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ABSTRACT: Periodic arrays are an exceptionally interesting
arrangement for metallic nanostructures because of their ability
to support collective lattice resonances. These modes, which
arise from the coherent multiple scattering enabled by the
lattice periodicity, give rise to very strong and spectrally narrow
optical responses. Here, we investigate the enhancement of the
near-field produced by the lattice resonances of arrays of
metallic nanoparticles when illuminated with a plane wave. We
find that, for infinite arrays, this enhancement can be made
arbitrarily large by appropriately designing the geometrical
characteristics of the array. On the other hand, in the case of
finite arrays, the near-field enhancement is limited by the

Wavelength

number of elements of the array that interact coherently. Furthermore, we show that, as the near-field enhancement
increases, the length scale over which it extends above and below the array becomes larger and its spectral linewidth
narrows. We also analyze the impact that material losses have on these behaviors. As a direct application of our results, we
investigate the interaction between a nanoparticle array and a dielectric slab placed a certain distance above it and show
that the extraordinary near-field enhancement produced by the lattice resonance can lead to very strong interactions, even
at significantly large separations. This work provides a detailed characterization of the limits of the near-field produced by
lattice resonances and, therefore, advances our knowledge of the optical response of periodic arrays of nanostructures,

which can be used to design and develop applications exploiting the extraordinary properties of these systems.
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etallic nanostructures possess free electrons that,
when illuminated with light of the right frequency,
give rise to coherent oscillations known as surface
plasmons.’ These excitations interact strongly with light,
confining it into subwavelength volumes, and therefore,
producing very large field enhancements,” which have already
been exploited in a variety of applications. These include
. PR i 67
improved solar energy harvesting,”” photocatalysis,”’ ultra-
sensitive biosensing,”” and nanoscale light emission,'*~"” to
cite a few.
In a large number of applications, metallic nanostructures
. o 1315 _ 1. 1 . s
are arranged in periodic arrays, which, in addition to
contributing to the amplification of the response of the
individual constituents, can give rise to collective behaviors
associated with the periodicity of the system.'®™*° Lattice
resonances are a paradigmatic example of these collective
14-1621-24 . .
responses. These resonances, which arise from the
coherent multiple scattering between the elements of the array,
occurring at wavelengths commensurate with the Iattice
periodicity, display very strong optical responses with narrow
S 2530 i
spectral linewidths. Because of these exceptional proper-
ties, systems supporting lattice resonances have been used to
design ultrasensitive sensors,”' 7**  different types of light
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emitting devices,*™* lenses,46 color printing zi})proeic}les,47_49
and platforms for quantum information processing,’’~>* as
well as to enhance nonlinear responses,” " and to investigate
interesting physical phenomena.””~*"

The strong optical response produced by lattice resonances
is usually reflected in the far-field behavior of the array,
resulting, for instance, in large values of the array reflectance.
This quantity, as well as other far-field characteristics of the
array, such as the transmittance and the absorbance, are
bounded to a range from 0 to 1, so, at most, the excitation of a
lattice resonance can enhance them to unity. However, this is
not the case for the near-field response of the array. For
example, the electric field in its vicinity, which is also increased
by the excitation of a lattice resonance,”””** is not bounded
and, in principle, could be enhanced arbitrarily. Therefore, two
questions arise: (i) what is the strongest enhancement of the
near-field that a lattice resonance, supported by a periodic
array of nanostructures, can produce and (i) under which
conditions can this field enhancement be achieved?
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Figure 1. Periodic arrays of metallic nanoparticles. (a) Schematics of the system under study, consisting of a square array of identical silver
nanospheres with diameter D, separated by a center-to-center distance a. The array is located in the xy plane, is assumed to be in vacuum,
and is excited by a plane wave propagating with wavevector k = (277/1)[sin()x + cos(#)z], as indicated in the lower panel. (b) Dispersion
diagram showing the first five Rayleigh anomaly bands for the array. (c) Reflectance for three different arrays with D = 160 nm (yellow

curve), D = 200 nm (blue curve), and D = 240 nm (green curve), calculated at normal incidence (i.e., @ = 0°) for A ~ a (lower axis). In all of
the cases, a = 800 nm. The black dashed curve represents the real part of the in-plane component (i.c., yy) of the lattice sum (upper axis).

Here, we seek to answer these questions by performing a
detailed analysis of the mechanisms that give rise to the near-
field enhancement produced by the lattice resonances of
periodic arrays of nanostructures. To that end, we combine an
analytical approach with rigorous solutions of Maxwell’s
equations. We find that, for infinite arrays, the near-field
enhancement produced by the excitation of a lattice resonance
can be made arbitrarily large. However, for finite arrays, the
maximum enhancement is limited by the number of
constituents that can interact coherently. Furthermore, we
show that, in parallel with the growth of the near-field
enhancement, there is an increase in the length scale over
which this enhancement extends above and below the array.
Our results shed light on the near-field characteristics of the
lattice resonances supported by periodic arrays of nanostruc-
tures.

RESULTS AND DISCUSSION

The system under study is depicted in Figure la. It consists of
a square array of identical silver spherical nanoparticles with
diameter D separated by a center-to-center distance a. The
array, which is located in the xy plane, is assumed to be in
vacuum, and is illuminated with a plane wave of amplitude E,
and wavelength 4, propagating with wavevector k = (2z/
A)[sin(0)x + cos(0)z]. In all of the calculations, we use
tabulated data to describe the dielectric function of silver.’®
When the size of the particles is both much smaller than the
wavelength of light and a small fraction of the array period, the
optical response of the array can be described using the well-
established coupled dipole model (CDM)."“***"*” Within this
approach, each nanosphere in the array is modeled as a point
electric dipole characterized by a frequency-dependent polar-
izability o, which can be calculated from the dipolar Mie
scattering coefficient.® The dipole induced at the particle
located at position R; = xx + yjy satisfies
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ikx, sin 6
p = aE ™" +a Z szPm
—y (1)

where G, = [K’T + VV]eiklR’_le/lRl — R,/ is the dipole—
dipole interaction tensor, with 7 being the 3 X 3 identity
matrix and k = 277/4. Thanks to the periodicity of the array, the
solutions of eq 1 satisfy Bloch’s theorem and, hence, can be
written as p; = p(6)e™ " ¢ with

p(0) = AE, )

Here, A = [a 'T — G(0)]"" is the effective polarizability of
the array, and

g(g) — Z Gloe—ikxl sin 6
10 (3)

is the Fourier transform of the dipole—dilpole interaction
tensor, commonly known as the lattice sum.® This quantity,
which can be efficiently calculated using Ewald’s meth-
0d,'°7%% contains the information about the geometry of
the array and, therefore, determines its collective behavior.*’
Specifically, the lattice resonances appear at wavelengths
corresponding to the poles of the effective polarizability of
the array or, in other words, when

Refa™ = G.(0)} ~0 (4)

with s = %, y, and z for the in-plane and out-of-plane cases,
respectively. This happens in the vicinity of the Rayleigh
anomaly bands, when a diffracted beam becomes grazing, and
therefore G(0) diverges. The wavelength of these spectral
features is determined, for our particular configuration, by the
condition A = 2x/lksind X + ql, where q represents the
reciprocal lattice vectors of the array.'®”’ The first five
Rayleigh anomaly bands for the square array under
consideration are shown in Figure 1b as a function of the
incidence angle 6. Notice that we use the notation (I, m) to
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Figure 2. Analysis of the near-field produced by the array. (a) Enhancement of the near-field intensity as a function of the spectral detuning,
A =A/a — 1, for an array with a = 800 nm and D = 40 nm (red curves), D = 80 nm (green curves), D = 120 nm (blue curves), and D = 160
nm (yellow curves). The enhancement is calculated at three different distances above the array: z = a, z = 24, and z = 44, as indicated by the
shade of the color of the curve. (b) Spatial dependence of the near-field intensity at resonance for the arrays studied in panel a (solid curves).
The black dashed curves represent the approximated results obtained using eq 6. (c, d) Same as in panels a and b, but in this case, the
diameter of the nanoparticles is kept at D = 120 nm, while the array period is a = 1200 nm (red curves), a = 1000 nm (green curves), a = 800
nm (blue curves), and a = 600 nm (yellow curves). In all cases, we assume normal incidence (i.e., @ = 0°), and the near-field intensity is

averaged over a unit cell.

label the Rayleigh anomaly band corresponding to the
reciprocal lattice vector q = 27”(11? + my).

Figure lc shows the reflectance spectrum calculated at
normal incidence near the first Rayleigh anomaly (4 = a) for
three different arrays, all of them with a = 800 nm, and either
D =240 nm (green curve), D = 200 nm (blue curve), or D =
160 nm (yellow curve). These spectra display a lattice
resonance that results in a very high reflectance. As expected
from eq 4, the decrease in the diameter of the particle and,
therefore, in its polarizability results in a shift of the lattice
resonance toward wavelengths closer to the Rayleigh anomaly,
for which the lattice sum becomes larger, as shown by the black
dashed curve.

The results shown in Figure lc, as well as in the remainder
of this work, are obtained by rigorously solving Maxwell’s
equations using a multiple elastic scattering of multipolar
expansions (MESME) approach.””~"* However, as stated
above, the CDM is accurate for arrays composed of small
metallic particles and, therefore, allows us to obtain deeper
insight into the physics behind the lattice resonances (see
Figure S1 for a comparison of the MESME approach and the
CDM). In particular, exploiting this approach, the near-field

produced by these excitations at a point r = (R, z) can be
written as (see Methods)

ik gzl
[sz + VV]p(@)eik‘x sin 0,igR €

B(r) = 22
o 2 (%)

where kg = \/k2 — (k sin 0% + q)* and p(6) is given in eq 2.
This expression involves a sum over all reciprocal lattice
vectors. For a given lattice resonance, each of them results in
either an evanescent or a propagating diffracted beam,
depending on whether lksind X + ql is smaller or larger than
k and, thus, if k,; is a real or pure imaginary number. Only
those q resulting in propagating beams contribute to the far-
field response of the array. In contrast, the near-field is
determined by both propagating and evanescent diffracted
beams. However, the contribution of each evanescent beam
strongly depends on the value of the corresponding k,,. This
quantity controls how fast the electric field decays with Izl, as
well as how strong its amplitude is.

It is important to note that every lattice resonance appears in
the spectrum next to a Rayleigh anomaly or, in other words,
near a wavelength at which k. vanishes for a certain q and,
therefore, G diverges. Then, following eq S, it appears possible

DOI: 10.1021/acsnano.9b05031
ACS Nano 2019, 13, 10682—-10693


http://pubs.acs.org/doi/suppl/10.1021/acsnano.9b05031/suppl_file/nn9b05031_si_001.pdf
http://dx.doi.org/10.1021/acsnano.9b05031

to obtain an arbitrarily large near-field that extends to
arbitrarily long distances from the array by tuning its properties
so that the wavelength of the lattice resonance approaches that
of the corresponding Rayleigh anomaly. For instance, let us
consider the lattice resonance located on the red side of the
first Rayleigh anomaly (see Figure 1b) and assume that the
array is illuminated with a field of normal incidence polarized
along the y axis. Under these conditions, the resulting
enhancement of the near-field intensity near the array,
averaged over the unit cell, can be approximated as

2 -2 —ll/L,
|E|2 o (1 N 4n f) e
E,| 3 A (6)

Here, A = 1/a — 1 is the normalized spectral detuning with
respect to the first Rayleigh anomaly, which is located at 1 = a
for 6 = 0°, ¢ = o,,/0,, is the ratio between the dipolar
absorption, o, = 4nk(Im{a} — 2k’lal*/3), and scattering, o,
= 8nk*lal*/3, cross sections of the nanoparticle at the
resonance wavelength, and L, = a/(47v2A) is the decay
length along the z axis. This expression for the enhancement is
obtained from eq S by taking into account only the terms
corresponding to q = + (27/a)%, which are the reciprocal
lattice vectors associated with the (+1,0) Rayleigh anomalies,
and performing the average over the entire unit cell (see
Methods for a detailed derivation). From examination of eq 6,
it is clear that, as A decreases, the near-field intensity grows,
due to the 1/A factor, and extends over a larger region, thanks
to the increase in L, According to eq 4, this exceptional
behavior can be achieved by making the response of the
individual nanostructures weaker, either by decreasing their
diameter or reducing their area density (ie., increasing the
array period).

To confirm these predictions, we calculate the enhancement
of the near-field intensity above the array from the rigorous
solution of Maxwell’s equations using the MESME approach.
We perform these calculations for arrays with a = 800 nm and
different values of D, assuming normal incidence. In all cases,
we consider three different values of z and average the results
over the unit cell (see Figure S2 for the spatial distribution of
the near-field). The outcome of these calculations is plotted in
Figure 2a as a function of A (see Figure S3 for plots as a
function of wavelength). As predicted by the CDM, the
enhancement of the near-field intensity grows as the diameter
of the particles becomes smaller and, consequently, the value
of A for the lattice resonance decreases. In particular, for z = g,
it increases from values around 10* for D = 160 nm (yellow
curves), to values around 10 and 10* for D = 120 nm (blue
curves) and D = 80 nm (green curves), respectively, or even
larger when D is further reduced. We want to stress that these
values correspond to the near-field intensity averaged over the
entire unit cell, rather than a peak value at a hot spot. As this
happens, the linewidth of the resonance becomes smaller,
resulting in very large quality factors, Q, as we discuss later.
Furthermore, comparing the results obtained for z = g, z = 24,
and z = 4a, we observe that the enhancement extends to larger
distances away from the array as the particle diameter
decreases. This effect is analyzed in more detail in panel b,
where we investigate the dependence of the near-field intensity
with z. In this case, we consider both positive and negative
values of z, corresponding, respectively, to positions above and
below the array. As expected, when the value of A for the
lattice resonance decreases, L, becomes larger, and, con-

sequently, the near-field intensity decays more slowly. This
spatial dependence is well predicted by the CDM, whose
results, obtained using eq 6 with the value of A taken from
panel a, are shown by the black dashed curves. The CDM
predictions are in perfect agreement with the full numerical
calculations when the enhancement of the field intensity is
much larger than one, thus proving that the origin of this
enhancement is the evanescent field produced by the diffracted

. . . . 27
beam associated with the reciprocal lattice vectors q = +=&.
a

The agreement worsens when this contribution decreases and
its interference with the incident and the specularly reflected
fields, which are not considered in eq 6, becomes significant
and produces the oscillations appearing at negative z for the
two arrays with the largest diameters. We want to note that,
despite the field extending multiple wavelengths away from the
array, we choose to refer to it throughout the manuscript as
near-field because of its evanescent character.

An alternative path to shift the lattice resonance closer to the
Rayleigh anomaly, without changing the size of the particle, is
to increase the period of the array. This results in a decrease of
the lattice sum, G, and therefore, in light of eq 4, the value of A
for the lattice resonance. We explore this possibility in Figure
2¢, where we perform similar calculations to those shown in
panel a, but in this case, we keep the diameter of the particles
fixed to D = 120 nm and change the period of the array, as
indicated by the legend. Analyzing these results, we verify that,
as a increases, the lattice resonance moves to smaller A and the
maximum enhancement of the near-field intensity grows,
reaching very large values. Furthermore, this enhancement
extends farther away, as can be seen by comparing the results
for z = a with those obtained at z = 2a and z = 4a. This is
further confirmed by the full spatial dependence analyzed in
panel d, which, as in the previous case, is in very good
quantitative agreement with the results of the CDM (black
dashed curves).

An interesting prediction of eq 6 is that the material losses in
the nanoparticles affect the near-field intensity enhancement

-2
through the factor (1 + 4?”{,:) . Specifically, lower material

losses should result in smaller values of £, and therefore larger
enhancements. However, this behavior is expected to saturate
once 47£/3 < 1, and further decrease in the material losses
should not impact the maximum achievable enhancement. A
similar behavior is expected for the quality factor of the
resonance. Indeed, as shown in the Methods section, the full
width at half-maximum of the lattice resonance can be

approximated, within the CDM, by I' ~ (1 + 4?”5)(2A)3/2,

-1
which leads to Q ~ (1 + 4?”5) (2A)3 for A < 1. This

expression also explains the increase in Q as A approaches zero
observed in the results ;)lotted in Figure 2, which is consistent
with previous works.'®”*~7® It is also important to note that,
since the energy associated with the near-field of the lattice
resonance is proportional to [EPL,, which scales as A2, the
scaling of T" as A%? ensures the energy stored in the system
upon excitation with a light pulse of finite duration will always
be finite.

To verify these predictions of the CDM, we perform full
numerical calculations of the near-field enhancement at the
lattice resonance wavelength, for arrays with a = 800 nm and
different diameters. In all cases, the enhancements are
calculated at a distance z = a above the arrays and the results
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averaged over the entire unit cell. We perform these
calculations assuming different levels of material losses,
which we obtain by multiplying the imaginary part of the
tabulated dielectric function of silver®® by a factor y, leaving the
real part unchanged. This approach is equivalent to modifying
the damping coefficient of a Drude model (to which the
tabulated data can be fitted) and, therefore, preserves
Kramers—Kronig relations in the limit of the damping being
much smaller than the frequencies of interest. Examining the
results of these calculations, which are plotted in Figure 3a
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Figure 3. Effect of material losses. (a) Maximum enhancement of
the field intensity (left axis) and quality factor (right axis) for the
lattice resonance calculated, as a function of the material losses, for
arrays with ¢ = 800 nm and different diameters. In these
calculations, the imaginary part of the dielectric function of the
nanoparticles is multiplied by a factor 7, as explained in the text. In
all cases, we assume normal incidence (i.e.,, @ = 0°), and the field
intensity is calculated at z = a and averaged over a unit cell. (b)
Contour plot of the factor 47€/3, defined after eq 6, as a function
of D and ¥, calculated for a wavelength A = 800 nm. The dashed
curves signal the contours corresponding to the values indicated
by the labels.

1030 =80

with solid curves (left axis), we observe that, as expected, the
decrease in the material losses results in a larger near-field
intensity enhancement that eventually saturates. A similar
saturation behavior is observed for the quality factor (dashed
curves, right axis). This quantity is calculated as the ratio
between the spectral position of the near-field intensity
enhancement peak and its full width at half-maximum,””
both of which are obtained from a Lorentzian fitting of the
numerical data. It is worth noting that these results are
perfectly reproduced by the expression for Q given above.

Interestingly, the level of losses for which the saturation
occurs varies with the particle diameter, shifting to smaller
values of y as D decreases. We explain this behavior by noting
that, for a fixed wavelength, & scales approximately as D™,
since 6,y &« D* and 6.,  D®. This is confirmed by Figure 3b,
where we plot the value of 47£/3 as a function of D and y for a
wavelength A = a. Clearly, for a fixed value of y, this factor
decreases with D, which confirms that the impact of losses on
the field intensity enhancement and the quality factor becomes
more important as the particle size decreases. This analysis is
also useful to extrapolate our predictions to arrays made of
individual constituents without material losses, such as
dielectric nanostructures® and atoms.”*~>*

So far, we have analyzed the response of the arrays to normal
incidence illumination, but a similar field enhancement is
expected to occur when light is incident at other angles.'"
Oblique illumination allows the spectral position of the lattice
resonance to be shifted without altering the geometry of the
array because the position of the Rayleigh anomalies is
dependent on the angle of incidence. As a result of this
dependence, the degeneracy between the (+1,0) Rayleigh
anomalies is broken for # # 0° and the (—1,0) anomaly
becomes the one appearing at the lowest energy, with a
wavelength given by a(l + sin 6), as shown in Figure 1b.
Furthermore, oblique incidence also breaks the degeneracy
between s- and p-polarized illumination.

Figure 4a shows the enhancement of the field intensity
above an array with D = 120 nm and a = 800 nm calculated for
s-polarized illumination using the MESME approach. The
enhancement is calculated for different values of z above the
array and averaged over the unit cell We consider seven
different angles of incidence ranging from 1° to 80° as
indicated by the legend. As 0 increases, the lattice resonance
moves toward smaller values of A, which, for 8 # 0° is given
by A = A/(a + asin ) — 1 (notice that this definition of A
reduces to the one previously given for normal incidence).
This initially produces the expected increase in the near-field
intensity enhancement, however, for 6 > 20°, the enhancement
becomes smaller despite the decrease in A, leaving an
optimum angle of incidence. We can explain this behavior
using the insight provided by the CDM. Specifically, we
attribute the decrease in the near-field enhancement to the
combination of two effects happening as 6 increases: (i) the
resonance wavelength increases, thus resulting in smaller values
of k that reduce the coupling to the external illumination, and
(ii) the imaginary part of the effective polarizability of the array
becomes smaller, thus reducing the value of the induced
dipole. However, this is not the case for the decay length,
which, for oblique incidence, is given by

L, = a1 +sin0/(4nv2A) (see Methods), and therefore

grows as 0 increases and, consequently, A decreases. This is
clearly shown by the solid curves in panel ¢, which display the
spatial dependence of the field intensity enhancement above
and below the array for 6 = 1°, 20°, and 80°. As the angle of
incidence increases, the curves become flatter, denoting a
larger value of L, a behavior that has been observed
previously.”>”*

The other configuration we investigate corresponds to the
array being illuminated with p-polarized light. In this case, the
incident light excites a dipole in the nanoparticles that
oscillates out of plane,81 along the z axis, which results in a

different coupling mediated by G (0) instead of G, (0).
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Figure 4. Angle dependence of the near-field produced by the
array. (a) Enhancement of the field intensity as a function of the
spectral detuning, A = A/(a + a sin 8) — 1, for an array with a =
800 nm and D = 120 nm, which is illuminated with an s-polarized
plane wave at different incidence angles 0, as indicated by the
legend. The enhancement of the field intensity is calculated at
three different distances above the array, z = a, z = 24, and z = 44,
as indicated by the shade of the color. (b) Same as in panel a but
for p-polarized illumination. (c) Spatial dependence of the field
intensity at resonance for some of the arrays studied in panels a
(solid curves) and b (dashed curves). In all cases, the field
intensity is averaged over a unit cell.

Nonetheless, the decay length is given by
L,=a1+sin6/(47v2A), as was the case for s-polar-

ization. The corresponding results for the near-field intensity
enhancement are shown in Figure 4b, for the same array
investigated in panel a and for the same angles of incidence.
Similar to the case of s-polarized illumination, we find that the
field enhancement reaches a maximum at 6 = 20°. This
behavior can be traced back, again, to the shift in the lattice
resonance wavelength and the decrease in the imaginary part of

the effective polarizability caused by the change in 6, which
counters the enhancement provided by the decrease in A.
Despite these similarities, the resonances for p-polarization are
significantly narrower than their counterparts for s-polarized
illumination, following what has been observed in the past
when analyzing the angular dependence of the far-field
properties of similar arrays.”*** Furthermore, the field intensity
enhancements tend to be larger for the p-polarized case, except
for @ = 1°, for which the lattice resonance is located at a
significantly larger A than in the corresponding s-polarized
case. These larger enhancements can also be seen in panel ¢ by
comparing the dashed and solid curves. Doing so also confirms
that the decay lengths for p- and s-polarized illumination are
almost identical when the value of A for the corresponding
resonances is similar and increase with 6,>>”° as expected from
the definition of L,.

The origin of the predicted large field enhancement
associated with the lattice resonance of an array of
nanostructures, as well as its spatial extent, can be traced
back to the perfectly periodic nature of the system, which
requires it to contain an infinite number of elements. As we
have discussed above, the near-field increases and extends
farther away from the array as the wavelength of the lattice
resonance moves closer to that of the corresponding Rayleigh
anomaly. This can be achieved by weakening the response of
each of the nanostructures, either by decreasing their size or
reducing the number of them per unit area (i.e., increasing the
array period). Although this leads to smaller individual
contributions to the field enhancement, the phase of each of
these contributions becomes increasingly uniform, thus
resulting in a stronger collective response. Interestingly, this
effect could explain recent observations of the increase in the
nonlinear response of arrays of metallic nanoparticles as their
density is reduced.®

That said, obtaining an arbitrarily large field enhancement is
only possible because the array contains an infinite number of
elements, and therefore, the real part of the lattice sum, G,
becomes infinite at the Rayleigh anomaly (indeed, it diverges

as1/+/A, as shown in ref 84, see also Figure S4), thus making
it possible to satisfy Equation 4 for any particle size or lattice
period.16 However, in reality, any fabricated array is finite,
which imposes an upper limit on the value of the lattice sum,
and therefore, on the field enhancement. Finite-size effects on
the far-field response of arrays have been analyzed in the past
using different appr021ch<es.85_88 In our case, we can again use
the CDM to estimate the impact that the finite size of the array
has on the field enhancement. Specifically, we can analyze a
truncated version of the lattice sum defined in eq 3, in which,
instead of summing over an infinite number of array elements,
we restrict it to a subset of (N + 1) X (N + 1) particles.
Physically, this truncated lattice sum represents the field at the
position of the central particle of a (N + 1) X (N + 1) array
produced by all of the other elements. By comparing the real
parts of the truncated lattice sum and @™, we can thus estimate
a lower bound on the number of elements necessary to achieve
the near-field enhancements predicted in this work.

Figure 5 displays the real part of the truncated lattice sum as
a function of A for different values of N, as indicated in the
legend. We consider normal incidence and hence focus on the
yy component, which is the only relevant one for these
illumination conditions (see Figure SS for other angles of
incidence and the zz component). As anticipated, the
truncated lattice sum tends to a finite value as A approaches
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Figure S. Finite-size effects on the lattice sum. Real part of the in-
plane component (i.e., yy) of the lattice sum calculated for normal
incidence (i.e., @ = 0°), as a function of the spectral detuning, A
(black curve). The color curves represent the results obtained by
truncating the lattice sum for an array of size (N + 1) X (N + 1), as
described in the text. The gray dashed lines indicate the real part
of the inverse of the nanoparticle polarizability calculated for
different values of D. In all cases, we assume a = 800 nm.

zero, in sharp contrast with the divergent behavior of the lattice
sum for an infinite array, which is shown by the black curve. As
N increases, this finite value grows and the truncated lattice
sum converges to that of the infinite array, oscillating around it
over a range that extends to increasingly smaller values of A.
This makes it possible to intersect the real part of o™, which is
plotted with gray dashed curves, for the same value of A as the
infinite array, and thus fulfill eq 4. Therefore, for a given value
of D, we can use the results of Figure S to obtain an
approximate estimation of the minimum number of elements
that an array needs to contain to produce the near-field
enhancements discussed in the previous sections. We want to
emphasize that this analysis applies to the predictions of the
collective response of any periodic array of structures,
regardless of the particular nature of their individual
constituents.””>*** It is also worth noting that, in a practical
realization, the fabrication imperfections, which cause devia-
tions in the size and positioning of nanostructures, will further
raise the necessary number of elements in the array, since these
inhomogeneities will effectively decrease the number of
particles that are coherently interacting.**~"°

The large values of the near-field enhancement provided by
these arrays, as well as the broad region over which they extend
away from the arrays, can be exploited for many interesting
applications, in which the near-field produced by the array
interacts with other photonic elements, like atoms, molecules,
or quantum dots. To explore that possibility, we investigate
how the presence of a dielectric slab modifies the reflectance of
the array. Specifically, we consider a slab of thickness t = 100
nm, made of a material with dielectric function ¢, = 1 + J¢, and
located a distance d above the array, as depicted in Figure 6a.
We compute the change in the reflectance of the array, R — R,,
with respect to the value obtained in absence of the slab,
always assuming normal incidence. Panel b shows the results
for an array of nanospheres with D = 160 nm and period a =
800 nm. We consider two different dielectric functions: de =
1073(1 + i) (solid curves) and e = 107*(1 + i) (dashed
curves), as well as two different distances: d = a (red curves)
and d = 4a (blue curves). Examining these results, we observe

(a) e=1+d¢ |#=100 nm

d
QQO'CLQOOO
D

0.00
-0.01
& -0.02

20,03}
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- -_D= 160 nm i
004 a =800 nm (b) |

2

d=a |
d=4a |

— de =107(1+i) |
-—-de=10"*(1+i) |

.I
—
T

d=a T
d=4a |

—
(\)
T

— de =107(1+) T
- - - 8e = 10%(1+i) |
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Figure 6. Interaction between the array and other photonic
structures. (a) Schematics of the system under study. (b) Change
in the reflectance of an array with a = 800 nm and D = 160 nm
when a slab of thickness £ = 100 nm and dielectric function £, =1 +
oe is placed a distance d above the array, as shown in the
schematics. We consider four different combinations of d and Je,
as indicated in the legend. (c, d) Same as in panel b but for arrays
with D = 120 nm and D = 80 nm, respectively. In all cases, we
assume normal incidence (i.e., @ = 0°).

that, for d = a and §¢ = 1073(1 + i), there is a change in the
reflectance of around 0.04. As expected, this value decreases
when either the slab is moved to d = 4a or its dielectric
function is reduced to de = 107*(1 + i) and becomes almost
zero for the case with d = 4a and 8¢ = 107%(1 + i).
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The change in the reflectance becomes more pronounced
when the size of the particles in the array is reduced, since this,
as we have shown before, leads to an increase in the near-field
enhancement as well as the decay length. This effect can be
seen in panels c and d, which display the results for arrays with
D = 120 nm and D = 80 nm, respectively. In particular, we
observe that, in these two cases, it is possible to resolve the
presence of a slab with §e = 107*(1 + i) situated at a distance d
= 4a. Indeed, for D = 80 nm, the large decay length results in
changes of reflectance that are almost identical for d = a and d
= 4a. All of these results highlight the potential of periodic
arrays of nanoparticles to generate large near-fields that can
lead to strong interactions with other photonic elements placed
at distances up to several wavelengths from the arrays.
Importantly, such strong interaction also makes these systems
very sensitive to asymmetries or losses in the dielectric
environment,” as discussed in Figure S7.

CONCLUSIONS

In summary, we have provided a comprehensive analysis of the
limits of the near-field produced by the lattice resonances
supported by periodic arrays of nanoparticles. By combining an
analytical approach, based on the coupled dipole model, with
rigorous solutions of Maxwell’s equations, we have shown that,
for infinite arrays, the near-field enhancement produced by the
lattice resonances can be made arbitrarily large. This is
accompanied by a narrowing of the linewidth of the resonance
and a growth of the near-field decay length in the direction
perpendicular to the array, therefore, leading to exceptionally
large fields that extend over significantly broad regions around
the array. We have derived an analytical expression for the
near-field enhancement and used it to show that such
behaviors are obtained by reducing the size of the particles
or their density in the array, both of which result in a shift of
the spectral position of the lattice resonance closer to the
corresponding Rayleigh anomaly, as well as to study the role of
material losses in the array response. Furthermore, we have
analyzed the extent to which this extraordinary effect, which is
a direct consequence of the infinite nature of the array, holds
for realistic systems with finite size, finding that both the value
of the near-field and its spatial extent are limited by the
number of particles in the array that interact coherently.
Finally, as an application of these results, we have studied the
interaction of these arrays with a dielectric slab placed parallel

to them and shown that the large near-field, as well as the long
decay length, can lead to very strong couplings, even at
distances of a few wavelengths. These results show that
periodic arrays of nanostructures can provide near-field
enhancements comparable to, or even larger than, those
produced by individual plasmonic systems with sharp features
or small gaps, but over extended volumes with dimensions
much larger than the wavelength. Therefore, these systems can
be an ideal platform for applications exploiting the
contributions from near-field modes, such as energy and heat
transfer. For these reasons, our work provides a valuable
understanding of the near-field produced by the lattice
resonances of periodic arrays of nanostructures, and therefore
will serve to guide experimental efforts seeking to exploit the
extraordinary optical response of these systems.

METHODS

Derivation of Equations 5 and 6. Working within the CDM
approach,'®*%*"*” we start by writing the explicit form of the near-
field produced, at a position r = (R, z), by an array of dipoles

ikir—R||

1

where k = 27/4, with A being the wavelength of light, p; is the dipole
induced in the particle located at R, and 7 is the 3 X 3 identity
matrix. Then, using the Weyl identity,”” this expression can be
rewritten as

; pdk =
E(r) = Y (KT + VV]ZL f k_/“etkw(R—Roezkzlzlpl
] 4 z (7)

with k] = i (k|/|)2 . Assuming that the array is illuminated with a
plane wave of amplitude E;, which propagates with wavevector k =
(27/2)[sin(0)x + cos(0)z], the induced dipole can be written as p; =
p(6)e* 5 Furthermore, thanks to the periodicity of the array, we
have that'’

2
Z ¢k sin O%—ki)-R; _ % Z 8(kj — k sin 6% — q)
! q

where q are the reciprocal lattice vectors of the array and a is its
period. Then, using these expressions and Bloch’s theorem into eq 7,
we can readily obtain eq S, which we reproduce here in an extended
version

. (k sin 0 + qx)z —(k sin 6 + qx)qy _ (k sin 0 + qx)kzq
- 2 2 + 2
E,(r) k k k p.(0)
) _ ) 2 kg2l
Ey(r) _ 277? Z qy(k sin 6 + qx) L ‘Z_y - q},kzq Py((.)) j2pike sin 0, iqR 1
a g K K K 2q
E®) , . @
. (k sin & + qx)kzq 1% 2q B &
K K K (8)
—-q9.4
where k., = \/k2 — (k sin 6% + q)* and the upper (lower) signs E(r) i , xy , T
( ) E/(r)| = 7z k- y Py(o)elq' -
apply for z > 0 (z < 0). q |_ 29
pply E,(r) +qu<Zq

In the case of illumination at normal incidence (i.e.,, @ = 0°) with E,
= E,y, only the y-component of the dipole is excited, and therefore, eq

8 reduces to

10689

As explained in the Article, for wavelengths close enough to a given
Rayleigh anomaly, this sum is dominated by the term associated with

the corresponding reciprocal lattice vector due to the vanishing of k..
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Therefore, working close to the first Rayleigh anomaly and using eq 2,
the near-field produced by the array can be approximated as

E (l') 4ri 2 eiv/mlzl
) 2r — —
r —kla - ny(O)] lcos(—x)i
E, a a k2 _ (27I/a)2

)
where the cosine function appears because, at normal incidence, both
q = (27/a)x and q = —(27/a)X contribute equally to the field because
of the degeneration of k,;. We can further simplify this equation by
noting that, at resonance

1

-1 _ i P
o™ = G, (O = im{a”" = G,(0)}

where Im{a"'} = —Im{a}/lal* can be written in terms of the dipolar
absorption, o,,, = 4nk(Im{a} — 2k’lal’/3), and scattering, o, =
8xk*lal*/3, cross sections of the nanoparticles as

Im{a™"} = —2k3(1 + &£)/3 (10)

with & = 0,,,/0,,. Furthermore, again using the Weyl identity,”” the
lattice sum can be written as™

) | . 2 3
_271'1 qy i *® 2k'Q - Q
GO=FE T ey

k.q [z _ Q

and, therefore, its imaginary part, for wavelengths A > 4, reduces to

k K
(6,0} = 25 - = (11)

Then, using all of these expressions, we can rewrite eq 9 as

E (r) ) -1 —lz1/(2L,)
7 2 cos(—ﬂx)[l + 4—7[6] —_—

e
o a 3 N2A

where we have introduced the spectral detuning A = A/a — 1 and the
decay length L, = a/ (47[@ ). Taking the square of this expression
and averaging over the unit cell, we obtain eq 6. Furthermore, this
expression predicts a cos*(27x/a) dependence for the near-field
intensity enhancement produced by the array, which agrees perfectly
with the results obtained from the full numerical calculation using the
MESME approach®~"* that are shown in the first two rows of Figure
S2.

When the array is illuminated at oblique incidence, the degeneracy
between the q = (27/a)% and q = —(27/a)X is lifted. In such a case,
next to the (—1,0) Rayleigh anomaly appearing at 4 = a(1 + sin ),
the electric field is dominated by the term associated with q = —(2x/
a)X. Therefore, from eq 8 and the definition of kg, the expressions for
the spectral detuning, A, and the decay length, L, for non-normal
illumination become A = A/(a + a sin ) — 1 and

L, =a\1+sin@/ (47424), respectively. Furthermore, the afore-
mentioned breakdown of the degeneracy also implies that, for oblique
incidence, the field intensity within the unit cell becomes uniform and
does not depend on the in-plane coordinates x and y. This prediction
is in excellent agreement with the results of the MESME approach
plotted in the two lower rows of Figure S2.

Lattice Resonance Linewidth. The linewidth of the field
enhancement produced by the lattice resonance decreases as it
moves closer to the Rayleigh anomaly (see, for instance, Figure 2).
We can explain this behavior by exploiting the insight provided by the
CDM. Specifically, we know that, for normal incidence, the spectral
characteristics of the enhancement produced by a lattice resonance

are mainly determined by the expression T ny(O)lfz. We can
calculate the full width at half-maximum of the lattice resonance, I, by
= gyy(O)l_2 has a Lorentzian profile. Then,

performing a Taylor expansion of this expression around the lattice
resonance condition, we get

assuming that la~

la™' - G, (0)?
-1

~
~

ro : i 2
(za—ARe{gyy(O)}) + (Im{a™ - G,(0)}))

To obtain this expression, we have used the fact that, at resonance
Re{a™ — G,(0)} = 0, as well as 0Re{a ™'} /0A < 0Re{G,(0)}/0A,
and (I'/2)dIm{a™" — G,(0)}/0A < Im{a™" — G,(0)}. These ap-
proximations are justified by the almost constant behavior of Re{a™'}
and Im{a™" — ny(O)} in the spectral range of interest, as can be seen

in Figure S4. Therefore, we can write
-1
 2Um{a” - G,(0)}
~ ]
—sRe{G,,(0)}
Then, noting that, as shown in refs 84 and 16, for a square lattice of

period a, Re{asgyy(o)} ~ 42PN - 118 (see also Figure S4),
and using eqs 10 and 11, we finally get

Y (1 + 4?”5)(2A)3/2

Notice that I" is unitless, since it represents the full width at half-
maximum of the lattice resonance when expressed in terms of A. The
corresponding quality factor of the resonance, Q, can be then
approximated, for A < 1, as

A+1
r

Q= ~ (1 + 4?”5)_ (2a)32
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Figure S1: Comparison of the coupled dipole model (CDM) approach (red curves) with
rigorous solutions of Maxwell’s equations obtained using both a multiple elastic scattering
of multipolar expansions (MESME) approach (green curves) and a finite element method
(FEM) approach (blue curves). The plots show the enhancement of the field intensity,
averaged over the unit cell, and calculated at different distances z above the array. In all
cases, we consider an array of silver nanospheres with diameter D = 120nm and period

a = 800 nm, illuminated at normal incidence.
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Figure S2: In-plane spatial dependence of the near-field intensity enhancement produced by
different arrays. As indicated in the labels, we consider arrays composed of nanospheres of
different diameters D, illuminated with light propagating at different angles # and polariza-
tions, and calculate the field intensity enhancement at different distances above and below
the array. In all cases, the period of the array is a = 800 nm, and the results are normalized
to the maximum value of the field intensity enhancement.
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Figure S3: Plot of the near-field intensity enhancement of all cases from Figure 2(a) and
(c) of the main paper, but as a function of A\ rather than A. (a) Plot for D = 120nm,
a = 800nm. (b-d) Plot for a constant periodicity a = 800nm and diameters D = 160 nm
(b), D =80nm (c), and D = 40nm (d). (e-g) Plots for a constant diameter of D = 120 nm
and periodicity a« = 600nm (e), a = 1000nm (f), and a = 1200nm (g). In all panels, the
shade of the curve color indicates the distance from the array, as indicated by the legend.
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Figure S4: Analysis of the mechanism determining the linewidth of the lattice resonances.

(a) Real part of the inverse of the polarizability for particles with different diameters (color

curves) compared with the real part of the in-plane component of the lattice sum (gray curve).

The black dashed curve represents the approximate value of Re{a®G,,(0)} ~ 4v/2r?A~1/2 —

118.5152 (b) Imaginary part of the difference between the in-plane component of the lattice

sum and the inverse of the particle polarizability for the same nanoparticles as in panel (a).
In all cases, we assume a = 800 nm.
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Figure S5: Finite-size effects on the lattice sum. Real part of the in-plane (i.e., yy, left col-
umn) and the out-of-plane (i.e., zz, right column) of the lattice sum calculated for different
angles of incidence (black curve). The color curves represent the results obtained by trun-
cating the lattice sum for an array of size (N 4 1) x (N + 1), as described in the main paper
(see Figure 5). The gray dashed lines indicate the real part of the inverse of the nanoparticle
polarizability calculated for different values of D. In all cases, we assume a = 800 nm.
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Figure S6: Analysis of the effect of a homogeneous dielectric environment. (a) Schematics
of the system under consideration, consisting of an array of silver nanospheres of diameter
D = 120nm and periodicity a embedded in a medium of refractive index n.. (b,c) Near-
field intensity enhancement as a function of A = \/(an.) — 1 for an array of periodicity
a = 800nm in vacuum (red curve) and in a medium with n, = 1.5 (blue curve), as well as
for an array with periodicity a = 800/n,nm in a refractive index n, = 1.5 (green curve). In
panel (b), the field intensity enhancement is calculated at a height z = a above the array,
while, in panel (c), the calculation is done at z = —a. Examining these results, we observe
that the near-field intensity enhancement produced by the two arrays with a = 800 nm are
identical, and therefore the only effect of the change in the dielectric environment is a shift
of the wavelength of the resonance (notice that now A depends on n,). Such shift can be
compensated by decreasing the array periodicity to a = 800/n, nm, however that results in
an increase of the value of A of the lattice resonance and, therefore, in a reduction of the
field enhancement produced by the array.
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Figure S7: Analysis of the effect of an inhomogeneous dielectric environment. (a) Schematics
of the system under consideration, consisting of an array of silver nanospheres of diameter
D = 120nm and periodicity a embedded in a medium of refractive index n; = 1.5 and
situated a distance 10 nm from another medium with refractive index n,. As in the main
paper, we assume light is incident from below the array (i.e., from the side with n,), which is
located at z = 0. (b) Near-field intensity enhancement as a function of A = \/(an,) — 1 for
an array of periodicity a = 800 nm when ny = 1.495 (red curves), ny = 1.5 (blue curves), and
ny = 1.505 (green curves). The dark solid curves correspond to the case in which the field is
calculated at a distance z/a = 1 from the array, while the dashed lighter curves display the
results for z/a = —1. (c¢) Same as (b), but for an array with periodicity a = 800/n; nm. In
this case, the red, blue, and green curves correspond to no, = 1.4, n, = 1.5, and ny = 1.6,
respectively. Examining the results of panel (b), we observe that, due to the large field
enhancement, the system is very sensitive to asymmetries in the dielectric environment.
When ns < nq, the lattice resonance shifts to smaller A, which leads to an increase in the
near-field enhancement, while, for ny > nq, the resonance moves to larger values of A, thus
leading to a decrease in the enhancement. On the other hand, systems producing smaller
field enhancements, such as the array analyzed in panel (c), are less sensitive to asymmetric
environments.
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