Q C Z?, acting in the space ¢?(Z), for some set
QcC 7

Let p € Z? be the fixed vector from (1.8). Our first objective is to construct
the set Q such that the translated vectors of the form q + np, with n € Z and
q € Q, cover the entire grid Z? in a way that for different q and q’ from Q the
sets of the translated vectors, formed by all n € Z, are disjoint. To begin the
construction, for any q € Z? we denote Yp,q={q+np:n € Z} and note that the
line {q + tp : t € R} may contain several different sets ¥p . For a given q, we
let 7 = 7(q) temporarily denote the radius of the smallest circle centered at zero
that has a nonempty intersection with the set Xp 4. The intersection consists of
either one point (which we will denote by q) or two points (in this case we denote
by q one of them). In other words, for each q € Z? we identify the unique vector
q =q(q) in Xp q such that the following holds:

lall = min{|lq + np|| : n € Z} and
q = q + NmaxP, where Ny, = max{n : ||q + np|| = min{||q + np|| : n € Z}}.

The second condition simply fixes one of the possibly two points in ¥ 4 that belong
to the circle of radius 7 = ||q||. We let Q = {q(q) : q € Z?}.

We will now decompose the operator Lp in ¢?(Z?) into a direct sum of operators
acting on the spaces isomorphic to ¢?(Z). Indeed, for each q € Q we denote
by Xp 4 the subspace of ¢?(Z?) of sequences supported in Y 4, that is, we let
Xpq = {(wk)kezz : wk = 0 forallk ¢ ¥p o}. Clearly, (*(Z%) = ®qcoXB.q, the
operator Lp leaves Xp q invariant, and therefore Lp = ®qecolB,q Where Lp q is
the restriction of Lp onto Xp q. To emphasise that Lp depends on p from (1.8),
we sometimes write Lg(p) and Lp q(p). For k = q+ np € L5 q we denote w,, =
Watnps N € Z, and remark that the map (wx)kezz — (Wn)nez is an isomorphism
of Xp  onto ¢3(Z). Under this isomorphism the operator Lp 4 in Xp  induces an
operator in £%(Z) (that we will still denote by Lp q) given by the formula

Lpq: (wp)nez = (B(p;a+ (n—1)p)Twp—1—B(p,a+ (n+1)p)Twni), o, (21)

By (1.6), if q is parallel to p then Lg o(p) = 0; therefore, in what follows we will
always assume that q and p are not parallel.

We recall that H*(T?) is the Sobolev space of 27-periodic L? functions with
s derivatives in L?. Via Fourier transform, H*®(T?) is isometrically isomorphic
to (2(Z?), the set of sequences (wk)kezz which are £2 summable with the weight
(1 + ||k||>*)'/2. As above, we may decompose ¢2(Z?) = ©qecXB.q.s» Where Xp o
is the space £2(Z) with the weight (1 + ||q -+ npl||?*)'/2. Since the results for s = 0
and s # 0 are analogous, in what follows we will consider only the space £2(Z).

Our objective is to study the spectrum of Lg g in £*(Z). From now on we assume
that I' € R. Then Lp q can be written as Lp q = (S — S*)diag, cz{pn}, where
S i (wn)nez + (Wp_1)nez is the shift operator in ¢?(Z) and we introduce the
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notation

1
pn =TpB(p,q+np) = QF(q A P)

1 1
X — ,n €7z, 2.2
(|p|2<1+a2||p||2> q+np|2<1+a2||q+np||2>> 22)
with g A p as defined in (1.7).

Lemma 2.1. The nonzero eigenvalues A of Lp  are symmetric about the coordi-
nate azxes, i.e., if A # 0 is an eigenvalue, then —A, A\, —\ are also eigenvalues.

This is a result of the Hamiltonian structure of the a-Euler equation. We refer
to [15, Prop.4, p.269] and the Appendix for a proof.

Due to Lemma 2.1, to prove spectral instability of the unidirectional flow we
need to show the existence of at least one q € Q such that Lp ¢ has an eigenvalue
with nonzero real part. In turn, this is equivalent to showing that the spectrum
Spec(2Lp,q) = 1 Spec(Lp,q) of a multiple of Lp 4 has an eigenvalue with nonzero
real part. Here, ¢ is any non-zero real constant that we choose. In particular, divid-
ing Lp,q by the n-independent real multiple ¢ = 1I'(q A p)|lp[~2(1 + o2 p||*) ",
we pass to the operator %L B,q Of the same structure as Lp q but with the term
iT(qAp)|pl72(1 + o?||p[|*) ™" in (2.2) replaced by 1. In fact, this procedure is
equivalent to rescaling I'. In order to simplify notations we will assume in what
follows that T" in (2.2) already satisfies the normalization condition

1 _ _
ST@np)pl~*(1+a%|pl*) " = 1.

We introduce notation

_ [plI*(1+o?|lp|?) _
la +7npl*(1 +a?|lq + npl?)

Using the normalization condition, we see that p, = 14 ~,. Therefore, we want to

study the spectrum of the operator

Lpq=(S—5")diag,cz{1 + v} (2.4)

Remark 2.2. We will now classify points q € Z? recalling notations q and Q
introduced in the beginning of Subsection 2.1. For any q € Z? the intersection of
the set Xp q = {q+np : n € Z} with the open disc of radius ||p|| may have either
zero, one, or two points. If this is the case then we call q a point of type 0, I and
II.

If q € Z? is a point of type I then the set ¥p 4 = {q+np : n € Z} contains
exactly one vector ¢ = q(q) whose norm is stricly smaller than p. We further
classify points of type I as follows, see Figure 1 and Examples 2.3, 2.4, 2.5. We
say that q is of type Iy if all other vectors in ¥ p 4 have norms strictly larger than
llp|l- This means that the only vector in ¥ p 4 whose norm does not exceed ||p|| is
located strictly inside the disk of radius ||pl|.

There are two more possibilities for §(q) € Xp g to be strictly inside the disc
of radius ||p||. The first is when the preceeding point, q(q) — p, belongs to the
boundary of the disc and the second possibility is when the following point q(q) +p
belongs to the boundary of the disc. These two cases are classified as type I_ and
I, respectively: we say that q is of type I_ if [a(a)]| < [pl, |a(a) — pll = Ipl,
and all other vectors in ¥ ¢ have norms strictly larger than ||p| and q is of type

(2.3)

Yn =
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q //.
/{Jr 2p
/}.gt)kﬂﬁr
a1+ L—T a2t Dp
18P / p
_—T > (typell]) |~
0 =
qs (type I,)—" /7
N _—— 4
7 Q4 (type 1-)

FIGURE 1. p = (3,1); point q1 = (—1,2) is a point of type I
(green Xq,), point g2 = (—1,1) is a point of type IT (blue Xg,),
point q3 = (0,—2) is a point of type I (red Xg,), and point
qs4 = (2,—2) is a point of type I_ (brown X, ).

I if la(q)| < |Ipll, [lala) + pl| = [|p]|, and all other vectors in ¥ o have norms
strictly larger than ||p||.

Example 2.3. See Figure 1 and [5]. Let p = (3,1). Then q = (-2, 3) is of type 0,
q = (—1,2) is of type Iy, g = (0,—2) is of type Iy, q = (2,—2) is of type I_ and
q=(—1,1) is of type II.

Example 2.4. Let p = (1,2). Then q = (1, —1) is of type I, while ¢ = (—1,1) is
of type I_ whereas q = (—1,0) is of type I1.

Example 2.5. Let p = (2,0). Then g = (0, 1) is of type Io.

In what follows, dealing with the operator Lp ¢ from (2.1), we will drop hat in
the notation q, that is, we assume that q € Z? satisfies ||q|| < ||p|-

Remark 2.6. The fact that q is a point of type 0, I, or IT leads to the following
respective conclusions:

(i) Assume that ||q|| > ||p||, that is, q is a point of type 0. Since q € Q is chosen
to minimize ||q + np||, we know that ||q + npl|| > ||p|| and therefore |y,| < 1 or
14+, >0 forall n € Z.

(ii) Assume that ||q|| < ||p|| and that the line ¥ 4 has exactly one point in
the open disc of radius ||p|| (that is, we assume that q is a point of type I). Then
(14 o2||p||?) > (1 + a?||q||?). If q is of type Iy then py < 0 and p,, = 1+, > 0 for
all n # 0. If q is of type I, then py < 0 and p; = 14+7, = 0 and p, = 1+, > 0 for
alln #0,1. If qisof type I_, then pg < 0 and p_; = 14+, =0and p, = 14+~, >0
for all n # 0, —1.

(iii) Assume that q is a point of type I1, i.e., we assume that ||p|| > ||q]|, that
Ipll > |la — p|, and that ||p|| < ||q + np|| for all n € Z\{0, —1}. Then 1 + o < 0,
1+v-1 <0but 1+, >0 for all n € Z\{0,—1}.
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The operator Lpq defined in (2.4) is a product of two operators and can be
viewed as an infinite matrix with two nonzero diagonals. It is sometimes convenient
to make this matrix more symmetric by putting a square root of the operator
diag, cz{1 + v} in front of the multiple S — S*. To achieve that, using (2.3), we
introduce the following notation,

5 — VI+, for 1+, >0, when §, € R,
" i1+ m| for 1+, <0, when §, € iR,

so that 62 =1+ ,. Since Lp 4 = (S — S*)diag,,c,{0,} diag, {5, }, the nonzero
elements of the spectrum of L g 4 coincide with the nonzero elements of the spectrum
of the operator My defined by

Mg = diag,,ez{n}(S — %) diag,,cz{dn}.
This is a consequence of the following well-known fact:

(2.5)

(2.6)

Lemma 2.7. Suppose A,B : X — X are bounded linear operators on a Banach
space X. Then c(AB)\{0} = o(BA)\{0}.

We can thus study the spectrum of the operator My instead of Lp q.
operator Mg has the following structure:

0 —0_20_1 0 0 0

0_20_4 0 —0_10p 0 0

Mq = 0 5_150 @ 760(51 0
0 0 (50(51 0 —(51(52

0 0 0 0102 0

The “central” entry has been marked with a box, for future reference. We remark
that ,, = 1 and n — oo since 7, — 0 and that My is a compact perturbation of
S — §*, therefore Spec.,(My) = Spec(S — S*) = i[-2,2].

If q is a point of type 0 then Lp 4 has no unstable point spectrum (cf. [15,
Remark 4]). Indeed, if 4,, € R for all n, i.e., q is a point of type 0 and ||q|| > ||p|l,
then Mj = — Mg, i.e., M is skew-adjoint and its spectrum is thus purely imaginary.

We now consider Mg for q being of type I or 11. Then two cases are possible:

(a) 0o € iR and J,, € R for all n # 0;
(b) do,0_1 € iR and J,, € R for all n # 0, —1.
We note that case (a) corresponds to item (ii) while case (b) corresponds to item
(iii) in the list given in Remark 2.6.
In case (a) the 3 x 3 block

0 —d_109 0

5_180  [0] bt
0 b 0

is self adjoint while the remaining part of My is skew-adjoint because 6;—16; € iR
only for I = 0,1 and §;_19; € R for [ # 0,1. In case (b) we have §p,0_1 € iR and
6n € R for n # 0, —1 and then §;_19; € iR provided that [ = —1,1 and 6;_16; € R
for | # —1,1. This means that in case (a) or (b) we do not know that the spectrum
of My is purely imaginary and there is a possibility that unstable eigenvalues exist.
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Indeed, if q is a point of type I then the arguments given in Subsection 2.2 (cf.
also [5]) based on the use of continued fractions yield the existence of an unstable
eigenvalue for Lp q. In a sense, we adapt to the current setting the proof from
[7] used therein for the Orr-Sommerfeld operator, see also [16]. However, if q is
a point of type IT then the question whether or not there are unstable (complex)
eigenvalues is an important open problem.

2.2. Unstable eigenvalues for unidirectional flows in case of the point of
type I. The main result of this subsection states that the linearized Euler operator
L has a positive eigenvalue provided at least one point q € Q(p) is of type I. Here,
we are using the classification of points given in the previous subsection, see Remark
2.2. Specifically, we will show that if q is the only point in ¥ 5 4 = {q+np : n € Z}
satisfying ||q|| < ||p||, i-e. if q is of type I, then Lp q has a positive eigenvalue. We
recall that by (2.3) the coefficients in Lp 4 from (2.4) are given by the formula

Ipl*(1 + o?[lp]*)

- , neELZ. (2.7)
la + npll2(1 + a?||q + np|?)

pn=1+mm=1

For simplicity, we first consider a point q of type Iy, and outline an informal
argument that shows the existence of a positive eigenvalue of Lp 4. In this case
llall < |lpll and ||q + np]|| > ||p]|| for all n # 0. That is, =1 < 7y, < 0 for all n # 0
and v9 < —1. This implies that if the point q is of type Iy then

po < 0 and p,, > 0 for all n # 0. (2.8)
We consider the eigenvalue problem
LB,q(wn)nEZ = )\(wn)nGZ~ (29)

Letting z,, = ppw,, equation (2.9) is equivalent to the difference equation

A
Zn—1— Zn4l = —Zn, N E 7, (2.10)
Pn
where p,, are given by formula (2.7). Note that p, — 1 as |n| — oco. Assuming
wy, # 0 for any n, we introduce the notation u,, = z,-1/2, (and note that z, # 0
for any n since w, # 0), and re-write (2.10) as

A 1 1

Up = — + or Up41 = n € 7. (211)

Prn Unti o~ Un
Pn

Forwards iterating the first equation in (2.11) for n > 0 and backwards iterating
the second equation for n < —1, we obtain two A-depending sequences,

1
u§}>(/\):pi+ —— =012, (2.12)
n A
Pn41 + A
Pn+2
@) 1
u (N = — - n=-1,-2,..., (2.13)
2 4
Pn A 1
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from which we obtain the following two formulas for the entry ug = ug(A) of the
solution (u,) to the difference equation (2.11):

A1 1 A
ORI " .

>\_ —+——:— = . :——’— )\7
O() Po ul Po ﬁ-ku% Po f()
9 1 1
uP ) =————1 = == —g(),
1 u_1 po1 A1

g\ = ——— (2.14)

E A pP—1
P2+

pP—2

We refer to Section 3 for basic results concerning continued fractions. The continued

fractions in (2.14) converge by the Van Vleck Theorem, see [13, Theorem 4.29].
Clearly (as we prove in Lemma 2.12(1) below), A > 0 is an eigenvalue of Lp g

with an eigenvector (w,,) provided there is a corresponding solution (u,) to (2.11)

which, in turn, happens if and only if u(()l) \) = uéQ)()\)7 or, equivalently, if and only

if A\ satisfies the equation

25 FO) + g0 = 0. (2.15)
Po

Thus, to show the existence of a positive eigenvalue of Lp q it is enough to show
the existence of a positive root of equation (2.15).

Using (2.8) we observe that if q is of type Iy then both functions f and g take
positive values for positive A. We will also see in Lemma 2.10(4) that

lim f(A) = lim g(A\)=1, lim f(A)= lim g(\)=0. 2.16
Jim f(A) = lim g(A) =1, lim f(})= lim g(}) (2.16)

Since py < 0 by (2.8), equation (2.15) must have a positive root, as claimed. A
similar argument works if q is of type I_, that is, p; # 0 and p_; = 0. In this case
we will use f(A) as in (2.14) and set g(A) = 0 in (2.15). If q is of type I, that is,
p1=0and p_; # 0, we will use g(A\) as in (2.14) and set f(A) =0 in (2.15).

We will show below that condition (2.15) is not only sufficient but is also neces-
sary for A to be an eigenvalue of the operator Lp q. Since the respective eigense-
quence (wy,) is related to the sequence (u,,) from (2.11), and the latter is eventually
given by means of the continued fractions in equations (2.12) and (2.13), where,
by construction, u%l)()\) > 0 for n > 0 and uf)()\) < 0 for n < 0, the sequence
(wy,) must possess some additional properties. Indeed, due to (2.12) and (2.13), we
require our w, to be such that u, > 0 for n > 1 and u,, < 0 for n < 0. Using the
formulas z, = ppw, and w, = z,_1/z, one can check directly that either one of
the following two possibilities must happen: Either (a): w,, must be so that w, >0
forn>1, wy <0, w_1 <0 and w_g,w_yg, ... are all positive while w_1,w_3,...
are all negative; or (b): the sequence (—1)w, satisfies these inequalities.

We will now proceed with a more formal proof of the fact that if q is a point of
type I then Lp  has a positive eigenvalue with the eigenvector (w,) satisfying

Property 2.8.

(1) In case q is of type I, the eigenvector (w,,) of (2.9) is such that the following
holds: either w,, > 0 for n > 0, w, < 0 for n = —1,0, and (—=1)/"lw, >0
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for n < —2, or the entries of the vector (—w,,) satisfy the inequalities just

listed.
(2) In case q is of type Iy, the eigenvector (w,) of (2.9) is such that the
following holds: either w, = 0 for n > 1, w; > 0, w, < 0 for n = —1,0,

and (—1)"w,, > 0 for n < —2, or the entries of the vector (—w,) satisfy
the inequalities just listed.

(3) In case q is of type I_, the eigenvector (w,) of (2.9) is such that the
following holds: either w,, = 0 for n < —1, w, < 0 for n = —1,0, and
wy, > 0 for n > 0, or the entries of the vector (—w,,) satisty the inequalities
just listed.

Thus, if q is of type Iy and Property 2.8 holds then the entries w,, are of alternat-
ing signs if n < 0, that is, w_1,w_3,w_s, ... are all negative and w_o, w_4,w_g, . . .
are all positive, and, in particular, w, # 0 for any integer n. If q is of type I,
and Property 2.8 holds then the entries of the eigenvector (w,,) satisfy the same
inequalities as the case when q is of type Iy except that w,, = 0 for n > 1. If q is of
type I_ and Property 2.8 holds then the entries of the eigenvector (w,,) satisfy the
same inequalities as the case when q is of type Iy except that w, = 0 for n < —1.

We recall the notation for the weighted spaces ¢2(Z?) and ¢%(Z) given in the
discussion following (2.1). Our main theorem is the following.

Theorem 2.9. Assume that p € Z? is such that at least one point q € Q(p) is of
type I, where q is not parallel to p. Also, we assume that I' € R and satisfies the
normalization condition

1 _ _
ST@np)[pl~*(1+a?[pl*) " = 1.

Then the steady state (wy)xez2\jo1 defined in (1.9) is linearly unstable.

In particular, the operator L o in the space €2(Z) has a positive eigenvalue and
therefore Lp in (2(Z*) has a positive eigenvalue.

Moreover, the following assertions hold.

(1) If q is of type Iy then A > 0 is an eigenvalue of Lp q with eigenvector (wy,)
satisfying Property 2.8(1) if and only if X > 0 is a solution to the equation

24O+ g0 = 0. (2.17)
Po

(2) If q is of type I+ then A > 0 is an eigenvalue of Lp q with eigenvector (wy,)
satisfying Property 2.8(2) if and only if X > 0 is a solution to the equation

% +g(\) =0. (2.18)

(3) Ifq is of type I_ then A > 0 is an eigenvalue of Lp o with eigenvector (wy,)

satisfying Property 2.8(3) if and only if X > 0 is a solution to the equation
A
—+ f(A)=0. (2.19)
Po

Before presenting the proof of Theorem 2.9 we will need two lemmas. Their
proofs rely on the auxiliary material on continued fractions contained in Section 3.
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Lemma 2.10. Assume q is of type Iy, fiz any positive A and consider the following
continued fractions,

A A A 1
UEP(A)::*+[ ,...}:—+ n=0,1,2,..., (2.20)
Pn Pn+1 Pn A 1
Prn+1 A
Pn+2
A A 1
ull (V) .__{77 ] = n=-1,-2, (2.21)
p'fL pn+1 by 1
i —
Pn—1

Then the following assertions hold:

(1) u%l)()\) and ug)()\) are convergent continued fractions and the functions
M. (2) /. : ;
un () and uy, ' (+) are continuous in X.
(2) There exist limits

WD) = lim «P(N), w2 (V)= lim «@(\), A>0,
n—oo n——oo
satisfying \uf,?()\ﬂ > 1, |u(_220(>\)| <1.
(3) For some 0 < q <1 and C > 0, the following hold

(S NP () . aD W) < Cq™, for all n > 0, (2.22)
(@) . aB N NP (V) < Cq", for alln < —1. (2.23)

(4) limy o+ [ul™ (N)] = 1, lima_ oo ul™ (A) = 0 for k =1,2.

Proof. (1) This follows from the Van Vleck theorem and the Stjeltjes-Vitali Theo-
rem, see [13, Theorem 4.29 and Theorem 4.30], since A > 0, and thus arg A satisfies

|arg A| < § — ¢ and hence the continued fractions uﬁP(,\) and ug)()\) converge. In

addition, the Van Vleck Theorem also guarantees that the maps A 5 " (N), u'? (N

are holomorphic in A since [arg A| < 7 — ¢ implying the continuity clause.

(2) The fact that the limits ug)()\) and u(fgo()\) exist follows from item (3) in
Lemma 3.1 proved in Section 3. Passing to the limit as n — oo in (2.20) and (2.21)
we see that

—1
W) =X+ 1B and u2 (N = —
Uy Uy and u'"
A —u® (N
(2)

since p, — 1 as n — oo. Thus, we notice that both ug) and u>"/ satisfy the

following quadratic equation
Ul — Mt — 1 =0,
the solutions of which are given by u+oo = (A/2) £ ((A\/2)?41)/2. Notice also that

ug})()\) must be positive and u(fgo (A\) must be negative. From these it is seen that

uld = (V/2)+ (V22 +1)H2 and uZ) = (A/2) = ((A/2)2 + D)V/2 and [uld (V)] > 1,
lu® (V)] < 1.

(3) Let ¢' € (1,1&3(}\)). Note that from (2), since ug)()\) > 1, there exists an
integer Ny such that if n > Ny, then uﬁf)(A) > ¢q'. We thus have that,

a0 D () = D) ul), e )P0
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1 m

Cq )

where we have denoted C' = C(¢') = (ugl)()\) . .ug\p,()\)q’_Nq/)_l. Let ¢ = 1/¢
q

and we thus obtain (2.22). Since |u(_2(10()\)| < 1, we have that for a fixed ¢ such

that |u(_2(),o()\)| < ¢ < 1, there exists an integer N, > 0 such that if n < —N,;, then
\ugf)()\ﬂ < g. We thus have that,

> ugl)()\> . ug&g/ ()\)q/n—Nq/ _

Jug? VuZ () - uP )] = uf a0 a0 uP )
< Jug? WuZ () (W)lg N = Cgn

where we have denoted C = C(q) = |u(()2)(/\)u(_2%(/\) . ~u(_2])Vq(/\)|q_NQ. This proves
(2.23).

(4) Noticing that uél)()\) = Xpo+ f(N) and u((f)()\) = —g(A), this follows from
items (4) and (5) in Lemma 3.1 proved in Section 3. O

Remark 2.11. If q is of type I, we will use the continued fraction qu’(,\) for
n < 0 and if q is of type I_, we will use the continued fraction ung)()\) for n > 0.

Lemma 2.12. Fiz any positive A > 0 and consider the continued fractions ugll)()\)
and ug)(}\) given in (2.20) and (2.21). Then the following hold.
(1) If q is of type Iy, then A € 04isc(Lp,q) with eigenvector (wy,) satisfying
Property 2.8(1) if and only if uél)()\) = uéz)()\),
(IP) If q is of type I1, then N\ € 04isc(Lp.q) with eigenvector (wy) satisfying
Property 2.8(2) if and only if uéz)()\) = \/po.
(IM) If q is of type I_, then X\ € 04isc(Lp,q) with eigenvector (wy) satisfying
Property 2.8(3) if and only if uél)()\) =0.
(2) The respective eigenvectors (Wy)nez for Lp g are exponentially decaying
sequences and therefore belong to (2(Z) for any s > 0.
(3) Equation uél)()\) = uéQ)()\) has at least one positive root provided q is of
type Iy, equation ugz)(/\) = A/po has at least one positive root provided q is
of type I, and equation u(()l)()\) = 0 has at least one positive root provided

q is of type I_.
Proof. (1) Let q be of type Iy and suppose A € 0gisc(LB,q); A > 0, with eigenvec-
tor (wy) that satisfies Property 2.8(1). We wish to show that u(()l)()\) = u((f)(/\).
Beginning at the eigenvalue equation (2.9), that is,
Pn—1Wn—-1 — Pn41Wn+1 = )\wny ne Z7

and putting z,, = p,w,, we obtain equation (2.10). Notice that Property 2.8 implies
that w, # 0 for any n and hence z, # 0 for any n. Putting w, = z,_1/2n, we
obtain (2.11) from (2.10).

Consider the continued fractions (2.20) and (2.21). We claim that uSP(,\) = Uy,
for every n > 0 and ugf)()\) = u, for every n < 0. This would then imply that

1 2
u’ () = i ().

We now give the proof of the fact that the continued fraction defined by uly (A)
matches the w, given by (2.11) when n > 0. It follows, from standard facts of
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continued fractions, see for example [13, Chapter 2], that the odd k' trunca-
tions (u' (\))*+1) form a monotonically decreasing sequence and the even kth

truncations (usll)()\))(zk) form a monotonically increasing sequence and ug)()\) is
sandwiched in between these. That is, we have, for every k > 1,

(ug? ()72 < (P () < ufP () < (P ()P < (uf) (1) Y.
(2.24)
Denote by u,, ; the finite continued fraction obtained by iterating the first formula
in (2.11) k times. That is, for every fixed positive integer k, u, = u,  and is given
by the formulas

A 1 A 1
Up,1 = — + y Up2=-—+ ———3 -
Pn Un+1 Pn P Unis
A 1
Up = Up p = — + , k>3
n by 1
Pr+1 -t A 1
Pn+k—1 Un+k

Since wy, > 0 for n > 1 and wy < 0, z,, = ppw, > 0 for n > 0 (recall that for q
of type Iy, po < 0 and p,, > 0 for every n # 0). This then implies that u,, > 0 for
n > 1. Using this fact, one can directly check that u, = u,2 < (ug)()\))(l) and
Up = Upa < (u5}>(>\))<3> and similarly, u, = u,3 > (ug)()\))@) and up, = Up5 >
(ugll)(/\))(‘l). Proceeding this way, one can directly check that the following holds
for every n > 0 and for fixed k > 0

(U ()PP < g g = Un = U gpse < (Wl (N) D,

Taking limits as k — oo and using (2.24) and the fact that limk%oo(u%l)()\))(k) =
ugf)()\) one obtains that ug)()\) = u,, for n > 0.

We now prove that uf)()\) = u, for n < 0. The argument is similar to the
previous case of n > 0 and one now needs to keep track of the negative signs in
the definition of qu)(,\) and the fact that u, < 0 for n < 0. Since qu)(,\) and its
truncations are negative, it follows, from standard facts of continued fractions, see,
for example, [13, Chapter 2] that the odd k" truncations (u'?)()\))*+1 form a
monotonically increasing sequence and the even k' truncations (ug)()\))(%) form
a monotonically decreasing sequence and ug)()\) is sandwiched in between these.
That is, we have, for every k > 1,

(P )Y < (@@ ()P <uP (M) < (P (V) < (uP (V)2
(2.25)
Denote by uy, ;. the finite continued fraction obtained by iterating the second formula
in (2.11) k times. That is, for every n < 0 and fixed positive integer k, u, = u}, .
and is given by the formulas 7
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, 1
Un :yunk = - ’ k > 3.

Pn—1 . 1
L+ 5

Pn—k

— Up—k

Notice that by assumption u, < 0 for all n < 0. One can directly check that
U,y > (ug)()\))(l) and uy, 5 < (ug)()\))@). Furthermore, the following holds for
every n <0and k > 1,

W@ W)Y <l ey =y =l o, < (WP (V)3

Taking limits as k& — oo and using (2.25) and the fact that limkﬁoo(ugf)()\))(k) =
ug)()\) one obtains that ug)()\) = uy, for every n < 0. This proves that u(()l)(/\) =

(2)
uy (A).

Suppose uél)()\) = u(()2)()\) for some A > 0. We wish to construct an eigenvector
(wy,) that solves the eigenvalue problem (2.9) and satisfies Property 2.8 (1). First
define ug)(A) and ug)()\) as in (2.20) and (2.21) respectively for every n, with p,
given by (2.7). We now define u,, as follows:

" ug,,l)()\) ifn >0, (2.26)
" uSLQ)()\) ifn <0. '

Note that wu, is well defined for all n € Z because of our assumption that uél) A\ =

u((f)()\). Furthermore, u,, thus defined in (2.26) satisfies (2.11). Indeed, one obtains,
from (2.20) and (2.26) that for every n > 0,
A 1 A 1
unzusbl)(/\):pf—FT:* U ,
n un+l(A) pn n+1

where in the second equality above, in the denominator we again used the expression
from (2.20) for ugllll()\). Similarly, from (2.21) and (2.26) that for every n < —1,
2 1 1
Up+1 = ule1(>\) = _)\/Pn _ US?)()\) - _)\/Pn — Up,
where, again, in the second equality in the denominator, we used the expression
from (2.21) for ug)()\). This shows that u, thus defined satisfies (2.11). Fix zp = 1
and for n > 0 let

= — 0 ifn >0, (2.27)

ULUY ... Up
and for n < 0, we define,

Zn = 20UoU_1U_2 ... Upy1, if 7 <O. (2.28)

Notice that z, thus defined satisfies u, = z,-1/2, for every n. Using this one
can see that the sequence (zp)nez satisfies equation (2.10) because the sequence
(un)nez satisfies (2.11). We now let w,, = z,/p, for every n to obtain that the
sequence (wy, )nez satisfies the eigenvalue equation (2.9). This follows from the fact
that (z,)nez satisfies the first equation in (2.10). By construction, since u, > 0 for
n > 0 and u, < 0 for n <0, one can directly check, using formulas for z, given in
equations (2.27), (2.28) and the formula w,, = z,/p, that (w,) satisfies Property
2.8 (1). It follows that Lp q(wn)nez = Mwn)nez, where (wy,) satisfies Property 2.8
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(1) if uél)()\) = uéQ)()\). The fact that (wy,)nez € £2(Z) follows from assertion (2)
in the lemma.

(IP) Let q be of type I and suppose that A € 0gisc(Lp,q), A > 0, with eigenvec-
tor (wy,) satisfying Property 2.8(2). We wish to show that uéQ)()\) = A/po. Notice
first that in this case p; = 0. Starting with the eigenvalue equation (2.9) and
putting z,, = pp,w, we will obtain the equation

A < -1
Zn—1 — Zn41 = —Zn, ns—1,
Pn
A
Z—1 = —Z0,
Po
zp, =0, n>1. (2.29)
Now define u,, = z,—1/z, for n < 1 to obtain the equations
A 1 1
U, = — + or Upt1=-——~F——, n<-L (2.30)
Pn Un+1 r Un

Consider the continued fraction

1

Wl () = - n=—1,-2 ...
A
ot 1

A
Pn—1 + A
Pn—2

The proof that ug)(/\) = u, for n < 0 is the same as in the case of type Iy. The
second equation in (2.29) gives ug = A\/pg and thus we have, by putting n = —1 in
the continued fraction above, that u(()2)()\) = \/po.

Now, suppose there exists a positive root A to the equation uéQ)()\) = \/po-
We wish to construct (w,) satisfying Property 2.8 (2) such that A > 0 solves the

eigenvalue problem (2.9) with eigenvector (w,). We first define u,, = ug)(/\) for
n < 0. Notice that by assumption ug = A\/pg. From the definition of the continued

fractions ug)()\), we can see that the u,, thus defined satisfies

A 1 1
U, = — + or Upt1=-——~——, n<-—L (2.31)
Pn Un41 on Unp
Now let z9p = 1 and for n < 0, define z,, = zgupt—1 ... up41. The z, thus defined
satisfies z,,_1 /2, = uy. Also, define z, = 0 for every n > 1. From the first equation
in (2.31) and using the fact that ug = A/pg, we obtain the following equations for

ZTL?

A
el T Fnkl = mEas M < -1,
n
A
Z—1 = —Z0;
Po

2, =0, n>1.

Notice that the third equation above implies that the equation z,—1 — 2,41 = %zn
is trivially satisfied for n > 1. Using this fact, if we now let w,, = 2z, /p, for n # 1
and wy = zp/\, we obtain from the equations above,

Pr—1Wn—1 — Ppt1Wpt1 = AMp, n < —1



16 H. DULLIN, Y. LATUSHKIN, R. MARANGELL, S. VASUDEVAN, AND J. WORTHINGTON

A
w—_1 = —UW
p-1
20
w1 = X

Pn—1Wn—1 — PrnylWnil = AWy, 1> 1.

The two middle equations above can be rewritten as pp,_1Wp—1 — Ppr1Wni1 =
Aw,, n = 0. This is precisely the eigenvalue equation (2.9),

Pn—1Wn—1 — Pn+1Wn+1 = Aw,, nELZ, (232)

where w, = 0 for n > 1 and w, # 0 when n < 1. Notice that the (w,) thus
constructed satisfies Property 2.8 (2). The fact that the eigenfunctions are expo-
nentially decaying follows from part (2) of the Lemma.

(IM) Let q be of type I_ and suppose that A € ogisc(LB.q), A > 0, with eigen-

vector (wy,) satisfying Property 2.8(3). We need to show that uél)()\) = 0. Starting
with the eigenvalue equation (2.9) and putting z,, = p,w,, we will obtain the equa-
tion

zn =0, n<-1 (2.33)
A
21 = T X0,
Po
A
Zn—1—Zny1 = —2n, n=>1

n

Now define u,, = z,_1/2, for n > —1 to obtain the equations

A 1 1
Uy = — + or un+1 = —>\77 n > O (234)

Pn Un+1 = — Uy B
o

Notice that ug = z_1/29 = 0. Consider the continued fraction

uV(\) = ,n=0,1,2,....

Pn 1

Pn+1 A
+
Pn+2

By the same proof as in case Iy, we obtain that ugll)(/\) = u,, for every n > 0. We
thus have, by putting n = 0 in the equation above, that uél)(/\) =wug = 0.

Now, suppose there exists a positive root A to the equation uél)()\) = 0. We
wish to construct (wy,) satisfying Property 2.8 such that A > 0 solves the eigenvalue
problem (2.9) with eigenvector (wy,). We first define w,, = ufll)(/\) for n > 0. From
the definition of the continued fractions, we can see that the u,, thus defined satisfies

A 1 1
Up = — + or Upp1=-————, n=>1L (2.35)
Pn Un+41 p7 — Up
Now let zg = 1 and for n > 0, define z, = —2—, n > 0. The z, thus defined

ULU2... Uy ?
satisfies z,_1/2, = u,. Also, define z,, = 0 for every n < —1. We thus obtain the

following equations for zj,,

Zn—1 " Zp4l = ——Zn, N > 13
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A
21 = ——2Z0,
Po

zn =0, n<-1

Notice that the third equation above implies that the equation 2,1 — 2,41 = ﬁ

is trivially satisfied for n < —1. And the second equation above can be rewritten
as Zp—1 — Znt+1 = %zn, n = 0. Using these facts, if we now let w,, = z,/p, for
n # —1 and w_; = —zp/A, we obtain from the equations above,

Zn

Prn—1Wn—1 — PryiWnil = AWy, n2>1

)\’LU()
w = ——
P1

20

w_1 = _X

Pn—1Wn—1 — Pnt1Wnt1 = AWy, N < —1.

The two middle equations above can be rewritten as pp,_1Wn—1 — Ppr1Wn+1 = Awy,
when n = 0. This is precisely the eigenvalue equation (2.9),

Pn—1Wn—1 — Pn+1Wn+1 = )\wna ne Z7 (236)

where w,, satisfies Property 2.8 (3). The fact that the eigenfunctions are exponen-
tially decaying follows from part (2) of the Lemma.
(2) First consider case Iy. Note that from (2.27), we have that,
zn:L, if n>0.
ULUY . .. Up
We now use (2.22) to conclude that
lzn| < Cq", (2.37)

where C'is a constant and 0 < ¢ < 1. Note that ¢ = ™4 = ¢~ for some § > 0,
i.e., we have that if n > 0,
20| < Ce™™°, (2.38)
Notice also, from (2.28), we have,
Zn = ZoUULUL - . . Upt1, if 1 < O.

We now use (2.23) to conclude that (2.37) also holds if n < 0. Using arguments
similar to that between (2.37) and (2.38) we see that (2.38) holds if n < 0. We
thus have that (2, )nez € £2(Z) for s > 0 and since wy, = 2,/p, where (p,)nez is a
bounded sequence with lim,,_, pn, = 1, we have that (w,)nez € £2(Z) for s > 0.

In the case of I, we use the estimates for z, when n < 0 and set z, = 0 for
n > 1, i.e., use estimate (2.38) for n < 0 and the estimate is also trivially true for
n > 0 thus implying that (wy,)nez € £2(Z) for s > 0.

In the case of I_, we use the estimates for z,, when n > 0 and set z, = 0 for
n < —1, i.e., use estimate (2.38) for n > 0 and the estimate is also trivially true for
n < 0 thus implying that (w,)nez € 2(Z) for s > 0.

(3) We first treat the case Iy. The fact that u(()l) A\ = u(()z) (M) has a positive root
is equivalent to the fact that equation (2.15) has a positive root A > 0. The latter
fact follows from (2.16). Indeed, the assertion regarding the two limits in (2.16)
follow from Lemma 3.1 (4) and (5) by replacing = and (¢, ) in equation (3.1) by A
and (p,) and (p_,) respectively for f(A) and g(A). The fact that py < 0 since q
is of type I and the fact that by the Van Vleck Theorem, f, g are holomorphic in
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A provided that [arg A\| < T — ¢ together guarantee that (2.15) has a positive root
A>0.

Next consider the case Iy. The fact that u(()2)()\) = A\/po has a positive root is
equivalent to the fact that the equation g(\) + A/po = 0 has a positive root (recall
uéQ)()\) = —g(\)). This follows from the facts, as outlined in the case Iy above,
that pg < 0, g(A) is a holomorphic function provided that |arg A\| < § — ¢, and the
fact that g(\) is positive for A > 0 and satisfies the limits g(\) — 1 as A — 07 and
g(A) = 0 as A — oo.

Next consider the case I_. The fact that ugl)()\) = 0 has a positive root is
equivalent to the fact that the equation f(\) + A/pp = 0 has a positive root. This
follows from the facts, as in the case Iy and Iy, that pg < 0, f(A) is a holomorphic
function provided that |arg A\| < § — ¢, and the fact that f()) is positive for A > 0
and satisfies the limits f(A) = 1 as A = 0" and f(\) = 0 as A — oo. O

We are ready to present the proof of Theorem 2.9.

Proof. (1) We begin with the case when q is of type Iy. The fact that equation
(2.17), /%O + f(A) + g(X) = 0, has a positive solution is equivalent to the fact that

the equation u(()l)()\) = u62)()\) has a positive solution A > 0. This follows from
Lemma 2.12 item (3). Item (1) of Lemma 2.12 then guarantees that A > 0 is an
eigenvalue satisfying the eigenvalue equation (2.9) with eigenvector (w,,) satisfying
Property 2.8 if and only if A > 0 solves equation p% + f(A) + g(A\) = 0. The fact
that eigenvector (w,,) forms an exponentially decaying sequence is a consequence
of item (2) in Lemma 2.12 which implies that (wp)nez € £2(Z) for any s > 0.

(2) We now consider the case I.. The fact that equation (2.18), p% +g(\) =0, has

a positive solution is equivalent to the fact that the equation uéQ)()\) = A/po has
a positive solution A > 0. This follows from Lemma 2.12 item (3). Item (1P) of
Lemma 2.12 then guarantees that A > 0 is an eigenvalue satisfying the eigenvalue
equation (2.9) with eigenvector (w,,) satisfying Property 2.8 if and only if A > 0
solves equation ,%0 + g(A\) = 0. The fact that eigenvector (w,,) forms an exponen-
tially decaying sequence is a consequence of item (2) in Lemma 2.12 which implies
that (wy,)nez € £2(Z) for any s > 0.

(3) We now consider the case I_. The fact that equation (2.19), p% + f(A) =0,

has a positive solution is equivalent to the fact that the equation ugl)()\) = 0 has
a positive solution A > 0. This follows from Lemma 2.12 item (3). Item (1M) of
Lemma 2.12 then guarantees that A > 0 is an eigenvalue satisfying the eigenvalue
equation (2.9) with eigenvector (w,,) satisfying Property 2.8 if and only if A > 0
solves equation p% + f(A) = 0. The fact that eigenvector (w,,) forms an exponen-
tially decaying sequence is a consequence of item (2) in Lemma 2.12 which implies
that (wp)nez € 2(Z) for any s > 0. O

Having established an instability argument, we now need to identify when a value
of q can be found of type I for a given p.

Remark 2.13. Let pt = (—pa,p1) where p = (p1,p2). If q € R? satisfies ||q —
3p*ll < llpll, then [lafl < [lp[l and [|a £ p[| > [Ip[l. If [[p]| > 2v/2, then certainly
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there is a point q € Z? satisfying the above conditions. Therefore this q would
lead to a subsystem of type I and Theorem 2.9 applies. The proof of this fact
is a straightforward geometric exercise analogous with the argument presented in
Lemma 4.2 of [5]. This defines a q for all choices of p satisfying ||p| > 2v/2.
The small number of exceptions can be checked by hand, leading to the result
that an appopriate q can be found and Theorem 2.9 applied in all cases except
p=1(2,1),(1,1) and (1,0). Here, p = (1,0) corresponds to the steady state for the
case « = 0, i.e., the Euler case, described by Arnold [1].

3. SOME AUXILIARY RESULTS ON CONTINUED FRACTIONS

In this section we collect several simple facts about continued fractions needed
in Subsection 2.2. We follow the Appendix in [7] and mention [13] as a general
reference. Although the results are not new we have added some arguments not
made explicit in [7].

Assume that (¢, )n>1 is a sequence of positive numbers that has a positive limit.
For x > 0 we introduce the function

G(z) = [xcy, meg, .. ]| = (3.1)

xcy + 1
xreo +

xes + .

defined by means of a continued fraction. By changing x, when necessary, we can
and will assume in what follows that lim;_,., ¢y = 1. We note that the continued
fraction (3.1) converges, that is, the limit of the truncated continued fractions

1
G (z) =

xrey +

xco +

1

ICl

xcs +

exists and is positive, that is, G(z) = limj_,o G*(z). This follows from the Van
Vleck Theorem, see [13, Theorem 4.29] since Y- ; |zcx| = oo by the divergence test.
Moreover, the proof of [13, Theorem 4.29] based on the Stjeltjes-Vitali Theorem
[13, Theorem 4.30] yields that the function G(-) is holomorphic for z € C satisfying
-5 +e<arg(r) < § +¢, for any € > 0.

In addition we will use the notations

Gn(x) = [zCn, TCpy1, .. .| =
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1
Goolx) = [2y2,...] = — 1 (3.3)
x + 1
T+
T+
and, given positive numbers a,b > 0, we denote
1
F := F(a,b) =[a,b,a,b,...] = ; , (3.4)
a+ - I
1
a-+
b+

the latter continued fractions also converge by the Van Vleck Theorem.

Lemma 3.1. Assume that a,b > 0,¢; > 0,limy oo = 1 and x > 0. Then the
following assertions hold:

(1)
Flab) = ——a (3.5)

(2) f0<A<cp <B fork=1,2,..., then
A B
(5 +5+%5 (2P + 3+

(3) The limit lim,,_, o, G, () exists and is equal to

Goo(z) = nILHgOG \/ (3.7)

(]S

(4)

xliI%)l+ G(z) =1, (3.8)
®) |

lim_G(x) =0, (3.9)

Proof. (1) The k-th truncated continued fraction for F(a,b) are given by
F@®(a,b) = [a,b,...,a,b], F***1(a,b) = [a,b,...,a] and satisfy

1
F*2) (g, p) = - ., k=1,2,....
L F®(a,0)
Since the continued fraction [a,b,...] converges, that is, F#) & F as k — oo, we
conclude that )
F(a,b) = ,
o=
b+ F(a,b)

or F%(a,b) + bF(a,b) — £ =0, yielding (3.5).
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(2) For each k-th truncated continued fraction G (z) = [zey, ..., zcx] we re-
place the odd-numbered c¢; by the smaller value A and even-numbered c; by the
larger value B. Thus, G*)(z) is majorated by the k-th truncation F(*)(A, B) of
[A, B, A B,.. ] Passing to the limit as k — oo and using (1) yields the second
inequality in (3.6). The first inequality follows from F®)(B, A) < G*)(x).

(3) Formula Geo(z) = 1/(5)? +1 — § follows from (3.5) with a = b = . It
remains to show that the limit lim,_, . G,(x) exists and is equal to G (z). For
any ¢ € (0,1) choose N = N(9) such that for all n > N we have 1 —6 < ¢, < 1+9.
For any n > N we apply assertion (2) with ¢; replaced with ¢,,1x, K = 1,2,... and
A=1-4,B=1+9. This yields

A(z,0) < Gp(x) < B(x,9), for all n > N, (3.10)
where we introduce the notations
Aog) o= =90 +0) =
( x( - )) 1 + z(1-3)
B(z,0) = Chs 5)/( —9) (3.11)

(x(l—i-é)) + 1+5 + (1+5)
We note that G (z) = lims_,0 A(z, ) = lims_,0 B(z,d),2 > 0. For any € > 0, we
fix 6 = d(e) € (0,1) such that
Goo(x) —€ < A(2,0), Goo(x) + € > B(x,0).

Then (3.10) yields |Goo(z) — Gp(z)| < € for all n > N(d(e)) as claimed.

(4) Pick a small § > 0 to be determined later and choose N = N(§) such that
(3.10) holds. Fix an even number 2n > N and notice that

G(z) =Gi(z) = [:rcl, TCy ..., TCIp_1, ng(:r)} < [mcl,xCQ, .., XCop—1, Bz, 5)},
(3.12)

where we used that Ga, < B(z,8) by (3.10). Clearly, lim, o B(z,5) = /5

yielding
. 1+0 1+6
< = .
limep Glo) < [O’ ’0’\/1—5} \/1_5

A similar argument shows that liminf, ,o G(x) > %. Passing to the limit as

0 — 0 proves (4).
(5) As before, we arrive at (3.12) and notice that lim,_, 1o, B(2,6) = 0 by (3.11).
Then

’EEI—‘,I}OO [J:cl, XCo, ..., TCon_1, B(x, 6)] =

yields (5). O
4. THE ESSENTIAL SPECTRUM AND THE SPECTRAL MAPPING THEOREM

In this section, we follow [15] and prove for the linearized a-Euler operator that
the essential spectrum of the operator Lp is the imaginary axis. We also prove the
spectral mapping theorem for the group {e'*2},cr generated by the operator Lg.

First note that Lp is the direct sum of operators Lp g, i.e., Lp = ®qeolB.q,
where Lp 4 is given by

Lpq=(cS—cS")diag,cz{l+ "} (4.1)
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with .
(g A
o= 22 (q 2p) ~ (4.2)
Ipl*(1 + o2|[p]l*)
and v, given by (2.3). We note that in general, if I' € C, then c is a complex number.
We thus write ¢ = |c|e? for some 6 € [0,27). Equation (4.1) then becomes,

Lpqg= |c|(ewS - e*wS*) diag, cz{1 + v}

Lemma 4.1. The essential spectrum of the operator Lp g is given by
Oess(L,q) = [—21|c], 2i|c]]. (4.3)

Proof. We observe that the Fourier transform F : L2(T) — (%(Z) : f — (wn)nez
is an isometric isomorphism, where F~! : (2(Z) — L*(T) is given by (w,) ~
>onez Wne™* for z € T := {z € C: |z| = 1}. The operator ¢S — e~ S* acting
on (?(7Z) is similar via F to the operator of multiplication by e’z —e~"z acting on
L3(T), where z € T. That is,

]F_l(ewS - e_ioS*)IF =¥z — e ¥z
The above equality follows from the observation that
F'S=:F"'and F'S*=zF"

We now use the fact that the spectrum of a multiplication operator on L?(T) is equal
to its essential spectrum and is given by the closure of the range of the multiplier. In
other words, the spectrum of the operator of multiplication by e?z—e~* % on L? (T
is the closure of the range of €’z — e~z as z € T. But this is equal to [—2i, 2i].
We thus conclude that the essential spectrum of the operator |c|(e?®S — e~%S*)
is [—2i|c|,2i|c|]. Now, notice that the operator Lp, is a compact perturbation
of the operator |c|(e?S — e~ S*) by the operator |c|(e?S — e~ S*) diag,,cz{Vn}-
Here, the operator |c|(e?S — e~ S*)diag, .5 {Vn} is compact because |y,| — 0
as |n| — oo. Weyl’s theorem [17, Lemma XIII.4.3] allows us to conclude that the
essential spectrum of Lp , is the same as the essential spectrum of |¢|(e?? S—e =0 S*).
Thus (4.3) holds. O

We now prove that the spectrum of Lp is exactly the union of the spectra of
LB,q cf. [15]
Proposition 4.2. 0(Lg) =Uqueq o(LB,q)-

Proof. Since Uyeq 0(Lp,q) C o(Lp) trivially holds, it is enough to show that
o(Lp) C | o(Lp.q)-
aeQ

We first split the operator Lg = L° + LY, where L® = D|q<|plLB,q and LY =
D|qll>|p| LB,q correspond to q with small and big norms. We have that o(Lp) =
o(L*) Ua(L?), and since L® is the sum of finitely many operators we have that

a@m=< U ﬂ@@)Udﬁy
lali<lpl

It is thus enough to show that o(L%) C Ujali>tp) @(LB,a)- Since [¢| = oo as
llall = oo (see (4.2)), and using the fact that oess(Lp.q) = [—21|c], 2i|c|], we see
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that iR C U q>p) @(LB.q)- It therefore suffices to show that o(L?) C iR. Let us
denote
0 __ 0 —10 Q*
Ny = (eS —e75%)
and
Nq = (€S — e78*) diag,,cz {1 + 70 }-
Thus Ny = Ng diag,cz{1+7,} and Lpq = |c|Ng, ie.,
b
L = ®jq)> eyl Ng-

In order to show that o(L’) C iR we show that if A ¢ iR, then X is in the resolvent
set of LP. Thus, to prove the proposition, we need to show that

if A¢iR, then  sup ||IA— |¢|Ng| ™! < +oo. (4.4)
llall>lIpll
Notice that
1/ A !
(A = |¢|N, )_1:<—N) .
4 ERNE
Notice that (Ng)* = —Ng, i.e., N is a bounded skew self-adjoint operator with
[NJ|l = 2. It’s spectrum lies along the imaginary axis and since A ¢ iR we have
that,
A B c
2 NO = . 4.5
[(7-2) |- mm 49
Also
A A .
H — Ng = H - Nq0 - Ng diag,,cz{vn}
A 0 A 0 - 0 3
= o Ng ) |- i Ny | Ngdiag,cz{vn}|- (4.6)

Claim: |c||| diag,,cz{n}l| < m, where K (p) > 0 is a constant.
Proof of Claim:  Using the definition of v, (see (2.3)) and ¢ (see (4.2)) we have,

IT'l|la A p|
2|la + np|[?(1 + a?||q + npl?)

levn| =

Now use the fact that q A p = (q+ np) A p and the fact that |q A p| = |q-p*| and
the Cauchy-Schwarz inequality to see that |q Ap| =|(q+np) Ap| < |la+np||p|.
This then implies that,

el < Kip) .
la + npl/(1 + a?|lq + npl?)

We thus have that,

)

. K(p)
|cl|| diag, ez {Vn I < lc|sup [ya] <
€ n lall(1 + a?|[al[?)

which finishes the proof of the Claim.

Now choose ||qo| > ||p]| so that for all ||q]| > ||qol|, the inequality
2K (p)

[Re(M)lall( + a2[|al|?)]

1
< Z
-2
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holds. We stress that qg depends on Re(\) but does not depend on I'm(\). Denote
Qs = {q E Q : llall € [llpl [laoll]} and Qs :={q € @ : [lall = llqoll}. If q € Qs,

using (4.7), and the fact that | NJ|| = 2, we have,
, 2|c||| diag,, ez {7}l
AN NO NO d n < ne
'Kw g
2K(p)

<

l\.’)\»—t

= [ReM[lall (1 + o?[al?)]

~1
This proves that as long as q € @y, the operator [I (l—N8> NQ diag,, ez {7}

is invertible and

A o
- (5 28) Mdasetn]] <2

Therefore, as long as q € Qy, we have that
L/ A !
— — N,
(=)

1~ felNa) ™ =
4 ]
sup | [elNa) ) € 2
acQ |Re(M)]
To finish the proof, we note that the set @, is finite and since (A — |¢|Ng) ™! is a
bounded linear operator for every q € Qs, it follows that Sqeq. ||(A — |¢|Ng) | is
also a bounded linear operator, where, if A = Re(\) +ilm(\), with Re(\) # 0, then
the resolvent operator grows as O(1/(|Im(X)]) as [Im(\)] — co. We have that,

<L _ld o2
= el [Re(N)| [Re(N)|

Thus

)

(4.8)

sup |4~ el q) ) < +oc. (4.9
qQeQs
Since {q : ||d]| > |lp|l} = @sUQs, equations (4.8), (4.9) show that (4.4) holds. This
proves the proposition. O

Proposition 4.3. oc.s(Lp) = iR and 0p(Lp)\iR = U q <|p|(7p(LB,a)\iR) is a
bounded set with accumulation points only on iR.

Proof. The facts that |¢| — oo as ||q|| — oo and (4.3), together with the fact that
quQ Oess(LB,q) C Oess(Lp) imply that iR C 0.55(Lpg). It is thus enough to prove
that oess(Lp) C iR. We have,

Uess(LB) = U Jess(LB,q) U Uess(Lb)~
lall<lpll
Notice that, since @ q)<|p||(LB.q) is a sum of finitely many bounded linear opera-
tors and using (4.3), we have that
O—ess(LB7q) C iR.
lall<llpll

From the proof of Proposition 4.2, see Equation (4.4), we know that o(L?) C iR,
i.e., L® does not have points in the spectrum with non zero imaginary values. Thus,

Oess(LP) C (L) CiR.
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This proves that oess(Lp) C iR. The second statement of the Proposition follows
from the above and from the fact that UHQ||<||DH Lp.q is a finite sum of bounded
linear operators. ([

We now prove the spectral mapping theorem for the operator Lp.

Proposition 4.4. The spectral mapping property,
U(etLB) =etolln) L,
holds for the operator Lg.

Proof. We know from Proposition 4.3, that the essential spectrum of Lp satisfies
0css(Lp) = iR. This tells us that et?ess(lB) = ¢® = {7 ¢ C: |z| = 1}. Since
etoess(L) C g(etls) for any semigroup, we see that {z € C : |z| = 1} C o(etF5).
We want to show that oess(e!X2) C {z € C: |2| = 1}. We use a general Gearhart-
Pruss spectral mapping theorem for Hilbert spaces, see [15, Th.2, p.268]. On a
Hilbert space, o(e!E2), t # 0, is the set of points e’ such that either y, = A\+27n/t
belongs to o(Lp) for all n € Z or the sequence {||R(pn,L5)| }nez is unbounded.
Suppose gess(e!L8) ¢ {z € C : |z| = 1}. Then, there exists e/* such that A ¢ iR and
either p1, = A+ 2mn/t € oes5(Lp) for all n € Z or the sequence {||R(tn, LB)| }nez
is unbounded. The first outcome is precluded by the fact that o.ss(Lp) = iR.
So if e* ¢ {z € C : |z|] = 1} and e € og5(e'F?) then we must have that
sup,cg [[R(Re(A) + iy, Lp)|| = +oc. But this is impossible because, as we prove
below that for each A ¢ iR, sup,cp [[R(Re(\) + iy, Lp)|| < +oo. So it remains to
establish the following fact.

Claim: Assume {Re(A) + iy : y € R} Nno(Lg) = @,Re(A) > 0, then
sup, eg [[R(Re(A) + iy, Lp)|| < occ.

Let A ¢ iR as in the proof of Proposition 4.2 and fix Re()). Since Qs is a finite
set, the operator ||R(\, ®qeq.LB.q)| is & bounded linear operator such that the
norm of its resolvent decays as O(1/(|Im(\)|) as [Im(X)| — oo and (4.9) holds, i.e.,
one has [|[R(\, ®qe.LB,q)|| < C. One also has that if g € @, then (4.8) holds,
i.e., the norm of the resolvent operator ||R(\, ®qcq,LB.q)ll < C/|Im(A)|. These
two facts above can be combined to give

IA—=Lp) Y| =0(1) as [Im(\)]| — co. (4.10)

By estimate (4.10), we know that if Re(\) # 0, then e* is not in the spectrum of
e'ls. This shows that the essential spectrum of e!’2, o ., (e!X?), is contained in
the unit circle. One also knows that the spectral mapping property always holds
for the point spectrum. One can combine these facts to obtain the result. O

5. APPENDIX

The purpose of this Appendix is to collect some proofs of results used in the
main body of the text.

Lemma 5.1. Equation (1.1) holds if and only if wyx satisfies equation (1.5) for
every k # 0.

Proof. Using the facts that v; = g—‘;’ and ve = —%, one can rewrite equation (1.1)
as

Ow 090w aasaﬁ

ot Oydx Oz Oy’ (5.1)
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Using (1.4), we see that,

ik-x

oo Z ikiwy et oo Z ikowye
Iy 2 2 X T 2 2 2\
aermvoy IKIPQ+o?l[Kkl2)" oy = [IK|I2(1+ a?[K][?)

Equation (5.1) then reads, in terms of the Fourier series,

Ow tkowy k- X ik-
I ik-x k 1k-x
ot < > P+ k) )( D ke

kez2\{0} " kez2\{0} (52)
+< > K| 2 1Z Mkz K| 2 eik'x>< > ik?“’keik'x)
resreoy |KIP(L+a?[[K][?) K0y

Using the identity
(Z anein-x) ( Z bleiLx) _ Z (Z aqbk,qeik'x)
k q

first for an = no|n||2(1 + o?||n||?) " wn, by = l1w; and then for an = ny|n||~2(1 +
a?||n)|?) " twy, by = low, equation (5.2) is seen to be

Ow g2(k1 — 1) — qi (k2 — g2) ikox
— — Z Z 5 D) Wk—qwWge ™. (5.3)
O etvioyqervoy  1alP+a?[al?)

Alternatively, using the identity
(Z anein-x) ( Z ble“‘x) — Z (Z ak_qbqeik'x)

first for an = na|n||72(1 + o?||n||?) " twy, by = ljw; and then for a,, = nq|n||~2(1 +
a?||n||?)"twy, by = lawy, equation (5.2) is seen to be

Ow q1(k2 — q2) — q2(k1 — q1) ik-x
o Z Z —— S e Wh—aWal (5.4)
B 0y By T (LT 02— al?)

Noticing that 22 = ZkEZZ\{O} ek gikex and taking the average of (5.3) and (5.4)
we obtain that (1.5) for each mode wy of w holds if and only if (1.1) holds. O

We now prove that the unidirectional flow given by (1.8) and (1.9) is a steady
state.

Lemma 5.2. A unidirectional flow given by the vorticity equations (1.8) and (1.9)
is a steady state solution of the a-Euler equation (1.1) on the torus T2.

Proof. For every k # 0 one needs to check that the right hand side of (1.5) is zero,
where the Fourier coefficients of wﬁ are given by (1.9). Since wg is nonzero only
when q = +p, the right hand side of(1.9) reduces to

Bk — p,p)wp_pwp + Bk + P, p)wi, pwp.-

Now using the fact that wﬂ_p is nonzero only when k—p = +p and wﬂ+p is nonzero
only when k 4+ p = £p and using (1.9), the above equation reduces to

i(ﬁ(p, p)I% + B(—p,p)IT + B(p, —p)IT + B(—p, —p)T"),

which is zero because S(p, £p) = 0 and S(xp,p) = —8(p, £p). O



INSTABILITY OF UNIDIRECTIONAL FLOWS FOR 2D a-EULER 27

Derivation of Equation (1.10):
We briefly indicate how to obtain equation (1.10). Linearizing the right hand
side of (1.5) about the steady state (1.8) reduces the right hand side of (1.5) to

Y. Bk-q@ui_quat+ Y, Blk—aq qwiqwl, (5.5)
a€z2\{0} q€z2\{0}
where in the first sum, wﬁ_q =T/2ifk—q=p,ie,ifq=k—pand wﬂ_q =T/2
if k—q = —p, i.e., if @ = k+p and zero otherwise and in the second sum, wg =T/2
if ¢ =p and wg =T/2 if ¢ = —p and zero otherwise. Using these in (5.5), we see
that (5.5) reduces to,

r r r r
B(p, k—p)gwk—p +5(—p, k+p)§wk+p+ﬁ(k—p, p)§wk_p+ﬁ(k+p7 —p)§wk+p-

Now use the facts that if p # q, then 3(p,q) = 8(q,p) and 3(-p,q) = —8(p,q)
in the above equation to get (1.10).

We now give the proof of Lemma 2.1.

Proof. Recall (2.2) and the assumption that I' € R. Note that Lgq = (S —
S*) diag,,cz{pn}, where

(S=8")"=85"—85=—(5-57).
We thus have that,
o(Lp,g)\{0} = o(pn(S = 57))\{0} = —a(pn(S — §7))\{0}
= —0((S = 5%)pu)\{0} = —0(Lpq)\{0}.

Thus o(Lp,q)\{0} = o(Lp )\{0} = —0(Lp,q)\{0}. Thus the eigenvalues are
symmetric about the imaginary axes.

The fact that the eigenvalues are symmetric about the real axes can be proved
as follows. The fact that if )\ is an eigenvalue then X is also an eigenvalue is a
consequence of the fact that Lp qv = Lp oV for any v € (?(Z). From this it
follows that if A is an eigenvalue with eigenvector v, then X is an eigenvalue with
eigenvector v. This proves the Lemma.

Additionally, one can also prove the fact that if A\ is an eigenvalue then —\ is
also an eigenvalue. Let J be an operator on (2(Z) defined by (w,) — ((—=1)"w,)
and notice that JS = —SJ and JS* = —S*J and J2 = I. Thus,

JLpoJ = J((S — S*)diag,cz{pn})J = —Lp.q.

Thus,
0(Lpq) =0(LpqlJ) =0(JLpq)) =—0(Lpaq),
which concludes the proof. We used Lemma 2.7 in the last part of the proof. [
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