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Diffusion of multiple electrolytes cannot be treated
independently: Model predictions with experimental
validation †
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∗a

We study the diffusion of multiple electrolytes in a one-dimensional pore. We model the scenario
where an electrolyte is in contact with a reservoir of another electrolyte, such that the cation
of the two electrolytes is common. The model reveals that several factors influence the ion
concentration profiles: (i) relative diffusivities of the ions, (ii) ratio of the electrolyte concentrations
in the pore and the reservoir, and (iii) the valence of the ions. We demonstrate that it is crucial
to consider the interaction between ion fluxes as treating the electrolytes independently, as is
sometimes proposed, does not completely capture the dynamics of ion transport. We validate
our numerical predictions by conducting experiments with sodium fluorescein salt in the pore and
sodium chloride / sodium sulphate / sodium hydroxide in the reservoir. Our visualization and
results demonstrate that ion diffusivities and concentrations in the reservoir can influence the
diffusion rates of fluorescein, which underscores that ion fluxes are coupled and that multiple
electrolytes cannot be treated independently. These results should be useful to the wide range
of situations where concentration variations are imposed on systems with an existing background
electrolyte.

1 Introduction
From biological fluids such as blood and urine, to energy storage
devices such as batteries and supercapacitors, electrolytes play a
pivotal role in human life. In several of these physical systems,
fluid phases may contain multiple electrolytes with varying
concentrations, ion diffusivities and valences. For instance,
human blood consists of Ca2+, K+, Na+, Cl−, PO3−

4 , among
others.

The majority of studies on electrolyte transport focus on a
single binary electrolyte1–5. However, a few prior reports discuss
the transport of multiple electrolytes in cement pores6–10, ion
exchange and electrochemical processes4,11–14, and diffusion
measurement studies15–17. Recently, several microfluidic studies
have also acknowledged the importance of multiple electrolytes
to manipulate colloidal transport via electrokinetic processes such
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as electrophoresis and diffusiophoresis18–29. In this article, we
focus on understanding and quantifying the diffusive transport
in ionic solutions that contain multiple electrolytes by employing
both experimental and theoretical techniques.

There is a large body of literature for an electroneutral binary
electrolyte, where the effective diffusivity of the ions is given by
the ambipolar diffusivity1–4. Physically, the ambipolar diffusivity
ensures that if the cation and anion of an electrolyte have
different diffusivities, the faster moving ion is slowed in order
satisfy the electroneutrality condition. In the same spirit, we
seek to determine the factors that control the ionic transport
of a electroneutral mixture of two binary electrolytes. Though
some earlier studies have reported results for multiple electrolytes
under conditions of electroneutrality4,8,9,13,14, the analysis is
typically system specific and/or dimensional, which limits the
applicability. In addition, several of these studies are purely
numerical and lack experimental validation.

We consider a physical scenario where electrolyte A is brought
in contact with a reservoir of electrolyte B; see Fig. 1(a). For
simplicity, we assume that electrolytes A and B have a common
cation and allow for arbitrary diffusivities of the cations and
anions. We emphasize that when the diffusivity ratios of cations
and anions are large, the dynamics of ion transport become highly
coupled. For example, we conduct experiments with sodium
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fluorescein as electrolyte A and sodium hydroxide as electrolyte
B, where the diffusivity of hydroxide ions is much larger than the
diffusivities of sodium and fluorescein ions. As we show later, the
dynamics of fluorescein ion transport is significantly influenced
by the presence of hydroxide ions.

There are two possible approaches to predict the transport of
electrolytes A and B (Fig. 1(b)): (i) assume that the electrolytes
are independent of each other, an approach employed due to
its simplicity2,22, and (ii) a more rigorous approach where all
the ionic fluxes are coupled due to electroneutrality. In the
first method, the cations and anions of electrolyte A diffuse
as if there is no electrolyte B, and vice-versa. Therefore, the
electrolytes satisfy the electroneutrality condition individually
(Fig. 1(b)). In contrast, the second method only enforces that
the electroneutrality is satisfied collectively (Fig. 1(b)).

We now qualitatively compare the predictions of the two
methods for a scenario when the diffusivity of anions of
electrolyte B is much larger than the other two ions. For this
specific scenario, the independent electrolyte analysis predicts
a slower diffusion rate for anions of electrolyte B as compared
to the coupled analysis since the anions of electrolyte B can
satisfy electroneutrality only with the cations of electrolyte
B; see Fig. 1(c). In this article, we demonstrate both
theoretically and experimentally that it is important to employ
the second approach to correctly capture the diffusive transport
of ions, especially when the diffusivity contrast between ions
is significant. Furthermore, we also investigate the effect of
electrolyte concentration on the diffusion of ions.

In Section 2, we describe the details of a microfluidic
setup with a sodium fluorescein salt to experimentally measure
by direct visualization, the evolving concentration profiles in
configurations with a common cation. In Section 3, we provide
the details of our mathematical model where we compare and
contrast the two approaches for multiple electrolytes (i.e., the
analysis assuming electrolytes are independent and the analysis
where ion fluxes are coupled). Next, we validate the predictions
of the coupled model with the experimental results in Section 4.
Lastly, we discuss the implication of our findings and directions
for future research in Section 5.

2 Experimental methods
We use a dead-end pore geometry30,31 to experimentally study
the diffusion of multiple electrolytes. The dead-end pore channels
are prepare by standard soft lithography with the monomer to
crosslinker ratio 10:1. The width, height, and the length of the
main channel and the pores, respectively, are W = 750 µm, H =

150 µm and L = 5 cm, and w = 100 µm, h = 50 µm and `= 1 mm
(Fig. 2).

We initially fill the dead-end pores with 2 mM sodium
fluorescein (FSS) solutions, a disodium salt. Next, we introduce
an air bubble into the main channel at a volumetric flowrate of
350 µL/hr, which is followed by the second electrolyte solution,
i.e., 0-4 mM NaCl / 2 mM Na2SO4 / 4 mM NaOH; see Fig. 2(a).
Once the two electrolyte solutions come in contact with each
other, the mean flow rate is reduced to 20 µL/hr, corresponding
to a mean flow speed < u >= 50 µm/s. All solutions are loaded

by a syringe pump (Harvard Apparatus).

In order to prevent photobleaching of fluorescein32 (see
Supporting Information), we set up the experiments under
brightfield mode of the inverted microscope (Leica DMI4000B).
Once the two electrolyte solutions contact each other, we switch
the microscope to the fluorescent mode and take images at 7
ms exposure and 1-minute intervals. As a result, we obtain a
time sequence of images visualizing the concentration profile of
fluorescein in the pores (Fig. 2(b)).

For image analysis, we fix the region of interest (ROI, 80 µm x
990 µm) as shown in Fig. 2(b - dashed box). The ROI is separated
by 10 µm from each pore wall, where one side is aligned with the
pore inlet. The normalized intensity gray value I

I0
, where I0 is

the initial intensity, of each pixel is measured along the pore, and
plotted versus distance x along the pore (Fig. 2(c)). As fluorescein
transports out of the pore, I

I0
decreases with time. A typical error

of about 1.5% is observed for the intensity data with a maximum
error of about 5% near the entrance of the pore.

3 Mathematical model
In this section, we discuss the details of our mathematical model.
We consider a one-dimensional pore geometry of length `, as
shown in Fig. 2(a). We assume that there are two electrolytes,
A (cation concentration c1, anion concentration c2) and B (cation
concentration c1, anion concentration c3), such that the cation of
electrolytes A and B is common. The model allows for different
valences of the cations and the anions. We assume that the pore
is initially filled only with electrolyte A and that there is a fixed
concentration of electrolyte B at the pore inlet (x = 0). Lastly,
we assume that the solution is electroneutral everywhere, the
electric current is zero for all x, and the physical conditions are
such that Nernst-Planck equations are valid; these are all standard
assumptions for such chemically driven transport processes.

We denote the concentration of the cation as c1(x, t) and the
concentration of the anions as c2(x, t) and c3(x, t), where t is time.
The valence and diffusivities of the ith ions are given as zi (where
zi > 0 for cations and zi < 0 for anions) and Di, respectively.
The species balance of the ith ion is given by the Nernst-Planck
equation1

∂ci

∂ t
=−∂Ji

∂x
= Di

∂ 2ci

∂x2 +
zieDi

kBT
∂

∂x

(
ci

∂ψ

∂x

)
, (1)

where Ji is the flux of the ith ion, ψ is the electric potential, e is
the charge of an electron, kB is the Boltzmann constant and T is
the temperature. The electroneutrality condition (∑zici = 0) and
a zero electric current condition (∑i ziJi = 0) yields8,9,13,14,19,33

∂ψ

∂x
=− kBT

e

∑i ziDi
∂ci

∂x
∑i z2

i Dici
. (2)

This equation makes clear that the concentation of all of the
ions influences the local electric field which in turn generates
electromigration of ions (Eq. (1)). Furthermore, we note that
the electric field vanishes when ion concentrations are spatially
constant. We non-dimensionalize variables as X = x

` , Ψ = ψ

ψT
,
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Fig. 1 Effect of multiple electrolytes. (a) Consider a setup where electrolyte A is brought in contact with a reservoir of electrolyte B. The cation of
electrolytes A and B is common. (b) If transport of electrolytes A and B is independent, they need to satisfy electroneutrality separately. However, if we
allow for the ionic fluxes to be coupled with each other, electroneutrality needs to be satisfied collectively. (c) If the diffusivity of anions of electrolyte B is
much larger than all the remaining ions, the independent electrolyte analysis predicts a slower diffusion rate for the anion of electrolyte B as compared
to the analysis where ionic fluxes are coupled.

Fig. 2 Multiple electrolyte diffusion experiments. (a) The one-dimensional diffusion experiments are set up by using a dead-end pore geometry 30,31,
where the pores are initially filled with electrolyte A, here 2 mM sodium fluorescein salt (FSS). The main channel is flooded with electrolyte B, e.g.,
NaCl, Na2SO4 and NaOH. The concentration and type of electrolyte B is varied to observe the effect on diffusion of fluorescein. (b) Time sequence of
fluorescent images obtained from an experiment with a 2 mM FSS (electrolyte A) - 2 mM NaCl (electrolyte B) pair. Diffusion of ions is visualized by the
concentration of fluorescein in the pore at different times. Dashed box (80 µm x 990 µm) is the region of interest (ROI) for the intensity analysis. Scale
bar is 100 µm. (c) Normalized gray values along the pore (or ROI) are plotted versus distance along the pore (x) for different times, which yields the
diffusion profile of fluorescein.

Journal Name, [year], [vol.], 1–9 | 3



Fig. 3 Overview of the semi-infinite model - effect of D2. (a) c̄1(η), (b) c̄2(η) and (c) c̄3(η) for the fully coupled analysis (Eq. (4)) as well as for the
independent electrolyte analysis (Eq. (5)). Results are presented for fixed z1 = −z2 = −z3 = D1 = D3 = β = 1, and varying D2. The solid and dashed
lines are predictions from Eqs. (4) and (5) respectively. In (c), the prediction of Eq. (5), i.e., c̄3 = erfc(η), overlaps for all different D2 with the prediction
of Eq. (4) for D2 = 1.

τ =
tD∗

`2 and Di =
Di
D∗ , where D∗ is a characteristic diffusivity.

Thus we obtain the coupled partial differential equations (i =
1,2,3)8,9,13,14

∂ci

∂τ
= Di

∂ 2ci

∂X2 − ziDi
∂

∂X

(
ci

∑i ziDi
∂ci
∂X

∑i z2
i Dici

)
. (3)

Eq. (3) shows that for a multi-ion system space, the flux of the
ith ion is coupled to every other ion. We describe the initial and
boundary conditions in Sections 3.1 and 3.2.

We note electroneutrality is implicit in Eq. (3). For
electroneutrality to be valid, we need to specify an initial
condition that satisfies electroneutrality. There is also an
alternative route where we can utilize electroneutrality explicitly.
In this approach, we can eliminate one ion concentration, say
c3, using electroneturality and solve for the remaining ion
concentrations, i.e., c1 and c2. Next, c3 can be recovered by
using ∑zici = 0. These approaches are equivalent but we utilize
the implicit approach since it enables us to express Eq. (3) in a
compact form.

3.1 Semi-infinite analysis

We consider the semi-infinite scenario of a long pore such that
0 ≤ X ≤ ∞. Here, the concentration are appropriately scaled
so that initial conditions are c1(X ,0) = 1, c2(X ,0) =

∣∣∣ z1
z2

∣∣∣ and

c3(X ,0) = 0. The boundary conditions at the pore inlet are

c1(0,τ) = β , c2(0,τ) = 0 and c3(0,τ) =
∣∣∣ z1

z3

∣∣∣β , where β indicates

the relative concentration between the reservoir and the pore.
The boundary conditions for large X are c1(∞,τ) = 1, c2(∞,τ) =∣∣∣ z1

z2

∣∣∣ and c3(∞,τ) = 0. To solve Eq. (3) for the semi-infinite

domain, we introduce a similarity variable η = X√
4τ

such that
ci(X ,τ) = c̄i(η). Therefore, Eq. (3) reduces to (i = 1,2,3)

2η
dc̄i

dη
+Di

d2c̄i

dη2 − ziDi
d

dη

(
c̄i

∑i ziDi
dc̄i
dη

∑i z2
i Dic̄i

)
= 0, (4)

where c̄1(0) = β , c̄2(0) = 0, c̄3(0) =
∣∣∣ z1

z3

∣∣∣β , and c̄1(∞) = 1, c̄2(∞) =∣∣∣ z1
z2

∣∣∣, c̄3(∞) = 0.

We solve Eq. (4) numerically by using the finite-difference
method. We note that dimensionless parameters that dictate the
solution of Eq. (4) are zi, Di and β . In experiments, Di and zi can
be varied by changing the electrolyte, and the parameter β can
be varied by changing the concentration of the electrolytes.

We compare the predictions of Eq. (4) with the scenario where
electrolytes A and B do not influence their respective fluxes, and
the concentration of ions are calculated based on standard results,
i.e., each ion pair satisfies a separate one-dimensional diffusion
equation with an ambipolar diffusion constant1,3,22

c̄1 = erf

(
η√
D12

a

)
+βerfc

(
η√
D13

a

)
, (5a)

c̄2 =

∣∣∣∣ z1

z2

∣∣∣∣erf

(
η√
D12

a

)
, (5b)

c̄3 =

∣∣∣∣ z1

z3

∣∣∣∣βerfc

(
η√
D13

a

)
, (5c)

where D12
a =

(z1−z2)D1D2
z1D1−z2D2

and D13
a =

(z1−z3)D1D3
z1D1−z3D3

are ambipolar
diffusivities of electrolytes A and B.

We analyse the scenario where z1 = −z2 = −z3 = D1 = D3 =

β = 1, and D2 varies. The predictions for Eqs. (4) and (5) are
summarized in Fig. 3. As evident from the results, Eq. (4) (solid
lines) yields different predictions than Eq. (5) (dashed lines). We
note some of the trends observed in Fig. 3:

(i) c̄i(η) from Eq. (4) overlaps with Eq. (5) when D2 = 1 as
∂Ψ

∂X = 0; see Eq. (2), i.e., such conditions are purely diffusive
with no electromigration contributions.

(ii) c̄1(η) has a maximum for D2 < 1, where the maximum value
is smaller for Eq. (4) than Eq. (5). In contrast, c̄1(η) has a
minimum for D2 > 1, where the minimum value is smaller
for Eq. (4) than Eq. (5).
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Fig. 4 Overview of the semi-infinite model - effect of β . (a) c̄1(η), (b) c̄2(η) and (c) c̄3(η), for the fully coupled analysis (Eq. (4)) as well as for the
independent electrolyte analysis (Eq. (5)). Results are presented for fixed z1 = −z2 = −z3 = D1 = D3 = 1 and D2 = 5, and varying β . The solid and
dashed lines are predictions from Eqs. (4) and (5) respectively. In (b), the predictions of c̄2 from Eq. (5), i.e., the dashed lines overlap for different
values of β .

(iii) For D2 < 1, c̄2(η) diffuses out of the pore slower for Eq. (4)
than Eq. (5). The opposite is true for D2 > 1, i.e., c̄2(η)

diffuses out of the pore faster for Eq. (4) than Eq. (5).

(iv) For D2 < 1, c̄3(η) diffuses into the pore slower for Eq. (4)
than Eq. (5). The opposite is true for D2 > 1, i.e., c̄3(η)

diffuses into the pore faster for Eq. (4) than Eq. (5).

To understand these trends, we consider the limiting cases of
D2� 1 and D2� 1. We recall that the pore is initially filled with
c̄1 and c̄2, and the reservoir consists of c̄1 and c̄3. Moreover, for
the conditions reported in Fig. 3, the concentration of the cation
in the reservoir is equal to the initial concentration of cation in
the pore (β = 1).

We first discuss the physical interpretation of the independent
electrolyte analysis for the limiting case of D2� 1. Since c̄1 and
c̄2 inside the pore do not interact with the ions in the reservoir,
both the ions prefer to diffuse out of the pore. For D2 � 1, c1

slows down to satisfy electroneutrality with c̄2. To enable this,
an electric field develops such that ∂Ψ

∂X > 0. This electric fields
retards and promotes the diffusion of c̄1 and c̄2 out of the pore,
respectively. In addition, since the c̄1 in the reservoir does not
interact with the c̄1 ions inside the pore, the cations from the
reservoir diffuse inside the pore, creating a maximum in c̄1; see
Fig. 3(a), dashed lines. Therefore, the smaller the value of D2,
the larger the maximum value of c̄1. Similarly, we learn that the
smaller the value of D2, the slower is the diffusion of c̄2 out of the
pore; see Fig. 3(b), dashed lines. Lastly, c̄3 simply diffuses inside
the pore and changes in the value of D2 do not affect c̄3; see Fig.
3(c) dashed lines; also see Eq. (5).

We now compare and contrast the above discussion with the
physical interpretation of the electrokinetically consistent coupled
analysis for the limiting case of D2 � 1. Since all of the
ions interact with each other, initially there is no concentration
gradient of c̄1. Therefore, the electric field that develops to satisfy
electroneutrality is weaker as compared to the independent
analysis case. In addition, the gradient experienced by c̄1 in
the reservoir is also smaller, and therefore, the maxima of c̄1(η)

is smaller in magnitude; see Fig. 3(a), solid lines. Since the
electric field is weaker, c̄2 diffuses out of the pore slower than
the independent electrolyte analysis; Fig. 3(b), solid lines. Lastly,
since the overall accumulation of the cations inside the pore is
smaller, the diffusion of c̄3 inside the pore is slower to satisfy
electroneutrality; see Fig. 3(c), solid lines. We note that the effect
of D2 on c̄3 is crucial since it highlights the coupled nature of the
multi-electrolyte systems.

Next, we briefly summarize the physical interpretation of the
limiting case of D2 � 1. For D2 � 1, the independent analysis
for c̄1 and c̄2 is controlled by the ambipolar diffusivity. Therefore,
in this limit, the concentrations become independent of D2 as
the ambipolar diffusivity approaches D1. Indeed, this response
is observed for all c̄i in our numerical calculations; see Fig. 3,
dashed lines. In this scenario, since the electric field will develop
to retard the motion of c̄2 out of the pore, ∂Ψ

∂X < 0. Therefore,
c̄1(η) shows a minimum, which starts to become independent of
D2 for larger values of D2; see Fig. 3(a), dashed lines. Similarly,
diffusion of c̄2 and c̄3 approaches a limiting value for larger values
of D2; see Fig. 3(b),(c), dashed lines. In contrast, for the
coupled analysis, the transport of c̄i out of and into the pore is
not limited by the ambipolar diffusivities of c̄1 and c̄2 because
the ions have to satisfy the electroneutrality condition collectively,
and not individually. Therefore, the electric field is stronger for
the coupled analysis and c̄1 shows a smaller value for the minima;
Fig. 3(a), solid lines. In addition, c̄2 and c̄3 diffuse out of and into
the pore faster as compared to the independent analysis; see Fig.
3(b),(c), solid lines.

We emphasize that the diffusivity contrast is an effective way
to tune the transport of multi-electrolyte systems. For instance, in
microfluidic studies, if acids and bases are used as electrolytes25,
the diffusivity contrast due to large diffusivities of H+ and OH−

ions enables a useful tool to manipulate colloidal transport19,26.
In fact, we provide experimental evidence for the same by using
OH− as the anion in the reservoir; see Section 4.

We now summarize the effect of β when z1 = −z2 = −z3 =
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Fig. 5 Overview of the finite pore analysis. (a) c1(X ,τ) for different τ with fixed z1 = −z2 = −z3 = D1 = D3 = β = 1 and D2 = 5, and (b) c1(X ,τ) for
different z2 with fixed z1 =−z3 = D1 = D3 = β = 1,τ = 0.1 and D2 = 5. The solid lines are predictions for the coupled electrolyte model (Eq. (3)).

D1 = D3 = 1 and D2 = 5; see Fig. 4. Our results indicate that
the independent and coupled analyses predict a relatively similar
profile for c̄1 and c̄3; see Fig. 4(a), (c). However, the profile
for c̄2, the anion initially in the pore, varies significantly between
the two models; Fig. 4(b). The effect of reservoir concentration
β is not observed in the independent (linear) model because
the electrolytes do not interact with each other. Therefore, any
change in concentration of the electrolyte in the reservoir does
not change the behavior of c̄2. In contrast, for the coupled model,
for β � 1, c̄2 can diffuse out more easily since it is not restricted
to satisfy electroneutrality separately.

We highlight that the changes in β are readily performed in
experiments by changing the concentration of the electrolyte
in the main channel; see Fig. 2. In Section 4, we provide
experimental evidence for the dependence of c̄2 on β .

3.2 Finite pore analysis

In this section, we discuss the effect of the finite pore length.
We solve Eq. (3) numerically using the method of lines34

with the following initial and boundary conditions: c1(X ,0) = 1,

c2(X ,0) =
∣∣∣ z1

z2

∣∣∣, c3(X ,0) = 0, c1(0,τ) = β , c2(0,τ) = 0, c3(0,τ) =∣∣∣ z1
z3

∣∣∣β , ∂c1
∂X

∣∣∣
X=1

= 0, ∂c2
∂X

∣∣∣
X=1

= 0 and ∂c3
∂X

∣∣∣
X=1

= 0. The results are

summarized in Fig. 5.

We discuss the scenario of z1 = −z2 = −z3 = D1 = D3 = β = 1
and D2 = 5. As discussed previously, for D2 > 1, ∂Ψ

∂X < 0, and
cations diffuse out of the pore. Therefore, for early times,
i.e., τ � 1, we observe a minimum for c1(X ,τ), similar to the
semi-infinite analysis; see Fig. 5(a). For longer times, the
finite-pore length effects start to become important and we
no longer observe a minimum for c1 versus X . Instead, the
concentration monotonically decreases with X . Therefore, for
predicting long time behavior of an experiment, it is crucial to
include the finite-pore length effect.

We also investigate the effect of different z2 for fixed z1 =−z3 =

D1 =D3 = β = 1, D2 = 5 and τ = 0.1. We recall that ∂Ψ

∂X =−∑ziDi
∂ci
∂X

∑z2
i Dici

(Eq. (2)). Therefore, for a larger |z2|,
∣∣∣ ∂Ψ

∂X

∣∣∣ is smaller, and the

minimum value of c1 decreases with an increase in |z2|; see Fig.
5(b).

We have provided modeling details for the semi-infinite
coupled analysis (Eq. (4)), the semi-infinite independent analysis
(Eq. (5)), and the finite pore coupled analysis (Eq. (3)).
For completeness, we also provide the finite pore independent
analysis. In the independent analysis, each ion pair satisfies a
separate one-dimensional diffusion equation with an ambipolar
diffusion constant. For a finite length domain, the concentrations
are calculated through a series solution1

c2(X ,τ) =

∣∣∣∣ z1

z2

∣∣∣∣ ∞

∑
k=0

2
λk

sin(λkX)exp
(
−λ

2
k D12

a τ

)
, (6a)

c3(X ,τ) =

∣∣∣∣ z1

z3

∣∣∣∣β
(

1−
∞

∑
k=0

2
λk

sin(λkX)exp
(
−λ

2
k D13

a τ

))
, (6b)

where λk = (2k+1) π

2 , D12
a =

(z1−z2)D1D2
z1D1−z2D2

and D13
a =

(z1−z3)D1D3
z1D1−z3D3

are
ambipolar diffusivities of electrolytes A and B. The value of c1 can
be calculated as c1 =

∣∣∣ z2
z1

∣∣∣c2 +
∣∣∣ z3

z1

∣∣∣c3.

4 Comparison of results from experiments
and model

In this section, we compare the results of our experiments with
the mathematical model described in the previous section. As
described in Section 2, the common cation between the pore and
the reservoir in our setup is Na+. The anion initially filled in
the pore is (fluorescein) Fl2−, and the anion in the main channel
(reservoir) is either Cl−, SO2−

4 , or OH−. Therefore, z1 = 1, z2 =−2
and z3 = −1, z3 = −2, or z3 = −1. Assuming D∗ = DFl, D1 = DNa

DFl
,

D2 = 1 and D3 =
[

DCl
DFl

,
DSO4
DFl

, DOH
DFl

]
. Based on values of diffusivities

reported in literature, D1 = 2.1 and D3 = [3.1,1.6,8.2].28,35.
Since experimental running time is 5 min, the upper limit for

dimensionless time is τ = tD∗
`2 ≈ 0.2. Therefore, finite-pore effects

could become important and we numerically solve Eq. (3) to
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Fig. 6 Comparison between experiments, the coupled electrolyte
model, and the independent electrolyte model - effect of τ.
Fluoroscein concentration c2(X ,τ) for β = 1, where β = 1 corresponds
to the concentration of 4 mM NaCl in the main channel (Fig. 2). The solid
lines are results for the coupled electrolyte model (Eq. (3)), the dashed
lines are results for the independent electrolyte model (Eq. (6)), and the
data points are obtained from experiments.

simulate the concentration profiles. The initial and boundary
conditions employed are c1(X ,0) = 1, c2(X ,0) = 0.5, c3(X ,0) = 0,

c1(0,τ)= β , c2(0,τ)= 0, c3(0,τ)=
∣∣∣ z1

z3

∣∣∣β , ∂c1
∂X

∣∣∣
X=1

= 0, ∂c2
∂X

∣∣∣
X=1

= 0

and ∂c3
∂X

∣∣∣
X=1

= 0. Eq. (6) is used to calculate the concentration

profiles for the independent electrolyte model. The overview of
the comparison between experiments and the models is provided
in Figs. 6 and 7.

First, we focus on the scenario when NaCl is flooded in the
main channel with a concentration of 4 mM (β = 1). Since
the fluorescein is transported out of the pore, c2 decreases
with an increase in τ. Our experiments and model display a
qualitative and a reasonable quantitative agreement; see Fig. 6.
We emphasize that the coupled model is able to reproduce the
experimental trends without any fitting parameters. In addition,
we find that the coupled model displays a better agreement than
the independent electrolyte model.

Second, we focus on the effect of β with NaCl as the electrolyte
in the reservoir. Since the fluorescein ion is transported out of
the pore, as evident from Fig. 4(b), c2 is sensitive to the value
of β . We recall that for experimental conditions D1 = 2.1, D2 = 1
and D3 = 3.1. Based on Eq. (2), with an increase in the value of
β , ∂Ψ

∂X becomes more negative. Therefore, the rate at which c2 is
transported out of the pore is slower with an increase in the value
of β . This trend is observed for both experiments and the coupled
electrolyte model; see Fig. 7(a). However, the independent
electrolyte model does not show any dependence on β .

Lastly, we detail the effect of varying ion diffusivities by
changing the electrolyte in the reservoir; see Fig. 7(b). We
fixed the electrolyte concentrations in the reservoir such that
β = 1 for all the different electrolytes, i.e., we utilized 4 mM
NaCl , 2 mM Na2SO4 and 4 mM NaOH. The diffusivities for
NaCl, Na2SO4 and NaOH are D3 = 3.1, D3 = 1.6 and D3 = 8.2,

respectively. Physically, we know that when D3 is large, it is
easier for fluorescein to transport out of the pore as there is less
restriction for flouorescein to remain inside the pore to satisfy
electroneutrality. Therefore, we observe that when Na2SO4 is
the reservoir electrolyte, fluorescein diffuses out the slowest, and
when NaOH is the reservoir electrolyte, fluorescein diffuses out
the fastest (Fig. 7(b)). We observe the above trend for both
experiments and the coupled electrolyte model. In contrast, the
independent electrolyte model predicts the same transport rate
for the fluorescein ion irrespective of the reservoir electrolyte.
The results in Fig. 7 underscore the importance of the coupled
electrolyte model.

There are some quantitative differences between the model
predictions and the experimental data, especially because the
boundary condition utilized in the model at X = 0 is not
strictly observed in experiments; see Figs. 6 and 7. Based
on our experimental data, c2(0,τ) ≈ 0.06 is approximately
followed. Therefore, we perform the finite-pore simulations
(Eq. 3) by appropriately modifying the boundary conditions, and
obtain a better agreement between the coupled model and the
experiments (see Supporting Information). To further improve
the predictions, we also need to consider the the diffusioosmotic
flow of the ions, which also alters the transport of ions. The
order of magnitude for the diffusioosmotic velocity in the present

geometry is O
(

ε

µ

(
kBT

e

)2 1
`

)
= 10−6 µm/s, where ε and µ is

the electric permittivity and viscosity of the electrolyte solution.
Therefore, the diffusioosmotic flow can considerably influence the
diffusive transport of ions. To accurately capture the details of
flow near the pore-inlet, a 3-dimensional model is required36,
and will be pursued in our future studies. Nonetheless, we
emphasize that the model is able to capture the experimental
trends for the influence of multiple ions without any fitting
parameters, and provides useful insights into the behaviour of
diffusion in multiple electrolytes.

5 Conclusion
In this article, we investigated the diffusion of ions in
a system with two binary electrolytes as a means for
understanding the influence of background ions. We developed
a mathematical model to predict the ion concentration profiles in
a one-dimensional semi-infinite geometry as well as a finite-sized
geometry. Our theoretical predictions demonstrate that it is
crucial to consider the coupling between ionic fluxes to accurately
predict the diffusive transport of ions (both the time scale and
the magnitude of concentration variations). We find that our
theoretical predictions based on the Nernst-Planck description
of ionic transport are in good agreement with our experimental
data. We also note that the independent electrolyte analysis
is unable to capture some of the details, especially when the
concentration and diffusivity ratios are large.

A direct application of our work is the experimental
determination of ion diffusion coefficient by utilizing multiple
electrolytes so as to reduce the effect of traces of unwanted
ions. Looking forward, the key parameters that can be exploited
to tune the motion of ions, and by extension the motion of
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Fig. 7 Comparison between experiments, the coupled electrolyte model and the independent electrolyte model - effect of β and different
reservoir electrolytes. (a) Fluoroscein concentration c2(X ,τ) for different β , τ = 0.08 and NaCl as the reservoir electrolyte. β = 0 and β = 0.5 implies
NaCl concentrations in the main channel are 0 mM and 2 mM respectively. The dashed lines overlap for different β . (b) Fluoroscein concentration
c2(X ,τ) for β = 1, τ = 0.08 and different reservoir electrolytes. β = 1 implies NaCl, Na2SO4 and NaOH concentrations in the main channel are 4 mM, 2
mM and 4 mM, respectively. The dashed lines overlap for different electrolytes. The solid lines are results for the coupled electrolyte model (Eq. (3)),
the dashed lines are results for the independent electrolyte model (Eq. (6)), and the data points are obtained from experiments.

colloids,22,25,26 are the relative diffusivities and concentration
of ions. These ratios dictate the direction and strength
of the electric field, which influences the diffusion of ions.
Therefore, multiple electrolytes can be exploited for electrokinetic
prcoesses such as electrophoresis and diffusiophoresis. Our
results can also be extended to systems with a finite current
such as supercapacitors27,37 and capacitive deionization38,
where solutions often contain multiple electrolytes, as well
as materials (concrete) systems6–10 and environmental (soil)
applications.39–42
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