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a b s t r a c t

This paper studies the infinite-horizon adaptive optimal control of continuous-time linear periodic
(CTLP) systems, using reinforcement learning techniques. By means of policy iteration (PI) for CTLP
systems, both on-policy and off-policy adaptive dynamic programming (ADP) algorithms are derived,
such that the solution of the optimal control problem can be found without the exact knowledge of the
system dynamics. Starting with initial stabilizing controllers, the proposed PI-based ADP algorithms
converge to the optimal solutions under mild conditions. Application to the adaptive optimal control of
the lossy Mathieu equation demonstrates the efficacy of the proposed learning-based adaptive optimal
control algorithm.

© 2020 Elsevier Ltd. All rights reserved.

1. Introduction

Tremendous research efforts have been put into the analysis
and control of continuous-time linear periodic (CTLP) systems.
There are generally two kinds of motivations. Firstly, many prob-
lems in engineering applications can be described and solved
in the setting of CTLP systems, such as vibration attenuation
in helicopters (Camino & Santos, 2019), controlling robot
manipulators (Oh, Bien, & Suh, 1988) and programmatic adver-
tising (Karlsson, 2018). Secondly, CTLP systems play an important
role in the study of adaptive control of linear time-varying sys-
tems (Xu, 2004; Zhang & Serrani, 2009). It is widely recognized
that finding a universal solution to adaptive control of general
linear time-varying systems is extremely difficult (Mareels &
Polderman, 2012). Thus it is more realistic to classify linear
time-varying systems into different categories and study them
independently (Narendra & Esfandiari, 2019). CTLP system is
one of such categories. Besides adaptive control design, ensuring
certain optimality properties for the closed-loop adaptive sys-
tems is another major challenge. With this in mind, the optimal
control problem of CTLP systems has received considerable atten-
tion; see, for instance, Bittanti, Colaneri, and De Nicolao (1991),
Shayman (1985), Varga and Stefan (1998) and the references
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therein. However, even for this special class of CTLP systems,
the adaptive control and the optimal control problems have been
studied as two separate problems. That is, the adaptive control
results presented in Narendra and Esfandiari (2019), Xu (2004)
and Zhang and Serrani (2009) do not guarantee optimization of
any prescribed cost function, while the optimal control solutions
presented in Bittanti et al. (1991), Shayman (1985) and Varga
and Stefan (1998) require the precise knowledge of the system
dynamics.

In this paper, we aim to invoke reinforcement learning (RL)
techniques to address the adaptive optimal control problem for
CTLP systems. The objective is to come up with a method which
solves the infinite-horizon optimal control problem of CTLP sys-
tems without the exact knowledge of the system dynamics.
Bellman’s dynamic programming (Bellman, 1957) is a powerful
method to investigate complex optimal control problems (Li, Yu,
Teo, & Duan, 2011; Yang et al., 2016). But the original dynamic
programming is haunted by the ‘‘curse of dimensionality’’ (Bell-
man, 1957). It is also haunted by the ‘‘curse of modeling’’ (Bert-
sekas & Tsitsiklis, 1996), that is, a mathematical model must be
precisely known a priori. RL overcomes these two curses by solv-
ing Bellman equations through successive approximations using
the data generated from interactions between the controller and
the plant (Sutton & Barto, 2018). Although the most general array
of RL algorithms is provided by researchers within the artificial
intelligence community, algorithms with stability and robustness
guarantees are not available until recently, mainly by the efforts
of researchers within the control systems community (Buşo-
niu, de Bruin, Tolić, Kober, & Palunko, 2018). Adaptive dynamic
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programming (ADP) (Bertsekas & Tsitsiklis, 1996; Jiang & Jiang,
2017; Lewis & Liu, 2013; Werbos, 2007), as a control-theoretic RL
subfield, is devoted to this class of RL algorithms with stability
and robustness guarantees. In the past decade, a good number
of ADP algorithms have been proposed for systems described by
linear or nonlinear, difference or differential equations (Deptula,
Rosenfeld, Kamalapurkar, & Dixon, 2018; Jiang & Jiang, 2017;
Kamalapurkar, Rosenfeld, & Dixon, 2016; Kamalapurkar, Walters,
Rosenfeld, & Dixon, 2018; Lewis & Liu, 2013), with many ap-
plications in, e.g., power and energy systems (Wei, Liu, Lewis,
Liu, & Zhang, 2017), autonomous systems (Pane, Nageshrao, &
Babuška, 2016), to name a few. Nevertheless, most of the existing
ADP algorithms assume time-invariant systems, and relatively
less results are known for time-varying systems. Adaptive optimal
control of linear time-varying systems is studied in Fong, Tan,
Crocher, Oetomo, and Mareels (2018) and Pang, Bian, and Jiang
(2019), for the continuous-time case and the discrete-time case,
respectively. But the optimal control problems considered in Fong
et al. (2018) and Pang et al. (2019) are finite-horizon, where no
stability issue arises. Thus it is of interest to investigate how to
derive ADP algorithms and optimal solutions for time-varying
systems in the infinite-horizon optimal control setting.

Inspired by the time-invariant results in Jiang and Jiang (2017),
ADP algorithms for CTLP systems are proposed in this paper by
using policy iteration (PI). For certain classes of optimal control
problems (Kleinman, 1968, Theorem, Saridis & Lee, 1979, The-
orem 4), starting with an initial stabilizing controller, PI yields
successively stabilizing controllers with improved performance in
each iteration, that will converge to the optimal solution as the
iteration step goes to infinity. For the infinite-horizon periodic
linear quadratic optimal control problem of CTLP systems (de-
fined in next section), Theorem 6.2 in Bittanti et al. (1991) can
be viewed as the prototype of the model-based PI. However, the
controllers given by this prototypical PI converge pointwise to the
controllers that are not necessarily stabilizing and optimal for the
corresponding periodic linear quadratic optimal control problem.
We firstly add one additional assumption to the prototypical PI,
such that it will converge pointwise to the unique stabilizing
optimal controller. Then we prove that this pointwise conver-
gence can be further strengthened into uniform convergence.
Next, based on the modified model-based PI, we derive two
novel PI-based on-policy and off-policy ADP algorithms, to find
stabilizing approximate optimal controllers directly from the in-
put/state data, without the exact knowledge of system dynamics.
The Fourier basis functions are utilized to approximate different
periodic nonlinear functions involved in the algorithms. Rigorous
convergence analysis is presented to guarantee the convergence
of the proposed algorithms to the optimal solutions, under mild
conditions. Finally, the proposed algorithms are applied to the
periodic linear quadratic optimal control of the well-known lossy
Mathieu equation, which shows the effectiveness and feasibility
of our methods.

The rest of this paper is organized as follows: Section 2 in-
troduces the problem formulation and reviews the mathematical
preliminaries. Section 3 contains the main results of this paper,
i.e., the model-based PI, the PI-based on-policy and off-policy ADP
algorithms and their convergence proofs. Section 4 presents the
simulation results. Section 5 concludes the whole paper.

Notations: R is the set of real numbers. Z+ is the set of nonnega-
tive integers.⊗ is the Kronecker product operator. Sn denotes the
vector space of all n-by-n real symmetric matrices. |·|p and ∥ · ∥p,
p ∈ [1,∞] denote the p-norm for vectors and the induced p-norm
for matrices, respectively. When subscript p is omitted, |·| and
∥ · ∥ represent the Euclidean norm for vectors and the Frobenius
norm for matrices, respectively. [x]j denotes the jth element of
vector x ∈ Rn. [X]i,· ([X]·,j) denotes the ith row (jth column) of

matrix X ∈ Rm×n. [X]i,j denotes the element in the ith row and
jth column of matrix X ∈ Rm×n. For real symmetric matrices A
and B, A > B (A ≥ B) means that matrix A− B is positive definite
(positive semidefinite).

2. Problem formulation and preliminaries

Consider the following class of continuous-time linear periodic
systems

ẋ(t) = A(t)x(t)+ B(t)u(t), (1)

where x(t) ∈ Rn is the system state, u(t) ∈ Rm is the control
input, A(·) : R → Rn×n, B(·) : R → Rn×m are continuous and
T -periodic matrix-valued functions, i.e.,

A(t + T ) = A(t), B(t + T ) = B(t), ∀t ∈ R.

B(·) is piecewise continuously differentiable. Let Φ(t, τ ) be the
state transition matrix of the unforced system (1), i.e., u ≡ 0.
Then Φ(t, τ ) satisfies

Φ̇(t, τ ) = A(t)Φ(t, τ ), Φ(τ , τ ) = I,

and Φ(t + T , τ + T ) = Φ(t, τ ). In the setting of CTLP systems,
Φ(t + T , t) is known as the monodromy matrix at time t , whose
eigenvalues (known as characteristic multipliers) are indepen-
dent of t . By Floquet theory (DaCunha & Davis, 2011), we obtain
the following lemma about the stability of CTLP systems.

Lemma 1. For the unforced system (1), the following are equiva-
lent:

(i) It is globally uniformly asymptotically stable.
(ii) It is globally uniformly exponentially stable.
(iii) The characteristic multipliers associated with A(·) belong to

the open unit disk.

By Bittanti et al. (1991, Section 6.5.1.1), the periodic linear
quadratic optimal control problem consists of finding a linear
stabilizing control policy u(·) that minimizes the quadratic cost
functional

J(t0, ξ , u(·)) =
∫
∞

t0

|C(t)x(t)|2 + uT (t)R(t)u(t)dt, (2)

where u(t) = −K (t)x(t), K (·) : R → Rm×n, C(·) : R → Rr×n

are continuous and T -periodic; R(·) : R → Rm×m is continuous,
T -periodic, positive definite and piecewise continuously differen-
tiable; x(t) is the solution of Eq. (1) with initial state x(t0) = ξ ,
ξ ∈ Rn.

Remark 2. For convenience, in this paper, we just use ‘‘stable’’
or ‘‘stabilizing’’ to refer to the type of stability in Lemma 1. For
example, we say that a control gain K (·) is stabilizing, if system
ẋ(t) = (A(t)− B(t)K (t))x(t) is stable in the sense of Lemma 1.

Associated with the optimal control problem is the well-
known periodic Riccati equation (PRE)

−Ṗ(t) = AT (t)P(t)+ P(t)A(t)

− P(t)B(t)R−1(t)BT (t)P(t)+ CT (t)C(t).

Under certain conditions, the optimal solution to the periodic
linear quadratic control problem exists and is unique (Bittanti
et al., 1991, Theorem 6.5 and Theorem 6.12).

Lemma 3. There exists a unique symmetric, periodic and positive
semidefinite (SPPS) solution P∗(·) of the PRE, and the corresponding
closed-loop system is stable, if and only if (A(·), B(·)) is stabilizable
and (A(·), C(·)) is detectable (Bittanti, 1986, Theorem 4). The cost
function (2) is minimized by the optimal control gain K ∗(t) =
R−1(t)BT (t)P∗(t), and the corresponding minimum cost is J∗(t0, ξ ) =
J(t0, ξ , u∗(·)) = ξ TP∗(t0)ξ .
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Note that P∗(t) is a nonlinear matrix-valued function of time
t , whose analytic expression is generally difficult to be obtained.
In this paper, Fourier basis functions are adopted to approximate
different periodic functions. Suppose f (·) : R → R is a periodic
function with a period T . Then, define the partial sums of Fourier
series of f (·) as

fN (t) =
a0
2
+

N∑
n=1

(an cos (ωnt)+ bn sin (ωnt)) ,

where ω = 2π/T , an and bn are the Fourier coefficients.

Lemma 4 (Anton, 2005, Theorem 1.5.1). If f is T -periodic, continuous
and piecewise continuously differentiable, then fN → f uniformly, as
N →∞.

When matrices A(·) and B(·) are known, the optimal solu-
tion P∗(·) can be approximately solved using existing numerical
methods (see, e.g. Varga (2008)). When matrices A(·) and B(·)
are unknown, those numerical methods can hardly be applied
directly due to the nonlinearity of the PRE. By reinforcement
learning techniques, in the sequel, two PI-based ADP algorithms
are proposed to find approximate optimal controllers directly
from the collected data.

Definition 5. For matrices X ∈ Rn×m, Y ∈ Sm, and vector v ∈ Rn,
define

vec(X) = [xT1, x
T
2, . . . , x

T
m]

T ,

vecs(Y ) = [y11,
√
2y12, . . . ,

√
2y1m, y22,

√
2y23,

· · · ,
√
2ym−1,m, ym,m]

T
∈ R

1
2m(m+1),

ṽ = vecs(vvT ),

where xi is the ith column of X . In addition, vec−1(·) and vecs−1(·)
denote the operators such that X = vec−1(vec(X)) and Y =
vecs−1(vecs(Y )), respectively.

As it can be directly checked, we have

Lemma 6. For X ∈ Rm×n, Y ∈ Sn, |vec(X)| = ∥X∥, |vecs(Y )| =
∥Y∥.

3. Policy iteration based adaptive dynamic programming for
continuous-time linear periodic systems

In this section, the model-based PI algorithm is firstly pre-
sented. Then the corresponding on-policy and off-policy PI-based
ADP algorithms are derived in two subsequent subsections, re-
spectively.

3.1. Model-based PI for CTLP systems with known dynamics

Before proceeding, the following lemma is useful.

Lemma 7. Suppose L(·) is a continuous, T -periodic and stabilizing
control gain. The cost induced by control policy uL(t) = −L(t)x(t) is
J(t0, ξ , uL(·)) = ξ TPL(t0)ξ , where PL(·) is the unique SPPS solution of
the periodic Lyapunov equation (PLE)

−ṖL(t) = AT
L (t)PL(t)+ PL(t)AL(t)

+ CT (t)C(t)+ LT (t)R(t)L(t),
(3)

and

PL(t) =
∫
∞

t

[
ΦT

L (τ , t)
(
C(τ )TC(τ )

+LT (τ )R(τ )L(τ )
)
ΦL(τ , t)

]
dτ ,

(4)

where ΦL(τ , t) is the state transition matrix corresponding to AL(t)
= A(t)− B(t)L(t).

Proof. By Lemma 2 in Bittanti, Bolzern, and Colaneri (1984), PL(·)
in (4) is the unique T -periodic solution of PLE (3). Since R(·) > 0,
PL(·) is the unique SPPS solution.

The model-based policy iteration for CTLP systems is pre-
sented in the following theorem.

Theorem 8. Suppose that (A(·), B(·)) is stabilizable and (A(·), C(·))
is detectable. Let K0(·) be a continuous, T -periodic stabilizing control
gain. Set i = 0, and consider the following stepwise procedure:

(1) (Policy Evaluation) Solve the unique SPPS solution Pi(·) from
the PLE

−Ṗi(t) = AT
i (t)Pi(t)+ Pi(t)Ai(t)

+ CT (t)C(t)+ K T
i (t)R(t)Ki(t),

(5)

where Ai(t) = A(t)− B(t)Ki(t).
(2) (Policy Improvement) Obtain improved control policy using

Ki+1(t) = R−1(t)BT (t)Pi(t). (6)

(3) Let i = i+ 1, and return to Step (1).

Then for all i ∈ Z+:

(i) Ai(·) is stable.
(ii) 0 ≤ P∗(t) ≤ Pi+1(t) ≤ Pi(t), ∀t ∈ R.
(iii) Pi(·) and Ki(·) converge pointwise to P∗(·) and K ∗(·), respec-

tively.

Proof. In Bittanti et al. (1991, Theorem 6.2), if (A(·), B(·)) is
stabilizable, it is shown that Pi(·) converges pointwise and
monotonically to the maximal solution (Bittanti et al., 1991,
Section 6.3.1.1) of the PRE. By Lemma 3, if further (A(·), C(·)) is
detectable, P∗(·) is equal to the maximal solution of PRE. Thus
Theorem 8 follows readily.

Next, we show that the pointwise convergence presented in
Theorem 8 can be actually strengthened into uniform conver-
gence. In the rest of this paper, we omit the dependence of
variables on time t when there is no ambiguity.

Corollary 9. Under the conditions of Theorem 8, limi→∞ Pi(t) =
P∗(t) uniformly, limi→∞ Ki(t) = K ∗(t) uniformly, on R.

Proof. Firstly, we show that [Pi(t)]j,k converges to [P∗(t)]j,k uni-
formly on R, for j = 1, . . . , n, k = 1, . . . , n. For i > 0, substituting
(6) into (5) yields

∥Ṗi∥ ≤ Ūi := η1∥Pi∥ + η2

+ η3
(
∥Pi−1∥2 + 2∥Pi−1∥∥Pi∥

)
,

(7)

where η1, η2, η3 are positive constants. From Theorem 8, Pi−1 ≥
Pi ≥ Pi+1, the monotonicity of Frobenius norm (Ciarlet, Miara, &
Thomas, 1989, 2.2-10) implies ∥Pi−1∥ ≥ ∥Pi∥ ≥ ∥Pi+1∥. In view of
(7), this implies that {Ūi}

∞

i=1 is nonincreasing. Thus we have

∥Ṗi∥ ≤ Ū∗ := max
{
max

t
Ū1(t),max

t
∥Ṗ0(t)∥

}
,

for all i ∈ Z+. Consider function [Pi(·)]j,k on compact set
[0, T ]. For 0 ≤ t1 < t2 ≤ T , the mean value theorem yields⏐⏐[Pi(t1)]j,k − [Pi(t2)]j,k⏐⏐ ≤ Ū∗|t1 − t2|. Since Ū∗ is independent
of iteration index i, it follows from the above inequality that
the sequence of functions {[Pi(·)]j,k}∞i=0 is equicontinuous (Rudin,
1976, Definition 7.22) on [0, T ]. Furthermore, through Theorem 8,
we know that {[Pi(·)]j,k}∞i=0 converges pointwise to [P∗(·)]j,k on
[0, T ]. Then by a corollary (Rudin, 1976, Exercise 16 on Page
168) of the Arzelà–Ascoli theorem (Rudin, 1976, Theorem 7.25),
[Pi(·)]j,k converges uniformly to [P∗(·)]j,k on [0, T ]. As a result of
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the periodicity, [Pi(·)]j,k converges uniformly on R. This implies
that Pi(·) itself converges uniformly to P∗(·) on R. Due to the
boundedness of R(·) and B(·), by (6) the uniform convergence of
Ki(·) to K ∗(·) on R follows. This completes the proof of Corollary 9.

In the following subsections, using Corollary 9, we propose
two algorithms to solve iteratively (5) and (6) in the absence of
the exact knowledge of matrices (A(·), B(·)).

3.2. PI-based on-policy ADP algorithm for the unknown dynamics
case

Assume the following policy is applied to system (1) to collect
data

vL(t) = −L(t)x(t)+ ue(t), (8)

where L(t) is known and defined in Lemma 7, ue(t) is the explo-
ration noise. Then the evolution of the closed-loop system states
is

ẋ(t) = AL(t)x(t)+ B(t)ue(t). (9)

Since L(·) is stabilizing, we can construct an improved control gain
based on PL(·)

L̄(t) = R−1(t)BT (t)PL(t). (10)

Then by (3), (9) and (10), differentiating xTPLx with respect to
time t yields

dxTPLx
dt

= −xT (CTC + LTRL)x+ 2uT
e RL̄x. (11)

Define tj = t0 + j∆t , where j ∈ Z+, ∆t > 0 is the sampling
interval. By integrating both sides of (11) from tj to tj+1 and
rearranging the terms, we have

−

∫ tj+1

tj

[xT (CTC + LTRL)x]dt =

x̃T (tj+1)vecs(PL(tj+1))− x̃T (tj)vecs(PL(tj))

−

∫ tj+1

tj

(xT ⊗ 2uT
e R)vec(L̄)dt.

(12)

Note that PL(·) and L̄(·) are periodic matrix-valued functions. Thus,
we can express PL(·) and L̄(·) using the linear combination of
(2N + 1) Fourier basis functions as follows

vecs(PL(t)) = X̂ (1)
L,NFN (t)+ ê(1)L,N (t),

vec(L̄(t)) = X̂ (2)
L,NFN (t)+ ê(2)L,N (t),

(13)

where X̂ (1)
L,N ∈ Rn1×(2N+1) and X̂ (2)

L,N ∈ Rn2×(2N+1) are weight
matrices, n1 =

n(n+1)
2 , n2 = mn; ê(1)L,N (t) ∈ Rn1 and ê(2)L,N (t) ∈ Rn2

are approximation errors; and

FN (t) = [1, cos (ωt), sin (ωt), cos (2ωt), sin (2ωt),

· · · , cos (Nωt), sin (Nωt)]T .

By inserting (13) into (12) and rearranging the terms, we obtain

dL,j,N

[
vec(X̂ (1)

L,N )

vec(X̂ (2)
L,N )

]
= −rL,j + êL,j,N , (14)

where error term êL,j,N summarizes the effect of errors ê(1)L,N (·) and
ê(2)L,N (·), and

dL,j,N =
[
Fx,N (tj+1)− Fx,N (tj),−Fxu,j,N

]
,

Fx,N (t) = F T
N (t)⊗ x̃T (t),

Fxu,j,N =
∫ tj+1

tj

F T
N ⊗ xT ⊗ 2uT

e Rdt

rL,j =
∫ tj+1

tj

[xT (CTC + LTRL)x]dt.

The subscript L of dL,j,N is used to emphasize that the state
trajectory x(t) involved in (14) is generated by control policy vL(·)
in (8). Letting j = 0, 1, 2, . . . ,M − 1 in (14), where M ∈ Z+\{0},
we can reorganize the resulting equations into a single linear
matrix equation

ΘL,N

[
vec(X̂ (1)

L,N )

vec(X̂ (2)
L,N )

]
= ΨL,N + ÊL,N (15)

where [ΘL,N ]j,· = dL,j,N , [ΨL,N ]j = −rL,j, [ÊL,N ]j = êL,j,N . In
(15), ΘL,N and ΨL,N are known data matrices. Thus it is possible
to apply the least square regression to determine the weight
matrices X̂ (1)

L,N and X̂ (2)
L,N .

Now, we are ready to derive the PI-based on-policy ADP algo-
rithm to solve (5) and (6) directly from the collected input/state
data. Define the control gains

K̂i,N (t) =

{
K0(t), i = 0,

vec−1
(
X̂ (2)
i−1,NFN (t)

)
, i = 1, 2, . . . ,

and the control law

v̂i,N (t) = −K̂i,N (t)x(t)+ ue(t), (16)

where X̂ (2)
i−1,N is the weight matrix used to approximate the im-

proved control gain at the (i − 1)th iteration. Let P̌i,N (·) be the
unique SPPS solution of PLE

−
˙̌Pi,N (t) = ÂT

i,N (t)P̌i,N (t)+ P̌i,N (t)Âi,N (t)

+ CT (t)C(t)+ K̂ T
i,N (t)R(t)K̂i,N (t)

(17)

with ÂT
i,N = A(t)− B(t)K̂i,N (t). By Lemma 7, if K̂i,N (·) is stabilizing,

such a P̌i,N (·) exists. Then the policy improvement step is

Ǩi+1,N (t) = R−1(t)BT (t)P̌i,N (t). (18)

By using (17) and (18), and replacing L(·) and vL(·) with K̂i,N (·) and
v̂i,N (·) in the derivations from (11) to (15), we obtain

Θ̂i,N

[
vec(X̂ (1)

i,N )

vec(X̂ (2)
i,N )

]
= Ψ̂i,N + Êi,N , (19)

where X̂ (1)
i,N ∈ Rn1×(2N+1), X̂ (2)

i,N ∈ Rn2×(2N+1) are unknown weight
matrices to be determined. To ensure that the least square regres-
sion problem represented by (19) is feasible, we make an assump-
tion in spirit of persistent excitation (PE) condition in adaptive
control (Jiang & Jiang, 2017; Mareels & Polderman, 2012).

Assumption 10. For all i ∈ Z+, there exist M̄ ≥ (n1+n2)(2N+1)
and α > 0 (independent of N), such that for all M > M̄ , M ∈ Z+,
we have
1
M

Θ̂T
i,NΘ̂i,N ≥ αI(n1+n2)(2N+1).

Remark 11. Analogous assumptions appeared in the past lit-
erature of ADP (Bian, Jiang, & Jiang, 2014; Jiang & Jiang, 2017;
Lewis & Liu, 2013). The exploration noise ue(t) can be chosen
as, e.g., sinusoidal signals or random noise, to satisfy this kind of
assumptions. As long as L(t) is stabilizing, by Lemma 1 and Khalil
(2002, Lemma 4.6), system (9) is input-to-state stable, which
means that the states of system (9) are bounded for any bounded
exploration noise ue(t).
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Under Assumption 10, the weight matrices which achieve the
minimum approximation error are given by[
vec(X̂ (1)

i,N )

vec(X̂ (2)
i,N )

]
= (Θ̂T

i,NΘ̂i,N )−1Θ̂T
i,N Ψ̂i,N . (20)

The PI-based on-policy ADP algorithm is summarized in
Algorithm 1.

Algorithm 1 PI-based on-policy ADP
1: Choose a stabilizing initial control gain K0(·), threshold ϵ > 0,

N ∈ Z+, M ∈ Z+\{0} and ∆t > 0.
2: Set K̂0,N (t) = K0(t), and let i← 0.
3: repeat
4: Apply (16) to the system (1) and construct the data

matrices Θ̂i,N , Ψ̂i,N in (19).
5: Compute X̂ (1)

i,N , X̂
(2)
i,N by (20).

6: P̂i,N (t)← vecs−1
(
X̂ (1)
i,NFN (t)

)
7: K̂i+1,N (t)← vec−1

(
X̂ (2)
i,NFN (t)

)
8: if i > 0 then
9: γ ← ∥X̂ (1)

i,N − X̂ (1)
i−1,N∥ + ∥X̂

(2)
i,N − X̂ (2)

i−1,N∥

10: else
11: γ ← 2ϵ
12: end if
13: i← i+ 1
14: until γ < ϵ

15: Use ûi(t) = −K̂i,N (t)x(t) as the approximate optimal control.

Lemma 12. For each i ∈ Z+, if limN→∞ K̂i,N (t) = Ki(t) uniformly
on R, then

(i) When N is large enough, K̂i,N (·) is stabilizing.
(ii) limN→∞ P̌i,N (t) = Pi(t) uniformly on R.

Proof. See Appendix A.

Lemma 13. For each i ∈ Z+, if limN→∞ K̂i,N (t) = Ki(t) uniformly
on R, and Assumption 10 is satisfied, then ∀ϵ > 0, ∃N̄ > 0, such
that ∀N > N̄,N ∈ Z+,

∥P̂i,N (t)− P̌i,N (t)∥ < ϵ, ∥K̂i+1,N (t)− Ǩi+1,N (t)∥ < ϵ,

for all t ∈ R.

Proof. See Appendix B.

The convergence analysis of Algorithm 1 is given in the fol-
lowing theorem and corollary.

Theorem 14. Under Assumption 10, given ī ∈ Z+, for any ϵ > 0,
∃N̄ > 0, such that ∀N > N̄ , N ∈ Z+,

∥P̂i,N (t)− Pi(t)∥ < ϵ, ∥K̂i+1,N (t)− Ki+1(t)∥ < ϵ,

for all t ∈ R, i = 1, 2, . . . , ī. In addition, Âi,N (·) in (17) is uniformly
asymptotically stable, for i = 1, 2, . . . , ī+ 1.

Proof. Since K̂0,N (t) = K0(t), there are P̌0,N (t) = P0(t), Ǩ1,N (t) =
K1(t). By Lemma 13, ∃N̄0 > 0, such that ∀N > N̄0, ∀t ∈ R,
∥P̂0,N (t)− P0(t)∥ < ϵ, ∥K̂1,N (t)− K1(t)∥ < ϵ. Then by Lemmas 12,
13 and (18), ∃N̄1 ≥ N̄0, such that ∀N > N̄1, Â1,N (t) is uniformly
asymptotically stable, and ∀t ∈ R, ∥P̂1,N (t)−P1(t)∥ < ϵ, ∥K̂2,N (t)−
K2(t)∥ < ϵ. Through similar derivations, ∃N̄ī > 0, such that
∀N > N̄ī, Âi,N (·) is uniformly asymptotically stable, and ∀t ∈ R,

∥P̂i,N (t)− Pi(t)∥ < ϵ, ∥K̂i+1,N (t)− Ki+1(t)∥ < ϵ, for i = 1, 2, . . . , ī.
Finally, one could choose N̄ī+1 ≥ N̄ī, such that ∀N > N̄ī+1, Âī+1,N (·)
is uniformly asymptotically stable. The proof is completed by
setting N̄ = N̄ī+1.

A direct combination of Corollary 9, Theorem 14 and the
triangle inequality yields the next corollary.

Corollary 15. Under Assumption 10 and the conditions of
Theorem 8, ∀ϵ > 0, ∃ī ∈ Z+, ∃N̄ > 0, such that ∀N > N̄ , N ∈ Z+,
∀t ∈ R,

∥P̂ī,N (t)− P∗(t)∥ < ϵ, ∥K̂ī+1,N (t)− K ∗(t)∥ < ϵ.

3.3. PI-based off-policy ADP algorithm for the unknown dynamics
case

In order to find the near-optimal policy, in Algorithm 1 one
needs to collect new data in every iteration of the inner loop,
which may be costly and inconvenient. In engineering applica-
tions, one is often more interested in finding an approximate
optimal solution by utilizing less data. To this end, PI-based
off-policy ADP algorithm is proposed in this section.

Define the control gains

K̊i,N (t) = vec−1
(
X̊ (2)
i−1,NFN (t)

)
, i ∈ Z+, (21)

where X̊ (2)
−1,N is chosen so that K̊0,N (t) is stabilizing, X̊ (2)

i,N , i ∈ Z+
is the weight matrix used to approximate the improved control
gain in ith iteration. Take an arbitrary control policy u0 which,
when applied to (1), yields the boundedness of the solutions of
the closed-loop system, i.e.,

ẋ(t) = Åi,N (t)x(t)+ B(t)(K̊i,N (t)x(t)+ u0(t)), (22)

where ÅT
i,N = A(t)−B(t)K̊i,N (t). Let P̆i,N (t) denote the unique SPPS

solution of PLE,

−
˙̆Pi,N (t) = ÅT

i,N (t)P̆i,N (t)+ P̆i,N (t)ÅT
i,N

+ CT (t)C(t)+ K̊ T
i,N (t)R(t)K̊i,N (t).

(23)

If K̊i,N (t) is stabilizing, such a P̆i,N (t) always exists by Lemma 7.
Then an improved control gain can be obtained

K̆i+1,N (t) = R−1(t)BT (t)P̆i,N (t). (24)

Similar to (11), by (22), (23) and (24), differentiating xT P̆i,Nx with
respect to t yields

dxT P̆i,Nx
dt

= xT (−CTC − K̊i,NRK̊i,N )x

+ 2(u0 + K̊i,Nx)TRK̆i+1,Nx.
(25)

By integrating both sides of (25) from tj to tj+1 and rearranging
the terms, we have

x̃T (tj+1)vecs(P̆i,N (tj+1))− x̃T (tj)vecs(P̆i,N (tj))

−

∫ tj+1

tj

(
xT ⊗ (2(u0 + K̊i,Nx)TR)

)
vec(K̆i+1,N )dt

= −

∫ tj+1

tj

xTCTCxdt −
∫ tj+1

tj

vec(K̊i,N )T

(xT ⊗ Im)TR(xT ⊗ Im)vec(K̊i,N )dt.

(26)

Substituting (21) and the following approximations into (26)

vecs(P̆i,N (t)) = X̊ (1)
i,NFN (t)+ e̊(1)i,N (t),

vec(K̆i+1,N (t)) = X̊ (2)
i,NFN (t)+ e̊(2)i,N (t),

(27)
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we obtain

d̊i,j,N

[
vec(X̊ (1)

i,N )

vec(X̊ (2)
i,N )

]
= −ci,j,N + e̊i,j,N , (28)

where

d̊i,j,N =
[
Fx,N (tj+1)− Fx,N (tj),

−Fxu0,j,N − vecT (X̊ (2)
i−1,N )∆1,j,N

]
,

∆1,j,N =

∫ tj+1

tj

F T
N ⊗ xT ⊗ 2FN ⊗ x⊗ Rdt,

Fxu0,j,N =

∫ tj+1

tj

F T
N ⊗ xT ⊗ (2uT

0R)dt,

ci,j,N =
∫ tj+1

tj

xTCTCxdt

− vecT (X̊ (2)
i−1,N )∆2,j,Nvec(X̊

(2)
i−1,N ),

∆2,j,N =

∫ tj+1

tj
(FN ⊗ x⊗ Im) R

(
F T
N ⊗ xT ⊗ Im

)
dt,

and e̊i,j,N is the approximation error as that in (14). Analo-
gous to last subsection, we can reorganize Eqs. (28) with j =
1, 2, . . . ,M − 1 into a single linear matrix equation,

Θ̊i,N

[
vec(X̊ (1)

i,N )

vec(X̊ (2)
i,N )

]
= Ψ̊i,N + E̊i,N , (29)

where [Θ̊i,N ]j,· = d̊i,j,N , [Ψ̊i,N ]j = −ci,j,N , [E̊i,N ]j = e̊i,j,N . Again, we
need to impose an assumption on the data matrix in the spirit of
PE condition.

Assumption 16. Assumption 10 holds with Θ̂i,N replaced by
Θ̊i,N .

Under Assumption 16, the weighting matrices that achieve the
least squares approximation error can be computed by[
vec(X̊ (1)

i,N )

vec(X̊ (2)
i,N )

]
= (Θ̊T

i,NΘ̊i,N )−1Θ̊T
i,N Ψ̊i,N . (30)

From (29) and (30), the PI-based off-policy ADP algorithm is
presented in Algorithm 2.

Algorithm 2 PI-based off-policy ADP
1: Choose threshold ϵ > 0, N ∈ Z+, M ∈ Z+\{0}, ∆t > 0 and

X̊ (2)
−1,N such that K̊0,N (·) is stabilizing.

2: Apply u0 (with exploration noise) to system (1), collect the
system state and control input data.

3: Set i = 0, X̊ (1)
−1,N = 0.

4: repeat
5: Construct data matrices Θ̊i,N and Ψ̊i,N in (29).
6: Compute X̊ (1)

i,N , X̊
(2)
i,N by (30).

7: P̊i,N (t)← vecs−1
(
X̊ (1)
i,NFN (t)

)
8: K̊i+1,N (t)← vec−1

(
X̊ (2)
i,NFN (t)

)
9: γ ← ∥X̊ (1)

i,N − X̊ (1)
i−1,N∥ + ∥X̊

(2)
i,N − X̊ (2)

i−1,N∥

10: i← i+ 1
11: until γ < ϵ

12: Use ůi(t) = −K̊i,N (t)x(t) as the approximate optimal control.

The convergence of Algorithm 2 to the optimal solutions is given
in the following corollary, whose derivation and proof are similar
to Corollary 15, thus omitted.

Fig. 1. Differences between P̊i,7(·) and P∗(·).

Corollary 17. Under Assumption 16 and the conditions of
Theorem 8, ∀ϵ > 0, ∃ī ∈ Z+, ∃N̄ > 0, such that ∀N > N̄ , N ∈ Z+,
∀t ∈ R,

∥P̊ī,N (t)− P∗(t)∥ < ϵ, ∥K̊ī+1,N (t)− K ∗(t)∥ < ϵ.

4. An example

In this section, the proposed algorithms in last section are
applied to the periodic linear quadratic optimal control of the
well-known lossy Mathieu equation, without the exact knowl-
edge of system dynamics. The lossy Mathieu equation is a classic
example, both in the theoretic study of linear periodic systems
(Jovanović & Fardad, 2008; Zhang & Serrani, 2009; Zhou, Hagi-
wara, & Araki, 2002), and in the modeling of many engineering
applications (Wereley, 1990).

Consider the following second-order linear periodic system
(Wereley, 1990, Section 1.1)

ẋ(t) =
[

0 1
−(a− 2q cos(ωpt)) −2ζ

]
x(t)+

[
0
1

]
u(t), (31)

where the parameters a, q and ζ are not required to be known for
the application of our PI-based learning algorithms. When some
bounds on these parameters are known, we can apply robust
control techniques to find a stabilizing, not necessarily optimal,
controller for (31). For example, under the following condition,

|a| < 5, |q| < 5, |ζ | < 5, (32)

by Khalil (2002, Theorem 4.9), a choice of initial controller gain
K0 = [15, 10] stabilizes the system (31). Here we are interested
in finding a desired suboptimal controller (that is close to the
optimal controller) without the exact system dynamics, starting
from the robustly stabilizing (but not optimal) control gain K0.
In the simulation, we set parameters a = 1, q = 2, ζ = 0.2,
which satisfy condition (32). The exploration noise is chosen
as ue(t) = 0.2

∑10
j=1 sin (ωjt), where ωj is sampled from the

uniform distribution over [−10, 10]. Other parameters are chosen
as C = I2, R = 1, ϵ = 0.01, N = 7, M = 100, ∆t = 0.1.
Both algorithms stopped after only 7 iterations. The norm of the
difference between P̊i,7(·) and P∗(·) is shown in Fig. 1. The norm of
the difference between K̊i+1,7(·) and K ∗(·) is shown in Fig. 2. The
convergence can be easily identified from Figs. 1 and 2, aligned
with the conclusions of Corollary 17. Since two algorithms start
with the same initial control gain, they generate almost the same
learning processes, thus the learning process of Algorithm 1 is
omitted.
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Fig. 2. Differences between K̊i+1,7(·) and K ∗(·).

5. Conclusions

In this paper, reinforcement learning techniques have been
used to solve the infinite-horizon adaptive optimal control prob-
lem for linear periodic systems with unknown dynamics. Specif-
ically, by means of policy iteration, both on-policy and off-policy
ADP algorithms are proposed to solve the infinite-horizon adap-
tive periodic linear quadratic optimal control problem, using the
input/state data collected along the system trajectories. Under
mild conditions, it is shown that, starting with an initial stabi-
lizing controller, either the on-policy or off-policy ADP algorithm
generates a sequence of suboptimal controllers whose conver-
gence to the optimal solution is guaranteed. The numerical ex-
ample of the well-known lossy Mathieu equation illustrates the
effectiveness of the proposed approaches.
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Appendix A. Proof of Lemma 12

Since Ai(·) is stable, by Lemma 1, we have

∥Φi(t, t0)∥ ≤ γie−αi(t−t0), t ≥ t0, (A.1)

where Φi(t, t0) is the state transition matrix associated with Ai(·),
γi and αi are positive constants associated with Ai(·), and are
independent of t0. Define

ẋ(t) = Âi,N (t)x(t)

= Ai(t)x(t)+ B(t)(Ki(t)− K̂i,N (t))x(t).
(A.2)

Since limN→∞ K̂i,N (t) = Ki(t) uniformly on R, there exists N̄1, such
that ∀N > N̄1,

∥B(t)(Ki(t)− K̂i,N (t))∥ < ϵ1, ∀t ∈ R.

where ϵ1γi < αi. Then by Lemma (Teschl, 2012, Theorem 3.20),

∥Φ̂i,N (t, t0)∥ ≤
√
nγie−(αi−γiϵ1)(t−t0), t ≥ t0, (A.3)

where Φ̂i,N (t, t0) is the state transition matrix corresponding to
Âi,N (·). This implies that Âi,N (·) is globally uniformly exponentially
stable, i.e., (i) is proved.

By (4) in Lemma 7, we have

P̌i,N (t)− Pi(t) =
∫
∞

t
δi,N (τ , t)dτ , (A.4)

where

δi,N (τ , t) = Φ̂T
i,N (τ , t)CTC

(
Φ̂i,N (τ , t)−Φi(τ , t)

)
+

(
Φ̂i,N (τ , t)−Φi(τ , t)

)T
CTCΦi(τ , t)

+ Φ̂T
i,N (τ , t)K̂ T

i,NR
(
K̂i,NΦ̂i,N (τ , t)− KiΦi(τ , t)

)
+

(
K̂i,NΦ̂i,N (τ , t)− KiΦi(τ , t)

)T
RKiΦi(τ , t).

Let

t∗i,N = argmax
t∈[t0,t0+T ]

∥P̌i,N (t)− Pi(t)∥.

Due to the continuity and periodicity of P̌i,N (·) and Pi(·), such a
t∗i,N always exists.

On one hand, for any ϵ > 0, there exists t̄ > t0 + T , such that
∀N > N̄1,∫

∞

t̄
δi,N (τ , t∗i,N )dτ


≤ c0

∫
∞

t̄
∥Φ̂i,N (τ , t∗i,N )∥

2
+ ∥Φi(τ , t∗i,N )∥

2dτ

≤ c1e−2(αi−γiϵ1)t̄ <
ϵ

2
,

(A.5)

where c0, c1 are constants, the first inequality comes from (4)
and Rudin (1976, Theorem 6.25), the second inequality is ob-
tained by (A.1) and (A.3).

On the other hand, from (A.3), for ∀N > N̄1, any solution of
(A.2) with initial state |x(t∗i,N )| = 1 will stay in the ball B0 = {x ∈
Rn
||x|≤

√
nγi}. Therefore for any µ > 0, there exists N̄2 ≥ N̄1,

such that ∀N > N̄2, ∀x ∈ B0,

∥B(t)(Ki(t)− K̂i,N (t))x(t)∥ < µ, ∀t ≥ t∗i,N . (A.6)

Then by Khalil (2002, Theorem 3.4), for ∀τ ∈ [t∗i,N , t̄], ∀N > N̄2,

∥Φi(τ , t∗i,N )− Φ̂i,N (τ , t∗i,N )∥ ≤
√
nµ
c2

(
ec2(t̄−t0) − 1

)
where c2 = maxt ∥A(t)∥. Above inequality combined with (A.6)
implies that δi,N (τ , t∗i,N ) converges uniformly to 0 on τ ∈ [t∗i,N , t̄],
as N →∞. Then, ∃N̄3 ≥ N̄1, such that ∀N > N̄3,

∫ t̄

t∗i,N

δi,N (τ , t∗i,N )dτ

 <
ϵ

2
. (A.7)

Thus from (A.4), (A.7) and (A.5), we have for N > N̄3,

∥P̌i,N (t)− Pi(t)∥ ≤ ∥P̌i,N (t∗i,N )− Pi(t∗i,N )∥ < ϵ,∀t ∈ R.

This completes the proof of (ii).

Appendix B. Proof of Lemma 13

By Lemma 12, ∃N̄0 > 0, such that ∀N > N̄0, K̂i,N (·) is stabi-
lizing. Using the same x(t) generated by (16), and (17), (18), by
the similar derivation for (15), we have

Θ̂i,N

[
vec(X̌ (1)

i,N )

vec(X̌ (2)
i,N )

]
= Ψ̂i,N + Ěi,N , (B.1)

where X̌ (1)
i,N and X̌ (2)

i,N are Fourier coefficients satisfying,

vecs(P̌i,N (t)) = X̌ (1)
i,NFN (t)+ ě(1)i,N (t),

vec(Ǩi+1,N (t)) = X̌ (2)
i,NFN (t)+ ě(2)i,N (t),
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and

ěi,j,N = x̃T (tj)ě
(1)
i,N (tj)− x̃T (tj+1)ě

(1)
i,N (tj+1)

+

∫ tj+1

tj

(xT ⊗ 2uT
e R)ě

(2)
i,Ndt.

Subtracting (19) from (B.1) yields

Θ̂i,N (Ži,N − Ẑi,N ) = Ěi,N − Êi,N ,

where Ẑi,N =

[
vecT (X̂ (1)

i,N ), vecT (X̂ (2)
i,N )

]T
, Ži,N =[

vecT (X̌ (1)
i,N ), vecT (X̌ (2)

i,N )
]T

. By Assumption 10, there is

|Ži,N − Ẑi,N |
2
≤

1
Mα
|Ěi,N − Êi,N |

2
≤

4
Mα
|Ěi,N |

2
,

where the last inequality holds because by the least square re-
gression, |Êi,N | ≤ |Ěi,N |. Therefore,

|Ži,N − Ẑi,N |
2
≤

4
Mα

M−1∑
j=0

ě2i,j,N ≤
4
α
(max

j
|ěi,j,N |)2.

By Lemma 12, limN→∞ P̌i,N (t) = Pi(t) uniformly on R, so the
Fourier coefficients of P̌i,N (·) also converge to those of Pi(·). Then
by Lemma 4, errors |ě(1)i,N (t)| and |ě

(2)
i,N (t)| converge uniformly to

0, as N → ∞. Thus, for each ϵ > 0, there exists some positive
integer N̄1 > N̄0 such that ∀N > N̄1, N ∈ Z+, maxj |ěi,j,N | <
√

αϵ/2, which leads to |Ži,N − Ẑi,N |
2

< ϵ.
By Lemma 4 and Hölder’s inequality, ∀ϵ > 0, ∃N̄a,j > N̄0, such

that ∀N > N̄a,j, ∀t ∈ R,⏐⏐⏐⏐[vecs(P̂i,N (t)− P̌i,N (t))
]
j

⏐⏐⏐⏐
≤

⏐⏐⏐⏐[X̂ (1)
i,N − X̌ (1)

i,N

]
j,·

⏐⏐⏐⏐
1
|FN (t)|∞ +

⏐⏐⏐⏐[ě(1)i,N (t)
]
j

⏐⏐⏐⏐ <
ϵ
√
n1

.

Thus, setting N̄a = maxj N̄a,j, j = 1, 2, . . . , n1, and using Lemma 6,
we obtain ∀ϵ > 0, ∃N̄a > N̄0, such that ∀N > N̄a, ∀t ∈ R,
∥P̂i,N (t)− P̌i,N (t)∥ < ϵ. Similarly, we have ∀ϵ > 0, ∃N̄b > N̄0, such
that ∀N > N̄b, ∀t ∈ R, ∥K̂i+1,N (t) − Ǩi+1,N (t)∥ < ϵ. By choosing
N̄ = max{N̄a, N̄b}, Lemma 13 is thus proved.
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