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A SPARSE SPECTRAL METHOD ON TRIANGLES\ast 

SHEEHAN OLVER\dagger , ALEX TOWNSEND\ddagger , AND GEOFFREY VASIL\S 

Abstract. In this paper, we demonstrate that many of the computational tools for univariate
orthogonal polynomials have analogues for a family of bivariate orthogonal polynomials on the tri-
angle, including Clenshaw's algorithm and sparse differentiation operators. This allows us to derive
a practical spectral method for solving linear partial differential equations on triangles with sparse
discretizations. We can thereby rapidly solve partial differential equations using polynomials with
degrees in the thousands, resulting in sparse discretizations with as many as several million degrees
of freedom.
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1. Introduction. Univariate orthogonal polynomials are fundamental in applied
and computational mathematics. They are used for the development of quadrature
rules [9], spectral theory of Jacobi operators [27], eigenvalue statistics of random
matrices [6], computational approximation theory [29], and to derive spectral methods
for the numerical solution of differential equations [3, 4, 18, 21, 30, 31]. On the
contrary, multivariate orthogonal polynomials currently have a more limited impact
in applications and computational methods, though it is an active research area with
a promising future.

To demonstrate the potential practical importance of multivariate orthogonal
polynomials, we show that many computational tools for univariate orthogonal poly-
nomials can be generalized to a family of bivariate orthogonal polynomials on a tri-
angle. These tools allow us to derive a sparse spectral method for solving general
linear partial differential equations (PDEs) with Dirichlet and Neumann conditions
on triangles. While the techniques are general, we demonstrate the method on the
following PDEs:

\Delta 2u = f(x, y) (biharmonic),

uy = cux (transport),

\Delta u+ V (x, y)u = f(x, y) (variable coefficient Helmholtz).

Since triangles can be mapped to each other by affine translations, and polyno-
mials remain polynomial, we can consider a single reference triangle, without loss of
generality. Throughout this paper, we select the reference triangle to be the unit
simplex: a right-angled triangle of unit height and width, i.e., T = \{ (x, y) : 0 < x <
1, 0 < y < 1 - x\} .
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A SPARSE SPECTRAL METHOD ON TRIANGLES A3729

There are several different families of bivariate orthogonal polynomials on T [8].
Here, we consider a family that is built from univariate orthogonal polynomials [12]:

(1.1) Pn,k(x, y) = \~P
(2k+1,0)
n - k (x)(1 - x)k \~P

(0,0)
k

\Bigl( 
y

1 - x

\Bigr) 
, n \geq k \geq 0,

where \~P
(a,b)
k (x) denotes the degree k shifted Jacobi polynomial on [0, 1] with param-

eters (a, b).1 The polynomials in (1.1) are one possible generalization on triangles
of the Legendre polynomials [15, Tab. 18.3.1]. In particular, the polynomials satisfy
three-term recurrence relations (see (2.5)) and are orthogonal with respect to the
standard L2 inner-product on T :\int \int 

T

Pn,k(x, y)Pm,\ell (x, y)dxdy =

\Biggl\{ 
1

\pi n,k
, (n, k) = (m, \ell ),

0, (n, k) \not = (m, \ell ),

where \pi n,k = 2(2k + 1)(n + 1). They provide a well-conditioned basis to represent
integrable functions f \in L2(T ) as a series expansion,

f(x, y)=

\infty \sum 
n=0

n\sum 
k=0

fn,kPn,k(x, y), fn,k=\pi n,k

\int \int 
T

f(x, y)Pn,k(x, y)dxdy,

where the first equality above should be understood in the L2-sense. In order to do
efficient computations with functions defined on a triangle, it is important to be able
to rapidly compute expansion coefficients of f(x, y) so that

f(x, y) \approx 
N\sum 

n=0

n\sum 
k=0

an,kPn,k(x, y)

for a selected integer N . Recently, Slevinsky developed and implemented a fast back-
ward stable algorithm for precisely this task [22, 23], accompanied with an optimized
multithreaded open-source C library [24], allowing expansions to be computationally
feasible for relatively large N . This has greatly improved the practicality of spectral
methods for triangular domains.

The use of bivariate orthogonal polynomials on triangles has a long history in the
spectral element method and p-finite element method (p-FEM) literature [11], going
back to Dubiner [7]. The polynomials in (1.1) lead to highly structured p-FEM dis-
cretization matrices for PDEs of the form \scrL u =  - \nabla \cdot (A(x, y)\nabla u), and when A(x, y)
is a constant one can derive sparse discretizations that can be generated in optimal
complexity [2, 14]. Other related works from the hp-FEM community that result
in sparse discretizations have been achieved using Bernstein--B\'ezier polynomials [1].
The present work can be viewed as a generalization of [2, 14] to strong formulations
of PDEs that are not necessarily elliptic, achieving sparse matrices using orthogonal
bases, leading to well-conditioned solutions of partial differential equations (PDEs).
Moreover, the properties of bivariate orthogonal polynomials allows us to retain spar-
sity for high differential order and variable coefficient PDEs (see subsection 4.1.2).
Finally, the entries of the discretization are obtained directly as the product of sparse
matrices whose entries are given in terms of simple rational formulae, avoiding the
need for quadrature schemes.

1In particular, \~P
(a,b)
k (x) = P

(a,b)
k (2x  - 1), where P

(a,b)
k is the degree k Jacobi polynomial on

[ - 1, 1] with parameters (a, b).
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A3730 SHEEHAN OLVER, ALEX TOWNSEND, AND GEOFFREY VASIL

Our main idea is to exploit a hierarchy of sparse recurrence relations [19] that
hold between the polynomials in (1.1) and the so-called Jacobi polynomials on the
triangle [8, 12]:2

(1.2) P
(a,b,c)
n,k (x, y) = \~P

(2k+b+c+1,a)
n - k (x)(1 - x)k \~P

(c,b)
k

\Bigl( 
y

1 - x

\Bigr) 
, n \geq k \geq 0,

where a, b, c >  - 1. In a manner that is analogous to the ultraspherical spectral
method [18, 28], we represent the action of partial derivatives by representing the
domain and range as vectors of coefficients in different bases so that the matrix rep-
resentation is sparse. For example, while \partial 

\partial yPn,k for k \geq 1 cannot be written as
a sparse vector of Pn,k coefficients, we have \partial 

\partial yPn,k = (k + 1)P
(0,1,1)
n - 1,k - 1 (see Corol-

lary A.1). This means that the first partial derivative with respect to y has a sparse

matrix representation if the range is represented as a vector of P
(0,1,1)
n,k coefficients.

This can be summarized as

u =

N\sum 
n=0

n\sum 
k=0

an,kPn,k \Rightarrow \partial u

\partial y
=

N - 1\sum 
n=0

n\sum 
k=0

(k + 1)an+1,k+1P
(0,1,1)
n,k .

Moreover, these sparse recurrence relationships form a hierarchy, in the sense that \partial s

\partial ys

has a sparse representation if the range is represented as a vector of P
(0,s,s)
n,k coefficients,

for any s \geq 0. Similar, but slightly more complicated, sparse recurrence relations hold
for \partial s

\partial xsPn,k when the range is represented as vectors in P
(s,0,s)
n,k coefficients for any

s \geq 0 (see subsection 3.4).
One is also able to combine sparse representations to discretize linear PDEs. For

example, the Laplacian operator \Delta u = uxx + uyy can be represented by a sparse ma-

trix if the range is selected to be a vector of P
(2,2,2)
n,k coefficients while the domain is a

vector of Pn,k coefficients. This is because there exist sparse conversion relationships
for converting between certain P

(a,b,c)
n,k bases (see subsection 3.1). Figure 1 illustrates

a typical schema that illustrates how sparse recurrences are combined. In the lan-
guage of finite element methods, the test and trial spaces are different with a sparse
embedding of the trial space in the test space.

The paper is organized as follows. In section 2, we establish some general compu-
tational tools for bivariate orthogonal polynomials such as Jacobi operators and the
bivariate Clenshaw algorithm. In section 3, we specialize to (1.2), where the additional
structure allows us to achieve a more efficient Clenshaw algorithm. In section 4, we
employ weighted Jacobi polynomials on the triangle to solve PDEs such as a variable
coefficient Helmholtz equation and a biharmonic equation with zero Dirichlet condi-
tions. In section 5, we extend the ideas to solve linear PDEs with nonzero Dirichlet
conditions, and in section 6 we demonstrate that the framework easily generalizes to
systems of PDEs so that it can be used to solve the Helmholtz equation in a polygonal
domain.

The appendices contain relationships and additional formulae about orthogonal
polynomials on the triangle. Our spectral method depends on explicit rational re-

currence relationships that the polynomials P
(a,b,c)
n,k (x, y) satisfy for differentiation,

weighted differentiation, and conversion, which we detail in Appendix A. Tackling
Dirichlet conditions requires a modification of the basis to enable sparse restriction

2The polynomials P
(a,b,c)
n,k for a, b, c >  - 1 satisfy

\int \int 
T P

(a,b,c)
n,k (x, y)P

(a,b,c)
m,\ell (x, y)xayb(1  - x  - 

y)cdxdy = 0 if n \not = m or k \not = \ell .
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A SPARSE SPECTRAL METHOD ON TRIANGLES A3731

\partial 
\partial x

\partial 
\partial x

\partial 
\partial y

\partial 
\partial y

(2, 2, 2)

(2, 0, 2)

(0, 0, 0)

(0, 2, 2)

a

b c

basis conversion

b
asis

con
version

Fig. 1. The Laplace operator acting on vectors of Pn,k = P
(0,0,0)
n,k coefficients has a sparse

matrix representation if the range is represented as vectors of P
(2,2,2)
n,k coefficients. Here, the arrows

indicate that the corresponding operation has a sparse matrix representation when the domain is

P
(a,b,c)
n,k coefficients, where (a, b, c) is at the tail of the arrow, and the range is P

(\~a,\~b,\~c)
n,k coefficients,

where (\~a,\~b, \~c) is at the head of the arrow.

operators, which we define as Q
(a,b,c)
n,k in Appendix B. These also have explicit ra-

tional recurrence relationships for differentiation and conversion, which we derive in
Appendix C.

Remark 1. An experimental version of the Julia implementation of this method,
including all the examples below, is available [17].

2. Computations with bivariate orthogonal polynomials. In this section,
we derive several computational tools for bivariate orthogonal polynomials such as the
Jacobi operators, Clenshaw's algorithm, and multiplication operators. Later, in sec-
tion 3, we specialize these tools to the Jacobi polynomials on the triangle (see (1.2)).

Consider a sequence of bivariate polynomials

p0,0(x, y), p1,0(x, y), p1,1(x, y), p2,0(x, y), p2,1(x, y), p2,2(x, y), . . . ,

where \{ pn,k\} 0\leq k\leq n\leq N is a basis for the space of bivariate polynomials of total degree

\leq N ,3 for any integer N . We say that such a sequence is orthogonal with respect to
a nonnegative weight function w(x, y) on \Omega \subset \BbbR 2 if

(2.1)

\int \int 
\Omega 

w(x, y)pn,k(x, y)pm,\ell (x, y)dxdy =

\Biggl\{ 
dn,k, (n, k) = (m, \ell ),

0, (n, k) \not = (m, \ell ),

where dn,k are positive numbers.
It is notationally convenient to write the bivariate polynomials of the same total

degree as a single vector-valued polynomial [8] as follows:

\BbbP n(x, y) =

\left(   pn,0(x, y)
...

pn,n(x, y)

\right)   .

3We say that a bivariate polynomial q(x, y) is of total degree \leq N if q(x, y) =\sum N
n=0

\sum n
k=0 bn,kx

kyn - k for some coefficients bn,k.
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A3732 SHEEHAN OLVER, ALEX TOWNSEND, AND GEOFFREY VASIL

One can then state the orthogonality condition in (2.1) more succinctly as

(2.2)

\int \int 
\Omega 

w(x, y)\BbbP m(x, y)\BbbP n(x, y)
\top dxdy =

\Biggl\{ 
Dn, m = n,

0, m \not = n,

where Dn is the (n+1)\times (n+1) diagonal matrix with entries dn,k for 0 \leq k \leq n, 0 is
a matrix of all zeros of the appropriate size, and \BbbP n(x, y)

\top denotes the transpose of
\BbbP n(x, y). The sequence of bivariate polynomials are normalized (orthonormal) if Dn

is the identity matrix for all n \geq 0. We also use the notation

P(x, y)=(\BbbP 0(x, y)
\top 
,\BbbP 1(x, y)

\top , . . .)
\top 

to encode all of the polynomials as a single infinite vector.

2.1. Bivariate function approximation. A sequence of bivariate orthogonal
polynomials on \Omega \subset \BbbR 2 can be used to approximate functions that are square in-
tegrable with respect to the associated weight function w(x, y) on \Omega . For example,

provided
\int \int 

\Omega 
w(x, y) | f(x, y)| 2 dxdy < \infty , we can write

f(x, y) =

\infty \sum 
n=0

n\sum 
k=0

fn,kpn,k(x, y) =

\infty \sum 
n=0

\BbbP n(x, y)
\top fffn = P(x, y)\top \bfitf ,(2.3)

where fffn=(fn,0, . . . , fn,n)
\top 
and \bfitf =(fff0, fff1, . . .)

\top 
are the coefficients of the expansion.

Here, the first equality in (2.3) is understood in the sense that the difference between
the left- and right-hand sides is zero in the norm associated to the inner product.

The expansion coefficients in (2.3) are defined by the following integrals:

(2.4) fn,k =
1

dn,k

\int \int 
\Omega 

w(x, y)f(x, y)pn,k(x, y)dxdy, n \geq k \geq 0,

where dn,k is the orthogonality constant in (2.1). In practice, it is usually desirable for
the expansion coefficients to rapidly decay, i.e., \| fff0\| , \| fff1\| , . . . is a rapidly decaying
sequence.

2.2. Jacobi operators. In the theory of univariate orthogonal polynomials an
important object is the Jacobi operator, which is a self-adjoint linear operator given by
a tridiagonal matrix [27]. It is closely related to the fact that a sequence of univariate
orthogonal polynomials satisfies a three-term recurrence. For example, if p0, p1, . . . is
a sequence of univariate orthogonal polynomials, then

bkpk+1(x) + akpk(x) + ck - 1pk - 1(x) = xpk(x)

for k \geq 1 [26, Thm. 3.2.1] and

JP(x) = xP(x), P(x) =

\left(   p0(x)
p1(x)

...

\right)   , J =

\left(      
a0 b0
c0 a1 b1

c1 a2
. . .

. . .
. . .

\right)      .

The Jacobi operator associated with p0, p1, . . . is the symmetric tridiagonal matrix
obtained by a diagonal similarity transform of J [27]. This diagonal similarity trans-
form corresponds precisely to the normalization factors required to orthonormalize
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the sequence of univariate orthogonal polynomials. The transformation is possible
provided 0 < b - 1

k ck < \infty for all k. In particular, if \{ pk(x)\} k\geq 0 are orthonormal, then
J is a symmetric tridiagonal matrix.

A related fact that is important for designing spectral methods is that J\top can be
interpreted as the ``multiplication-by-x"" operator, that is, if f(x) = \bfitP (x)\top \bfitf , we have

xf(x) = x\bfitP (x)\top \bfitf = \bfitP (x)\top J\top \bfitf .

In other words, J\top \bfitf gives the coefficients of xf(x).
The analogue for bivariate orthogonal polynomials is a pair of commuting opera-

tors Jx and Jy [8, section 3.4], which satisfy

(2.5) JxP(x, y) = xP(x, y), JyP(x, y) = yP(x, y).

Here, Jx and Jy are block-tridiagonal operators so that

Jx =

\left(      
Ax

0 Bx
0

Cx
0 Ax

1 Bx
1

Cx
1 Ax

2

. . .

. . .
. . .

\right)      , Jy =

\left(      
Ay

0 By
0

Cy
0 Ay

1 By
1

Cy
1 Ay

2

. . .

. . .
. . .

\right)      ,

where Ax
n, A

y
n \in \BbbR (n+1)\times (n+1) , Bx

n, B
y
n \in \BbbR (n+1)\times (n+2), and Cx

n, C
y
n \in \BbbR (n+2)\times (n+1).

When deriving spectral methods the operators Jx and Jy play an important role as
they can be interpreted as operators for ``multiplication-by-x"" and ``multiplication-
by-y,"" respectively, that is,

(2.6) xP(x, y)\top \bfitf = P(x, y)\top J\top 
x \bfitf and yP(x, y)\top \bfitf = P(x, y)\top J\top 

y \bfitf .

In other words, if f(x, y) = P(x, y)\top \bfitf , then J\top 
x \bfitf and J\top 

y \bfitf give the coefficients of
xf(x, y) and yf(x, y), respectively.

2.3. Recurrences and the Clenshaw algorithm. For univariate orthogonal
polynomials, the three-term recurrence encoded by a Jacobi operator can be used
to construct the polynomials themselves at a specified point via forward substitu-
tion. Clenshaw's algorithm is a closely related concept that allows the evaluation of
a finite series expansion of univariate orthogonal polynomials at a point [5]. While
it is common to interpret the three-term recurrence/Clenshaw's algorithm as recur-
sions, we prefer to interpret them as forward/backward substitution on a lower/upper
triangular system associated to the Jacobi operator as this point-of-view facilitates
generalization to the bivariate setting.

Let p0(x), p1(x), . . . be a sequence of univariate orthogonal polynomials such that

p0(x) = 1, and suppose that we wish to evaluate f(x) =
\sum N

k=0 akpk(x) at x\ast \in \BbbR .
Since p0(x), p1(x), . . . satisfy a three-term recurrence of the form bkpk+1(x) = (x  - 
ak)pk(x) - ck - 1pk - 1(x) for k \geq 1 [26, Thm. 3.2.1], we find that
(2.7)

LN (x\ast )

\left(         

p0(x\ast )

p1(x\ast )

p2(x\ast )

...

pN (x\ast )

\right)         
=

\left(         

1

a0 - x\ast b0

c0 a1 - x\ast b1

. . .
. . .

. . .

cN - 2 aN - 1 - x\ast bN - 1

\right)         

\left(         

p0(x\ast )

p1(x\ast )

p2(x\ast )

...

pN (x\ast )

\right)         
= e0,D
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where b0p1(x) = (a0  - x)p0(x) and e0 = (1, 0, . . . , 0)
\top 
.

Forward substitution on the lower triangular linear system in (2.7) allows one to

evaluate pk(x\ast ) for k \geq 0 from which one could evaluate f(x\ast ) =
\sum N

k=0 akpk(x\ast ). For
stability purposes, the Clenshaw algorithm evaluates expansions more directly and
can be written as

(2.8) f(x\ast ) = (p0(x\ast ) , . . . , pN (x\ast ))
\top 
aaa = e\top 0

\Bigl( 
(LN (x\ast ))

 - \top 
aaa
\Bigr) 
, aaa =

\left(   a0
...

aN

\right)   .

Therefore, the Clenshaw algorithm is equivalent to solving the upper triangular linear
system (LN (x\ast ))

\top vvv = aaa, followed by returning the first entry of vvv. Since LN (x\ast ) only
has three nonzero subdiagonals, the algorithm requires \scrO (N) operations to evaluate

f(x\ast ) =
\sum N

k=0 akpk(x\ast ).
The bivariate case is more involved. Given (x\ast , y\ast ) \in \BbbR 2, we would like to evaluate

f(x, y) =
\sum N

n=0

\sum n
k=0 an,kpn,k(x, y) at (x\ast , y\ast ), where (without loss of generality) we

assume that p0,0(x, y) = 1. Since there are three-term recurrence relations in both x
and y (see (2.5)) we find that
(2.9)

LN (x\ast , y\ast )P(x\ast , y\ast ) =

\left(         

1
Ax

0  - x\ast I1 Bx
0

Ay
0  - y\ast I1 By

0

Cx
0 Ax

1  - x\ast I2 Bx
1

Cy
0 Ay

1  - y\ast I2 By
1

. . .
. . .

. . .

\right)         
P(x\ast , y\ast ) =

\left(         

1
01\times 1

01\times 1

02\times 1

02\times 1

...

\right)         
,

where Im is the m\times m identity matrix and 0m\times 1 is the zero vector of length m. Unlike
the univariate case, the system is not lower triangular and so we cannot immediately
invert this system via forward recurrence to find P(x\ast , y\ast ).

A reformulation that allows for inversion is to multiply the system to reduce the
blocks above the diagonal in (2.9) to the identity. First, note that the blocks

Bn =

\biggl( 
Bx

n

By
n

\biggr) 
\in \BbbR (2n+2)\times (n+2)

have full column rank for n \geq 0 [8, Theorem 3.3.4]. Therefore, Bn has a left-inverse
B+

n for n \geq 0 such that B+
n Bn = In+2. It follows that an equivalent evaluation scheme

can be designed from
(2.10)

\~LN (x\ast , y\ast )P(x\ast , y\ast ) =

\left(     
1

01\times 1

02\times 1

...

\right)     , \~LN (x\ast , y\ast ) =

\left(     
1

B+
0

B+
1

. . .

\right)     LN (x\ast , y\ast ).

Since \~LN (x\ast , y\ast ) is lower triangular we can construct P(x\ast , y\ast ) via forward substitu-
tion.

Furthermore, a natural bivariate analogue of Clenshaw's algorithm follows from
writing

f(x\ast , y\ast ) = P(x\ast , y\ast )
\top \bfita = \bfite \top 0

\biggl( \Bigl( 
\~LN (x\ast , y\ast )

\Bigr)  - \top 
\bfita 

\biggr) 
.
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Thus f(x\ast , y\ast ) can be evaluated by solving an upper triangular linear system using
back substitution.

If B+
n are dense matrices for n \geq 0, then forward recurrence and Clenshaw's algo-

rithm require \scrO (N3) operations. However, in the special case of Jacobi polynomials
on the triangle, the matrices involved are sparse (see section 3) and the complexity
can be reduced to \scrO (N2) operations, which is optimal.

2.4. Multiplication operators. The relations in (2.6) show that J\top 
x and J\top 

y

are operators that represent ``multiplication-by-x"" and ``multiplication-by-y,"" respec-
tively, in the bivariate orthogonal polynomial basis. Here, we combine these operators
together to construct multiplication matrices that represent multiplication by a degree
d polynomial expanded as q(x, y) =

\sum d
n=0

\sum n
k=0 qn,kpn,k(x, y).

Suppose we are given a function f(x, y) =
\sum N

n=0

\sum n
k=0 an,kpn,k(x, y), and wish

to find the expansion coefficients of g(x, y) = q(x, y)f(x, y), where the degrees of f
and q can differ. Using J\top 

x and J\top 
y , we find that

\bfitg = Mq\bfitf , Mq = q(J\top 
x , J\top 

y ),

where the definition of q(J\top 
x , J\top 

y ) is (see [13, Def. 2.1])

(2.11) q(J\top 
x , J\top 

y ) =

d\sum 
n=0

n\sum 
k=0

cnk(J
\top 
x )n - k(J\top 

y )k, q(x, y) =

d\sum 
n=0

n\sum 
k=0

cnkx
n - kyk.

Since Jx and Jy are block-tridiagonal and each matrix-matrix product increases the
block-bandwidth by one, we see that q(J\top 

x , J\top 
y ) is also a block-banded with upper and

lower block-bandwidth d.
The expression in (2.11) is not ideal for computations when d is moderately large

because of the inherent ill-conditioning in the monomial basis. It is often compu-
tationally beneficial to expand q(x, y) in a bivariate orthogonal polynomial expan-
sion and evaluate q(J\top 

x , J\top 
y ) using an operator-valued analogue of Clenshaw's algo-

rithm [25, 31].
The operator-valued analogue of Clenshaw's algorithm for evaluating q(J\top 

x , J\top 
y )

is equivalent to the expression
(2.12)

Mq = (e0\otimes \scrI )(L - \top qqq), L =

\left(         

I1 \otimes \scrI 
Ax

0 \otimes \scrI  - I1 \otimes Jx Bx
0 \otimes \scrI 

Ay
0 \otimes \scrI  - I1 \otimes Jy By

0 \otimes \scrI 
Cx

0 \otimes \scrI Ax
1 \otimes \scrI  - I2 \otimes Jx Bx

1 \otimes \scrI 
Cy

0 \otimes \scrI Ay
1 \otimes \scrI  - I2 \otimes Jy By

1 \otimes \scrI 
. . .

. . .
. . .

\right)         
,

where \scrI is an infinite identity matrix, e0 is the first canonical unit vector, and qqq is
the vector of coefficients for q(x, y) in the bivariate orthogonal polynomial expansion.
Here we use the Kronecker product denoted \otimes .

In general, Jx and Jy have dense blocks so that the total number of nonzero
entries in the principal N\times N block matrix of q(J\top 

x , J\top 
y ) is \scrO (N3), and the complexity

of constructing q(J\top 
x , J\top 

y ) using the operator-valued Clenshaw's algorithm is \scrO (N4)
(where the total number of unknowns is \scrO (N2)). In the case of Jacobi polynomials
on the triangle, the blocks of Jx and Jy are tridiagonal and there are only \scrO (N2)
nonzero entries, which can be calculated in optimal complexity.
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3. Computing with Jacobi polynomials on the triangle. We now special-
ize the algorithmic ideas in section 2 to Jacobi polynomials on the triangle (see (1.2)).
Since these polynomials have additional structure, more efficient algorithms can be
designed.

We denote the Jacobi polynomials on the triangle that are orthogonal with respect
to xayb(1 - x - y)c with a, b, c >  - 1 by

\BbbP (a,b,c)
n (x, y) =

\left(    
P

(a,b,c)
n,0 (x, y)

...

P
(a,b,c)
n,n (x, y)

\right)    , P(a,b,c)(x, y) =

\left(    
\BbbP (a,b,c)
0 (x)

\BbbP (a,b,c)
1 (x)

...

\right)    ,

and note that series expansions in the P
(a,b,c)
n,k basis can be expressed as

f(x, y) =

\infty \sum 
n=0

n\sum 
k=0

fn,kP
(a,b,c)
n,k (x, y) = P(a,b,c)(x, y)\top fff,

where fff is the vector of P
(a,b,c)
n,k coefficients for f . These expansion coefficients can be

efficiently computed from samples of f by a fast, backward stable algorithm [22, 23,
24]. We further denote the shifted Jacobi polynomials on the unit interval as

P(a,b)(x) =

\left(    
\~P
(b,a)
0 (x)
\~P
(b,a)
1 (x)

...

\right)    ,

where the alternative ordering of a and b helps to build analogies with the triangle
case.

3.1. Conversion operators. An important property of Jacobi polynomials on
the interval is that they have banded conversion operators, which translate between
coefficients from expansion in P

(a,b)
n to P

(a+1,b)
n or P

(a,b+1)
n . In terms of converting

expansions between bases, we can express such conversions as

f(x) = P(a,b)(x)\top \bfitf = P(a+1,b)(x)\top S
(a+1,b)
(a,b) \bfitf = P(a,b+1)(x)\top S

(a,b+1)
(a,b) \bfitf ,

where S
(a+1,b)
(a,b) and S

(a,b+1)
(a,b) are upper bidiagonal operators, with rational entries as

given in [15, (18.9.5)].
Jacobi polynomials on the triangle have a similar property: we can increment

either a, b, or c in the expansion by one:

f(x, y) = P(a,b,c)(x, y)\top \bfitf = P(a+1,b,c)(x, y)\top S
(a+1,b,c)
(a,b,c) \bfitf 

= P(a,b+1,c)(x, y)\top S
(a,b+1,c)
(a,b,c) \bfitf = P(a,b,c+1)(x, y)\top S

(a,b,c+1)
(a,b,c) \bfitf .

Each of these operators are sparse: they have block-bandwidths (0, 1) with diagonal

blocks for S
(a+1,b,c)
(a,b,c) and upper bidiagonal blocks for S

(a,b+1,c)
(a,b,c) and S

(a,b,c+1)
(a,b,c) . The en-

tries are rational, and can be determined in closed form by the recurrence relationships
in Corollary A.3.
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3.2. Constructing Jacobi operators. For Jacobi polynomials, the recurrence
relationships that give rise to tridiagonal Jacobi operators, representing multiplication
by x, are well known. However, the Jacobi operators can alternatively be derived via

lower bidiagonal lowering operators L
(a - 1,b)
(a,b) and L

(a,b - 1)
(a,b) [15, (18.9.5)] that represent

multiplication by x and 1 - x:

xf(x) = P(a - 1,b)(x)\top L
(a - 1,b)
(a,b) \bfitf = P(a,b)(x)\top S

(a,b)
(a - 1,b)L

(a - 1,b)
(a,b) \bfitf .

Similarly, 1 - x is equivalent to S
(a,b)
(a,b - 1)L

(a,b - 1)
(a,b) . In other words, the Jacobi operator

corresponding to multiplication by x can be constructed via

J\top \equiv S
(a,b)
(a - 1,b)L

(a - 1,b)
(a,b) \equiv I  - S

(a,b)
(a,b - 1)L

(a,b - 1)
(a,b) .

Note that the product of a lower bidiagonal operator L
(a - 1,b)
(a,b) and an upper bidiagonal

operator S
(a,b)
(a - 1,b) is a tridiagonal operator, as expected.

To construct the Jacobi operators Jx and Jy for Jacobi polynomials on the trian-
gle, we first note that there exist three lowering operators that satisfy

xf(x, y) = P(a - 1,b,c)(x, y)\top L
(a - 1,b,c)
(a,b,c) \bfitf ,

yf(x, y) = P(a,b - 1,c)(x, y)\top L
(a,b - 1,c)
(a,b,c) \bfitf ,

zf(x, y) = P(a,b,c - 1)(x, y)\top L
(a,b,c - 1)
(a,b,c) \bfitf ,

where z := 1 - x - y. We will use other indices to indicate multiple lowering in a row,
e.g.,

L
(0,0,0)
(1,1,1) := L

(0,0,0)
(1,0,0)L

(1,0,0)
(1,1,0)L

(1,1,0)
(1,1,1)

corresponds to multiplication by xyz, where the choice for navigating the parameter
tree is arbitrary.

We can construct the Jacobi operators from the lowering operators via

J\top 
x = S

(a,b,c)
(a - 1,b,c)L

(a - 1,b,c)
(a,b,c) , J\top 

y = S
(a,b,c)
(a,b - 1,c)L

(a,b - 1,c)
(a,b,c) .

Note that the entries of the lowering operators can be determined by the recurrences
in Corollary A.4, and they are sparse. In particular, they have block-bandwidths

(1, 0) and diagonal blocks for L
(a - 1,b,c)
(a,b,c) and lower bidiagonal blocks for L

(a,b - 1,c)
(a,b,c) and

L
(a,b,c - 1)
(a,b,c) . This block structure ensures that Jx is block-tridiagonal with diagonal

blocks and that Jy is block-tridiagonal with tridiagonal blocks. Finally, Jx and Jy
commute because the L and S operators commute due to the following relationships:
(3.1)

S
(a,b,c)
(a - 1,b,c)L

(a - 1,b,c)
(a,b,c) = L

(a+1,b,c)
(a,b,c) S

(a,b,c)
(a+1,b,c), S

(a,b,c)
(a,b - 1,c)L

(a,b - 1,c)
(a,b,c) = L

(a,b+1,c)
(a,b,c) S

(a,b,c)
(a,b+1,c).

3.3. Implementation of Clenshaw's algorithm and multiplication oper-
ators. We now exploit the sparsity structure of Jx and Jy to get an \scrO (N2) complexity
Clenshaw algorithm. In particular, using the notation of subsection 2.3, since Bx

n is
diagonal and By

n is tridiagonal we can construct a simple left-inverse B+
n , that is, we
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have the following structure:

Bn =

\biggl( 
Bx

n

By
n

\biggr) 
=

\left(                  

\times 
\times 

. . .

\times 
\times 0

\times \times 
\times \times \times 

. . .
. . .

. . .

\times \times \times 
\times \times \times 

\right)                  
.

Let B1 = Bx
n[0 : n, 0 : n] denote the first (n + 1) \times (n + 1) subblock of Bx

n, let
b2 = By

n[n, n+ 1], and let

\bfitb \top 1 =  - b - 1
2

\biggl( 
01\times n - 2,

By
n[n, n - 1]

Bx
n[n - 1, n - 1]

,
By

n[n, n]

Bx
n[n, n]

\biggr) 
.

Then, the following matrix is a pseudo-inverse of Bn:

B+
n :=

\biggl( 
B - 1

1 0n\times n - 1 0n\times 1

\bfitb \top 1 01\times n - 1 b - 1
2

\biggr) 
.

Note that B+
n can be applied to a vector in \scrO (n) operations. When incorporation into

Clenshaw's algorithm described in section 2.3, this gives an optimal \scrO (N2) algorithm
for evaluating functions. Furthermore, when incorporated into the construction of the
multiplication operators (see section 2.4), we find that one can construct multiplica-
tion operators in \scrO (N2) operations.

3.4. Differentiation. Jacobi polynomials on the interval have banded recur-
rence relationships for their derivatives by incrementing both of the parameters, that
is, we can represent

f \prime (x) = P(a+1,b+1)(x)\top D
(a+1,b+1)
(a,b) \bfitf ,

where D
(a+1,b+1)
(a,b) is zero except for the first superdiagonal [15, (18.9.15)]. They also

have banded recurrence relationship for their weighted derivatives that decrement the
parameters:

d

dx
[xa(1 - x)bf(x)] = xa - 1(1 - x)b - 1P(a - 1,b - 1)(x)\top W

(a - 1,b - 1)
(a,b)

\left(   f0
f1
...

\right)   ,

where W
(a - 1,b - 1)
(a,b) is zero except for the first subdiagonal [15, (18.9.16)].

These properties translate to partial derivatives of Jacobi polynomials on the
triangle, that is, we have4

\partial f

\partial x
= P(a+1,b,c+1)(x, y)\top D

(a+1,b,c+1)
x,(a,b,c) \bfitf ,

\partial f

\partial y
= P(a,b+1,c+1)(x, y)\top D

(a,b+1,c+1)
y,(a,b,c) \bfitf ,

4We have similar relationships for \partial 
\partial z

:= \partial 
\partial x

 - \partial 
\partial y

, but we omit these for brevity as they are not

needed.
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Fig. 2. The sparsity pattern of the Laplacian \Delta 
(2,2,2)
(0,0,0)

(left), the weighted Laplacian \Delta W (cen-

ter), and the weighted variable coefficient Helmoltz operator \Delta W + S
(1,1,1)
(0,0,0)

v(J\top 
x , J\top 

y )L
(0,0,0)
(1,1,1)

with

V (x, y) = xy2 (right).

where the entries are derived in Corollary A.1. Both D
(a+1,b,c+1)
x,(a,b,c) and D

(a,b+1,c+1)
y,(a,b,c)

are sparse: they are block-superdiagonal, and their blocks are upper bidiagonal and
superdiagonal, respectively. Similarly, for weighted differentiation we have

\partial 
\partial x [x

aybzcf(x, y)] = xa - 1ybzc - 1P(a - 1,b,c - 1)(x, y)\top W
(a - 1,b,c - 1)
x,(a,b,c) \bfitf ,

\partial 
\partial y [x

aybzcf(x, y)] = xayb - 1zc - 1P(a,b - 1,c - 1)(x, y)\top W
(a,b - 1,c - 1)
y,(a,b,c) \bfitf ,

where the entries are derived in Corollary A.2. Both W
(a - 1,b,c - 1)
x,(a,b,c) and W

(a,b - 1,c - 1)
y,(a,b,c)

are also sparse matrices as they are block-subdiagonal, and their blocks are lower
bidiagonal and subdiagonal, respectively.

Combining differentiation and conversion appropriately allows us to represent
more complicated differential operators. For example, the Laplacian can be expressed
as an operator that takes coefficients in an P(0,0,0) expansion to coefficients in an
P(2,2,2) expansion as follows:

\Delta 
(2,2,2)
(0,0,0) := S

(2,2,2)
(2,1,2)S

(2,1,2)
(2,0,2)D

(2,0,2)
x,(1,0,1)D

(1,0,1)
x,(0,0,0) + S

(2,2,2)
(1,2,2)S

(1,2,2)
(0,2,2)D

(0,2,2)
y,(0,1,1)D

(0,1,1)
y,(0,0,0).

A simple calculation determines that this is also a sparse operator with block-band-
widths (2, 4) and blocks with bandwidths (0, 4); see Figure 2 (left).

Similarly, we can express the Laplacian as an operator from coefficients in an
xy(1  - x  - y)P(1,1,1)(x, y) expansion to coefficients in a P(1,1,1)(x, y) expansion by
using weighted derivatives and lowering operators:

(3.2) \Delta W := S
(1,1,1)
(1,0,1)D

(1,0,1)
x,(0,0,0)L

(0,0,0)
(0,1,0)W

(0,1,0)
x,(1,1,1) + S

(1,1,1)
(0,1,1)D

(0,1,1)
y,(0,0,0)L

(0,0,0)
(1,0,0)W

(1,0,0)
y,(1,1,1).

This is a sparse operator with block-bandwidths (1, 2) and blocks with bandwidths
(2, 2); see Figure 2 (center).

Finally, variable coefficients can be constructed by combining lowering, conver-
sion, and Jacobi operators. For example, the variable Helmholtz operator \Delta + v(x, y)
can be represented as

\Delta W + S
(1,1,1)
(0,0,0)v(J

\top 
x , J\top 

y )L
(0,0,0)
(1,1,1).

This still leads to a sparse discretization, where the block-bandwidths depend on the
degree of v; see Figure 2 (right) for an example with v(x, y) + xy2.
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4. Solving linear PDEs with zero Dirichlet conditions. We now use the
systematic approach to constructing sparse operators to solve PDEs. We construct
the operators using BlockBandedMatrices.jl [16], which enables fast multiplication
of block-banded matrices with banded blocks by building on BLAS. We then con-
vert the representation to a SuiteSparse compatible sparse matrix format, for matrix
factorization and solves.

4.1. Zero Dirichlet conditions. To solve PDEs with vanishing Dirichlet con-
ditions, we use the weighted basis

xy(1 - x - y)P(1,1,1)(x, y).

For higher-order equations like the biharmonic equation we consider vanishing Dirich-
let and Neumann conditions using the weighted basis

x2y2(1 - x - y)2P(2,2,2)(x, y).

4.1.1. Example 1: Poisson equation. Consider Poisson's equation on a tri-
angle with zero Dirichlet conditions, i.e.,

uxx + uyy = f(x, y), (x, y) \in T, u| \partial T = 0.

We reduce this equation to a truncation of

\Delta W\bfitu = \bfitf ,

where the coefficients of f(x, y) = P(1,1,1)(x, y)\top \bfitf are determined using [22] as imple-
mented in [24]. In Figure 3 (left), we depict the solution for a specific choice of f(x, y).
In Figure 3 (right), we show the construction time5 of the matrix (using BlockBand-
edMatrices.jl [16], execution time for an LU factorization, and the solve time (us-
ing SuiteSparse via Julia 1.1's SparseArrays.jl). We observe that the construction
(roughly) requires an optimal \scrO (N2) operations, while the factorization and solution
time are observed to (roughly) cost an almost-optimal \scrO (N3) operations. The same
complexities are observed for PDEs on rectangles using a Chebyshev-based spectral
method [10].

In Figure 4, we show the norms of each block of calculated coefficients of the
approximation for four right-hand sides with N = 999. Note that the rate of decay in
the coefficients is a proxy for the rate of convergence of the computed solution. The
behavior of the right-hand side at the corners has an impact on the convergence rate;
in particular, if f and its derivatives vanish at the corners, then we observe faster
convergence of the solution. The behavior at the origin is particularly important as

the Laplacian of the basis xy(1  - x  - y)P
(1,1,1)
n,k (x, y) always vanishes at the origin.

While we only observe algebraic convergence for the first three examples (that is, we
do not achieve spectral convergence as N \rightarrow \infty ), the rate of convergence is fairly fast,
achieving machine precision accuracy when f(x, y) vanishes at the origin with around
10,000 unknowns. Furthermore, the last example shows spectral convergence for a
Gaussian bump function, which up to machine precision vanishes to all orders at the
corners. Finally, over-resolving the solution does not result in the error plateauing at
machine precision, which means our discretization slightly improves the regularity of
the data, similar to the ODE case in [18].

5Timings are performed on an iMac 2017 with a 4 core 3.8 GHz Intel Core i5, using Julia v1.1
compiled with MKL BLAS. Note that the default OpenBLAS is slower for banded matrix operations.
Both MKL BLAS and SuiteSparse use 4 threads.
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104.0 104.5 105.0 105.5 106.0 

10-2 

10-1 

100 

101 

102 

Degrees of freedom

S
ec

on
ds

build
LU
solve

Fig. 3. Left: The computed solution to \Delta u = f with zero boundary conditions and f(x, y) =
1 + erf (5(1  - 10((x  - 1/2)2 + (y  - 1/2)2))). Right: the time in seconds to build the discretization,
calculate its LU factorization using SuiteSparse, and solve the system.

100 101 102 103 
10-30 

10-20 

10-10 

100 

Block

N
or

m

1
x^2 + y^2
x^2y^2(1-x-y)^2
exp(-1000((x-0.2)^2+(y-0.2)^2)

Fig. 4. The norm of the blocks of the calculated coefficients for four functions, for N = 1000,
i.e., with 500k degrees of freedom. The rate in decay serves as a proxy for the error in the computed
solution. We see that in the first three cases we have algebraic convergence, with the convergence
rate improving when the function vanishes to higher order at the corners. The last example shows
spectral convergence for a Gaussian bump.

4.1.2. Example 2: Variable coefficient Helmholtz equation with forcing
terms. Now, consider a variable coefficient Helmholtz equation with zero Dirichlet
conditions, i.e.,

uxx + uyy + k2v(x, y)u = xyex, (x, y) \in T, u| \partial T = 0.

We first approximate v(x, y) by a polynomial [24] and then use the operator-valued
Clenshaw's algorithm to construct v(J\top 

x , J\top 
y ). We obtain the following discretization:

\Delta W + k2S
(1,1,1)
(0,0,0)v(J

\top 
x , J\top 

y )L
(0,0,0)
(1,1,1),

where J\top 
x and J\top 

y are the Jacobi operators for P(1,1,1) and

L
(0,0,0)
(1,1,1) = L

(0,0,0)
(0,0,1)L

(0,0,1)
(0,1,1)L

(0,1,1)
(1,1,1), S

(1,1,1)
(0,0,0) = S

(1,1,1)
(0,1,1)S

(0,1,1)
(0,0,1)S

(0,0,1)
(0,0,0) .

In Figure 5 we depict the solution for k = 100 and plot the timings for con-
struction, factorization, and solution for k between 100 and 300, using polynomials of

D
ow

nl
oa

de
d 

06
/0

3/
20

 to
 2

4.
59

.5
6.

21
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

A3742 SHEEHAN OLVER, ALEX TOWNSEND, AND GEOFFREY VASIL
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build
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solve

Fig. 5. Left: The computed solution to (\Delta + k2v(x, y))u = xyex with zero Dirichlet conditions
and v(x, y) = 1 - (3(x - 1)2 + 5y2). Right: The execution time to build the discretization, calculate
its LU factorization using SuiteSparse, and solve the linear system.

104.0 104.5 105.0 105.5 

10-1 

100 

101 

102 

Degrees of freedom

S
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on
ds

build
LU
solve

Fig. 6. Left: The solution to \Delta 2u = f with zero Dirichlet conditions and f(x, y) = 1+erf (5(1 - 
10((x - 1/2)2 +(y - 1/2)2))). Right: The execution time to build the discretization, calculate its LU
factorization using SuiteSparse, and solve the linear system.

degree 2k. The build time depends only on the discretization size, so we observe an
\scrO (k2) cost.

4.1.3. Example 3: The biharmonic equation. The same technique for con-
structing a sparse representation of the Laplacian \Delta translates to the biharmonic
operator \Delta 2, though now we must use a basis that satisfies both zero Dirichlet and
Neumann conditions. We can represent the Laplacian as a map from coefficients in
an x2y2(1 - x - y)2P(2,2,2)(x, y) expansion to coefficients in an P(0,0,0) expansion by
using weighted differentiation and lowering operators:

\Delta W 2 := L
(0,0,0)
(0,1,0)W

(0,1,0)
x,(1,1,1)L

(1,1,1)
(1,2,1)W

(1,2,1)
x,(2,2,2) + L

(0,0,0)
(1,0,0)W

(1,0,0)
y,(1,1,1)L

(1,1,1)
(2,1,1)W

(2,1,1)
y,(2,2,2).

Hence, the biharmonic operator can be sparsely represented as a map from coefficients
in an x2y2(1 - x - y)2P(2,2,2)(x, y) expansion to coefficients in an P(2,2,2) expansion.

This is simply given by \Delta 
(2,2,2)
(0,0,0)\Delta W 2 .

In Figure 6 we depict a solution to the biharmonic equation and show that the
build time grows linearly with respect to the number of degrees of freedom employed
to discretize the solution.

5. Nonzero Dirichlet conditions. To handle general nonzero Dirichlet bound-
ary conditions, we wish to construct restriction operators that are sparse operators.
To facilitate this, we use a basis where most elements of the basis vanish at the bound-
ary. We take the weighted basis xayb(1 - x - y)cP(a,b,c), where a, b, c are integers, and
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augment it with additional polynomials so that the basis can represent all bivariate
polynomials. This is essentially the same procedure as in [11], but we do it in a way
that preserves the sparsity of the restriction operators. Appendix B gives the defi-

nition of Q
(a,b,c)
n,k (x, y), where a, b, c \in \{ 0, 1\} , which is the basis we use to construct

sparse discretizations. Here, most of Q
(1,b,c)
n,k (0, y), most of Q

(a,1,c)
n,k (x, 0), and most of

Q
(a,b,1)
n,k (x, 1 - x) vanish.

Remark 2. Formally, Q
(a,b,c)
n,k (x, y) can be thought of as P

( - a, - b, - c)
n,k (x, y), which is

made precise in [32] during the construction of the polynomials J
(a,b,c)
n,k (x, y). However,

the construction in [32] is normalized in a way that leads to underflow in double

precision computing, and we find it simpler to define our own basis Q
(a,b,c)
n,k (x, y) in

an ad hoc way.

5.1. Derivative and conversion operators. Partial derivatives and conver-
sion operators \bfitQ (a,b,c)(x, y) are similar to those derived for \bfitP (a,b,c)(x, y). Using the
formulas in Corollary C.1, we can construct conversion operators that convert from
one-edge bases to \bfitP (0,0,0):

f(x, y) = \bfitQ (1,0,0)(x, y)\top \bfitf = \bfitP (0,0,0)(x, y)\top \~S
(0,0,0)
(1,0,0)\bfitf ,

f(x, y) = \bfitQ (0,1,0)(x, y)\top \bfitf = \bfitP (0,0,0)(x, y)\top \~S
(0,0,0)
(0,1,0)\bfitf ,

f(x, y) = \bfitQ (0,0,1)(x, y)\top \bfitf = \bfitP (0,0,0)(x, y)\top \~S
(0,0,0)
(0,0,1)\bfitf .

Note that each operator is block-upper bidiagonal, with diagonal or upper bidiagonal
blocks. Similarly, Corollary C.2 derives sparse conversion operators from two-edge

bases to one-edge bases, which we denote by \~S
(1,0,0)
(1,1,0) ,

\~S
(0,1,0)
(1,1,0) ,

\~S
(1,0,0)
(1,0,1) , etc. Finally,

Corollary C.3 derives sparse conversion operators from the three-edge basis to any of

the two-edge bases, which we denote by \~S
(1,1,0)
(1,1,1) ,

\~S
(1,0,1)
(1,1,1) , and

\~S
(0,1,1)
(1,1,1) . We can clearly

compose these operators together to convert from, say, \bfitQ (1,1,1) to \bfitP (0,0,0). For this
purpose, we can define

\~S
(0,0,0)
(1,1,1) :=

\~S
(0,0,0)
(1,0,0)

\~S
(1,0,0)
(1,1,0)

\~S
(1,1,0)
(1,1,1) .

There are always several paths through the parameter space to convert one basis
into another; however, any path that is chosen results in the same final conversion
operator.

The same principle is true for derivatives, though for our purposes it suffices to
restrict our attention to derivatives of the two-edge bases. Corollary C.4 gives us the
entries for sparse (block-superdiagonal with at most bidiagonal blocks) operators that
satisfy

\partial f

\partial x
=

\partial 

\partial x
\bfitQ (1,0,1)(x, y)\top \bfitf = P(0,0,0)(x, y)\top \~D

(0,0,0)
x,(1,0,1)\bfitf ,

\partial f

\partial y
=

\partial 

\partial y
\bfitQ (0,1,1)(x, y)\top \bfitf = P(0,0,0)(x, y)\top \~D

(0,0,0)
y,(0,1,1)\bfitf .

General partial derivative operators can be constructed by combining conversion
and derivative operators. For example, we can successfully construct the Laplacian
from \bfitQ (1,1,1) to \bfitP (1,1,1) as

\~\Delta := S
(1,1,1)
(1,0,1)D

(1,0,1)
x,(0,0,0)

\~D
(0,0,0)
x,(1,0,1)

\~S
(1,0,1)
(1,1,1) + S

(1,1,1)
(0,1,1)D

(0,1,1)
y,(0,0,0)

\~D
(0,0,0)
y,(0,1,1)

\~S
(0,1,1)
(1,1,1) .
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This is a sparse operator with block-bandwidths and sub-blockbandwidths equal to
(1, 4).

5.2. Restriction operators. The definitions of Q
(1,0,0)
n,k (x, y), Q

(0,1,0)
n,k (x, y), and

Q
(0,0,1)
n,k (x, y) each have a simple restriction formula to one of the three edges of the

triangle:

Q(1,0,0)
n,n (0, y) = \~Pn(y) and Q

(1,0,0)
n,k (0, y) = 0 for k = 0, . . . , n - 1,

Q
(0,1,0)
n,0 (x, 0) = \~Pn(x) and Q

(0,1,0)
n,k (x, 0) = 0 for k = 1, . . . , n,

Q
(0,0,1)
n,0 (x, 1 - x) = \~Pn(x) and Q

(0,0,1)
n,k (x, 1 - x) = 0 for k = 1, . . . , n.

In other words, the restriction operator from expansion in Q
(1,0,0)
n,k (x, y) to Legendre

expansion on the edge from (0, 0) to (0, 1) is a block-banded operator, where the blocks
themselves are very sparse: each block has precisely one nonzero entry. Similarly,
the other two bases give restriction operators to the other edges. We denote these
restriction operators as Rx, Ry, and Rz, respectively. They are given by

f(0, y) = \bfitQ (1,0,0)(0, y)\top \bfitf = \bfitP (y)\top Rx\bfitf ,

f(x, 0) = \bfitQ (0,1,0)(0, y)\top \bfitf = \bfitP (x)\top Ry\bfitf ,

f(x, 1 - x) = \bfitQ (0,0,1)(x, 1 - x)\top \bfitf = \bfitP (x)\top Rz\bfitf ,

where \bfitP (x) := P(0,0)(x)\top are the shifted Legendre polynomials.
For the full Dirichlet operator, we need to restrict to all three edges. Thus we

can construct restriction operators from \bfitQ (1,1,1) to the boundary, where the boundary
bases are piecewise mapped Legendre polynomials. This restriction operator can be
calculated by combining conversion and the one-edge restrictions as follows:

R :=

\left(    
Rx

\~S
(1,0,0)
(1,1,0)

\~S
(1,1,0)
(1,1,1)

Ry
\~S
(0,1,0)
(1,1,0)

\~S
(1,1,0)
(1,1,1)

Rz
\~S
(0,0,1)
(1,0,1)

\~S
(1,0,1)
(1,1,1)

\right)    .

This operator is also sparse as each component is a product of sparse operators.

5.3. The \bfittau -method. An issue we must deal with is boundary data with dis-
continuities at the corners. Consider, for example, the Laplace equation with Dirchlet
conditions:

\Delta u = 0, u| x=0 = f, u| x=0 = g, and u| z=0 = h.

If the boundary data has discontinuities, that is, f(0, 0) \not = g(0, 0), f(0, 1) \not = h(0, 1),
or g(1, 0) \not = h(1, 0), then the solution itself will have an arg-like singularity: e.g., near
the origin we have the local behavior

u(x, y) \sim (g(0, 0) - f(0, 0))
2

\pi 
arg(x+ iy) + f(0, 0).

Approximating u(x, y) by polynomials is, therefore, limited as they impose continuity.
Other PDEs like the Helmholtz equation have similar behavior when the boundary
data has discontinuities.
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To overcome this issue, we adapt the Lanczos \tau -method; see [20] for an overview.
The Lanczos \tau -method is a device to produce invertible systems for polynomial spec-
tral methods by augmenting the equations with polynomial correction terms, which
also provide error control by measuring the magnitude of the correction term. In our
context we use it to capture discontinuities by augmenting the boundary data with
corrections of the form

\Delta u = 0, u| x=0 = f + \tau 1, u| y=0 = g + \tau 2, and u| z=0 = h.

That is, we add constants \tau 1 and \tau 2 to our discretization:\left(       
\bfite 0 0 Rx

\~S
(1,0,0)
(1,1,0)

\~S
(1,1,0)
(1,1,1)

0 \bfite 0 Ry
\~S
(0,1,0)
(1,1,0)

\~S
(1,1,0)
(1,1,1)

0 0 Rz
\~S
(0,0,1)
(1,0,1)

\~S
(1,0,1)
(1,1,1)

0 0 \~\Delta 

\right)       
\left(  \tau 1
\tau 2
\bfitu 

\right)  =

\left(    
\bfitf 
\bfitg 
\bfith 
0

\right)    .

Now, in our examples below we actually have mathematically continuous bound-
ary data; however, round-off errors mean our boundary data is slightly discontinuous.
The \tau correction terms give a way of capturing this discontinuity without destroying
the regularity of u. When the solution is resolved the \tau terms are, therefore, negligible,
and we can use the approximation of u on its own.

Note that it is possible to add additional \tau correction terms to make the system
invertible, but this is a more technical task and hence we prefer to use a QR decom-
position to solve the resulting rectangular linear system in a least squares sense. This
does incur a substantial performance penalty, as SuiteSparse's QR decomposition is
significantly slower than its LU decomposition.

5.3.1. Example 4: Laplace's equation. Consider Laplace's equation with
prescribed Dirichlet data:

uxx + uyy = 0, u(0, y) = f(y), u(x, 0) = g(x), u(x, 1 - x) = h(x).

Expanding f(x), g(y), and h(x) in Legendre series leads to a system of equations
satisfied by u, that is, \biggl( 

R
\~\Delta 

\biggr) 
\bfitu =

\left(    
\bfitf 
\bfitg 
\bfith 
0

\right)    ,

where \bfitu are the coefficients of u(x, y) in the basis \bfitQ (1,1,1), \bfitf are the Legendre co-
efficients of f(y), \bfitg are the Legendre coefficients of g(x), and \bfith are the Legendre
coefficients of h(x). We augment this system with \tau corrections, which are ultimately
ignored in the approximation of the solution.

In Figure 7 we plot the calculated coefficients for N = 999 for three choices of
boundary data: ex cos y, x2, and x3(1  - x)3(1  - y)3. The first two examples exhibit
algebraic decay, with the rate of decay dictated by the number of derivatives matching
at the corners. The last example has a smooth solution (ex cos y is harmonic), and
we see that the algorithm achieves superalgebraic convergence and is stable for large
N . We also note that evaluating the approximation is exact to within an accuracy of
3\times 10 - 16 compared to the exact solution at the arbitrary point (x, y) = (0.1, 0.2).
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100 101 102 103 

10-15 

10-10 

10-5 

100 

Block

N
or

m

x^2
x^3(1-x)^3(1-y)^3
exp(x)cos(y)

Fig. 7. The norm of the blocks of the calculated coefficients to the solution of \Delta u = 0 with
specified Dirichlet boundary conditions with N = 1000. The first two examples show algebraic
convergence, with faster convergence when there is more continuity at the corners. The third example
shows spectral convergence when the solution is smooth.

5.3.2. Example 5: Transport equation. Nothing in this framework depends
on the PDE being elliptic. Here, we consider the transport equation given by

uy = cux.

Information travels at a rate and direction dictated by c, and depending on its value
we need either one or two edges to uniquely determine the solution. If 0 \leq c \leq 1, the
solution is uniquely determined from the boundary on the bottom, and hence we use
the basis Q(0,1,0). If c > 1, then information is coming in from the right, so we use the
basis Q(0,1,1) on the bottom and hypotenuse edges. If c < 0, then information comes
in from the left and we use the basis Q(1,1,0) on the bottom and left edges. In Figure 8
we depict the three solutions, using degree N = 100 polynomial approximations.

6. Systems of PDEs. Systems of PDEs can be handled in a straightforward
way by concatenating their blocks. As an example, we can solve the Poisson equation
with Neumann conditions by re-expressing the PDE as a first-order system: writing
v = ux expressed in the basis \bfitQ (1,0,1), and w = uy expressed in the basis \bfitQ (0,1,1), the
system becomes\left(           

0  - Rx
\~S
(1,0,0)
(1,0,1) 0

0 0  - Ry
\~S
(0,1,0)
(0,1,1)

0 Rz
\~S
(0,0,1)
(1,0,1) Rz

\~S
(0,0,1)
(0,1,1)

D
(1,0,1)
x,(0,0,0)  - S

(1,0,1)
(0,0,0)

\~S
(0,0,0)
(1,0,1) 0

D
(0,1,1)
y,(0,0,1) 0  - S

(0,1,1)
(0,0,0)

\~S
(0,0,0)
(0,1,1)

0 \~D
(0,0,0)
x,(1,0,1)

\~D
(0,0,0)
y,(0,1,1)

\right)           
\left(  u
v
w

\right)  =

\left(        
0
0
0
0
0
\bfitf 

\right)        .

6.1. Example 6: Helmholtz equation in a polygon. Note that being able to
handle systems of PDEs in this manner also allows us to solve on polygonal domains
that are partitioned into triangular elements. For example, consider the Helmholtz
equation

uxx + uyy + k2u = 0

on the polygonal domain with the vertices (0, 0), (1, 0), (1, 1), (0, 2), (0, 1), and
( - 1, 1.5). We can decompose this domain into four triangles and represent the solu-
tion as well as its first derivatives in orthogonal polynomial expansions. This leads
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Fig. 8. Left: The solution to uy = ux using the basis \bfitQ (0,1,0) with boundary condition u(x, 0) =

x(1 - x)ex imposed on the bottom. Middle: The solution to uy = 2ux using the basis \bfitQ (0,1,1) with
boundary condition u(x, 0) = xex - 1 imposed on the bottom and u(x, 1 - x) = x on the hypotenuse.

Right: The solution to uy =  - ux using the basis \bfitQ (1,1,0) with boundary condition u(x, 0) = (1 - x)ex

imposed on the bottom and u(0, y) = 1 - y on the left.

Fig. 9. The solution to (\Delta 2 + k2)u = 0 with Dirichlet boundary conditions fixed to one, for
k = 10 (left) and k = 20 (right), using degree N = 100 polynomials in each triangle.

to a system of 4 \times 3 = 12 PDEs. We then impose continuity of the value and the
normal derivative across the interfaces of each element, exploiting the fact that the
restriction operator maps to the same basis of Legendre polynomials. (The orienta-
tion may be different, but reversing orientation of Legendre expansions corresponds
to multiplying by a diagonal matrix that swaps the signs of every other coefficient.)
The discretization of the PDE system is sparse, and the complexity of building the
matrices is an optimal \scrO (N2) using degree N polynomials within each element. We
show the success of this approach in Figure 9 for k = 10 (left) and k = 20 (right),
using degree N = 100 polynomials.6

7. Conclusions. We have shown that bivariate orthogonal polynomials can lead
to sparse discretizations of general linear PDEs on triangles with Dirichlet and Neu-
mann boundary conditions. Instead of quadrature, we use sparse recurrence relation-
ships combined with specialized linear algebra routines, allowing optimal complexity
for building the linear systems. Multiple triangles can be patched together to solve
PDEs on polygonal domains.

An extension is to tetrahedra in three dimensions and higher. We expect this
to be straightforward because the definitions of orthogonal polynomials on higher
dimensional simplices is very similar to the two-dimensional (2D) case. In three
dimensions, we can use the following polynomials:

P
(a,b,c,d)
n,k,j (x, y, z) := P

(a,b,2j+c+d+1)
n - j,k (x, y)(1 - x - y)jP

(d,c)
j

\biggl( 
z

1 - x - y

\biggr) 
,

6The implementation is currently unoptimized, and it takes 90.5s to build the sparse 63,024 \times 
61,812 matrix, 2.5s to calculate its QR factorization, and 0.7s to solve the system using the factor-
ization.
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which are orthogonal with respect to xaybzc(1  - x  - y  - z)d on the unit three-
dimensional (3D) simplex. The most time-consuming part of such an extension is
deriving the recurrences relationships. Note that in three dimensions and higher the
sparsity of our construction is useful even for small discretization sizes, as a degree N
dense discretization (e.g., arising from collocation) would require calculating \scrO (N6)
entries, where the proposed construction would require an optimal \scrO (N3) operations.

We used direct solvers via SuiteSparse to solve the resulting discretizations, which
is fairly efficient with even millions of unknowns. However, to push the methodology
further we will need robust iterative methods and the development of preconditioners.
It is not yet clear how to design preconditioners in this setting.

Finally, we mention that these techniques can be combined with polynomial map-
pings to solve PDEs on more exotic geometries. This combined with domain decom-
position could provide an effective way of achieving high accuracy solution of PDEs
on geometries with piecewise-smooth boundaries.

Appendix A. Recurrence relationships for Jacobi polynomials on the

triangle. Here, we outline the recurrence relationships for P
(a,b,c)
n,k (x, y) that we

employ, which were previously derived in [19, 32]. We define z := 1  - x  - y and
\partial 
\partial z := \partial 

\partial y  - \partial 
\partial x .

Corollary A.1 (see [19, Corollary 1]). The following recurrence relations for
the partial derivatives hold:

(2k + b+ c+ 1) \partial 
\partial xP

(a,b,c)
n,k = (n+ k + a+ b+ c+ 2)(k + b+ c+ 1)P

(a+1,b,c+1)
n - 1,k

+ (k + b)(n+ k + b+ c+ 1)P
(a+1,b,c+1)
n - 1,k - 1 ,

\partial 
\partial yP

(a,b,c)
n,k = (k + b+ c+ 1)P

(a,b+1,c+1)
n - 1,k - 1 ,

(2k + b+ c+ 1) \partial 
\partial zP

(a,b,c)
n,k =  - (n+ k + a+ b+ c+ 2)(k + b+ c+ 1)P

(a+1,b+1,c)
n - 1,k

+ (k + c)(n+ k + b+ c+ 1)P
(a+1,b+1,c)
n - 1,k - 1 .

Corollary A.2 (see [19, Corollary 2]). The following recurrence relations for
the weighted partial derivatives hold:

 - (2k + b+ c+ 1) \partial 
\partial x

\bigl( 
xaybzcP

(a,b,c)
n,k

\bigr) 
= xa - 1ybzc - 1

\Bigl( 
(k + c)(n - k + 1)P

(a - 1,b,c - 1)
n+1,k

+ (k + 1)(n - k + a)P
(a - 1,b,c - 1)
n+1,k+1

\Bigr) 
,

\partial 
\partial y

\bigl( 
xaybzcP

(a,b,c)
n,k

\bigr) 
=  - (k + 1)xayb - 1zc - 1P

(a,b - 1,c - 1)
n+1,k+1 ,

(2k + b+ c+ 1) \partial 
\partial z

\bigl( 
xaybzcP

(a,b,c)
n,k

\bigr) 
= xa - 1yb - 1zc

\Bigl( 
(k + b)(n - k + 1)P

(a - 1,b - 1,c)
n+1,k

 - (k + 1)(n - k + a)P
(a - 1,b - 1,c)
n+1,k+1

\Bigr) 
.

Corollary A.3 (see [19, Corollary 3]). The following recurrence relations for
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conversions hold:

(2n+ a+ b+ c+ 2)P
(a,b,c)
n,k

= (n+ k + a+ b+ c+ 2)P
(a+1,b,c)
n,k

+(n+ k + b+ c+ 1)P
(a+1,b,c)
n - 1,k ,

(2n+ a+ b+ c+ 2)(2k + b+ c+ 1)P
(a,b,c)
n,k

= (n+ k + a+ b+ c+ 2)(k + b+ c+ 1)P
(a,b+1,c)
n,k

 - (n - k + a)(k + b+ c+ 1)P
(a,b+1,c)
n - 1,k

+(k + c)(n+ k + b+ c+ 1)P
(a,b+1,c)
n - 1,k - 1

 - (k + c)(n - k + 1)P
(a,b+1,c)
n,k - 1 ,

(2n+ a+ b+ c+ 2)(2k + b+ c+ 1)P
(a,b,c)
n,k

= (n+ k + a+ b+ c+ 2)(k + b+ c+ 1)P
(a,b,c+1)
n,k

 - (n - k + a)(k + b+ c+ 1)P
(a,b,c+1)
n - 1,k

 - (k + b)(n+ k + b+ c+ 1)P
(a,b,c+1)
n - 1,k - 1

+(k + b)(n - k + 1)P
(a,b,c+1)
n,k - 1 .

Corollary A.4 (see [19, Corollary 4]). The following recurrence relations for
lowering operators hold:

(2n+ a+ b+ c+ 2)xP
(a,b,c)
n,k = (n - k + a)P

(a - 1,b,c)
n,k + (n - k + 1)P

(a - 1,b,c)
n+1,k ,

(2k + b+ c+ 1)(2n+ a+ b+ c+ 2)yP
(a,b,c)
n,k

= (k + b)(n+ k + b+ c+ 1)P
(a,b - 1,c)
n,k

 - (k + 1)(n - k + a)P
(a,b - 1,c)
n,k+1

 - (k + b)(n - k + 1)P
(a,b - 1,c)
n+1,k

+(k + 1)(n+ k + a+ b+ c+ 2)P
(a,b - 1,c)
n+1,k+1 ,

(2k + b+ c+ 1)(2n+ a+ b+ c+ 2)zP
(a,b,c)
n,k

= (k + c)(n+ k + b+ c+ 1)P
(a,b,c - 1)
n,k

+(k + 1)(n - k + a)P
(a,b,c - 1)
n,k+1

 - (k + c)(n - k + 1)P
(a,b,c - 1)
n+1,k

 - (k + 1)(n+ k + a+ b+ c+ 2)P
(a,b,c - 1)
n+1,k+1 .

Appendix B. Dirichlet basis definitions. Here, we define a basis, denoted

by Q
(a,b,c)
n,k (x, y), that we employ to impose general Dirichlet and Neumann boundary
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conditions. We construct Q
(a,b,c)
n,k (x, y) by augmenting the weighted basis

xaybzcP
(a,b,c)
m,k (x, y)

so that Q
(a,b,c)
0,0 , Q

(a,b,c)
1,0 , . . . , Q

(a,b,c)
N,0 , . . . , Q

(a,b,c)
N,N span all polynomials of degree less

than or equal to N , where a, b, c \in \{ 0, 1\} . Depending on the choice of a, b, and c, we
obtain sparse restriction operators to one, two, or three edges of the triangle. We refer
to this basis as the Dirichlet basis for its usefulness in solving PDEs with Dirichlet
and Neumann boundary conditions.

B.1. One-edge Dirichlet basis.

Definition B.1. The following polynomials vanish at x = 0 apart from when
k = n:

Q
(1,0,0)
n,k (x, y) := xP

(1,0,0)
n - 1,k (x, y) for k = 0, . . . , n - 1,

Q(1,0,0)
n,n (x, y) := Pn,n(x, y).

The following polynomials vanish at y = 0 apart from when k = 0:

Q
(0,1,0)
n,0 (x, y) := \~P (0,0)

n (x),

Q
(0,1,0)
n,k (x, y) := yP

(0,1,0)
n - 1,k - 1(x, y) for k = 1, . . . , n.

The following polynomials vanish at z = 0 (i.e., y = 1 - x) apart from when k = 0:

Q
(0,0,1)
n,0 (x, y) := \~P (0,0)

n (x),

Q
(0,0,1)
n,k (x, y) := zP

(0,0,1)
n - 1,k - 1(x, y) for k = 1, . . . , n.

The ordering is chosen so that the conversion operators derived below are upper
triangular. Each basis has a simple restriction formula to the corresponding edge.

Proposition B.2. Restriction operator to x = 0:

Q(1,0,0)
n,n (0, y) := \~P (0,0)

n (y),

Q
(1,0,0)
n,k (0, y) := 0 for k \not = n.

Restriction operator to y = 0:

Q
(0,1,0)
n,0 (x, 0) := \~P (0,0)

n (x),

Q
(0,1,0)
n,k (x, 0) := 0 for k \not = 0.

Restriction operator to z = 0:

Q
(0,0,1)
n,0 (x, 1 - x) := \~P (0,0)

n (x),

Q
(0,0,1)
n,k (x, 1 - x) := 0 for k \not = 0.

B.2. Two-edge Dirichlet basis. To handle two edges, consider first x = 0 and
y = 0. As before, we wish to construct a basis that adds in the missing polynomials

to xyP
(1,1,0)
n,k (x, y) in such a way that the restriction operators have the necessary

structure. To do this, we select polynomials so that we can construct the conversion
operator to expansions in the basis\bfitQ (1,0,0) and use the restriction operators we already
have (see Corollary C.1).
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Definition B.3. The following polynomials vanish at x = 0 and y = 0 apart
from when k = 0, n:

Q
(1,1,0)
0,0 (x, y) := 1,

Q
(1,1,0)
n,0 (x, y) := x \~P

(0,1)
n - 1 (x),

Q
(1,1,0)
n,k (x, y) := xyP

(1,1,0)
n - 2,k - 1(x, y) for k = 1, . . . , n - 1,

Q(1,1,0)
n,n (x, y) := yP

(0,1,0)
n - 1,n - 1(x, y).

The following polynomials vanish at x = 0 and z = 0 apart from when k = 0, n:

Q
(1,0,1)
0,0 (x, y) := 1,

Q
(1,0,1)
n,0 (x, y) := x \~P

(0,1)
n - 1 (x),

Q
(1,0,1)
n,k (x, y) := xzP

(1,0,1)
n - 2,k - 1(x, y) for k = 1, . . . , n - 1,

Q(1,0,1)
n,n (x, y) := zP

(0,0,1)
n - 1,n - 1(x, y).

The following polynomials vanish at y = 0 and z = 0 apart from when k = 0, 1:

Q
(0,1,1)
0,0 (x, y) := 1,

Q
(0,1,1)
n,0 (x, y) := (1 - x)Pn - 1,0(x, y) = (1 - x) \~P

(1,0)
n - 1 (x),

Q
(0,1,1)
n,1 (x, y) := (1 - x - 2y)Pn - 1,0(x, y) = (1 - x - 2y) \~P

(1,0)
n - 1 (x),

Q
(0,1,1)
n,k (x, y) := yzP

(0,1,1)
n - 2,k - 2(x, y) for k = 2, . . . , n.

B.3. Three-edge Dirichlet basis. We finally get to three edges. Again, we
want to choose the extra polynomials so that we can easily convert to any two-edge
cases. The following does the trick.

Definition B.4. The following polynomials vanish at x = 0, y = 0, and z = 0
apart from when k = 0, 1, and n:

Q
(1,1,1)
0,0 (x, y) := 1,

Q
(1,1,1)
1,0 (x, y) := 1 - 2x,

Q
(1,1,1)
1,1 (x, y) := 1 - x - 2y,

Q
(1,1,1)
n,0 (x, y) := x(1 - x)P

(1,0,0)
n - 2,0 (x, y) = x(1 - x)P

(1,1)
n - 2 (x),

Q
(1,1,1)
n,1 (x, y) := x(1 - x - 2y)P

(1,0,0)
n - 2,0 (x, y) = x(1 - x - 2y)P

(1,1)
n - 2 (x),

Q
(1,1,1)
n,k (x, y) := xyzP

(1,1,1)
n - 3,k - 2(x, y) for k = 2, . . . , n - 1,

Q(1,1,1)
n,n (x, y) := yzP

(0,1,1)
n - 2,n - 2(x, y).

Appendix C. Dirichlet basis recurrence relationships. The following
allows us to construct sparse conversion operators from the one-edge Dirichlet basis
to the standard Jacobi polynomials on the triangle.
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Corollary C.1. The following recurrence relationships hold:

Q
(1,0,0)
0,0 (x, y) = P0,0(x, y),

(2n+ 1)Q
(1,0,0)
n,k (x, y) = (n - k) [Pn,k(x, y) + Pn - 1,k(x, y)] ,

Q(1,0,0)
n,n (x, y) = Pn,n(x, y),

(2n+ 1)Q
(0,1,0)
n,0 (x, y) = (n+ 1)Pn,0(x, y) - nPn - 1,0(x, y),

(2n+ 1)Q
(0,1,0)
n,k (x, y) = (n+ k + 1)Pn,k(x, y) - (n - k + 1)Pn,k - 1(x, y)

 - (n - k)Pn - 1,k(x, y) + (n+ k)Pn - 1,k - 1(x, y),

(2n+ 1)Q
(0,0,1)
n,0 (x, y) = (n+ 1)Pn,0(x, y) - nPn - 1,0(x, y),

(2n+ 1)Q
(0,0,1)
n,k (x, y) =  - (n+ k + 1)Pn,k(x, y) - (n - k + 1)Pn,k - 1(x, y)

+ (n - k)Pn - 1,k(x, y) + (n+ k)Pn - 1,k - 1(x, y).

Proof. These are either immediate from definitions or are obtained by rearranging
recurrence relationships found in Corollary A.4.

The two-edge Dirichlet basis satisfies several sparse recurrence relationships.

Corollary C.2. The following recurrence relationships hold:

Q
(1,1,0)
0,0 (x, y) = Q

(1,0,0)
0,0 (x, y),

2nQ
(1,1,0)
n,0 (x, y) = (n+ 1)Q

(1,0,0)
n,0 (x, y) - nQ

(1,0,0)
n - 1,0 (x, y),

4nQ
(1,1,0)
n,k (x, y) = (n+ k + 1)Q

(1,0,0)
n,k (x, y) - (n - k)Q

(1,0,0)
n,k - 1 (x, y)

+ (k  - n)Q
(1,0,0)
n - 1,k (x, y) + (n+ k  - 1)Q

(1,0,0)
n - 1,k - 1(x, y),

2Q(1,1,0)
n,n (x, y) = Q(1,0,0)

n,n (x, y) - Q
(1,0,0)
n,n - 1(x, y) +Q

(1,0,0)
n - 1,n - 1(x, y).

2Q
(1,1,0)
n,0 (x, y) = Q

(0,1,0)
n,0 (x, y) +Q

(0,1,0)
n - 1,0 (x, y),

2nQ
(1,1,0)
n,k (x, y) = (n - k)

\Bigl[ 
Q

(0,1,0)
n,k (x, y) +Q

(0,1,0)
n - 1,k (x, y)

\Bigr] 
,

Q(1,1,0)
n,n (x, y) = Q(0,1,0)

n,n (x, y).

Q
(1,0,1)
0,0 (x, y) = Q

(1,0,0)
0,0 (x, y),

2nQ
(1,0,1)
n,0 (x, y) = (n+ 1)Q

(1,0,0)
n,0 (x, y) - nQ

(1,0,0)
n - 1,0 (x, y),

4nQ
(1,0,1)
n,k (x, y) =  - (n+ k + 1)Q

(1,0,0)
n,k (x, y) - (n - k)Q

(1,0,0)
n,k - 1 (x, y)

+ (n - k)Q
(1,0,0)
n - 1,k (x, y) + (n+ k  - 1)Q

(1,0,0)
n - 1,k - 1(x, y),

2Q(1,0,1)
n,n (x, y) =  - Q(1,0,0)

n,n (x, y) - Q
(1,0,0)
n,n - 1(x, y) +Q

(1,0,0)
n - 1,n - 1(x, y).
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2Q
(1,0,1)
n,0 (x, y) = Q

(0,0,1)
n,0 (x, y) +Q

(0,0,1)
n - 1,0 (x, y),

2nQ
(1,0,1)
n,k (x, y) = (n - k)

\Bigl[ 
Q

(0,0,1)
n,k (x, y) +Q

(0,0,1)
n - 1,k (x, y)

\Bigr] 
,

Q(1,0,1)
n,n (x, y) = Q(0,0,1)

n,n (x, y).

2Q
(0,1,1)
n,0 (x, y) =  - Q

(0,1,0)
n,0 (x, y) +Q

(0,1,0)
n - 1,0 (x, y),

2nQ
(0,1,1)
n,1 (x, y) =  - 2(n+ 1)Q

(0,1,0)
n,1 (x, y) - nQ

(0,1,0)
n,0 (x, y)

+ 2(n - 1)Q
(0,1,0)
n - 1,1 (x, y) + nQ

(0,1,0)
n - 1,0 (x, y),

2n(2k  - 1)Q
(0,1,1)
n,k (x, y) =  - (k  - 1)(n+ k)Q

(0,1,0)
n,k (x, y) - (k  - 1)(n - k + 1)Q

(0,1,0)
n,k - 1 (x, y)

+(k  - 1)(n - k)Q
(0,1,0)
n - 1,k (x, y) + (k  - 1)(n+ k  - 1)Q

(0,1,0)
n - 1,k - 1(x, y).

2Q
(0,1,1)
n,0 (x, y) =  - Q

(0,0,1)
n,0 (x, y) +Q

(0,0,1)
n - 1,0 (x, y),

2nQ
(0,1,1)
n,1 (x, y) = 2(n+ 1)Q

(0,1,0)
n,1 (x, y) + nQ

(0,0,1)
n,0 (x, y)

 - 2(n - 1)Q
(0,1,0)
n - 1,1 (x, y) - nQ

(0,0,1)
n - 1,0 (x, y),

2n(2k  - 1)Q
(0,1,1)
n,k (x, y)

= (k  - 1)(n+ k)Q
(0,0,1)
n,k (x, y) - (k  - 1)(n - k + 1)Q

(0,0,1)
n,k - 1 (x, y)

 - (k  - 1)(n - k)Q
(0,0,1)
n - 1,k (x, y) + (k  - 1)(n+ k  - 1)Q

(0,0,1)
n - 1,k - 1(x, y).

Proof. These are either immediate from definitions or are obtained by rearranging
recurrence relationships found in Corollary A.4.

The three-edge Dirichlet basis also satisfies several sparse recurrence relationships.

Corollary C.3. The following recurrence relationships hold:

Q
(1,1,1)
0,0 (x, y) = Q

(0,1,1)
0,0 (x, y),

Q
(1,1,1)
1,0 (x, y) = 2Q

(0,1,1)
1,0 (x, y) - Q

(0,1,1)
0,0 (x, y),

Q
(1,1,1)
1,1 (x, y) = Q

(0,1,1)
1,1 (x, y),

(2n - 1)Q
(1,1,1)
n,0 (x, y) = (n - 1)

\Bigl[ 
Q

(0,1,1)
n,0 (x, y) +Q

(0,1,1)
n - 1,0 (x, y)

\Bigr] 
,

(2n - 1)Q
(1,1,1)
n,k (x, y) = (n - k)

\Bigl[ 
Q

(0,1,1)
n,k (x, y) +Q

(0,1,1)
n - 1,k (x, y)

\Bigr] 
,

Q(1,1,1)
n,n (x, y) = Q(0,1,1)

n,n (x, y).
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Q
(1,1,1)
0,0 (x, y) = Q

(1,0,1)
0,0 (x, y),

Q
(1,1,1)
1,0 (x, y) =  - 2Q

(1,0,1)
1,0 (x, y) +Q

(1,0,1)
0,0 (x, y),

Q
(1,1,1)
1,1 (x, y) = 2Q

(1,0,1)
1,1 (x, y) +Q

(1,0,1)
1,0 (x, y) - Q

(1,0,1)
0,0 (x, y),

(2n - 1)Q
(1,1,1)
n,0 (x, y) = (n - 1)

\Bigl[ 
 - Q

(1,0,1)
n,0 (x, y) +Q

(1,0,1)
n - 1,0 (x, y)

\Bigr] 
,

(2n - 1)Q
(1,1,1)
n,1 (x, y) = 2(n+ 1)Q

(1,0,1)
n,1 (x, y) + (n - 1)Q

(1,0,1)
n,0 (x, y)

 - 2(n - 1)Q
(1,0,1)
n - 1,1 (x, y) - (n - 1)Q

(1,0,1)
n - 1,0 (x, y)],

(2n - 1)(2k  - 1)Q
(1,1,1)
n,k (x, y)

= (n+ k)(k  - 1)Q
(1,0,1)
n,k (x, y) - (n - k)(k  - 1)Q

(1,0,1)
n,k - 1 (x, y)

 - (n - k)(k  - 1)Q
(1,0,1)
n - 1,k (x, y) + (n+ k  - 2)(k  - 1)Q

(1,0,1)
n - 1,k - 1(x, y),

(2n - 1)Q(1,1,1)
n,n (x, y)

= (n - 1)
\Bigl[ 
Q(1,0,1)

n,n (x, y) - Q
(1,0,1)
n,n - 1(x, y) +Q

(1,0,1)
n - 1,n - 1(x, y)

\Bigr] 
.

Q
(1,1,1)
0,0 (x, y) = Q

(1,1,0)
0,0 (x, y),

Q
(1,1,1)
1,0 (x, y) =  - 2Q

(1,1,0)
1,0 (x, y) +Q

(1,1,0)
0,0 (x, y),

Q
(1,1,1)
1,1 (x, y) =  - 2Q

(1,1,0)
1,1 (x, y) - Q

(1,1,0)
1,0 (x, y) +Q

(1,1,0)
0,0 (x, y),

(2n - 1)Q
(1,1,1)
n,0 (x, y) = (n - 1)

\Bigl[ 
 - Q

(1,1,0)
n,0 (x, y) +Q

(1,1,0)
n - 1,0 (x, y)

\Bigr] 
,

(2n - 1)Q
(1,1,1)
n,1 (x, y) =  - 2(n+ 1)Q

(1,1,0)
n,1 (x, y) - (n - 1)Q

(1,1,0)
n,0 (x, y)

+2(n - 1)Q
(1,1,0)
n - 1,1 (x, y) + (n - 1)Q

(1,1,0)
n - 1,0 (x, y)],

(2n - 1)(2k  - 1)Q
(1,1,1)
n,k (x, y)

=  - (n+ k)(k  - 1)Q
(1,1,0)
n,k (x, y) - (n - k)(k  - 1)Q

(1,1,0)
n,k - 1 (x, y)

+(n - k)(k  - 1)Q
(1,1,0)
n - 1,k (x, y) + (n+ k  - 2)(k  - 1)Q

(1,1,0)
n - 1,k - 1(x, y),

(2n - 1)Q(1,1,1)
n,n (x, y)

= (n - 1)
\Bigl[ 
 - Q(1,1,0)

n,n (x, y) - Q
(1,1,0)
n,n - 1(x, y) +Q

(1,1,0)
n - 1,n - 1(x, y)

\Bigr] 
.

Proof. These are either immediate from definitions or are obtained by rearranging
recurrence relationships found in Corollary A.4.

C.1. Recurrence relationships for the partial derivatives of the Dirich-
let basis. We now turn to recurrence relationships for the partial derivatives of the
Dirichlet basis, which are needed when imposing Neumann boundary conditions.
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Corollary C.4. The following recurrence relationships hold:

\partial 

\partial y
Q

(0,1,1)
n,0 (x, y) = 0,

\partial 

\partial y
Q

(0,1,1)
n,1 (x, y) =  - 2Pn - 1,0(x, y),

\partial 

\partial y
Q

(0,1,1)
n,k (x, y) = (1 - k)Pn - 1,k - 1(x, y),

\partial 

\partial x
Q

(1,0,1)
n,0 (x, y) = nPn - 1,0(x, y),

\partial 

\partial x
Q

(1,0,1)
n,k (x, y) =

k  - n

2
[Pn - 1,k - 1(x, y) + Pn - 1,k(x, y)] ,

\partial 

\partial x
Q(1,0,1)

n,n (x, y) =  - nPn - 1,n - 1(x, y),

\partial 

\partial z
Q

(1,1,0)
n,0 (x, y) =  - nPn - 1,0(x, y),

\partial 

\partial z
Q

(1,1,0)
n,k (x, y) =

n - k

2
[Pn - 1,k - 1(x, y) - Pn - 1,k(x, y)] ,

\partial 

\partial z
Q(1,1,0)

n,n (x, y) = nPn - 1,n - 1(x, y).

Proof. The first three relations follow from the weighted partial differentiation
relationships (see Corollary A.2). The fourth relation requires the additional property
that

d

dx

\Bigl[ 
x \~P

(0,1)
n - 1 (x)

\Bigr] 
= n \~P

(1,0)
n - 1 (x),

which follows from [15, (15.5.6)]. The fifth relationship also follows from Corollary A.2.
For the sixth equation, if we define t = y/(1 - x), then the relation reduces to

(1 - x)n - 1

\biggl[ 
((n - 1)(1 - t) + 1) \~P

(1,0)
n - 1 (t) - t(1 - t)

d

dt
\~P
(1,0)
n - 1 (t)

\biggr] 
= n(1 - x)n - 1 \~Pn - 1(t),

and this expression follows from \scrL \dagger 
2 in [19, Lem. 1]. The last three relations follow

from the same manipulation.

Acknowledgments. This work began when the second author visited the first
author at The University of Sydney. We are grateful for the travel support provided
by The University of Sydney. We also thank Andrew Horning and Nicolas Boulle for
carefully reading the draft and improving the text.

REFERENCES

[1] M. Ainsworth, G. Andriamaro, and O. Davydov, Bernstein--B\'ezier finite elements of arbi-
trary order and optimal assembly procedures, SIAM J. Sci. Comput., 33 (2011) pp. 3087--
3109, https://doi.org/10.1137/11082539X.

[2] S. Beuchler and J. Sch\"oberl, New shape functions for triangular p-FEM using integrated
Jacobi polynomials, Numer. Math., 103 (2006), pp. 339--366.

[3] J. P. Boyd, Chebyshev and Fourier Spectral Methods, 2nd ed., Dover, Mineola, NY, 2001.
[4] C. W. Clenshaw, The numerical solution of linear differential equations in Chebyshev series,

Proc. Cambridge Philos. Soc., 53 (1957), pp. 134--149.
[5] C. W. Clenshaw, A note on the summation of Chebyshev series, Math. Tables Aids Comput.,

9 (1955), pp. 118--120.

D
ow

nl
oa

de
d 

06
/0

3/
20

 to
 2

4.
59

.5
6.

21
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

https://doi.org/10.1137/11082539X


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

A3756 SHEEHAN OLVER, ALEX TOWNSEND, AND GEOFFREY VASIL

[6] P. Deift, Orthogonal Polynomials and Random Matrices: A Riemann--Hilbert Approach,
Courant Lect. Notes Math. 3, AMS, Providence, RI, 1999.

[7] M. Dubiner, Spectral methods on triangles and other domains, J. Sci. Comput., 6 (1991),
pp. 345--390.

[8] C. F. Dunkl and Y. Xu, Orthogonal Polynomials of Several Variables, 2nd ed., Encyclopedia
Math. Appl. 155, Cambridge University Press, Cambridge, 2014.

[9] W. Gautschi, Orthogonal Polynomials: Computation and Approximation, Oxford University
Press, New York, 2004.

[10] K. Julien and M. Watson, Efficient multi-dimensional solution of PDEs using Chebyshev
spectral methods, J. Comput. Phys., 228 (2009), pp. 1480--1503.

[11] G. Karniadakis and S. Sherwin, Spectral/hp Element Methods for Computational Fluid Dy-
namics, Oxford University Press, New York, 2013.

[12] T. Koornwinder, Two-variable analogues of the classical orthogonal polynomials, in Theory
and Application of Special Functions (Proc. Advanced Sem., Math. Res. Center, Univ.
Wisconsin, Madison, WI, 1975), Academic Press, New York, 1975, pp. 435--495.

[13] D. Kressner, Bivariate matrix functions, Oper. Matrices, 8 (2014), pp. 449--466.
[14] H. Li and J. Shen, Optimal error estimates in Jacobi-weighted Sobolev spaces for polynomial

approximations on the triangle, Math. Comp., 79 (2010) pp. 1621--1646.
[15] F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert,

C. W. Clark, B. R. Miller, and B. V. Saunders, eds., NIST Digital Library of Math-
ematical Functions, http://dlmf.nist.gov/, release 1.0.16 of 2017-09-18.

[16] S. Olver, BlockBandedMatrices.jl, v0.4.6, https://www.github.com/JuliaMatrices/
BlockBandedMatrices.jl.

[17] S. Olver, MultivariateOrthogonalPolynomials.jl, v0.0.1, https://github.com/
JuliaApproximation/MultivariateOrthogonalPolynomials.jl.

[18] S. Olver and A. Townsend, A fast and well-conditioned spectral method, SIAM Rev., 55
(2013), pp. 462--489, https://doi.org/10.1137/120865458.

[19] S. Olver, A. Townsend, and G. M. Vasil, Recurrence relations for a family of orthogonal
polynomials on a triangle, in Proceedings of ICOSAHOM 2018, to appear.

[20] E. L. Ortiz, The tau method, SIAM J. Numer. Anal., 6 (1969), pp. 480--492, https://doi.org/
10.1137/0706044.

[21] J. Shen, T. Tang, and L.-L. Wang, Spectral Methods: Algorithms, Analysis and Applications,
Springer Ser. Comput. Math. 41, Springer, Heidelberg, 2011.

[22] R. M. Slevinsky, Conquering the Pre-computation in Two-dimensional Harmonic Polynomial
Transforms, preprint, https://arxiv.org/abs/1711.07866, 2017.

[23] R. M. Slevinsky, Fast and backward stable transforms between spherical harmonic expansions
and bivariate Fourier series, Appl. Comput. Harmon. Anal., 47 (2019), pp. 585--606.

[24] R. M. Slevinsky, FastTransforms, v0.1, https://github.com/MikaelSlevinsky/FastTransforms.
[25] R. M. Slevinsky and S. Olver, A fast and well-conditioned spectral method for singular

integral equations, J. Comput. Phys., 332 (2017), pp. 290--315.
[26] G. Szeg\"o, Orthogonal Polynomials, American Mathematical Society Colloquium Publications

23, American Mathematical Society, New York, 1939.
[27] G. Teschl, Jacobi Operators and Completely Integrable Nonlinear Lattices, Math. Surveys

Monogr. 72, Amer. Math. Soc., Providence, RI, 2000.
[28] A. Townsend and S. Olver, The automatic solution of partial differential equations using a

global spectral method, J. Comput. Phys., 299 (2015), pp. 106--123.
[29] L. N. Trefethen, Approximation Theory and Approximation Practice, SIAM, Philadelphia,

2013.
[30] L. N. Trefethen, Spectral Methods in MATLAB, SIAM, Philadelphia, 2000, https://doi.org/

10.1137/1.9780898719598.
[31] G. M. Vasil, K. J. Burns, D. Lecoanet, S. Olver, B. P. Brown, and J. S. Oishi, Tensor

calculus in polar coordinates using Jacobi polynomials, J. Comput. Phys., 325 (2016),
pp. 53--73.

[32] Y. Xu, Approximation and orthogonality in Sobolev spaces on a triangle, Constr. Approx., 46
(2017), pp. 349--434.

D
ow

nl
oa

de
d 

06
/0

3/
20

 to
 2

4.
59

.5
6.

21
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

http://dlmf.nist.gov/
https://www.github.com/JuliaMatrices/BlockBandedMatrices.jl
https://www.github.com/JuliaMatrices/BlockBandedMatrices.jl
https://github.com/JuliaApproximation/MultivariateOrthogonalPolynomials.jl
https://github.com/JuliaApproximation/MultivariateOrthogonalPolynomials.jl
https://doi.org/10.1137/120865458
https://doi.org/10.1137/0706044
https://doi.org/10.1137/0706044
https://arxiv.org/abs/1711.07866
https://github.com/MikaelSlevinsky/FastTransforms
https://doi.org/10.1137/1.9780898719598
https://doi.org/10.1137/1.9780898719598

	Introduction
	Computations with bivariate orthogonal polynomials
	Bivariate function approximation
	Jacobi operators
	Recurrences and the Clenshaw algorithm
	Multiplication operators

	Computing with Jacobi polynomials on the triangle
	Conversion operators
	Constructing Jacobi operators
	Implementation of Clenshaw's algorithm and multiplication operators
	Differentiation

	Solving linear PDEs with zero Dirichlet conditions
	Zero Dirichlet conditions
	Example 1: Poisson equation
	Example 2: Variable coefficient Helmholtz equation with forcing terms
	Example 3: The biharmonic equation


	Nonzero Dirichlet conditions
	Derivative and conversion operators
	Restriction operators
	The -method
	Example 4: Laplace's equation
	Example 5: Transport equation


	Systems of PDEs
	Example 6: Helmholtz equation in a polygon

	Conclusions
	Appendix A. Recurrence relationships for Jacobi polynomials on the triangle
	Appendix B. Dirichlet basis definitions
	One-edge Dirichlet basis
	Two-edge Dirichlet basis
	Three-edge Dirichlet basis

	Appendix C. Dirichlet basis recurrence relationships
	Recurrence relationships for the partial derivatives of the Dirichlet basis

	Acknowledgments
	References

