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Abstract
Parreau compactified the Hitchin component of a closed surface S of negative Euler charac-
teristic in such a way that a boundary point corresponds to the projectivized length spectrum
of an action of π1(S) on an R-Euclidean building. In this paper, we use the positivity proper-
ties of Hitchin representations introduced by Fock and Goncharov to explicitly describe the
geometry of a preferred collection of apartments in the limiting building.
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1338 G. Martone

1 Introduction

Let S be a connected, closed, oriented surface with negative Euler characteristic χ(S). The
Teichmüller space T (S) of S is the space of isotopy classes of hyperbolic metrics on S. It is
homeomorphic to R

−3χ(S).
Thurston [11,32] compactified T (S) in such a way that the resulting space T (S) is homeo-

morphic to a closed ball of dimension−3χ(S). The boundary points of T (S) can be described
from different perspectives [2,3,23,29]. In particular, Morgan and Shalen used an algebro-
geometric approach to realize these boundary points as length spectra of isometric actions
of π1(S) on R-trees. An important point for their construction is that the Teichmüller space
can be identified with a subspace of an affine variety. In fact, the holonomies of hyperbolic
metrics let us realize T (S) as a connected component of the character variety

Hom(π1(S),PSL(2, R))//PSL (2, R) .

where PSL(2, R) acts by conjugation and we consider, as usual, the quotient in the sense of
geometric invariant theory; see [24] for details.

This description of T (S) is prone to generalizations. One can investigate subsets of differ-
ent character varieties that share some of the properties of theTeichmüller space. For example,
the natural action of SL(2, R) on the space of degree d − 1 homogeneous real polynomi-
als in two variables gives a homomorphism ιd : PSL(2, R) → PSL(d, R). Post-composing
representations in the Teichmüller space with ιd singles out a connected component

(ιd)∗(T (S)) ⊂ Hitd(R) ⊂ Hom(π1(S),PSL(d, R))//PSL(d, R).

This Hitchin component Hitd(S) was identified and studied by Hitchin [16] who proved that
it is homeomorphic to R

−(d2−1)χ(S). Using different methods, Fock and Goncharov [12]
and Labourie [19] generalized many classical features of T (S) to the context of Hitchin
representations.

Muchwork has been done to describe generalized versions of Thurston’s compactification
for Hitchin components and related spaces [1,8–10,12,20,21,26,27].

The classical approach suggests the study of the (vector valued) length spectrum

Ld(ρ) := (log λ
ρ
1 (γ ), log λ

ρ
2 (γ ), . . . , log λ

ρ
d (γ ))γ∈π(S).

Here, λρ
i (γ ) denotes the absolute value of the eigenvalues of ρ(γ ), which are non-zero and

distinct [12,19]. Usually, one also assumes that λ
ρ
i (γ ) > λ

ρ
i+1(γ ). Parreau [26] showed

that the projectivized image of Ld is relatively compact and that the boundary points of the
closure can be realized as projectivized length spectra of isometric actions of π1(S) on an
R-Euclidean building Bd of rank d − 1.

Euclidean buildings were introduced by Bruhat and Tits [7]. They are metric spaces
equipped with an action of a reductive algebraic group over a field with discrete valuation.
An R-Euclidean building is a generalization of an Euclidean building where the field is
allowed to have a non-discrete valuation.

For this introduction, it suffices to think of Bd as a generalization of an R-tree. It is a
metric space obtained by gluing parametrized copies of the affine space

A
d−1 :=

{
(x1, x2, . . . , xd) ∈ R

d : x1 + x2 + · · · + xd = 1
}

called apartments. Any two such parametrizations differ by an element of the affine Weyl
group Waff, namely by the composition of a permutation of the coordinates and a translation
by a vector in the underlying vector space which is naturally identified with
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Positive configurations of flags in a building... 1339

V
d−1 :=

{
(x1, x2, . . . , xd) ∈ R

d : x1 + x2 + · · · + xd = 0
}

.

The R-Euclidean building Bd is associated to the general linear group over a specific field
F with valuation v. Each element of F is an equivalence class of sequences of real numbers.
The non-discrete valuation v encodes information about the asymptotic behavior of such a
sequence. Parreau [25] described an explicit model for Bd in which apartments correspond
to line decompositions of a fixed d-dimensional F-vector space V .

Our main contribution is to combine this explicit model and the positivity properties of
Hitchin representations to describe the geometry of a preferred collection of apartments in
the building Bd .

Let us be more explicit. Consider the universal cover of S̃ and its boundary ∂ S̃. The choice
of an auxiliary hyperbolic metric on S, identifies S̃ to the hyperbolic plane and ∂ S̃ with the
unit circle. For any ρ ∈ Hitd(S), there exists a (unique up to PGL(d, R)-action) ρ-equivariant
map ξρ from ∂ S̃ into the space of complete flags in R

d [12,19].
This flag map can be used to extend Thurston’s parametrization of Teichmüller space

via shearing coordinates to Hitchin components [4–6,12,31]. The idea is to fix a certain
topological data on S that singles out preferred tuples of distinct points in ∂ S̃. Using the
flag map ξρ , one then wishes to parametrize the space of tuples of flags in R

d considered
up to the action of PGL(d, R). Such a PGL(d, R) orbit is called a configurations of t flags.
We will restrict our attention to tuples of flags that have the maximum span property as in
Definition 2.1, which is a strong genericity condition.

It turns out that it is enough to consider configurations of three and four flags, which can
be parametrized by two families of real numbers. Any orbit of four flags (E, F, G, H)

that have the maximum span property has associated triple ratios Xa,b,c(E, F, G) and
Xa,b,c(E, G, H) and double ratios Zi (E, F, G, H), where a, b, c ≥ 1 are integers such
that a + b + c = d , and i = 1, 2, . . . , d − 1.

Fock and Goncharov show that for any ρ ∈ Hitd(S), the images of tuples of dis-
tinct points via ξρ are positive in the following sense. For any three distinct points
x1, x2, x3 ∈ ∂ S̃, the triple ratios of (ξρ(x1), ξρ(x2), ξρ(x3)) are positive. Moreover, for
any four distinct points x1, x2, x3, x4 in this cyclic order along ∂ S̃, the double ratios
Zi (ξρ(x1), ξρ(x2), ξρ(x3), ξρ(x4)) are positive.

In this paper we use this positivity property of Hitchin representations to describe inter-
sections of apartments in the R-Euclidean building Bd arising as limits of positive tuple of
flags in R

d .
Consider a sequence of positive tuples of flags

(
F1,n, F2,n, . . . , Ft,n

)
in R

d . It follows
from Lemma 3.13 and from the definition of the field F that there exists a unique limiting
tuple of flags (F1, F2, . . . , Ft ) in F

d that we call the ultralimit of
(
F1,n, F2,n, . . . , Ft,n

)
. This

tuple of flags (F1, F2, . . . , Ft ) in F
d is positive if it has the maximum span property and if the

sequences of Fock-Goncharov parameters of the tuple
(
F1,n, F2,n, . . . , Ft,n

)
define non-zero

elements in the field F. The genericity condition guarantees that any two such flags Fi and
Fj in F

d determine an apartment in the R-Euclidean building Bd .

Theorem 1.1 Let (En, Fn, Gn) be a sequence of positive triples of flags in R
d . Assume that

its ultralimit (E, F, G) is positive. Denote by AE F , AFG, and AEG the apartments in Bd

corresponding to the pairs (E, F), (F, G) and (E, G), respectively. Then, there exists

– a preferred parametrization fEG : A
d−1 → AEG,

– two closed cones C1 and C2 in A
d−1, defined by the inequalities 5.6 and 5.7,
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1340 G. Martone

such that

C1 = f −1
EG (AEG ∩ AE F ) and C2 = f −1

EG (AEG ∩ AFG) .

The cones C1 and C2 are described explicitly in terms of the valuations of the sequences of
triple ratios

(
Xa,b,c(En, Fn, Gn)

)
.

In the statement of Theorem 1.1, one can permute the three flags E , F and G to obtain
similar descriptions of the intersections of the apartments AE F , AFG , and AEG in terms of
preferred parametrizations of the apartment AFG or of the apartment AEG .

In particular, applyingTheorem1.1 to the sequences of positive triple of flags (En, Fn, Gn)

and (En, Gn, Hn), we obtain two parametrization fEG and f ′
EG for the apartment AEG . As

observed above, it is a consequence of the definition of an R-Euclidean building that these
two parametrizations differ by an element w(E,F,G,H) of the affine Weyl group Waff.

Theorem 1.2 Consider a sequence (En, Fn, Gn, Hn) of positive quadruples of flags in R
d .

Assume that its ultralimit (E, F, G, H) is positive. Denote by fEG and f ′
EG the preferred

parametrizations of the apartment AEG obtained by applying Theorem 1.1 to the sequences
of positive triples of flags (En, Fn, Gn) and (En, Gn, Hn). Then, the element

w(E,F,G,H) := f −1
EG ◦ f ′

EG ∈ Waff,

of the affine Weyl group Waff is the translation of A
d−1 by the unique vector (x1, x2, . . . , xd)

in V
d−1 such that the difference xi+1 − xi is the valuation of the element in F defined by the

sequence of double ratios Zd−i (En, Fn, Gn, Hn).

Theorems 1.1 and 1.2 are well-known for d = 2 and in the case of d = 3 they follow from
[28, Thm. 1] and [27, Prop. 4.5], respectively. However, we emphasize that our results are
obtained via a different approach that only relies on the positivity properties of the sequences
of flags.

An immediate consequence of our explicit formulas is that the triple intersection AE F ∩
AFG ∩ AEG is at most one point and it is exactly one point if the valuations of all the
sequences of triple ratios are zero.

Our next result concerns the geometry of apartments in the R-Euclidean building Bd

associated to the ultralimit of a sequence of positive tuples of flags for t ≥ 4. Consider a
sequence (F1,n, F2,n, . . . , Ft,n) of positive tuples of flags in R

d , and assume that the ultra-
limit (F1, F2, . . . , Ft ) is positive. Then, there exists an apartment Ai j in Bd associated to
each pair of flags (Fi , Fj ). We say that such an apartment Ai2, j2 combinatorially separates
the apartments Ai1 j1 and Ai3 j3 if, up to a cyclic permutation of the indices of the flags
(F1, F2, . . . , Ft ), we have that

1 ≤ i1 ≤ i2 ≤ i3 < j3 ≤ j2 ≤ j1 ≤ t .

Theorem 1.3 (Monotonicity) Let (F1,n, F2,n, . . . , Ft,n) be a sequence of positive tuples of
flags in R

d with positive ultralimit the tuple of flags (F1, F2, . . . , Ft ) in F
d . LetA1,A2 andA3

be apartments in the R-Euclidean building Bd corresponding to a pairs of flags (Fi1 , Fj1),
(Fi2 , Fj2) and (Fi3 , Fj3), respectively. If the apartment A2 combinatorially separates the
apartments A1 and A3, then

A1 ∩ A3 = A1 ∩ A2 ∩ A3.

In other words, Theorem 1.3 relates combinatorial separation, which is a property depend-
ing exclusively on the cyclic order of the tuple of flags (F1, F2, . . . , Ft ), to intersection
properties of the corresponding apartments in the R-Euclidean building Bd .
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Positive configurations of flags in a building... 1341

2 Flags, snakes and positivity

2.1 Configurations of t flags and their parametrization

A (complete) flag F in R
d is a nested sequence

0 = F (0) ⊂ F (1) ⊂ · · · ⊂ F (d−1) ⊂ F (d) = R
d ,

of vector subspaces of R
d such that dim F (i) = i for all i . The quotient PGL(d, R) of the

general linear group GL(d, R) by the subgroup of non-zero scalar matrices acts naturally on
the space of flags.

We focus on tuples of flags enjoying the following genericity property.

Definition 2.1 The tuple of flags (F1, F2, . . . , Ft ) has the maximum span property if for any
integers 0 ≤ a1, a2, . . . , at ≤ d the following equality holds

dim
(

F (a1)
1 + F (a2)

2 + · · · + F (at )
t

)
= min {a1 + a2 + · · · + at , d} . (2.1)

Observe that the diagonal action of PGL(d, R) on the space of tuples of flags preserves
the maximum span property.

Definition 2.2 A configuration of t flags is a tuple of flags with the maximum span property
considered up to the diagonal action of PGL(d, R). Denote byXt the space of configurations
of t flags.

It follows from elementary linear algebra thatX2 is a single point. Henceforth, we assume
t > 2. In this case there are several PGL(d, R) orbits of maximum span tuples of flags.

Fock and Goncharov [12] parametrized preferred subspaces ofXt . The Fock-Goncharov
coordinates are expressed in terms of the wedge products of vectors in R

d . It is convenient
to fix once and for all an identification

∧d
R

d ∼= R and to observe the following.

Remark 2.3 Let (F1, F2, . . . , Ft ) be a tuple of flags with the maximum span property and let
a1, a2, . . . , at ≥ 0 be integers such that a1 + a2 + · · · + at = d . Choose non-zero elements

f
(a j )

j ∈
a j∧

F
(a j )

j ⊂
a j∧

R
d .

The maximum span property guarantees that f (a1)
1 ∧ f (a2)

2 ∧ · · · ∧ f (at )
t is different from

zero.

2.1.1 Triple ratios

Consider the discrete triangle


d := {
(a, b, c) ∈ Z

3 : a + b + c = d, a, b, c ≥ 0
}
,

depicted in Fig. 1 and its interior


◦
d := {

(a, b, c) ∈ Z
3 : a + b + c = d, a, b, c > 0

}
.
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1342 G. Martone

(5, 2, 0)

(2, 3, 2)

(1, 0, 6)

Fig. 1 The discrete triangle 
d for d = 7. Highlighted, its interior 
◦
d

Definition 2.4 Let (E, F, G) be a triple of flags with the maximum span property. For
(a, b, c) ∈ 
◦

d , define the (a, b, c)-triple ratio of (E, F, G) as

Xa,b,c(E, F, G) := e(a−1) ∧ f (b) ∧ g(c+1)

e(a+1) ∧ f (b) ∧ g(c−1)
· e(a) ∧ f (b+1) ∧ g(c−1)

e(a) ∧ f (b−1) ∧ g(c+1)
· e(a+1) ∧ f (b−1) ∧ g(c)

e(a−1) ∧ f (b+1) ∧ g(c)
,

where we chose non-zero vectors e(·), f (·), and g(·) in the exterior powers
∧· E (·),

∧· F (·),
and

∧· G(·), respectively.

The triple ratios do not depend on any of the choicesmade in the definition andRemark 2.3
guarantees that they are non-zero real numbers. The triple ratios are constant on PGL(d, R)

orbits.

Theorem 2.5 The map assigning the triple ratios to a configuration of three flags is a bijection

between X3 and (R − {0}) (d−1)(d−2)
2 .

Proof Cf. [12, §9]. 
�
Remark 2.6 If we permute the flags E , F and G, the triple ratios vary according to the
formulas

Xa,b,c(E, F, G) = Xb,c,a(F, G, E) = Xb,a,c(F, E, G)−1.

2.1.2 Double ratios

In the case of four flags, one needs to consider a generalized version of the classical cross
ratio of four points on a projective line.

Definition 2.7 Let (E, F, G, H) be a quadruple of flags with the maximum span property.
For 0 < i < d , the i -double ratio is

Zi (E, F, G, H) = −e(i) ∧ g(d−i−1) ∧ f (1)

e(i) ∧ g(d−i−1) ∧ h(1)
· e(i−1) ∧ g(d−i) ∧ h(1)

e(i−1) ∧ g(d−i) ∧ f (1)
.
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Positive configurations of flags in a building... 1343

where we chose non-zero vectors e(·), f (1), g(·), and h(1) in
∧· E (·), F (1),

∧· G(·), and H (1)

respectively.

Note that the double ratios do not depend on the choices involved in the definition and
Remark 2.3 implies that they are non-zero real numbers. The double ratios are constant on
the PGL(d, R) orbit of (E, F, G, H).

Remark 2.8 The rôles of the flags (E, G) and (F, H) in the definition of the double ratios are
not equal. Explicit computations show that if we consider permutations of E , F , G and H
that respect this lack of symmetry (called dihedral permutations) the corresponding double
ratios are related to the original ones by the formulas

Zi (E, F, G, H) = Zd−i (G, H , E, F) = Zi (E, H , G, F)−1.

Theorem 2.9 The configuration of four flags (E, F, G, H) ∈ X4 is determined by the data
of

– the triple ratios Xa,b,c(E, F, G) for (a, b, c) ∈ 
◦
d ;

– the triple ratios Xa,b,c(E, H , F) for (a, b, c) ∈ 
◦
d ;

– the double ratios Zi (E, F, G, H) for 0 < i < d.

Proof Cf. [12, §5 and §9]. 
�

2.2 Snakes and their moves

In this section we describe how the triple and double ratios encode information about the
linear algebra of a quadruple of maximum span flags. We follow the exposition in [13, App.
A].

Notation 2.10 Let us ease notation for the rest of this section by fixing a maximum span
quadruple of flags (E, F, G, H) and by setting Xa,b,c := Xa,b,c(E, F, G) and Zi :=
Zi (E, F, G, H).

2.2.1 Snakes

The dual triangle of 
d is the discrete triangle 
⊥
d = 
d−1 where a point (α, β, γ ) ∈ 
⊥

d
corresponds to the triangle in 
d with vertices

(α + 1, β, γ ), (α, β + 1, γ ), (α, β, γ + 1).

See Fig. 2.

Definition 2.11 A snake σ in 
⊥
d is a sequence of d points σ(k) = (αk, βk, γk) ∈ 
⊥

d such
that (α1, β1, γ1) = (d − 1, 0, 0) and

(αk+1, βk+1, γk+1) = (αk − 1, βk + 1, γk) or (αk − 1, βk, γk + 1) .

Example 2.12 The top snake of 
⊥
d is σ top(k) = (d − k, k − 1, 0); the bottom snake of 
⊥

d
is σ bot(k) = (d − k, 0, k − 1).

For a subspace W ⊂ R
d , the dual of W is the vector space

W ⊥ :=
{

u ∈
(
R

d
)∗ : u|W = 0

}
⊂ (Rd)∗.
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1344 G. Martone

σbot

σ

⊥

Fig. 2 The triangle 
d and its dual 
⊥
d for d = 6. The red triangle on the left corresponds to the red dot on

the right. The dashed lines trace examples of snakes in 
⊥
d

Note that dim W + dim W ⊥ = d . For a flag F ∈ Flag(Rd), the dual flag F⊥ ∈ Flag((Rd)∗)
is defined by

(
F⊥)(i) :=

(
F (d−i)

)⊥
.

The data of a snake and a maximum span triple of flags (E, F, G) determines a projective
basis for (Rd)∗ as follows. Given a snake σ(k) = (αk, βk, γk) the one dimensional subspaces
Lk := (E (αk ) + F (βk ) + G(γk ))⊥ form a line decomposition of (Rd)∗ = ⊕d

i=1Li . Choose
a non-zero vector u1 ∈ L1 = (E (d−1))⊥. We wish to inductively define a non-zero vector
ui ∈ Li for all i > 1. Assume we have defined uk ∈ Lk . Given σ(k) = (αk, βk, γk), there
are two options for the value of σ(k + 1) or, equivalently, for the line Lk+1:

L ′
k+1 =

(
E (αk−1) + F (βk ) + G(γk+1)

)⊥
or L ′′

k+1 =
(

E (αk−1) + F (βk+1) + G(γk )
)⊥

.

Lemma 2.13 For uk ∈ Lk, there exist unique u′
k+1 ∈ L ′

k+1 and u′′
k+1 ∈ L ′′

k+1 so that
uk + u′

k+1 + u′′
k+1 = 0.

Proof Cf. [13, §A.4]. 
�

The desired basis is obtained by setting

uk+1 =
{

u′
k+1 if σ(k + 1) = (αk − 1, βk, γk + 1)

−u′′
k+1 if σ(k + 1) = (αk − 1, βk + 1, γk) .

(2.2)

The choice of sign in Eq. 2.2 will be justified in § 2.3. If we replace u1 with u′
1 = λu1

for some λ �= 0, the corresponding basis (u′
i ) will be so that u′

i = λui . Therefore, a snake
determines via this construction a unique projective basis that we refer to as its snake basis.

2.2.2 Snake bases changes

A snake can “move” in two basic ways.
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Definition 2.14 Let σ and σ ′ be snakes in 
⊥
d .

– σ ′ is obtained from σ by a tail move if σ and σ ′ only differ in the d-th position so that if
σ(d) = (0, βd , γd), then σ ′(d) = (0, βd + 1, γd − 1).

– σ ′ is obtained from σ by a diamond move at k + 1, with k < d − 1, if σ and σ ′
only differ in the (k + 1)-st position so that if σ(k + 1) = (αk+1, βk+1, γk+1), then
σ ′(k + 1) = (αk+1, βk+1 + 1, γk+1 − 1).

More explicitly, if σ ′ is obtained from σ by a diamond move at k + 1 we have

σ(i) = σ ′(i) = (αi , βi , γi ) for i �= k + 1,

σ (k + 1) = (αk − 1, βk, γk + 1),

σ ′(k + 1) = (αk − 1, βk + 1, γk).

Example 2.15 The snake σ in Fig. 2 is obtained from σ bot by a tail move and diamond moves
at k + 1 for k = 4, 3, 2, 1.

The next Proposition relates the triple ratio to snake bases and moves.

Proposition 2.16 (Snake moves) Let σ and σ ′ be snakes in 
⊥
d . Denote by (u′

i ) and (ui ) the
respective snake bases. Suppose u1 = u′

1.

– If σ ′ is obtained from σ by a tail move, then

u′
i =

{
ui for i < d

ui−1 + ui for i = d,
(2.3)

– If σ ′ be a snake obtained from σ by a diamond move at k + 1, then

u′
i =

⎧
⎪⎨
⎪⎩

ui for i < k + 1

ui−1 + ui for i = k + 1

X(αk−1)(βk+1)(γk+1)ui for i > k + 1.

(2.4)

Proof Cf. [12, §9]. See also [13, §A.4]. 
�
Fix any pair of snakes σ and σ ′ and respective snake bases so that u1 = u′

1. We denote by
Mσ ′

σ (E, F, G) ∈ GL(d, R) the upper triangular basis changematrix between the snake bases
ofσ andσ ′. It is a product of (someof) the basis changematrices described inProposition2.16.

2.2.3 Shearing

Double ratios can also be understood in terms of snake bases. In fact, the maximum span
quadruple of flags (E, F, G, H) determines two projective basis (ui ) and (Ui ) corresponding

to the line decomposition Li = (
E (d−i) ⊕ G(i−1)

)⊥
: the projective basis (ui ) defined via

the maximum span triple (E, F, G) and the projective basis (Ui ) defined via (E, G, H).
The following well-known proposition relates these two bases and the double ratios of the
quadruple (E, F, G, H). We include a proof for completeness.

Proposition 2.17 Let (ui ) and (Ui ) be as above. Assume Ud = ud . Then

Ui = Z1 · · · Zd−i ui , for 0 < i < d. (2.5)
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Proof Let (ei ) denote the standard basis of R
d . Up to PGL(d, R) action, we can renormalize

the flags (E, F, G) so that

E (i) = Span (e1, e2, . . . , ei ) ;
G(i) = Span (ed , ed−1, . . . , ed−i+1) ;
F (1) = Span (e1 + e2 + · · · + ed) .

Pick a non-zero vector h1e1 + h2e2 + · · · + hded ∈ H (1). Note that the maximum span
property implies that hi �= 0 for all i = 1, 2, . . . , d . By Definition 2.7, we compute the
double ratios to be

Zi = − hi

hi+1
, i = 1, 2, · · · , d − 1.

Denote by et
i the transpose of the vector ei seen as an element in (Rd)∗. Note that (E (d−1))⊥

= Span(et
d) and for i > 1

(
E (d−i) ⊕ G(i−1)

)⊥ = Span
(
et

d−i+1

) ;
(

E (d−i) ⊕ F (1) ⊕ G(i−2)
)⊥ = Span

(
et

d−i+1 − et
d−i+2

)
.

Likewise, note that

(
E (d−i) ⊕ G(i−2) ⊕ H (1)

)⊥ = Span(v)

with v ∈ Span
(
et

d−i+1, et
d−i+2

)
and H (1) ⊂ ker(v). A computation shows that v is amultiple

of the vector et
d−i+1 + Zd−i+1et

d−i+2.
The vectors ui = λi et

d−i+1 are defined recursively by solving Eq. 2.2. Namely,

λi−1et
d−(i−1)+1 + λi e

t
d−i+1 + μi

(
et

d−i+1 − et
d−i+2

) = 0,

for some λi−1, λi , μi ∈ R − {0}. If we set λ1 = 1 and proceed by induction, we obtain
ui = (−1)i−1et

d−i+1.
The vectors Ui = −�i et

d−i+1, on the other hand, are defined recursively by Eq. 2.2 as
the unique solutions to

−�i−1et
d−(i−1)+1 + �i e

t
d−i+1 + Mi

(
et

d−i+1 + Zd−i+1et
d−i+2

) = 0,

for �i−1,�i , Mi ∈ R − {0} were we assume �d = (−1)d−2 so that ud = Ud . By iteration,
we obtain the following equality for all i ≤ d

�i−1et
d−(i−1)+1 + (−1)i−1Z1 . . . Zd−i e

t
d−i+1 = Mi

(
et

d−i+1 + Zd−i+1et
d−i+2

)
.

Because �i−1 = Mi Zd−i+1, it follows that Ui−1 = −(−1)i−1Z1 . . . Zd−i Zd−i+1et
d−i+2,

as needed. 
�

We denote by S(E, F, G, H) ∈ GL(d, R) the basis change matrix described by Proposi-
tion 2.17.
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2.3 Positive configurations of flags and total positivity

Total positivity was introduced by Gantmacher and Krein [14] and Schoenberg [30] for
matrices in GL(d, R).

Definition 2.18 Amatrix M in GL(d, R) is totally nonnegative if all of its minors are greater
or equal to zero. An element M in GL(d, R) is totally positive if all of its minors belong to
R>0.

Example 2.19 The matrix

⎛
⎜⎜⎝
1 1 1

0 1 1 + X

0 0 X

⎞
⎟⎟⎠ is totally nonnegative whenever X > 0.

Note that the product of totally nonnegative (resp. positive) matrices is totally nonnegative
(resp. positive).

Definition 2.18 has been greatly extended by Lusztig [22] and it plays a prominent rôle
in [12]. In fact, total positivity arises in the context of configurations of flags as follows.

Denote byPt the regular convex polygon with t vertices v1, v2, . . . , vt appearing in this
clockwise order along the boundary of Pt . A tuple of flags (F1, F2, . . . , Ft ) determines a
natural labeling of the vertices of Pt : the vertex vi corresponds to the flag Fi . An oriented
triangulation T of Pt is a collection of oriented edges (vi , vk) that subdivide Pt into
triangles. We label any such triangle by its vertices (vi , v j , vk) where, by convention, we
assume i < j < k. An internal edge of T is an edge of the triangulation that does not
belong to the boundary of Pt . Any internal edge (vi , vk) is a diagonal for a quadrilateral
(vi , v j , vk, vl) where the vertices appear in this cyclic order around Pt . Any triangulation
T has t − 3 internal edges and it subdivides Pt into t − 2 triangles.

One can use the Fock-Goncharov coordinates introduced in §2.1.1 and § 2.1.2 and the
oriented triangulation T to define coordinates for points in Xt . Moreover, one can define
X +

t (T ) as the subset of Xt of configurations of t flags whose coordinates with respect to
T are positive.

Theorem 2.20 Let T and T ′ be any two oriented triangulations of the regular convex poly-
gon with t vertices Pt . Then,

X +
t (T ) = X +

t (T ′) ∼= R
N
>0,

where N = (d−2)(d−1)
2 (t − 2) + (d − 1)(t − 3).

Proof Cf. [12, Thm. 1.5]. 
�

Theorem 2.20 justifies the following definition.

Definition 2.21 A positive configuration of t flags is a configuration of t flags that belongs
to X +

t (T ) for any (all) oriented triangulation(s) T of the polygon Pt . Denote by X +
t the

space of positive configurations of t flags. A tuple of flags (F1, F2, . . . , Ft ) in R
d is positive

if its PGL(d, R) orbit is a positive configuration of t flags.

The choice of signs in Eq. 2.2 guarantees plus signs in Eqs. 2.3 and 2.4 and, consequently,
it implies the following.
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Corollary 2.22 Fix a positive quadruple of flags (E, F, G, H) and a non-zero vector in
(Ed−1)⊥.

– For any two snakes σ and σ ′, the upper triangular matrix Mσ ′
σ (E, F, G) ∈ GL(d, R)

describing the snake bases change is totally nonnegative.
– The diagonal matrix S(E, F, G, H) describing the shearing basis change is totally

nonnegative.
– There exist bases U = (ui ) and U ′ = (u′

i ) of (Rd)∗ such that
(

E (d−i)
)⊥ = Span (u1, . . . , ui ) , (G(d−i))⊥ = Span (ud , . . . , ud−i+1) ,

(F (d−i))⊥ = Span
(
u′
1, . . . , u′

i

)
, (H (d−i))⊥ = Span

(
u′

d , . . . , u′
d−i+1

)
,

and the matrix in the basis U of the element sending U to U ′ is totally nonnegative.

3 The buildingBd

3.1 Axiomatic definition ofR-Euclidean building

Let us recall the axiomatic definition of an R-Euclidean building associated to the general
linear group.

Consider the affine space

A
d−1 =

{
(x1, x2, . . . , xd) ∈ R

d : x1 + x2 + · · · + xd = 1
}

,

with underlying vector space

V
d−1 =

{
(x1, x2, . . . , xd) ∈ R

d : x1 + x2 + · · · + xd = 0
}

.

Let Sd denote the symmetric group on d elements and let the affine Weyl group be the
semi-direct product Waff := Sd � V

d−1. The symmetric group acts on A
d−1 permuting the

coordinates, and V
d−1 acts on A

d−1 by translations, therefore Waff acts on A
d−1.

The standard inner product inR
d induces aSd -invariant inner product onA

d−1 for which
the elements of Waff are isometries.

The fundamental Weyl chamber of A
d−1 is the cone C := {x ∈ A

d−1 : x1 ≥ x2 ≥ · · · ≥
xd}. A Weyl sector S is an image of C via an element of w ∈ Waff.

Definition 3.1 An R-Euclidean building modeled on (Ad−1, Waff) is a set B together with a
family A of injective maps f : A

d−1 → B satisfying the following axioms:

1. if f ∈ A , then f ◦ w ∈ A for any element w ∈ Waff;
2. for any f , f ′ ∈ A , the set I := (

f −1 ◦ f ′) (
A

d−1
) ⊂ A

d−1 is convex, closed and
( f −1 ◦ f ′)|I is the restriction to I of some w ∈ Waff;

3. Any two points x , y belong to a common apartment;
4. Any two Weyl sectors in B contain Weyl subsectors contained in a common apartment;

Axioms 2 and 3 imply that the distance in A
d−1 induces a distance in B.

5. For any point x ∈ B and any f ∈ A such that x ∈ f
(
A

d−1
)
, there exists a retraction

rx, f of B onto A
d−1 such that r−1

x, f (x) = x and rx, f decreases distances.

An element of A is called a marking; the image of A
d−1 under a marking is an apartment.

It follows from item 2. in Definition 3.1 that any two markings of a given apartment differ
by an element of the affine Weyl group.
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3.2 Asymptotic cones

Wewill focus on a specificR-Euclidean buildingBd that admits an explicitmodelwe describe
in § 3.3.We start by recalling some concepts from non-standard analysis.We refer to standard
references [15,17,18,25,33] for detailed discussions.

A non-principal ultrafilter ω is a finitely additive measure on the natural numbers with
values in {0, 1} and such that ω(S) = 0 whenever S is finite. Given a sequence (xn) ⊂ R

we say that x ∈ [−∞,+∞] is the ω-limit of xn , and we write x := limω xn , if for any
neighborhood U of x one has xn ∈ U for ω-almost every n. Because [−∞,+∞] is a
compact and Hausdorff topological space, every sequence (xn) ⊂ R has a unique ω-limit in
[−∞,+∞].
Notation 3.2 Let us fix once and for all a non-principal ultrafilter ω and a scaling sequence
λ := (λn) ⊂ R such that λn ≥ 1 and limn λn = ∞.

Definition 3.3 Let (X , d, x0) be a metric space with basepoint x0. The asymptotic cone of
(X , d, x0) with respect to the non-principal ultrafilter ω and the scaling sequence λ is the
set

Cω,λ(X , d, x0) =
{

(xn) ∈
∏

n

X : lim
ω

d(x0, xn)1/λn < ∞
}
/

∼
,

where (xn) ∼ (yn) if the ω-limit limω d(xn, yn)1/λn is zero.

The ultralimit x of a sequence (xn) ∈ ∏
n X such that limω d(xn, yn)1/λn < ∞ is the

equivalence class of (xn) in the asymptotic cone Cω,λ(X , d, x0). The asymptotic cone is a
complete metric space when equipped with the distance d(x, y) := limω d(xn, yn)1/λn (Cf.
[18, §2]).

Recall that a valuation on a field K is an application v : K → R ∪ {∞} such that for
x, y ∈ K

– v(x) = ∞ if and only if x = 0;
– v(xy) = v(x) + v(y);
– v(x + y) ≥ min{v(x), v(y)} with equality whenever v(x) �= v(y).

Moreover, a valuation defines an associated absolute value |x |v := e−v(x) where, by conven-
tion, e−∞ = 0.

An example of an asymptotic cone is obtained by considering R as a metric space with
distance given by the absolute value and basepoint 0. It turns out that F := Cω,λ(R, | · |, 0) is
a field when equipped with the natural sum and multiplication of sequences (cf. [28, p. 69]).

The field F has a natural valuation given by

v : F → R ∪ {∞}
x �→ − lim

ω

(
log |xn |1/λn

)
.

We embed R in F via constant sequences, and we observe that v (R − {0}) = 0.

3.3 A concrete model forBd

3.3.1 Ultrametric norms

Let V be a d-dimensional F vector space.
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Definition 3.4 An ultrametric norm η on V is a function η : V → R such that for allw, z ∈ V
and all x ∈ F

– η(w) = 0 if and only if w = 0;
– η(xw) = |x |v η(w);
– η(w + z) ≤ max{η(w), η(z)}.

The absolute value |·|v on F is an example of an ultrametric norm on V = F.
Let E = (e1, e2, . . . , ed) be a basis of V . We say that the ultrametric norm η is adapted

to E if for any w = x1e1 + x2e2 + · · · + xded ∈ V

η(w) = max
j=1,...,d

∣∣x j
∣∣
v
η(e j ).

An ultrametric norm η is adaptable if there exists a basis E of V so that η is adapted to E .
Two ultrametric norms η, η′ are homothetic if there exists x ∈ F − {0} such that for every
vector w ∈ V , η(w) = η′(xw).

Theorem 3.5 (Parreau [25]) The set Bd of homothety classes of adaptable ultrametric norms
on the d-dimensional F-vector space V is an R-Euclidean building modeled on (Ad−1, Waff).

The action of g ∈ GL(V ) on an ultrametric norm η is given by g.η = η ◦ g−1. Note
that scalar matrices act by homothety on ultrametric norms, therefore the action of GL(V )

descends to an action of PGL(V ) on Bd . If η is adapted to the basis E , then g.η is adapted to
gE . It is easy to see that PGL(V ), and therefore Waff, acts on Bd via isometries.

3.3.2 Apartments

Any basis E = (e1, . . . , ed) of the vector space V determines a standard marking

fE : A
d−1 → Bd⎛

⎜⎜⎝

x1
x2
...

xd

⎞
⎟⎟⎠ �→

{
[η] : η is adapted to E,

η(e j ) = e−x j .

Remark 3.6 Note that the apartmentAE := fE (Ad−1)depends exclusively on the line decom-
position LE defined as (LE )i = Span(ei ). The action of the affine Weyl group on A

d−1 can
be interpreted via the standard marking fE as an action on the set of bases that define the
line decomposition LE , or, equivalently, the set of markings of AE . More explictly, let σ be
a permutation in Sd and denote by σE the basis (eσ(1), . . . , eσ(d)). Then,

fE (x1, x2, . . . , xd) = fσE
(
xσ(1), xσ(2), . . . , xσ(d)

)
.

Likewise, if y1, y2, . . . , yd ∈ F − {0}, denote by yE the basis (y1e1, y2e2, . . . , yded). Then,

fE (x1, . . . , xd) = fyE (x1 + ỹ1, x2 + ỹ2, . . . , xd + ỹd) .

where (ỹ1, ỹ2, . . . , ỹd) is the unique vector in V
d−1 such that ỹi − ỹi+1 = v(yi ) − v(yi+1).
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3.4 Intersection of apartments

We outline a general algorithm to parametrize the intersection of apartments in Bd . We refer
to [25] for proofs.

One of the main contributions of this paper is to show that total nonnegativity can be used
to simplify this algorithm.

Notation 3.7 For the rest of this section, let E = (e1, . . . , ed) and E ′ = (e′
1, . . . , e′

d) be bases
of V , g ∈ GL(V ) be such that gE = E ′ and (gi j )1≤i, j≤d be the matrix of g in the basis E .

Step 1 (Cf. [25, Cor. 3.3]) There exists σ ∈ Sd such that for all ultrametric norms η adapted
to both E and E ′

η(e′
j ) = ∣∣gσ( j) j

∣∣
v
η
(
eσ( j)

)
.

Moreover, in this case

v(det g) = min
σ∈Sd

v
(
gσ(1)1 · · · gσ(d)d) = v(gσ(1)1 · · · gσ(d)d

)
.

In other words, we can reorder the elements of E so that the product of the diagonal entries
has the same valuation as the determinant. Note that, in general, v(det g) is only greater or
equal to minσ∈Sd v(gσ(1)1 · · · gσ(d)d).

Consider the apartments A = fE (Ad−1) and A′ = fE ′(Ad−1) and assume that the
intersection of these two apartments is non-empty. This is equivalent to saying that there
exists η adapted to both E and E ′.

Step 2 (Cf. [25, §3.4]) Suppose the permutation σ of Step 1 is the identity and gii = 1 for
i = 1, 2, . . . , d . Then,

A ∩ A′ = {[η] ∈ A : g.η = η} .

Step 3 (Cf. [25, Prop. 3.5]) Suppose |det g|v = 1. Then, the subset {[η] ∈ A : g.η = η} of
the apartment A is the image under the standard marking fE of the set

{
x ∈ A

d−1 : − v(gi j ) ≤ xi − x j ≤ v(g ji ) for 1 ≤ i < j ≤ d
}

.

The next proposition follows by combining Steps 1, 2 and 3 above and it is used implicitly
in [25, §3.4].

Proposition 3.8 (Intersection of apartments) Consider bases E = (e1, . . . , ed) and E ′ =
(e′

1, . . . , e′
d) of the F-vector space V . Let g ∈ GL(V ) be such that gE = E ′ and let

(gi j )1≤i, j≤d be the matrix of g in the basis E . Denote byA = fE (Ad−1) andA′ = fE ′(Ad−1)

the apartments in Bd defined via the standard markings and assume A∩A′ �= ∅. Then, there
exists a permutation σ ∈ W such that A ∩ A′ is the image under the standard marking fE
of the set

{
x ∈ A

d−1 : − v

(
gσ(i) j

gσ(i)i

)
≤ xσ(i) − xσ( j) + v

(
gσ(i)i

gσ( j) j

)
≤ v

(
gσ( j)i

gσ( j) j

)}

=
{

x ∈ A
d−1 : − v

(
gσ(i) j

gσ( j) j

)
≤ xσ(i) − xσ( j) ≤ v

(
gσ( j)i

gσ(i)i

)}
.
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Proof Let σ be as in Step 1 and identify it with the permutation matrix in GL(d, F) it defines
with respect to the basis E . The matrix

g = diag
(
1/gσ(1)1, . . . , 1/gσ(d)d

) · σ · g,

satisfies the hypothesis of Step 3with respect to the basesE = (gσ( j) j eσ( j)) andE ′. Therefore,
the intersection A ∩ A′ is the image under the marking fE of

{
x ∈ A

d−1 : − v(gi j ) ≤ xi − x j ≤ v(g ji ) for 1 ≤ i, j ≤ d
}

.

On the other hand, as E = (gσ(1)1, . . . , gσ(d)d) · σ · E , by Remark 3.6 we have

fE (x1, . . . , xd) = fE (xσ(1) + g̃σ(1)1, . . . , xσ(d) + g̃σ(d)d),

where (g̃σ(1)1, g̃σ(2)2, . . . , g̃σ(d)d) is the unique vector inV
d−1 such that g̃σ(i)i −g̃σ(i+1)i+1 =

v(gσ(i)i ) − v(gσ(i+1)i+1). We end the proof by observing that gi j = gσ(i) j/gσ(i)i . 
�

3.5 Flags and endomorphisms in F
d

We now collect a few properties of asymptotic cones that will be needed in what follows.
Equip the vector space V = F

d with the sup-norm

‖x1e1 + · · · + xded‖ω = max
i

|xi |v,

where e1, e2. . . . , ed denotes the standard basis of F
d .

Proposition 3.9 The pointed normed vector space
(
F

d , ‖ · ‖ω, 0
)

is isomorphic to the asymp-
totic cone

Cω,λ(R
d , ‖ · ‖, 0),

for the standard Euclidean norm ‖ · ‖ on R
d .

Proof Cf. [26, Prop. 3.12]. 
�
Proposition 3.9 will allow us to study the asymptotic behavior of sequences of positive

tuples of flags in R
d in terms of the building Bd .

Definition 3.10 Let Wn be a sequence of i-dimensional vector subspaces in R
d . The i-

dimensional subspace W of F
d is an ultralimit for the sequence Wn if the there exists

– a sequence (v1,n, v2,n, . . . , vi,n) of bases for Wn ,
– a basis (v1, v2, . . . , vi ) of W

such that ulim v j,n = v j for all j .

Lemma 3.11 The sequence Wn of i-dimensional vector subspaces in R
d has a unique ultra-

limit W .

Proof Existenceof the ultralimit is obtainedbychoosing anorthonormal basis (v1,n, v2,n, . . . ,

vi,n) for each Wn and considering the ultralimits of these vectors. In fact, as each v j,n has
constant norm equal to one, by definition of the asymptotic cone v j,n has a non-zero ultra-
limit v j . We show by contradiction that the vectors v j are independent. Suppose there exists
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1 ≤ l ≤ i such that vl = ∑
j �=l x jv j in F

d . There exist sequences of real numbers (x j,n)

such that x j = ulim x j,n ∈ F. It follows that

⎛
⎝1 +

∑
j

x2j,n

⎞
⎠

1/λn

=
∥∥∥∥∥∥
vl,n −

∑
j �=l

x j,nv j,n

∥∥∥∥∥∥

1/λn

≥ 1,

has ultralimit equal to zero, which is a contradiction.
Let us now prove the uniqueness of the ultralimit W of the sequence Wn . Suppose, by

contradiction, that there exist two ultralimits W and W ′ for Wn obtained by considering
the sequences of bases v j,n and v′

j,n of Wn with ultralimits v j ∈ W and v′
j ∈ W ′. Write

v′
j,n = ∑

k xk, j,nvk,n . As we know that the ultralimits of v j,n and v′
j,n are non-zero vectors in

F
d , it follows that the ultralimits xk, j of the sequences xk, j,n are elements in F. In particular,

we have that v′
j = ∑

k xk, jvk and v′
j belongs to W . As this holds for every v′

j , it follows
that W ′ ⊂ W . We obtain the reverse inclusion W ′ ⊃ W analogously, therefore W = W ′ as
needed. 
�

Definition 3.12 Let Fn be a sequence of flags in R
d . The flag F in F

d is the ultralimit of the
sequence Fn of real flags if the there exist a sequence (v1,n, v2,n, . . . , vd,n) of bases of R

d

and a basis (v1, v2, . . . , vd) of F
d such that:

– for each i , the sequence of vectors vi,n in R
d converges to the non-zero vector vi in F

d ;
– for each n, the sequence of i-dimensional vector subspaces F (i)

n = Span(v1,n, v2,n, . . . ,

vi,n) converges to the vector subspace F (i) = Span(v1, v2, . . . , vi ).

Lemma 3.13 Let Fn be a sequence of flags in R
d . Then, there exists a unique flag F in F

d

such that F is the ultralimit of the sequence Fn.

Proof The proof follows by applying Lemma 3.11 to each sequence of i-dimensional sub-
spaces F (i)

n . 
�

The algebra End(V ) of endomorphisms of V = F
d can also be identified with an asymp-

totic cone. Observe that the norm ‖ ·‖ω on V = F
d induces an operator norm Nω on End(V ).

Proposition 3.14 The pointed normed algebra (End(V ), Nω, Id) is isomorphic to the asymp-
totic cone

Cω,λ

(
End(Rd), N , Id

)
,

where N is the operator norm induced by the Euclidean norm ‖ · ‖ on R
d .

Furthermore, let us identify End(V ) and End(Rd) with the spaces of matrices M(d, F)

and M(d, R) via the standard bases. Suppose that M = (mi j ) ∈ M(d, F) is the ultralimit
of a sequence of matrices Mn = ((mi j )n) ∈ M(d, R). Then, for every i and j , we have that
mi j = ulim (mi j )n

Finally, the group GL(V ) of invertible isomorphisms in End(V ) is identified with the set
of ultralimits of sequences (gn) ∈ End(Rd) such that gn ∈ GL(Rd) for ω-almost every n
and limω N (g−1

n )1/λn < +∞.

Proof Cf. [26, Prop. 3.17, Cor. 3.18] and [27, Prop. 5.1]. 
�
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4 Positivity inBd

Recall that we fixed a non-principal ultrafilterω and a scaling sequence λ = (λn). This allows
us to consider the asymptotic cone F of the real numbers R with base point 0 and distance
given by the absolute value. Every element in F is an equivalence class of sequences of real
numbers. Therefore, the field F is naturally equipped with an order by setting

[xn] ≥ [yn] if xn ≥ yn ω-a.e..

The set F≥0 = {x ∈ F : x ≥ 0} is a semifield with respect to the operations in F and it
contains R≥0. Set F>0 := F≥0 − {0}. Total nonnegativity and total positivity can be defined
naturally for elements in GL(d, F) as follows.

Definition 4.1 An element M ∈ GL(d, F) is totally positive if all of its minors belong to
F>0. The matrix M ∈ GL(d, F) is totally nonnegative if all of its minors are in F≥0.

4.1 Positivity and intersections

The main goal of this section is to show how total nonnegativity can be used to simplify the
problem of parametrizing the intersection of two apartments A and A′ in the R-Euclidean
building Bd . More precisely, assume that A ∩ A′ is non-empty. Proposition 3.8 states that,
in general, the intersection of these two apartments is described by d(d − 1) inequalities.
Corollary 4.7 below shows that 2(d − 1) inequalities suffice when A and A′ are related by a
totally nonnegative matrix.

We will need the following technical lemmas.

Lemma 4.2 For any x, y in F≥0, we have that v(x + y) = min {v(x), v(y)}.
Proof Cf. [26, Prop. 3.2.1.]. 
�
Lemma 4.3 Suppose y, x − y are in F≥0 and y is different from zero. Then, v(xy−1) ≤ 0.

Proof As F≥0 is a semifield and y �= 0, we know that xy−1 − 1 = (x − y)y−1 ∈ F≥0. Thus,

v(xy−1) = v
(
(xy−1 − 1) + 1

)

= min
{
v(xy−1 − 1), 0

} ≤ 0.

where the second equality follows from Lemma 4.2, observing that 1 ∈ F≥0 and v(1) = 0.

�

Proposition 4.4 Let M = (mi j ) be a matrix in GL(d, F) with |det M |v = 1 and mii = 1.
Consider the sets

IM =
{

x ∈ A
d−1 : − v(mi j ) ≤ xi − x j ≤ v(m ji ) for 1 ≤ i < j ≤ d

}
;

I+
M =

{
x ∈ A

d−1 : − v(mi,i+1) ≤ xi − xi+1 ≤ v(mi+1,i ) for 1 ≤ i < d
}

.

If M is totally nonnegative, then IM = I+
M .

Proof It is clear that IM ⊆ I+
M . We show that if x ∈ I+

M , then xi − xi+k ≤ v(mi+k,i ) by
induction on k ≥ 2. We omit the proof of the inequality xi − x j ≥ −v(mi j ) as it is very
similar.
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For k = 2, we want to show xi − xi+2 ≤ v(mi+2,i ). Namely, we focus on the sub-matrix
⎛
⎝

1 � �

mi+1,i 1 �

mi+2,i mi+2,i+1 1

⎞
⎠ .

If mi+2,i = 0 there is nothing prove as v(mi+2,i ) = ∞. Assume mi+2,i �= 0. Total non-
negativity of M implies that mi+2,i and mi+1,i mi+2,i+1 − mi+2,i are in F≥0. This implies
that mi+1,i and mi+2,i+1 are non-zero. Therefore, the valuations of mi+1,i and mi+2,i+1 are
finite. We apply Lemma 4.3 with x = mi+1,i mi+2,i+1 and y = mi+2,i to obtain

v

(
mi+1,i mi+2,i+1

mi+2,i

)
≤ 0 ⇐⇒ v(mi+1,i ) + v(mi+2,i+1) ≤ v(mi+2,i ).

Thus, if x ∈ I+
M we have

xi − xi+2 = xi − xi+1 + xi+1 − xi+2 ≤ v(mi+1,i ) + v(mi+2,i+1) ≤ v(mi+2,i ),

whichproves the base case for the induction.Assume that for x ∈ I+
M weknow that xi −xi+l ≤

v(mi+l,i ) whenever l < k. If mi+k,i = 0, the inequality xi − xi+k ≤ v(mi+k,i ) = ∞ is
obvious. Thus, let us assume mi+k,i �= 0. We obtain the desired inequality

xi − xi+k = xi − xi+1 + xi+1 − xi+k ≤ v(mi+1,i ) + v(mi+k,i+1) ≤ v(mi+k,i ),

by using the induction hypothesis for the inequality xi+1− xi+k ≤ v(mi+k,i+1) and applying
Lemma 4.3 with x = mi+1,i mi+k,i+1 and y = mi+k,i . 
�

We specialize Proposition 4.4 to the case of upper triangular matrices for future reference.

Corollary 4.5 Let M = (mi j ) be an upper triangular matrix in GL(d, F) and consider the
sets:

IM =
{

x ∈ A
d−1 : xi − x j + v

(
mii

m j j

)
≥ −v

(
mi j

mii

)
for 1 ≤ i < j ≤ d

}
;

I+
M =

{
x ∈ A

d−1 : xi − xi+1 + v

(
mii

mi+1,i+1

)
≥ −v

(
mi,i+1

mii

)
for 1 ≤ i < d

}
.

If M is totally nonnegative, then IM = I+
M .

Proof As the determinant of M is non-zero, we can multiply M by the totally nonnegative
diagonal matrix S = diag(1/m11, . . . , 1/mdd). The matrix M ′ = SM = (m′

i j ) is totally

nonnegative,
∣∣det M ′∣∣

v
= 1 and its diagonal entries are equal to 1. Therefore, we conclude

by applying Proposition 4.4 to M ′ and performing an easy algebraic manipulation. 
�
Remark 4.6 In the statement of Corollary 4.5, the expressions for the inequalities defining
the sets IM and I+

M can be simplified by subtracting v(mii ) on both sides. However, we
wish to not do so as these two terms play different rôles when considering intersections of
apartments in §5.

Corollary 4.7 Let A and A′ be apartments in Bd . Assume that there exist bases E and E ′ of
the F-vector space V such that

– A = fE (Ad−1) and A′ = fE ′(Ad−1) where fE and fE ′ are the standard marking of the
bases E and E ′, respectively;
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– the matrix (gi j ) in the basis E corresponding to the group element g ∈ GL(V ) such that
gE = E ′ is totally nonnegative, gii = 1 and v(det g) = 0.

Then,

f −1
E (A ∩ A′) =

{
x ∈ A

d−1 : − v(gi,i+1) ≤ xi − xi+1 ≤ v(gi+1,i ) for 1 ≤ i < d
}

.

Proof This is an immediate consequence of Proposition 3.8 and Proposition 4.4. 
�
Example 4.8 Note that Proposition 4.4 fails if M is not totally nonnegative. Consider the
sequence (eλn ) ⊂ R and observe that this defines a non-zero element in F with valuation

v
([eλn ]) = − lim

ω

1

λn
log eλn = −1.

The matrix M =
⎛
⎝
1 1 [eλn ]
0 1 1
0 0 1

⎞
⎠ is not totally nonnegative as it has a minor equal to

[1 − eλn ]<0.
Using the notations introduced in Proposition 4.4, the set IM is defined by the inequalities

x1 − x2 ≥ 0, x2 − x3 ≥ 0, x1 − x3 ≥ −v
([eλn ]) = 1,

and it is properly contained in I+
M , which is defined by the inequalities x1 − x2 ≥ 0, and

x2 − x3 ≥ 0.

4.2 Positivity of configurations of flags in F
d

In § 3.5, we described how a sequence of tuple of flags inR
d defines a tuple of flags in F

d . Fix
an oriented triangulation T of the regular convex polygon with t vertices Pt . In particular,
for any sequence of tuples of flags we obtain corresponding Fock-Goncharov parameters as
described in § 2.3.

Definition 4.9 The ultralimit (F1, F2, . . . , Ft ) in F
d of a sequence of t real flags (F1,n, F2,n,

. . . , Ft,n) is positive if

(1) the tuple of flags (F1, F2, . . . , Ft ) has the maximum span property,
(2) the sequences of triple and double ratios Xa,b,c(Fi,n, Fj,n, Fk,n) and Zs(Fi,n, Fj,n,

Fk,n, Fl,n) with respect to the oriented triangulation T are such that

0 < ulim Xa,b,c(Fi,n, Fj,n, Fk,n) < ∞ and 0 < ulim Zs(Fi,n, Fj,n, Fk,n, Fl,n) < ∞
for all (a, b, c) ∈ 
◦

d and s = 1, 2, . . . , d − 1.

Remark 4.10 Observe that, in Definition 4.9, the maximum span property for the tuple
(F1, F2, . . . , Ft ) of flags in F

d is independent on the choice of oriented triangulation. The
positivity property is also independent on the choice of triangulation T thanks to [12, §10].
In fact, given any other oriented triangulation T ′ of the regular convex polygon with t ver-
tices Pt , the sequences of Fock-Goncharov coordinates for T ′ can be expressed as a ratio
of subtraction-free polynomials of the Fock-Goncharov coordinates with respect to the tri-
angulation T . It follows that the positivity and finiteness of the ultralimit of the coordinates
is preserved by a change of triangulation.
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Positive configurations of flags in a building... 1357

The following example illustrates how the maximum span property in Definition 4.9 is
not implied by the positivity of the ultralimits of the Fock-Goncharov coordinates.

Example 4.11 Consider the sequence of four flags (En, Fn, Gn, Hn) in R
2 such that

E (1)
n = Span

(
1
0

)
, G(1)

n = Span

(
eλ2n

1

)
,

F (1)
n = Span

(−1 + eλ2n

1

)
, s H (1)

n = Span

(
2 + eλ2n

1

)
,

An easy computation shows that the sequence of double ratios of these four lines is constant
equal to two. In particular, it is positive. However,

ulim E (1)
n = ulim F (1)

n = ulim G(1)
n = ulim H (1)

n = Span

(
1
0

)
.

The following lemmagives a sufficient criterion for positivity of the ultralimit of a sequence
of positive tuples of flags.

Lemma 4.12 Consider the ultralimit (F1, F2, . . . , Ft ) of a sequence of tuples of flags
(F1,n, F2,n, . . . , Ft,n). Assume that there exists 1 ≤ i, j, k ≤ t such that for all a, b =
0, 1, . . . , d and c = 0, 1 we have

dim
(

F (a)
i + F (b)

j + F (c)
k

)
= min {a + b + c, d} .

Assume that the Fock-Goncharov invariants of (F1, F2, . . . , Ft ) have finite positive ultralim-
its. Then, the ultralimit (F1, F2, . . . , Ft ) is positive.

Proof Without loss of generality, let us assume (i, j, k) = (1, 2, 3). Let T be an ideal
triangulation of Pt such that the vertices labeled by 1,2,3 and 4 form a quadrilateral with
diagonal labeled by the vertices (v1, v3). In dimension d = 3, this lemma is a consequence of
[27, Prop. 5.5]. For d > 3 one uses the following standard observation. For any triple of flags
(En, Fn, Gn)with the maximum span property, and for any (a, b, c) ∈ 
◦

d , the quotient flags

(En, Fn, Gn) in R
d/(E (a−1)

n ⊕ F (b−1)
n ⊕ G(c−1)

n ) ∼= R
3 has the maximum span property.

Moreover, it is easy to check that

Xa,b,c(En, Fn, Gn) = X1,1,1
(
En, Fn, Gn

)
.

Therefore, choose an index (a, b, c) ∈ 
◦
d with c = 1. Then, for every n, the quotient flag

F3,n is simply the flag with line F (1)
3,n and plane F (2)

3,n . Letting a and b vary and applying [27,

Prop. 5.5], we have that F (2)
3 is such that

dim
(

F (a)
1 + F (b)

2 + F (2)
3

)
= min {a + b + 2, d} . (4.1)

Iterating this argument as we let c vary between 2 and d − 2, we have that the limiting triple
(F1, F2, F3) satisfies the maximum span property.

A similar argument can be used to prove the maximum span property for quadruples
of flags. In fact, whenever we have a sequence of maximum span quadruple of flags
(En, Fn, Gn, Hn), the quotient ofR

d by the subspace E (i−1)
n ⊕G(d−i−2)

n is three-dimensional
and defines a sequence of quadruples of flags (En, Fn, Gn, Hn) such that

Zi (En, Fn, Gn, Hn) = Z1
(
En, Fn, Gn, Hn

)
,
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1358 G. Martone

Zi+1(En, Fn, Gn, Hn) = Z2
(
En, Fn, Gn, H n

)
.

Therefore, consider the sequence of positive quadruples (F1,n, F2,n, F3,n, F4,n). Applying
[27, Prop 5.5] to the quadruples (F1,n, F2,n, F3,n, F4,n) as we let i vary between 1 and d −2,
we obtain that

dim
(

F (a)
1 + F (b)

3 + F (1)
4

)
= min {a + b + 1, d} .

In summary, we showed that if the flags (F1, F2, F3) in F
d satisfy Eq. 4.1 and we have posi-

tivity of the ultralimits of the Fock-Gonchaorv coordinates of the quadruple (F1, F2, F3, F4),
then (F1, F2, F3) satisfies themaximumspanproperty and (F1, F3, F4) satisfiesEquation4.1.
This finishes the proof as we can now iterate this procedure. 
�

Finally, recall that given a triple of flags (E, F, G) in R
d , a snake σ in 
⊥

d defines a
projective basis for the space (Rd)∗. The following lemma states that snake bases are well
behaved when we consider positive ultralimits of sequences of positive triples of flags.

Lemma 4.13 Let (En, Fn, Gn) be a sequence of positive triples of flags whose ultralimit
(E, F, G) is positive. Let (ui,n) be the corresponding sequence of snake bases for the snake

σ . Up to rescaling, assume that the sequence (u1,n) of non-zero vectors in (E (d−1)
n )⊥ is such

that

ulim u1,n = u1 ∈ F
d − {0}.

Then, the ultralimit of ui,n is a non-zero vector in F
d for every i = 1, 2, . . . , d.

Proof Fix a snake σ and denote by (L1,n, L2,n, . . . , Ld,n) the sequence of line decomposi-
tions it defines via the triples of flags (En, Fn, Gn) as described in §2.2. The result follows
from the normalization for the vectors ui,n given in Lemma 2.13 and by the maximum span
property for the triple of flags (E, F, G) in F

d . In fact, by construction of the snake basis,
given ui−1,n ∈ Li−1,n , the vector ui,n ∈ Li,n is defined recursively, up to a sign, as one of
the two vectors u′

i,n ∈ L ′
i and u′′

i,n ∈ L ′′
i satisfying the equality ui−1,n + u′

i,n + u′′
i,n = 0. On

the other hand, the maximum span property implies that there exist sequences of non-zero
real numbers a′

n and a′′
n such that the ultralimits ulim a′

nu′
i,n and ulim a′′

n u′′
i,n are non-zero

vectors v′
i and v′′

i in (Fd)∗. If a′ = (a′
n) and a′′ = (a′′

n ) are elements in F − {0}, it follows
that ulim u′

i,n = v′
i/a′ and ulim u′′

i,n = v′′
i /a′′ are non-zero vectors in (Fd)∗. Therefore, we

want to show that this has to be the case. This follows by writing

ui−1,n + 1

a′
n
(a′

nu′
i,n) + 1

a′′
n
(a′′

n u′′
i,n) = 0,

and observing that if limω |a′
n |1/λn = 0 or +∞, then ui−1 ∈ Span(v′′

i ) or v′
i ∈ Span(v′′

i ),
respectively. In either case, this contradicts the maximum span property of the triple of flags
(E, F, G). 
�

5 Positive intersections of flag apartments

In this section we collect the proofs of our main results: Theorems 1.1, 1.2 and 1.3 from the
introduction. Our main tool is Proposition 4.4, which we use to describe the geometry of a
preferred collection of apartments in the R-Euclidean building Bd .

123



Positive configurations of flags in a building... 1359

5.1 Monotonicity for positive configurations of flags

Consider a sequence of positive tuples of flags (F1,n, F2,n, . . . , Ft,n) in R
d . If the ultralimit

(F1, F2, . . . , Ft ) is positive, any pair of flags (Fi , Fj ) defines a line decomposition of the d-
dimensional vector space V = (Fd)∗. It follows from § 3.3.2 that such a line decomposition
determines an apartment Ai j in the R-Euclidean building Bd . Recall from the introduction
that given three apartments Ai1 j1 , Ai2 j2 and Ai3 j3 we say that Ai2 j2 combinatorially sep-
arates Ai1 j1 and Ai3 j3 if, up to a cyclic permutation of the indices of the tuple of flags
(F1, F2, . . . , Ft ), we have

1 ≤ i1 ≤ i2 ≤ i3 < j3 ≤ j2 ≤ j1 ≤ t .

Theorem 5.1 (Theorem 1.3) Consider a sequence (F1,n, F2,n, . . . , Ft,n) of t positive flags in
R

d with positive ultralimit (F1, F2, . . . , Ft ). Consider apartments A1, A2 and A3 defined
via the line decompositions associated to pairs of flags (Fi1 , Fj1), (Fi2 , Fj2), and (Fi3 , Fj3),
respectively. If the apartment A2 combinatorially separates A1 and A3, then

A1 ∩ A3 = A1 ∩ A2 ∩ A3.

Proof IfA1∩A3 = ∅, the result is trivial. Therefore, we assume that the intersectionA1∩A3

is non-empty. Moreover, it suffices to showA1 ∩A3 ⊆ A1 ∩A2. In fact, it then follows that
A1 ∩A3 ⊆ A1 ∩A2 ∩A3 and the reverse inclusion is obvious. We subdivide the proof into
three cases. The first two cases will need the following technical lemma. 
�
Lemma 5.2 Let A = (ai j ), B = (bi j ) be totally nonnegative matrices in GL(d, F) such that
A = (ai j ) is upper triangular and B is a triangular matrix (upper or lower). Denote by
C = (ci j ) the product AB and assume that

v(det C) = min
σ∈Sd

v
(
cσ(1)1 . . . cσ(d)d

)
. (5.1)

Then, v(det C) = v(c11 . . . cdd) and

v
( ci,i+1

ci+1,i+1

)
≤ v

( ai,i+1

ai+1,i+1

)
. (5.2)

Proof As A and B are totally nonnegative, we have the following implications

ci,i+1 = ai,i+1bi+1,i+1 +
∑
j �=i

ai j b j,i+1 �⇒ v(ci,i+1) ≤ v(ai,i+1bi+1,i+1),

cii = aii bii +
∑
j �=i

ai j b ji �⇒ v(cii ) ≤ v(aii bii ).

Moreover, as A and B are triangular matrices in GL(d, F), we have that the valuations v(aii )

and v(bii ) are finite. Let us prove the equality v(cii ) = v(aii bii ) for all i . We have

v(a11 . . . addb11 . . . bdd) = v(det C)

≤ v(c11 . . . cdd)

≤ v(a11b11 . . . addbdd),

where the first inequality follows from Equation 5.1. Therefore, v(det C) = v(c11 . . . cdd)

and

v(ci,i+1) − v(ci+1,i+1) ≤ v(ai,i+1) + v(bi+1,i+1) − v(ai+1,i+1) − v(bi+1,i+1)
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= v(ai,i+1) − v(ai+1,i+1),

which is equivalent to Eq. 5.2. 
�
It follows from Proposition 3.14 and Lemma 4.13 that there exist bases Ei , i = 1, 2, 3 of

V such that

– the apartment Ai is the image of A
d−1 via the standard marking of the basis Ei ,

– for i < j , if gi j ∈ GL(V ) is the element such that gi jEi = E j , then the corresponding
matrix in the basis Ei is totally nonnegative.

Let A, B and C be the totally nonnegative matrices corresponding to the elements g12, g23
and g13, respectively. Observe that C = (AB A−1)A = AB. Moreover, as A1 ∩ A3 �= ∅,
Step 1 in §3.4 implies that the determinant of C satisfies Equation 5.1.

Case 1 Assume Fi1 = Fi2 = Fi3 . It follows that A and B are upper triangular as they
need to preserve the flag Fik . In particular, the determinant of C is

∏
i cii = ∏

i aii bii . By
Corollary 4.5 we know that

A1 ∩ A2 = fE1

({
x ∈ A

d−1 : xi − xi+1 ≥ −v

(
ai,i+1

ai+1,i+1

)})
,

A1 ∩ A3 = fE1

({
x ∈ A

d−1 : xi − xi+1 ≥ −v

(
ci,i+1

ci+1,i+1

)})
.

Therefore, Lemma 5.2 implies that A1 ∩ A3 ⊆ A1 ∩ A2.

Case 2 Assume Fi1 = Fi2 and Fj2 = Fj3 . Therefore, A is upper triangular and B is lower
triangular. In particular,

A1 ∩ A2 = fE1

({
x ∈ A

d−1 : xi − xi+1 ≥ −v

(
ai,i+1

ai+1,i+1

)})
.

On the other hand, by the second part of Lemma 5.2 and Proposition 4.4 we have

A1 ∩ A3 = fE1

({
x ∈ A

d−1 : − v

(
ci,i+1

ci+1,i+1

)
≤ xi − xi+1 ≤ v

(
ci+1,i

cii

)})
.

Once again, Lemma 5.2 implies that A1 ∩ A3 ⊆ A1 ∩ A2.

General Case Recall that we denote by Ai j the apartment defined by the flags Fi and Fj so
that Ak = Aik jk . Using Case 2, we have

A1 ∩ A3 = A1 ∩ Ai1, j3 ∩ A3.

On the other hand, the previous cases imply the following inclusions

A1 ∩ Ai1, j3 ⊆ A1 ∩ Ai1, j2 ,

Ai1, j3 ∩ A3 ⊆ Ai1, j3 ∩ Ai2, j3 ,

Ai1, j2 ∩ Ai2, j3 ⊆ Ai1, j2 ∩ A2. (5.3)

Therefore, it follows that

A1 ∩ A3 = A1 ∩ Ai1, j3 ∩ A3,

⊆ A1 ∩ Ai1, j2 ∩ Ai2, j3 ,

⊆ A1 ∩ A2.

where the first inclusion follows from the first two lines in Eq. 5.3 and the second inclusion
follows from the last line in Eq. 5.3.
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5.2 Ultralimits of positive triples and intersection of apartments

For the rest of this section, fix a sequence of positive triples of flags (En, Fn, Gn) in R
d with

positive ultralimit the triple (E, F, G) of flags in F
d . We ease notation by setting

Xa,b,c := ulim Xa,b,c(En, Fn, Gn),

which, by hypothesis, is positive in the field F.
As the triple (E, F, G) has the maximum span property, the choice of a snake σ in 
⊥

d
determines a line decomposition Lσ of V = (Fd)∗ and a corresponding apartmentAσ in the
R-Euclidean building Bd .

Lemma 5.3 Let Aσ and Aσ ′ be apartments associated to snakes σ and σ ′. Then, Aσ ∩
Aσ ′ �= ∅.

Proof Any snake determines a line decomposition (L1, L2, . . . , Ld) of V such that for
every i ,

L1 ⊕ L2 ⊕ · · · ⊕ Li = (E (d−i))⊥.

. It then follows from [25, Prop. 3.8] that given any two snakes σ and σ ′, the corresponding
apartment Aσ and Aσ ′ intersect in, at least, a Weyl sector. 
�

As a consequence of Lemma 4.13, every snake σ determines a projective basis of V =
(Fd)∗. Remark 3.6 implies that given bases (e1, e2, . . . , ed) and (λe1, λe2, . . . , λed) for some
λ ∈ F−{0}, the corresponding standard markings are equal. Therefore, given a snake σ there
exists a unique associatedmarking fσ ofAσ obtained by taking the ultralimit of the sequences
of snake bases of σ with respect to the sequence of triples of flags (En, Fn, Gn). We refer
to this marking as the standard marking of σ . Thanks to Propositions 2.16, Proposition
3.14 and Lemma 4.13, we have explicit expressions for the totally nonnegative matrices
Mσ ′

σ = ulim Mσ ′
σ (En, Fn, Gn) ∈ GL(d, F) sending the ultralimit of the sequence of σ -bases

to the ultralimit of sequences of σ ′-bases. We use this fact together with Proposition 4.4 to
explicitly describe the intersections of the apartments associated to snakes.

Recall from § 2.2, that the bottom snake σ bot is the snake associated to the line decom-
position (E (d−i) ⊕ G(i−1))⊥. Concretely, Lemma 5.4 and Lemma 5.5 below say that if the
snake σ ′ is obtained from the snake σ by a diamond or a tail move, the intersection between
the apartmentsAσ bot ∩Aσ ′ can be obtained from the intersectionAσ bot ∩Aσ via a restriction
to a half-apartment and by a translation.

Lemma 5.4 Let σ and σ ′ be snakes in 
⊥
d such that σ ′ is obtained from σ by a diamond

move at k + 1. Suppose the intersection of Aσ bot ∩Aσ is the image via the standard marking
fσ bot of the set

{
x ∈ A

d−1 : xi − xi+1 + αi ≥ −βi , i = 1, . . . , d − 1
}

,

with αi ∈ R and βi ∈ R ∪ {∞}. Then, the intersection Aσ bot ∩ Aσ ′ is the image under fσ bot

of the set
{

x ∈ A
d−1 : xi − xi+1 + α′

i ≥ −β ′
i , i = 1, . . . , d − 1

}
,

where

α′
i =

{
αi for i �= k + 1

αi − v(Xa,b,c) for i = k + 1
, β ′

i =

⎧⎪⎨
⎪⎩

βi for i �= k, k + 1

min{0, βi } for i = k

βi + v(Xa,b,c) for i = k + 1,
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and Xa,b,c is the triple ratio naturally associated to σ and σ ′.

Proof Consider the basis change matrices Mσ
σ bot = (mi j ) from (ubot

i ) to (uσ
i ) and Mσ ′

σ bot =
(m′

i j ) from (ubot
i ) to (uσ ′

i ) where we assume ubot
1 = uσ

1 = uσ ′
1 . Observe that Mσ

σ bot and Mσ ′
σ bot

are totally nonnegative as they are products of totally nonnegativematrices and they are upper
triangular. Moreover, by Proposition 2.16, we know that

m′
i i =

{
mii for i ≤ k + 1

Xa,b,cmii for i > k + 1
, m′

i,i+1 =

⎧
⎪⎨
⎪⎩

mi,i+1 for i < k

mii + mi,i+1 for i = k

Xa,b,cmi,i+1 for i > k

(5.4)

As the matrices Mσ
σ bot and Mσ ′

σ bot are upper triangular, it follows from Proposition 3.8 and
Corollary 4.5 thatAσ bot ∩Aσ andAσ bot ∩Aσ ′ are the images under the marking fσ bot of the
sets

Aσ bot ∩ Aσ :
{

x ∈ A
d−1 : xi − xi+1 + v

(
mii

mi+1,i+1

)
≥ −v

(
mi,i+1

mii

)
for 1 ≤ i < d

}
,

Aσ bot ∩ Aσ ′ :
{

x ∈ A
d−1 : xi − xi+1 + v

(
m′

i i

m′
i+1,i+1

)
≥ −v

(
m′

i,i+1

m′
i i

)
for 1 ≤ i < d

}
.

Therefore, by Eq. 5.4, the intersection Aσ bot ∩ Aσ ′ is the image under the marking fσ bot of
the set of x ∈ A

d−1 satisfying the following inequalities:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

xi − xi+1 + v
(

mii
mi+1,i+1

)
≥ −v

(
mi,i+1

mii

)
for i < k

xi − xi+1 + v
(

mii
mi+1,i+1

)
≥ −v

(
1 + mi,i+1

mii

)
for i = k

xi − xi+1 + v
(

mii
mi+1,i+1

)
− v(Xa,b,c) ≥ −v

(
Xa,b,c

mi,i+1
mii

)
for i = k + 1

xi − xi+1 + v
(

Xa,b,cmii
Xa,b,cmi+1,i+1

)
≥ −v

(
Xa,b,cmi,i+1

Xa,b,cmii

)
for i > k + 1.

Observe that as 1 + mk,k+1
mkk

∈ F≥0, its valuation is equal to min
{
0, v

(
mk,k+1

mkk

)}
. The result

follows by comparing the above inequalities to the inequalities defining Aσ bot ∩ Aσ . 
�
An analogous argument as the one in the proof of Lemma 5.4 shows the following.

Lemma 5.5 (Asymptotic tail move) Let σ and σ ′ be snakes in 
⊥
d such that σ ′ is obtained

from σ by a tail move. Suppose the intersection of Aσ bot ∩Aσ is the image under the marking
fσ bot of the set

{
x ∈ A

d−1 : xi − xi+1 + αi ≥ −βi for i = 1, . . . , d − 1
}

,

with αi ∈ R, βi ∈ R ∪ {∞}. Then, the intersection of Aσ bot ∩ Aσ ′ is the image under the
marking fσ bot of the set defined by the inequalities

{
xi − xi+1 + αi ≥ −βi for i < d − 1,

xi − xi+1 + αi ≥ −min{0, βi } for i = d − 1.

Proof This proof is similar to the proof of Lemma 5.4, but it is simpler. 
�
The following theorem is the main step in the proof of Theorem 1.1 from the introduction.
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liat.maid

Fig. 3 A pictorial version of the proof of Theorem 5.7 in dimension d = 3

Theorem 5.6 Let σ bot and σ top be the bottom and top snakes in 
⊥
d with snake basis (ubot

i )

and (utop
i ), respectively. Let Aσ bot and Aσ top denote the corresponding apartments in the R-

Euclidean building Bd . Then, the intersection Aσ bot ∩ Aσ top is the image under the marking
fσ bot of the set of x ∈ A

d−1 satisfying the inequalities
⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

x1 − x2 ≥ 0

x2 − x3 ≥ max
{
0, v(Xd−2,1,1)

}

x3 − x4 ≥ max
{
0, v(Xd−3,2,1), v(Xd−3,2,1Xd−3,1,2)

}
...

xn−1 − xn ≥ max
{
0, v(X1,d−2,1), . . . , v(X1,d−2,1 · · · X1,1,d−2)

}
.

(5.5)

Proof We want to prove this theorem by induction on d . The case d = 2 is reduced to
Lemma 5.5 as there are only two snakes in 
⊥

2 that differ by a tail move.

Case d = 3: In this case, there is only one triple ratio X1,1,1. We can obtain the top snake
from the bottom snake with a sequence of a tail move, a diamond move at k = 1 and another
tail move. Therefore, applying Lemma 5.4 and Lemma 5.5 we have

{
x1 − x2 ≥ −∞
x2 − x3 ≥ −∞

tail⇒
{

x1 − x2 ≥ −∞
x2 − x3 ≥ 0

diamond⇒
{

x1 − x2 ≥ 0

x2 − x3 − v(X1,1,1) ≥ −v(X1,1,1),

tail⇒
{

x1 − x2 ≥ 0

x2 − x3 − v(X1,1,1) ≥ −min{0, v(X1,1,1)}.
and we conclude by observing that

−min{0, v(X1,1,1)} + v(X1,1,1) = −min
{
0,−v(X1,1,1)

} = max
{
0, v(X1,1,1)

}
.

See Fig. 3.
We now assume the result is true for d − 1 and we prove it for d .
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Fig. 4 Diamond moves at d − 1 in the triangle 
⊥
d correspond to tail moves in 
⊥

d−1

Case d > 3: Consider the subtriangle
⊥
d−1 ⊂ 
⊥

d as in Figure 4. The key observation, which
follows from Lemma 5.4 and Lemma 5.5, is that any snake move at a vertex in (
⊥

d−1)
◦ does

not affect the inequality involving the variables xd−1 and xd .
Starting with σ bot, by Lemmas 5.4 and 5.5, performing a tail move and a diamond move

at d − 1 gives us the new inequality

xd−1 − xd − v
(
X1,1,d−2

) ≥ −min{0,∞} − v
(
X1,1,d−2

)
.

Weproceed by performing diamondmoves at k for k = 1, 2, . . . , d−2. Again, by Lemma 5.4
these moves do not affect the last inequality, and therefore we still have

xd−1 − xd − v(X1,1,d−2) ≥ −v(X1,1,d−2).

We then perform a tail move in 
⊥
d which gives

xd−1 − xd − v(X1,1,d−2) ≥ −min
{
0, v(X1,1,d−2)

}
,

and then a diamond move at d − 1 in the triangle 
⊥
d . This changes the last inequality to

xd−1 − xd − v(X1,1,d−2X1,2,d−3) ≥ −min
{
0, v(X1,1,d−2)

}− v(X1,2,d−3)

which is equivalent to

xd−1 − xd − v
(
X1,1,d−2X1,2,d−3

) ≥ −min{v(X1,2,d−3), v(X1,2,d−3X1,2,d−2)}.
We conclude by iterating this procedure. More precisely, consider the level sets in 
⊥

d given
by fixing the value of the second variable b (these are horizontal lines in the discrete triangle

⊥

d ). We can proceed by induction as b varies between 1 and d − 2. The discussion above
proves our claim for the cases b = 1 and 2. To simplify notation, set

Vb,a = v
(
X1,b,d−b−1X1,b−1,d−b−2 . . . X1,b−a,d−(b−a)−1

)
,

with b = 1, . . . , d − 2 and a = 0, . . . , b − 1. Observe that Vb,a + v(X1,b+1,d−b−2) =
Vb,a + Vb+1,0 = Vb+1,a+1. Assume

xd−1 − xd − Vb,b−1 ≥ −min
{

Vb,0, Vb,1, . . . , Vb,b−1
}
.
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Applying a tail move to the snake we obtain

xd−1 − xd − Vb,b−1 ≥ −min
{
0, Vb,0, Vb,1, . . . , Vb,b−1

}
.

Hence, with a diamond move we have

xd−1 − xd − Vb+1,b ≥ −min
{
0, Vb,0, Vb,1, . . . , Vb,b−1

}− v(X1,b+1,d−b−2)

�
xd−1 − xd − Vb+1,b ≥ −min

{
Vb+1,0, Vb+1,1, . . . , Vb+1,b

}
.

In other words, we showed that the formula repeats itself when we apply a tail move followed
by a diamond move. The result then follows because this process ends with a tail move in

⊥

d which has the effect of changing the right hand side of the inequality

xd−1 − xd − Vd−2,d−3 ≥ −min{Vd−2,0, Vd−2,1, Vd−2,2, . . . , Vd−2,d−3}
to −min{0, Vd−2,0, Vd−2,1, Vd−2,2, . . . , Vd−2,d−3}. 
�

The edges of the discrete triangle 
⊥
d determine three apartments AEG , AG F and

AE F associated to line decompositions defined by the pairs of flags (E, G), (G, F) and
(E, F), respectively. The pairwise intersections of these three apartments are non-empty by
Lemma 5.3. The following theorem expresses these intersections in terms of the valuations
of the triple ratios Xa,b,c.

Theorem 5.7 (Theorem 1.1) Let (En, Fn, Gn) be a sequence of positive triples of flags in R
d

such that the ultralimit (E, F, G) is positive. Let AEG, AG F and AF E be the apartments
associated to the triple (E, F, G). There exists a marking fEG of AEG such that

– the intersection AEG ∩AE F is the image under fEG of the subset of A
d−1 described by

the inequalities:
⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

x1 − x2 ≥ 0

x2 − x3 ≥ max
{
0, v(Xd−2,1,1)

}

x3 − x4 ≥ max
{
0, v(Xd−3,2,1), v(Xd−3,2,1Xd−3,1,2)

}
...

xd−1 − xd ≥ max
{
0, v(X1,d−2,1), . . . , v(X1,d−2,1 · · · X1,1,d−2)

}
,

(5.6)

– the intersection AEG ∩AG F is the image under fEG of the subset of A
d−1 described by

the inequalities:
⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

x1 − x2 ≤ min
{
0, v(X1,d−2,1), . . . , v(X1,d−2,1 · · · Xd−2,1,1)

}
...

xd−3 − xd−2 ≤ min
{
0, v(X1,2,d−3), v(X1,2,d−3X2,1,d−3)

}

xd−2 − xd−1 ≤ min
{
0, v(X1,1,d−2)

}

xd−1 − xd ≤ 0.

(5.7)

Proof The proof follows by combining Remark 2.6 and Theorem 5.6. The formula forAEG ∩
AE F follows at once from Theorem 5.6. Permute the positive maximum span triple from
(E, F, G) to (G, F, E). Then, we can apply Theorem 5.6 to the triple (G, F, E) in order to
find the intersection of the apartments AEG ∩ AG F . Let (vboti ) denote the basis associated
to the bottom snake in the discrete triangle 
⊥

d with respect to the maximum span triple
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(G, F, E). By choosing vbot1 = ubot
d−1, we have that v

bot
i = ubot

d−i . This allows us to explicitly
relate the markings fEG and fG E . Namely, fG E is obtained from fEG by the permutation
defined by

w0 =

⎛
⎜⎜⎜⎝

0 . . . 0 1
... . .

.
. .

. 0

0 1 . . .
...

1 0 . . . 0

⎞
⎟⎟⎟⎠ ∈ Sd .

Moreover, by Remark 2.6 we have Xa,b,c(G, F, E) = X−1
c,b,a(E, F, G). Therefore, by The-

orem 5.6 and Remark 3.6 we have that AEG ∩ AFG is the image via fEG of the set
⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

xd − xd−1 ≥ 0

xd−1 − xd−2 ≥ max
{
0,−v(X1,1,d−2)

}

xd−2 − xd−3 ≥ max
{
0,−v(X1,2,d−3),−v(Xd−3,2,1X2,1,d−3)

}
...

x2 − x1 ≥ max
{
0,−v(X1,d−2,1), . . . , −v(X1,d−2,1 · · · Xd−2,1,1)

}
.

It is easy to see that these inequalities are equivalent to the ones in the statement of the
theorem. 
�
Remark 5.8 Themarking fEG fromTheorem5.7 determines a preferred point fEG(1/d, 1/d,

. . . , 1/d) ∈ AEG . Geometrically, Theorem 5.7 says that the intersections AEG ∩ AE F and
AEG ∩AFG are Weyl sectors fEG(C1) and fEG(C2) contained in the opposite Weyl sectors
based at fEG(1/d, 1/d, . . . , 1/d). Note that the triple intersection AEG ∩ AF E ∩ AG F is a
point when all triple ratios have valuation equal to zero. For d = 2 this recovers the fact that
if three apartments (lines) in an R-tree intersect pairwise along half-lines, then they form a
tripod. For d = 3, Theorem 5.7 was proved by Parreau [27] in greater generality, but with
different methods.

Remark 5.9 Theorem 5.7 andRemark 2.6 suffice to describe the intersectionsAE ′,G ′ ∩AF ′,G ′
for any E ′, F ′, G ′ with {E ′, F ′, G ′} = {E, F, G}.

5.3 Shearing inBd

The analogous of Theorem 5.7 for the positive ultralimit of a sequence of positive quadruple
of flags (En, Fn, Gn, Hn) follows from Proposition 2.17. Let us ease notation by setting

Zi := ulim Zi (En, Fn, Gn, Hn),

which we are assuming to be a positive element in F.

Theorem 5.10 Let (En, Fn, Gn, Hn) be a sequence of positive quadruples of flags in R
d with

positive ultralimit the quadruple of flags (E, F, G, H) in F
d . Consider the markings fEG

and f ′
EG of the apartment AEG obtained by applying Theorem 5.7 to the sequence of positive

triples of flags (En, Fn, Gn) and (En, Hn, Gn), respectively. Then, the element

w(E,F,G,H) := f −1
EG ◦ f ′

EG ∈ Waff,

is the translation by the unique vector (z1, z2, . . . , zd) ∈ V
d−1 such that zi − zi+1 =

−v(Zd−i ).
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Proof Recall that the sequence of flags (En, Fn, Gn) determines a sequence of bases (ui,n)

for the line decomposition associated to the flags (En, Gn). Likewise, the sequence of flags
(En, Hn, Gn) determines a sequence of bases (Ui,n) for the line decomposition associated to
the flags (En, Gn). Thanks to Lemma 4.13, the ultralimits of the basis (ui,n) and (Ui,n) define
bases (ui ) and (Ui ) of the vector space V = (Fd)∗. The markings fEG and f ′

EG in Theorem
5.7 are the standardmarkings of the bases (ui ) and (Ui ), respectively. Proposition 2.17 implies
that Ui = Z1Z2 · · · Zd−i ui . Applying Remark 3.6, we have that for all (x1, x2, . . . , xd),

f −1
(ui )

◦ f(Ui )(x1, x2, . . . , xd) = (x1 + z1, x2 + z2, . . . , xd + zd) ,

where (z1, z2, . . . , zd) ∈ V
d−1 is such that

zi − zi+1 = v(
(
Z1Z2 · · · Zd−i )

−1)− v((Z1Z2 · · · Zd−i−1)
−1)

= −v(Zd−i )

which is what needed to be proved. 
�
Remark 5.11 Theorem 5.10 is equivalent to [27, Prop. 4.5]. The reader should be aware of
the small difference between the double ratios and the edge parameters as explained in [27,
§2.6].
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