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Abstract. This paper presents a new theory, known as robust dynamic programming, for a
class of continuous-time dynamical systems. Different from traditional dynamic programming (DP)
methods, this new theory serves as a fundamental tool to analyze the robustness of DP algorithms,
and, in particular, to develop novel adaptive optimal control and reinforcement learning methods. In
order to demonstrate the potential of this new framework, two illustrative applications in the fields
of stochastic and decentralized optimal control are presented. Two numerical examples arising from
both finance and engineering industries are also given, along with several possible extensions of the
proposed framework.
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1. Introduction. In 1952, Bellman proposed the original idea of dynamic pro-
gramming (DP) [4] to solve a class of optimization problems subject to a controlled
process that is usually described by a Markov decision process (MDP), a difference
equation, or a differential equation. Over the past several decades, DP and its exten-
sions [5, 20, 6, 7, 8] have attracted a significant amount of attention, because of the
vital role they have played in several popular fields including reinforcement learning
(RL) [50], finance [40], and biological control [53], to name a few. Depending on the
form (discrete-time versus continuous-time) used to describe the dynamical system in
question, DP problems can be solved by finding the solution to either the Bellman
equation or the Hamilton--Jacobi--Bellman (HJB) equation. However, due to the com-
plex nature of these equations, the optimal solution cannot be obtained analytically
in most cases. Numerous methods, including policy iteration (PI) [20, 30, 3, 11] and
value iteration (VI) [5, 9, 14, 13], have been developed to approximate the solutions
of these equations. Unfortunately, these algorithms suffer from serious usage limita-
tions, due to the limited information available and the presence of various types of
disturbances in practical problems. Nevertheless, from a control theory point of view,
we identify two perspectives to address these issues. The first, which we refer to as the
``adaptive control perspective,"" aims at learning the unknown components in DP algo-
rithms directly from available online/offline data. Based on the problem formulation,
such unknown components can be the Q-factor [54], the policy gradient [50, Chapter
13], and the value function [55]. Indeed, the majority of existing adaptive optimal
control and DP methods [10, 6, 7, 35, 24, 57] fall into this category, and RL is also
considered as a machine learning reinterpretation of direct adaptive control [51]. The
main advantage of these methods is that they are effective in tackling the presence of
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CONTINUOUS-TIME ROBUST DYNAMIC PROGRAMMING 4151

static uncertainties such as the unknown parameters in the DP algorithm. As a result,
this allows the DP problem to be solved without directly using the knowledge of the
underlying system (also known as the environment in RL), i.e., the optimal solution
is obtained in a model-free manner. In spite of its popularity, the adaptive control
perspective is not effective in tackling the presence of dynamic uncertainties [38] in
DP algorithms. Such dynamic uncertainty may be caused by coupling the standard
DP algorithm with other numerical algorithms, where each of these algorithms then
serves as a dynamic uncertainty in this hybrid algorithm. It may also arise from the
decentralized DP problem, where each node in a large-scale network executes its own
version of the DP algorithm and interacts with its neighbors through the outputs and
inputs. In this case, the algorithm executed in its neighboring nodes can be considered
as dynamic uncertainty to the node itself. Existing learning-based DP algorithms are
not directly applicable to handle this type of disturbance.

The second perspective, which we refer to as the ``robust control perspective,""
aims at strengthening the DP algorithm so that it is robust to the presence of distur-
bance. A remarkable feature of this type of method is that it is effective in dealing
with both static and dynamic uncertainties. However, unlike the adaptive control
perspective, the development in this direction is still rudimentary. Only a few results
[22, 39, 37] have been developed along this track to solve DP and RL problems, in
which case the authors only considered the static uncertainty caused by the unknown
transition probability measures. As a result, how to develop DP algorithms that are
robust to both static and dynamic uncertainties remains an open problem. In addi-
tion, existing robust DP methods are only available for MDPs. In particular, there is
no robust DP solution for dynamical systems described by differential equations.

In this paper, we propose a novel robust DP theory for continuous-time linear
dynamical systems. Compared with traditional DP and adaptive optimal control the-
ory, we take a completely different path to investigate DP methods from a viewpoint
of nonlinear system theory [28] and small-gain theory [60, 27]. As a consequence, we
provide a complete robustness analysis on the DP algorithm, under multiple types
of uncertainties, including external disturbance, dynamic uncertainty, and stochastic
noise, that cannot be dealt with directly by previously known results. The proposed
robust DP framework is based on the dynamic property of the differential matrix
Riccati equation (DMRE). Recall from [59, 32] that under observability and stabiliz-
ability assumptions, the unique symmetric positive definite solution to the algebraic
Riccati equation (ARE) is asymptotically stable for the DMRE, backward in time.
In section 3, we further improve this result by showing that the DMRE also admits a
linear L2 gain [56] for any arbitrarily large set of initial conditions within the region
of attraction, which we will refer to as ``semi-global gain assignment."" This conclu-
sion lays the foundation of our small-gain analysis on the continuous-time VI [14, 13],
which in turn leads to a sequence of convergence and robustness results. To better
illustrate the differences among those aforementioned DP methods, we summarize
their key features in Table 1. We admit that one drawback of robust DP is that it
requires the nominal value of the model parameters in the algorithm, and hence is
not model-free as are existing RL and adaptive DP (ADP) methods. This drawback
can be easily conquered by combining our robust DP with existing adaptive optimal
control results.

To demonstrate the power of the proposed method, in section 4, we apply robust
DP to solve two classical problems arising from the field of adaptive optimal control.
In the first application, we develop a continuous-time stochastic ADP theory for a class
of ergodic control problems, which generalizes the results of [12]. Different from the
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4152 TAO BIAN AND ZHONG-PING JIANG

Table 1
Comparison of different DP methods.

Application scenarios DP Adaptive DP Robust DP

Ideal case Yes Yes Yes
Static uncertainty No Yes Yes
Dynamic uncertainty No No Yes
Model free No Yes No

stochastic approximation [33] and Monte Carlo methods [50, Chapter 5] in traditional
RL, a new convergence analysis method based on the robust DP theory is proposed
in the continuous-time setting to handle the complex nature of the continuous-time
ergodic control problem. In our second application, we propose a novel decentralized
VI algorithm for solving coupled AREs. The small-gain theory [26] is applied with our
robust DP framework to provide a sufficient condition for the convergence analysis of
coupled AREs. This result is especially useful in developing robust ADP algorithms
[25, 23, 57, 58] and solving non-zero-sum differential games [47, 48].

To further illustrate the proposed result, we also give two practical simulation
examples in section 5.

Notation. Throughout this paper, I denotes the identity matrix. R and R+

denote the set of real numbers and the set of nonnegative real numbers, respectively.
Z+ denotes the set of nonnegative integers. \scrS n denotes the normed space of all n-by-n
real symmetric matrices, equipped with the induced matrix norm. \scrS n+ = \{ P \in \scrS n :
P > 0\} . \oplus indicates the Kronecker sum. B\varepsilon denotes an open ball centered at the origin
with radius \varepsilon . For two vectors x, y \in Rn, \langle x, y\rangle L2 = xT y. | \cdot | denotes the Euclidean
norm for vectors, or the induced matrix norm for matrices. For a matrix M \in Rn\times m,
vec(M) = [MT

1 MT
2 \cdot \cdot \cdot MT

m]T , where Mi \in Rn is the ith column of M . For any
M \in \scrS n, denote \lambda m(M) and \lambda M (M) as the minimum and maximum eigenvalues of
M , respectively, and let vech(M) = [M11 M12 \cdot \cdot \cdot M1n M22 M23 \cdot \cdot \cdot M(n - 1)n Mnn]

T ,
where Mij \in R is the (i, j)th element of matrix M . Finally, \langle \cdot , \cdot \rangle F denotes the
Frobenius inner product.

2. Preliminaries.

2.1. System description. Consider the following linear time-invariant system:

\.x = Ax+Bu,(1)

where x \in Rn is the system state, u \in Rm is the control input, and A \in Rn\times n and
B \in Rn\times m are system matrices. Assume (A,B) is stabilizable.

Denote the cost corresponding to system (1) as

\scrJ (x(0);u) =
\int \infty 

0

(xTQx+ uTRu)ds,(2)

where Q = QT \geq 0, R = RT > 0, and (A,Q1/2) is observable. It is well known that
\scrJ is minimized under the optimal controller u\ast =  - K\ast x, where K\ast = R - 1BTP \ast ,
with P \ast the unique symmetric positive definite solution to the following ARE:

0 = ATP \ast + P \ast A - P \ast BR - 1BTP \ast +Q.(3)

Moreover, A - BK\ast is Hurwitz.
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Algorithm 1. Continuous-time value iteration.

Choose P0 = PT
0 > 0. k, q \leftarrow 0.

loop
Pk+1/2 \leftarrow Pk + hk(A

TPk + PkA - PkBR
 - 1BTPk +Q)

if Pk+1/2 > 0 and | Pk+1/2  - Pk| /hk < \=\varepsilon then
return Pk as an approximation to P \ast 

else if | Pk+1/2| > q or Pk+1/2 \not > 0 then
Pk+1 \leftarrow P0. q \leftarrow q + 1.

else
Pk+1 \leftarrow Pk+1/2

k \leftarrow k + 1

2.2. DMRE and continuous-time VI. Since (3) is a nonlinear matrix equa-
tion, it is not easy to solve P \ast from the ARE directly. One way of finding P \ast is to use
the continuous-time VI [14]. Before introducing the VI algorithm, we define a real
sequence \{ hk\} \infty k=0 satisfying

hk > 0, lim
k\rightarrow \infty 

hk = 0,

\infty \sum 
k=0

hk =\infty .

Let \=\varepsilon > 0 be a small threshold.
The continuous-time VI is recalled from [14] and shown in Algorithm 1. Note

that if Q > 0, then the initial choice on P0 can be relaxed to P0 = PT
0 \geq 0. Detailed

convergence analysis on Algorithm 1, and its extensions to model-free adaptive opti-
mal controller design, can be found in [14]. However, how robust Algorithm 1 is to
various types of disturbances still remains an open problem. As shown in subsequent
sections, we will provide the first solution to this fundamentally challenging issue for
continuous-time dynamical systems.

3. Robust DP and VI for continuous-time systems. The purpose of this
section is to extend Algorithm 1 in different directions by providing a concrete stability
and robustness analysis for the DMRE and VI.

3.1. Robust DP and DMRE. As it has been shown in [59, 32], for any P (0) =
P (0)T \geq 0, the solution to the following DMRE converges to P \ast asymptotically as t
goes to infinity:

\.P = ATP + PA - PBR - 1BTP +Q.(4)

Denoting K = R - 1BTP , we have from (4) that

\.P = ATP + PA - PBR - 1BTP +Q

= (A - BK)TP + P (A - BK) +KTRK +Q

= (A - BK\ast )TP + P (A - BK\ast ) + (K\ast )TRK\ast +Q - (K  - K\ast )TR(K  - K\ast ).

Subtracting (3) from the above equation, and letting \~P = P  - P \ast , we have

\.\~P = (A - BK\ast )T \~P + \~P (A - BK\ast ) - \~PBR - 1BT \~P .(5)

The following two lemmas play an important role in developing our robust VI.
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4154 TAO BIAN AND ZHONG-PING JIANG

Lemma 3.1. \^P is globally1 exponentially stable at P \ast , where \^P is the solution of
the following system:

\.\^P = (A - BK\ast )T \^P + \^P (A - BK\ast ) + (K\ast )TRK\ast +Q, \^P (0) \in Rn\times n.(6)

Proof. Denote \xi = vec( \^P  - P \ast ) \in Rn2

. Then, by subtracting (3) from (6), one
has

\.\xi = ((A - BK\ast )\oplus (A - BK\ast ))T \xi .(7)

Since A  - BK\ast is Hurwitz, (A  - BK\ast ) \oplus (A  - BK\ast ) is also Hurwitz [16]. This
completes the proof.

Remark 3.2. Note from (6) that when \^P (0) \in \scrS n, we have \^P (t) \in \scrS n for all t > 0.
Since \scrS n \subset Rn\times n, we know \^P is also exponentially stable at P \ast in \scrS n.

The following lemma is a direct extension of the converse Lyapunov theorem.

Lemma 3.3. Consider a dynamical system defined on \scrS n:

\.P = G(P ),(8)

where G : \scrS n \rightarrow \scrS n is locally Lipschitz, and satisfies G(0) = 0. If system (8) is
asymptotically stable at the origin, and its region of attraction is RA, then there exists
a smooth Lyapunov function V : RA \rightarrow R+, such that

\langle \partial xV (P ), G(P )\rangle F < 0, V (P ) > 0 \forall P \in RA \setminus \{ 0\} ,
lim

P\rightarrow \partial RA

V (P ) =\infty , \langle \partial xV (0), G(0)\rangle F = 0, V (0) = 0.

Proof. Denote a mapping\scrM (\cdot ) : (\scrS n, \langle \cdot , \cdot \rangle F )\rightarrow (Rn(n+1)/2, \langle \cdot , \cdot \rangle L2), such that

\scrM (M) = [M11

\surd 
2M12 \cdot \cdot \cdot 

\surd 
2M1n M22

\surd 
2M23 \cdot \cdot \cdot 

\surd 
2M(n - 1)n Mnn]

T .

Then, for anyM1,M2 \in \scrS n,\scrM T (M1)\scrM (M2) = \langle M1,M2\rangle F . Hence,\scrM (\cdot ) is a smooth
isometric isomorphism.2 Then, one can rewrite (8) as the following ODE:

\.p = g(p),(9)

where p = \scrM (P ), and g = \scrM \circ G \circ \scrM  - 1. For system (9), denote the region of
attraction of 0 \in Rn(n+1)/2 by R\prime 

A. By the converse Lyapunov theorem [28, Theorem
4.17], we know there exists a smooth function W (\cdot ) : R\prime 

A \rightarrow R+, such that

\partial xW (p)g(p) < 0, W (p) > 0 \forall p \in R\prime 
A \setminus \{ 0\} ,

lim
p\rightarrow \partial R\prime 

A

W (p) =\infty , \partial xW (0)g(0) = 0, W (0) = 0.

We claim R\prime 
A = \scrM (RA). Otherwise, if there exist P0 \in RA and \scrM (P0) \not \in R\prime 

A,
then R\prime 

A is no longer the region of attraction for (9) since the solution to (9) starting
from \scrM (P0) also converges to the origin, by the norm preserving property of \scrM .

1This is global in the sense that the region of attraction is the entire normed space of all n-by-n
real matrices equipped with the induced matrix norm.

2A bounded linear operator is called an isometric isomorphism if it is a norm preserving bijection
which is continuous and has a continuous inverse [42, p. 71].

D
ow

nl
oa

de
d 

01
/2

1/
20

 to
 1

42
.2

55
.1

09
.1

25
. R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.si
am

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

CONTINUOUS-TIME ROBUST DYNAMIC PROGRAMMING 4155

Similarly, if there exists p0 \in R\prime 
A such that\scrM  - 1(p0) \not \in RA, then RA is no longer the

region of attraction for (8).
Now, we define a function V (\cdot ) : RA \rightarrow R+, such that V = W \circ \scrM . By the

definition of matrix calculus, (\partial xV )i,j \propto (\scrM  - 1 \circ \partial TxW \circ \scrM )i,j . It is easy to see that
all the higher-order derivatives of V can be defined in a similar manner. Hence, V is
also smooth. By the definition of Frobenius inner product,

\partial xW (\scrM (P ))g(\scrM (P )) = \langle \partial xV (P ), G(P )\rangle F \forall P \in \scrS n.

This concludes the proof.

Remark 3.4. Lemma 3.3 extends the converse Lyapunov theorem for general
nonlinear systems [28, Theorem 4.17] to \scrS n, by exploring the equivalence between
(\scrS n, \langle \cdot , \cdot \rangle F ) and (Rn(n+1)/2, \langle \cdot , \cdot \rangle L2) resulting from the isometric isomorphism map-
ping defined in the proof. In addition, the converse statement of Lemma 3.3, i.e., the
Lyapunov theorem for the stability of systems over (\scrS n, \langle \cdot , \cdot \rangle F ), can also be derived.

Following analysis similar to that of Lemma 3.3, one can also extend [28, Theorem
4.14] to \scrS n. We omit the proof of this direct extension to avoid duplication.

Lemma 3.5. Suppose system (8) is exponentially stable at the origin. If G is con-
tinuously differentiable and \partial xG is bounded on \scrS n, then there exist a smooth Lyapunov
function V : RA \rightarrow R+ and Ci > 0, i = 1, 2, 3, 4, such that3

C1| P | 2 \leq V (P ) \leq C2| P | 2, \.V (P ) \leq  - C3| P | 2, | \partial xV (P )| < C4| P | .

Proposition 3.6. P is exponentially stable at P \ast over \scrS n.
Proof. Note from Lemma 3.1 and Remark 3.2 that \^P is globally exponentially

stable at P \ast . Then, by Lemma 3.5, we can find a smooth Lyapunov function V :
\scrS n \rightarrow R+ and Ci > 0, i = 1, 2, 3, 4, such that

C1| \^P  - P \ast | 2 \leq V ( \^P  - P \ast ) \leq C2| \^P  - P \ast | 2,
\.V ( \^P  - P \ast ) \leq  - C3| \^P  - P \ast | 2, | \partial xV ( \^P  - P \ast )| < C4| \^P  - P \ast | \forall \^P \in \scrS n.

Comparing the dynamics of \^P and P , we see that the only difference between
these two systems is the quadratic term \~PBR - 1BT \~P . Now, by taking the derivative
of V along the solutions of system (5), we have

\.V ( \~P ) \leq  - C3| \~P | 2 + C5| \partial xV ( \~P )| | \~P | 2 \leq  - C3| \~P | 2 + C4C5| \~P | 3 \forall \~P \in \scrS n,

where C5 > 0 is a scalar that depends on R and B. From the above inequality, we
know there exists C6 > 0, such that

\.V ( \~P ) \leq  - C6| \~P | 2 \leq  - 
C6

C2
V ( \~P ) \forall | \~P | \leq C3

C4C5
.

The proof is then completed using the Lyapunov theorem [28, Theorem 4.10].

We will exploit the important feature of exponential stability further in the rest of
this paper. First, let us consider the following variant of (4) subject to a disturbance
input \Delta (t) = \Delta T (t):

\.P\Delta = ATP\Delta + P\Delta A - P\Delta BR
 - 1BTP\Delta +Q+\Delta , P\Delta (0) = PT

\Delta (0) \geq 0.(10)

3Note that we use the induced norm here instead of the Frobenius norm in Lemma 3.3, due to
the equivalence of matrix norms.
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Remark 3.7. \Delta can represent a large class of disturbances. In particular, we
conduct robustness analysis associated with (10) in Theorem 3.8 below by considering
three different forms of \Delta , including (a) a bounded state-independent external signal
(Theorem 3.8, parts (i) and (ii)); (b) the output of an input-to-output stable (IOS) [46,
section 7] nonlinear dynamical system (Theorem 3.8, part (iii)); and (c) a stochastic
noise (Theorem 3.8, part (iv)). The assumption \Delta (t) = \Delta T (t) is to guarantee that
P\Delta is always symmetric. This condition can be easily satisfied in practice, since for
any M \in Rn\times n, xTMx = 1

2x
T (M +MT )x, and 1

2 (M +MT ) is real symmetric.

Theorem 3.8. Consider system (10) with Q > 0. Denoting \~P\Delta = P\Delta  - P \ast , we
have the following:

(i) If inft \lambda m(Q + \Delta (t)) \geq 0 and supt \lambda M (Q + \Delta (t)) < \infty , then P\Delta is well
defined on R+, and there exists M \in \scrS n that is dependent on P\Delta (0), such
that 0 \leq P\Delta (t) < M for all t > 0.

(ii) If \Delta satisfies the conditions in (i), and limt\rightarrow \infty \Delta (t) = 0, then limt\rightarrow \infty P\Delta (t) =
P \ast . If, in addition, \Delta \in L2, then \~P\Delta \in L2.

(iii) There exists \gamma > 0, such that if the system4

\.M = f(M,P\Delta ), \Delta (t) = \Delta (P\Delta ,M),(11)

where f and \Delta are locally Lipschitz, f(M\ast , P \ast ) = 0, and \Delta (P \ast ,M\ast ) = 0, is
zero-state detectable5 and admits an IOS Lyapunov function Vf satisfying

\.Vf ( \~M) \leq  - | \Delta | 2 + \gamma 2| \~P\Delta | 2 \forall M \in B\varepsilon 0(M
\ast ),(12)

for some \varepsilon 0 > 0, where \~M =M  - M\ast , then (P\Delta ,M) is asymptotically stable
at (P \ast ,M\ast ).

(iv) Suppose \Delta (t) =
\sum N

i=1 \Delta i(P\Delta )vi(t), where N > 0, \Delta i : \scrS n \rightarrow \scrS n, and the vi
are one-dimensional independent and identically distributed Gaussian white
noises. Then, there exists \gamma > 0, such that if

\sum 
i | \Delta i| 2 < \gamma | \~P\Delta | 2 in a neigh-

borhood of P \ast , then P\Delta is asymptotically stable at P \ast in the mean square
sense.

The proof of Theorem 3.8 is given in Appendix A.1.
Proposition 3.6 and Theorem 3.8 imply that the DMRE behaves very similarly to

an exponentially stable linear system in a neighborhood of P \ast , and thus exhibits a se-
ries of nice properties. However, the stability and robustness results in this proposition
and this theorem are of limited use in practice, since they hold only in a neighbor-
hood of P \ast . In order to obtain desirable transient performance for the DMRE in a
sufficiently large compact set, we need to design carefully the cost (2). Indeed, the
following corollary shows that by choosing Q and R properly, we can guarantee the
semi-global exponential stability of (4) at P \ast . By ``semi-global,"" we mean that the
domain of attraction is bounded but can be made as large as possible [43].

Corollary 3.9. Given Q0 = QT
0 > 0 and R0 = RT

0 > 0, for any compact set
\scrS 0 \subset \scrS n+, there exists a constant \lambda > 0, such that by choosing Q = \lambda Q0 and R = \lambda R0,
each trajectory of (4) starting at P (0) \in \scrS 0 converges exponentially to P \ast .

4M can be either a real vector or a real matrix, depending on the specific problem formulation.
For consistency, here we consider M as a real matrix of an appropriate dimension.

5Here, with slight abuse of notation, we say (11) is zero-state detectable if \Delta \equiv 0 and P\Delta \equiv P \ast 

imply M \equiv M\ast .
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Proof. First, note that under the choice of Q = \lambda Q0 and R = \lambda R0, K
\ast is inde-

pendent of \lambda , as both Q and R are derived from Q0 and R0 by multiplying the same
scaling factor. Moreover, P \ast is a linear function of \lambda , and lim\lambda \rightarrow 0+ P

\ast = 0. Now, for
any \scrS 0, we can find a small enough \lambda > 0, such that P \ast < P (0) for all P (0) \in \scrS 0.
Then, by choosing \^P (0) = P (0) in (6), we have for any given t > 0 and x( - t) \in Rn,

xT ( - t)P (t)x( - t) = inf
u

\biggl\{ 
xT (0)P (0)x(0) +

\int 0

 - t

(xTQx+ uTRu)ds

\biggr\} 
\leq (x\ast (0))TP (0)x\ast (0) +

\int 0

 - t

(x\ast )T (Q+ (K\ast )TRK\ast )x\ast ds = xT ( - t) \^P (t)x( - t),

where x\ast is the solution to system (1) with u =  - K\ast x\ast and x\ast ( - t) = x( - t). More-
over, by monotonicity [13, Lemma 1], P \ast \leq P (t) for all t. Since by Lemma 3.1 \^P (t)
converges to P \ast exponentially, xT \^Px also converges to xTP \ast x exponentially for all
x. Using xTP \ast x \leq xTPx \leq xT \^Px, we know xTPx converges to xTP \ast x exponen-
tially. Noting that this is true for all x, P thus converges to P \ast exponentially. This
completes the proof.

Remark 3.10. It is easy to see from Corollary 3.9 that although multiplying the
same scalar to Q0 and R0 does not influence the optimal feedback gain matrix, the
transient performance of the DMRE can be quite different. Given any P (0), by
Proposition 3.6 and the converse Lyapunov theorem [28, Theorem 4.14], we can find
a Lyapunov function V satisfying

C1| \~P | 2 \leq V ( \~P ) \leq C2| \~P | 2, \.V ( \~P ) \leq  - C3| \~P | 2, | \partial xV ( \~P )| < C4| \~P | ,

where Ci > 0, i = 1, 2, 3, 4, over a connected compact set including P (0) and P \ast . As
a result, Corollary 3.9 allows us to extend the result obtained in Theorem 3.8 to any
compact sets containing P \ast in \scrS n+.

If we are allowed to have more freedom in choosing Q and R, it is possible to have
the following semi-global gain assignment result.

Corollary 3.11. Given Q0 = QT
0 > 0 and R0 = RT

0 > 0, if B has full rank,
then for any \varepsilon > 0 and \gamma > 0, there exists a sufficiently large \lambda > 0, such that for
\Delta satisfying inft \lambda m(Q + \Delta (t)) \geq 0, (10) admits a finite linear L2 gain from \Delta to
\~P\Delta less than or equal to \gamma for P (0) \in \{ P \in \scrS n : P \in B\varepsilon (P

\ast )\} , with Q = \lambda Q0 and
R = R0.

Proof. Since only Q0 is multiplied by the scaling factor \lambda , different from Corol-
lary 3.9, the optimal controller depends on \lambda here. Hence, the first step of our proof
is to characterize the influence of \lambda on the optimal controller.

Note that choosing Q = \lambda Q0 and R = R0 is equivalent to choosing Q = Q0 and
R = \lambda  - 1R0, in the sense that these two choices lead to the same optimal controller.
Denoting P \ast 

\lambda as the solution to (3) with Q = Q0 and R = \lambda  - 1R0, we have

(A - BK\ast 
\lambda )

TP \ast 
\lambda + P \ast 

\lambda (A - BK\ast 
\lambda ) =  - 

\Bigl( 
Q0 +

\Bigl( \surd 
\lambda P \ast 

\lambda 

\Bigr) 
BR - 1

0 BT
\Bigl( \surd 

\lambda P \ast 
\lambda 

\Bigr) \Bigr) 
,(13)

where K\ast 
\lambda = \lambda R - 1

0 BTP \ast 
\lambda . Since B has full rank, we know from [34, eq. (40)] that there

exists \=P \in \scrS n, such that lim\lambda \rightarrow \infty 
\surd 
\lambda P \ast 

\lambda = \=P . Thus, for any two positive constants C

and \varepsilon , we can choose a large enough \lambda , such that
\bigm| \bigm| \surd \lambda P \ast 

\lambda  - \=P
\bigm| \bigm| < \varepsilon and

\surd 
\lambda 
\Bigl( 
Q0 +

\Bigl( \surd 
\lambda P \ast 

\lambda 

\Bigr) 
BR - 1

0 BT
\Bigl( \surd 

\lambda P \ast 
\lambda 

\Bigr) \Bigr) 
> CI.
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4158 TAO BIAN AND ZHONG-PING JIANG

This, together with the Lyapunov equation (13), implies that for any \alpha > 0, we can
find \lambda > 0, such that

(A - BK\ast 
\lambda )

TM +M(A - BK\ast 
\lambda ) <  - \alpha M

for some constant matrixM =MT > 0. This suggests that the eigenvalues of A - BK\ast 
\lambda 

(and hence (A  - BK\ast 
\lambda ) \oplus (A  - BK\ast 

\lambda )) can be placed arbitrarily far to the left from
the imaginary axis in the complex plane, by choosing a large enough \lambda .

Now we come back to our original problem with Q = \lambda Q0 and R = R0. By robust
pole placement [19], we know that for any \gamma > 0, one can find a \lambda > 0, such that the
following system admits a linear L2 gain from \=\Delta to \~P\Delta less than or equal to \gamma :

\.\~P\Delta = (A - BK\ast 
\lambda )

T \~P\Delta + (A - BK\ast 
\lambda ) \~P\Delta + \=\Delta ( \~P\Delta ),

where \~P\Delta = P\Delta  - P \ast and \=\Delta ( \~P\Delta ) = \Delta  - \~P\Delta BR
 - 1BT \~P\Delta . Comparing the above

system with (5), and following similar arguments in the proof of Proposition 3.6, we
know that for any \varepsilon > 0, the L2 gain of system (10) can be made arbitrarily small
on \{ P \in \scrS n : P \in B\varepsilon (P

\ast )\} , by choosing a sufficiently large \lambda . This completes the
proof.

Remark 3.12. The full-rank condition on B is required to satisfy the matching
condition, which is a common assumption in nonlinear gain assignment and robust
control literature [27, 41, 21, 38]. To relax this assumption in the case of unmatched
disturbance, one way is to study cascaded systems with full-rank input matrices via
recursive backstepping [31], or a combination of the backstepping and small-gain
approaches [38].

The following corollary is a direct extension of Theorem 3.8, parts (iii) and (iv),
and Corollary 3.11, and thus its proof is omitted.

Corollary 3.13. Given Q0 = QT
0 > 0, R0 = RT

0 > 0, and \lambda > 0, define
Q = \lambda Q0 and R = R0. Suppose B has full rank.

(i) For any \gamma > 0, if system (11) satisfies the conditions in Theorem 3.8, part
(iii), then there exists \lambda > 0, such that (P\Delta ,M) is asymptotically stable at
(P \ast ,M\ast ).

(ii) For any \gamma > 0 and \varepsilon > 0, if \Delta satisfies the definition in Theorem 3.8, part
(iv), then there exists \lambda > 0, such that P\Delta is asymptotically stable at P \ast in
the mean square sense.

3.2. Robust VI algorithm. In this subsection, we formally introduce the ro-
bust VI algorithm (Algorithm 2) based on the theoretical results developed in sub-
section 3.1. Note that unlike Algorithm 1, Algorithm 2 includes both a deterministic
perturbation term \Delta k and a stochastic noise termWk in the updating equation of Pk.

The following theorem shows that Algorithm 2 inherits the robustness property
from (10).

Theorem 3.14. Denote a complete probability space (\Omega ,\scrF ,P) equipped with a
filtration \{ \scrF k\} k\in Z+ . Suppose Q > 0, Wk is \scrF k-adapted, hk is a sequence satisfying the
conditions in subsection 2.2, and

\sum \infty 
k=0 hkWk converges with probability one. Given

\{ Pk\} \infty k=0 defined in Algorithm 2, we have with probability one that
(i) there exist \delta 0 > 0, N \geq 0, and a compact set \scrS 0 \subset \scrS n+ with nonempty interior

and P \ast \in \scrS 0, such that if | \Delta k| < \delta 0(1 + | Pk| ), then \{ Pk\} \infty k=N \subset \scrS 0;
(ii) if limk\rightarrow \infty \Delta k = 0, then limk\rightarrow \infty Pk = P \ast ;

D
ow

nl
oa

de
d 

01
/2

1/
20

 to
 1

42
.2

55
.1

09
.1

25
. R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.si
am

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

CONTINUOUS-TIME ROBUST DYNAMIC PROGRAMMING 4159

Algorithm 2. Continuous-time robust value iteration.

Choose P0 = PT
0 \geq 0. k, q \leftarrow 0.

loop
Pk+1/2 \leftarrow Pk + hk(A

TPk + PkA - PkBR
 - 1BTPk +Q+\Delta k +Wk)

if | Pk+1/2| > q or Pk+1/2 \not > 0 then
Pk+1 \leftarrow P0. q \leftarrow q + 1.

else
Pk+1 \leftarrow Pk+1/2

k \leftarrow k + 1

(iii) if \Delta k := \Delta (Pk,Mk) is the output to the updating equation

Mk+1 =Mk + hkf(Mk, Pk) + Zk,(14)

where \{ Mk\} \infty k=0 is bounded in B\varepsilon 0(M
\ast ) under a projection term Zk for some

\varepsilon 0 > 0, then there exists \gamma > 0, such that if the conditions in part (iii) of
Theorem 3.8 are satisfied, we have limk\rightarrow \infty (Pk,Mk) = (P \ast ,M\ast ) locally.

The proof of Theorem 3.14 is given in Appendix A.2.

Remark 3.15. The first two parts of Theorem 3.14 focus on handling static un-
certainties represented by either a bounded external disturbance input or a bounded
function of Pk. Part (iii) of Theorem 3.14 deals with dynamic uncertainty and hence
is more suitable for developing decentralized VI algorithms (see subsection 4.2).

Remark 3.16. The boundedness ofMk can be relaxed by extending the projection
term in (14) to the adaptive boundary case as in Algorithm 2 [18, 33]. In addition,
the local convergence result in part (iii) of Theorem 3.14 can be strengthened to the
semi-global case by using the gain assignment method developed in Corollary 3.11.

The following corollary plays an important role in developing adaptive optimal
control methods on the basis of the proposed robust VI framework. The proof of
Corollary 3.17 is given in Appendix A.3.

Corollary 3.17. Denote a complete probability space (\Omega ,\scrF ,P) equipped with
a filtration \{ \scrF k\} k\in Z+ . Consider Algorithm 2 with Wk = \sigma (Pk)vk, \Delta k = \Delta k(Pk),
and

\sum \infty 
k=0 h

2
k < \infty , where limk\rightarrow \infty \Delta k = 0 uniformly on any compact set, \sigma i are

continuous, and vk is an \scrF k-adapted martingale difference with finite variance. Then,
limk\rightarrow \infty Pk = P \ast with probability one.

4. Applications to adaptive/stochastic/decentralized optimal control.
In this section, we provide two applications of the above robust VI method in solv-
ing adaptive optimal control problems that appear intractable using traditional DP
methods.

4.1. Stochastic ADP for ergodic control problems. In this subsection,
we develop an ADP algorithm to solve the ergodic control problem [15] for linear
stochastic systems with additive noise.
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Consider the following system:

dx = (Ax+Bu) dt+

qx\sum 
i=1

\sigma idwx,i,(15)

udt =  - K0xdt+

qu\sum 
i=1

\sigma u,idwu,i,(16)

where x, u, A, and B follow the same definitions as in system (1); x(0) is deterministic;
wx,i and wu,i are independent Brownian motions; qx, qu \in Z+; K0 is a known initial
input matrix; and \sigma i \in Rn and \sigma u,i \in Rm are constant vectors satisfying

\sum qx
i=1 \sigma i\sigma 

T
i >

0 and
\sum qu

i=1 \sigma u,i\sigma 
T
u,i > 0.

Remark 4.1.
\sum qx

i=1 \sigma idwx,i in (15) represents the additive noise in system (15).\sum qu
i=1 \sigma u,idwu,i in (16) serves as an exploration noise, which has been widely used in

adaptive control literature to guarantee the persistent excitation (PE) condition [52,
Definition 3.2]. Note that besides the Brownian motion, other types of exploration
noises can also be used. For simplicity, we only consider inputs in the form of (16)
here, as in this case system (15) is purely driven by Brownian motions, and several
standard results from stochastic analysis theory can be applied directly.

Assumption 4.2. There exists an ergodic stationary probability measure \mu on
Rn \times Rm for system (15)--(16).

An analogue of Assumption 4.2 for MDPs has been widely used in the approximate
DP and RL literatures [7, 50, 54, 55]. For conditions on the existence and uniqueness
of the stationary distribution, see [29, Chapter 4].

The objective of ergodic control is to minimize (with probability one)

\scrJ (u) = lim sup
T\rightarrow \infty 

1

T

\int T

0

(xTQx+ uTRu)dt,

where Q = QT > 0 and R = RT > 0. It can be shown [15] that infu \scrJ (u) =\sum q3
i=1 \sigma 

T
i P

\ast \sigma i, with P
\ast and the optimal controller sharing the same definitions as the

ones in subsection 2.1 for deterministic systems.
Now, we derive an online ADP algorithm to solve the above ergodic control prob-

lem. For all x \in Rn and P \in \scrS n, by It\^o's lemma [49, Theorem 8.3], we have along
the trajectories of (15) that

d(xTPx) = 2xTP (Ax+Bu)dt+

qx\sum 
i=1

\sigma T
i P\sigma idt+ 2xTP

qx\sum 
i=1

\sigma idwx,i

= \psi T (z)\theta (P )dt - r(z)dt+ 2xTP

qx\sum 
i=1

\sigma idwx,i,(17)

where z = [xT uT 1]T , r(z) = xTQx+ uTRu,

\psi (z) = [z21 2z1z2 \cdot \cdot \cdot 2z1zn+m+1 z
2
2 2z2z3 \cdot \cdot \cdot 2zn+mzn+m+1 z

2
n+m+1]

T ,

\theta (P ) = vech

\left(  \left[  PA+ATP +Q PB 0
BTP R 0
0 0

\sum qx
i=1 \sigma 

T
i P\sigma i

\right]  \right)  .D
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Then, multiplying by \psi on both sides of (17), we have on any finite time interval
[0, T ] that

1

T

\int T

0

\psi \psi T dt\theta (P ) =
1

T

\int T

0

\psi d(xTPx) +
1

T

\int T

0

\psi rdt

 - 2

T

\int T

0

\psi xTP

qx\sum 
i=1

\sigma idwx,i.(18)

Once \theta (P ) is solved from the equation above, we can define a transformation \scrT , such
that \scrR (P ) = \scrT (\theta (P )), where \scrR is defined in Appendix A.2.

In order to solve (18), we impose the following assumption.

Assumption 4.3. There exist t0, c > 0, such that for all t \geq t0,

1

t

\int t

0

\psi \psi T ds \geq cI with probability one.(19)

Note that system (15)--(16) is a multidimensional Ornstein--Uhlenbeck process.
Hence, its stationary probability measure \mu is also Gaussian, and thus (x, u) has
finite rth moment for any r \in Z+. Assumption 4.3 is similar to the PE condition
widely used in the adaptive control literature (see Remark 4.1 for details).

By a direct extension of Birkhoff's ergodic theorem [2, Theorem 1.5.18] and the
It\^o isometry [49, Theorem 6.1], we know6

lim
t\rightarrow \infty 

EP

\Biggl[ \bigm\| \bigm\| \bigm\| \bigm\| 1t
\int t

0

\psi \psi T ds - 
\int 
Rn\times Rm

\psi \psi T d\mu 

\bigm\| \bigm\| \bigm\| \bigm\| 2
2

\Biggr] 
= 0,(20)

lim
t\rightarrow \infty 

EP

\Biggl[ \bigm\| \bigm\| \bigm\| \bigm\| 1t
\int t

0

\psi d(xTPx) +
1

t

\int t

0

\psi rds - 1

t

\int t

0

\psi \psi T ds\theta (P )

\bigm\| \bigm\| \bigm\| \bigm\| 2
2

\Biggr] 

= lim
t\rightarrow \infty 

4

t2
EP

\left[  \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
\int t

0

\psi xTP

qx\sum 
i=1

\sigma idwx,i

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
2

2

\right]  = 0.(21)

Choosing a monotonically increasing sequence \{ tk\} \infty k=0 with t0 satisfying condi-
tions in Assumption 4.3 and limk\rightarrow \infty tk =\infty , we denote

\^\theta (P, tk) =

\biggl( \int tk

0

\psi \psi T ds

\biggr)  - 1\biggl( \int tk

0

\psi d(xTPx) +

\int tk

0

\psi rds

\biggr) 
.

For simplicity, denote \^\theta k = \^\theta (Pk, tk). The VI-based ADP algorithm for the er-
godic control problem is given in Algorithm 3.

Theorem 4.4. Under Assumptions 4.2 and 4.3, we have lim
k\rightarrow \infty 

Pk = P \ast with prob-

ability one, where \{ Pk\} \infty k=0 is obtained from Algorithm 3.

Proof. First, for any P \in \scrS n, denote

\Delta k(P ) := \^\theta (P, tk) - \theta (P ) = 2

\biggl( \int tk

0

\psi \psi T ds

\biggr)  - 1 \int tk

0

\psi xTP

qx\sum 
i=1

\sigma idwx,i.

6\| \cdot \| 2 denotes the matrix 2-norm. EP is the expectation on a probability space (\Omega ,\scrF ,P), where
\Omega is a sample space, \scrF is a \sigma -field of Borel sets of \Omega , and P is a stationary distribution of (x, u) such
that

\int 
\Omega f(x(\omega ), u(\omega ))dP(\omega ) =

\int 
Rn\times Rm f(x, u)d\mu (x, u) for all measurable f .

D
ow

nl
oa

de
d 

01
/2

1/
20

 to
 1

42
.2

55
.1

09
.1

25
. R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.si
am

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

4162 TAO BIAN AND ZHONG-PING JIANG

Algorithm 3. Online robust optimal control design for ergodic control.

Choose P0 = PT
0 \geq 0. k, q \leftarrow 0. Pick an input u in form of (16).

loop
\^\theta k \leftarrow 

\bigl( \int Tk

0
\psi \psi T dt

\bigr)  - 1\bigl( \int Tk

0
\psi d(xTPkx) +

\int Tk

0
\psi rdt

\bigr) 
.

Pk+1/2 \leftarrow Pk + hk\scrT (\^\theta k)
if Pk+1/2 > 0 and | Pk+1/2  - Pk| /hk < \=\varepsilon then

return Pk as an approximation to P \ast 

else if | Pk+1/2| > q or Pk+1/2 \not > 0 then
Pk+1 \leftarrow P0. q \leftarrow q + 1.

else
Pk+1 \leftarrow Pk+1/2

k \leftarrow k + 1

Then, by (20) and (21), we have limk\rightarrow \infty EP \bigl[ \| \Delta k(P )\| 22
\bigr] 
= 0. Hence, \Delta k(P ) is a

martingale (elementwise). By Burkholder--Davis--Gundy inequality [17, Theorem 1.1],
we have

EP
\Bigl[ 
| \Delta i,j

k (P )| 4
\Bigr] 
\leq CEP \bigl[ [\Delta i,j(P )]2k

\bigr] 
for some constant C > 0, where \Delta i,j

k is the (i, j)th element of \Delta k, and [\cdot ]k denotes the
quadratic variation [49, section 8.6]. By the fact that (x, u) has finite rth moment for
any r \in Z+, we have supk\geq 0 EP \bigl[ [\Delta i,j(P )]2k

\bigr] 
< \infty . This implies that the variance of

\Delta T
k\Delta k is bounded.
Now, the updating equation in Algorithm 3 is equivalent to

Pk+1/2 \leftarrow Pk + hk(\scrR (Pk) + \Delta 1,k(Pk) + \Delta 2,k(Pk)),

where \Delta 1,k(Pk) is a zero-mean stochastic noise with finite variance for each k, and
\Delta 2,k(\cdot ) is deterministic and decreases to 0 as k goes to infinity. The proof is then
completed by Corollary 3.17.

Remark 4.5. The ADP method developed in this subsection can be extended to
solve the discount optimal control problem [12], by exploring the relationship between
the discounted cost and the ergodic cost [12, Lemma 4].

4.2. Decentralized VI. In previous sections, we have studied different types
of optimal control problems for continuous-time linear systems. A common feature
of these results is that the optimal controller and value function can be obtained
by solving a single ARE. However, in some applications, including the non-zero-sum
differential game and the robust ADP, the optimal solution is solved from a group
of cascaded or coupled AREs/HJB equations. Here, we present a decentralized VI
framework for continuous-time linear systems based on the robust VI proposed in
section 3.

For simplicity, let us consider a network of two agents, with each agent i, i = 1, 2,
aiming at solving a linear optimal control problem (see subsection 2.1) defined by
four matrices (Ai, Bi, Qi, Ri). Obviously, if (A1, B1, Q1, R1) and (A2, B2, Q2, R2) are
not dependent on each other, then each agent can solve its own optimal control
problem independently. However, assuming now that agent i's system information
(Ai, Bi, Qi, Ri) depends on agent j's (j \not = i) optimal solution (P \ast 

j ,K
\ast 
j ) through a

nonlinear function \Delta i(\cdot ), and that for security reasons the two agents cannot ex-
change their system information (Ai, Bi, Qi, Ri), i = 1, 2, then it is no longer a trivial
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task how to solve (P \ast 
i ,K

\ast 
i ) in a decentralized manner. Reformulating this problem

mathematically, we focus on solving the following two coupled AREs:

0 = AT
1 P

\ast 
1 + P \ast 

1A1  - P \ast 
1B1R

 - 1
1 BT

1 P
\ast 
1 +Q1 +\Delta 1(P

\ast 
1 , P

\ast 
2 ),

0 = AT
2 P

\ast 
2 + P \ast 

2A2  - P \ast 
2B2R

 - 1
2 BT

2 P
\ast 
2 +Q2 +\Delta 2(P

\ast 
2 , P

\ast 
1 ),

where (Ai, Bi, Qi, Ri) \in Rni\times ni \times Rni\times mi \times \scrS ni
+ \times \scrS 

mi
+ , and \Delta 1 = \Delta T

1 and \Delta 2 = \Delta T
2

are two continuous nonlinear functions.

Assumption 4.6. There exist four polynomials \gamma i,j \in \scrK , i, j = 1, 2, such that7

| \~\Delta 1(P1, P2)| \leq \gamma 1,1(| \~P1| ) + \gamma 1,2(| \~P2| ), | \~\Delta 2(P2, P1)| \leq \gamma 2,2(| \~P2| ) + \gamma 2,1(| \~P1| ),

where \~\Delta 1(P1, P2) = \Delta 1(P1, P2) - \Delta 1(P
\ast 
1 , P

\ast 
2 ),

\~\Delta 2(P2, P1) = \Delta 2(P2, P1) - \Delta 2(P
\ast 
2 , P

\ast 
1 ),

\~P1 = P1  - P \ast 
1 , and

\~P2 = P2  - P \ast 
2 .

Remark 4.7. Assumption 4.6 holds widely in different control problems. For ex-
ample, in two-player non-zero-sum differential games, we have A1 = A2 and

\Delta i(Pi, Pj) = PjBjR
 - 1
j RijR

 - 1
j BT

j Pj  - PjBjR
 - 1
j BT

j Pi  - PiBjR
 - 1
j BT

j Pj ,

where i \not = j and Rij = RT
ij > 0. Also, in the robust ADP design for systems with

unmatched disturbances [24, Chapter 5.1.1.2], we have \Delta 1 = 0 and

\Delta 2(P2, P1) = P2R
 - 1
1 BT

1 P1B1 +BT
1 P1B1R

 - 1
1 P2.

Note that \gamma i,j may depend on P \ast 
1 and P \ast 

2 .

The following theorem provides a convergence analysis for the coupled DMREs
using small-gain theory [26].

Theorem 4.8. Under Assumption 4.6, there exist \varepsilon > 0 and small enough | \gamma i,j | ,
i, j \in \{ 1, 2\} , such that given (P1(0), P2(0)) in a \varepsilon -neighborhood of (P \ast 

1 , P
\ast 
2 ), we have

limt\rightarrow \infty P1(t) = P \ast 
1 and limt\rightarrow \infty P2(t) = P \ast 

2 , where

\.P1 = AT
1 P1 + P1A1  - P1B1R

 - 1
1 BT

1 P1 +Q1 +\Delta 1(P1, P2),(22)

\.P2 = AT
2 P2 + P2A2  - P2B2R

 - 1
2 BT

2 P2 +Q2 +\Delta 2(P2, P1).(23)

Moreover, if B1 and B2 have full rank, the convergence result holds for any \gamma i,j and
\varepsilon , by picking Q1 and Q2 properly.

Proof. Following the derivation of (26) in Appendix A.1, there exist \varepsilon > 0 and a
Lyapunov function V , such that

\.V ( \~P1, \~P2) \leq  - C1(| \~P1| 2 + | \~P2| 2) + C2| \~P1| | \~\Delta 1| + C3| \~P2| | \~\Delta 2| 

\leq  - C1(| \~P1| 2 + | \~P2| 2) + C2| \~P1| 
\sum 
j=1,2

\gamma 1,j(| \~Pj | ) + C3| \~P2| 
\sum 
j=1,2

\gamma 2,j(| \~Pj | )

\leq  - C1

2
(| \~P1| 2 + | \~P2| 2) + C4

\sum 
i,j=1,2

\gamma 2i,j(| \~Pj | ) \forall | \~P1| < \varepsilon , | \~P2| < \varepsilon ,

where Ci > 0, i = 1, 2, 3, 4, are constants. Since \gamma i,j are polynomials, the second term
on the right-hand side of the above inequality decreases to 0 at least as fast as the

7A function \gamma : R+ \rightarrow R+ is of class \scrK if it is continuous, strictly increasing, and \gamma (0) = 0.
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Algorithm 4. Decentralized value iteration.

For the ith subsystem, choose Pi,0 = PT
i,0 \geq 0. k \leftarrow 0.

loop
Pi,k+1 \leftarrow Pi,k + hi,k(A

T
i Pi,k + Pi,kAi  - Pi,kBiR

 - 1
i BT

i Pi,k +Qi +\Delta i(Pi,k, Pj,k))
if | Pi,k+1  - Pi,k| /hi,k < \=\varepsilon then

return Pi,k as an approximation to P \ast 
i

k \leftarrow k + 1

first term. Hence, (22) and (23) are asymptotically stable at (P \ast 
1 , P

\ast 
2 ), as long as the

gain of \gamma i,j is small enough.
Moreover, if B1 and B2 have full rank, we know from Corollary 3.11 that (22)

and (23) can have arbitrarily small linear L2 gains from \~\Delta 1 to \~P1 and \~\Delta 2 to \~P2; i.e.,
C2/C1 and C3/C1 can be made sufficiently small, on any compact sets, by choosing
Q1 and Q2 properly. Then for any \varepsilon > 0, we can find Q1 and Q2, such that

\.V ( \~P1, \~P2) \leq  - C1(| \~P1| 2 + | \~P2| 2) + C2| \~P1| \gamma 1,1(| \~P1| ) +
C2

2
| \~P1| 2 +

C2

2
\gamma 21,2(| \~P2| )

+
C1

2
| \~P2| 2 +

C2
3

2C1
\gamma 22,1(| \~P1| ) + C3| \~P2| \gamma 2,2(| \~P2| )

\leq  - C5(| \~P1| 2 + | \~P2| 2) \forall | \~P1| < \varepsilon , | \~P2| < \varepsilon ,

for some C5 > 0. This completes the proof.

Based on Theorem 4.8, we develop a coupled VI algorithm in Algorithm 4. The
convergence of Algorithm 4 is given in the following theorem.

Theorem 4.9. Under Assumption 4.6, suppose that B1 and B2 have full rank.
If supk\{ hi,k\} is sufficiently small, then given Qi,0 \in \scrS ni

+ and Ri,0 \in \scrS mi
+ , for any

\varepsilon > 0, there exist \lambda i > 0, such that by selecting Qi = \lambda iQi,0 and Ri = Ri,0, we
have limk\rightarrow \infty Pi,k = P \ast 

i , where \{ Pi,k\} \infty k=0 is obtained from Algorithm 4 with Pi,0 \in 
\scrS ni \cap B\varepsilon (P

\ast 
i ), and i = 1, 2.

Proof. First, we show \{ Pi,k\} is bounded in \scrS ni\cap B\varepsilon (P
\ast 
i ). By picking \lambda i sufficiently

large, we know from part (i) of Corollary 3.13 that the coupled system (22)--(23) can
be made asymptotically stable at (P \ast 

1 , P
\ast 
2 ), with Pi(0) \in \scrS ni \cap B\varepsilon (P

\ast 
i ), and we also

know from Corollary 3.11 that \varepsilon can be made arbitrarily large.
Now, choosing supk\{ hi,k\} sufficiently small, we easily have from part (i) of The-

orem 3.14 that \{ Pi,k\} stays in \scrS ni \cap B\varepsilon (P
\ast 
i ). Then, the proof is completed by Theo-

rem 4.8 and following the proof of Theorem 3.14, part (iii).

5. Illustrative practical examples. In this section, we provide two simulation
examples to illustrate our robust VI algorithm.

5.1. Mean-variance portfolio optimization based on multiplayer non-
zero-sum differential game. In this example, we study the mean-variance portfolio
optimization problem [61] using non-zero-sum differential game theory obtained in
subsection 4.2.

Consider the price process of N + 1 assets (or securities) traded continuously in
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a market [61]:

dS0 = rS0dt,

dSi = biSidt+

ni\sum 
j=1

\sigma ijSidwj , i = 1, 2, . . . , N,

where S0 represents the price of a bond, Si, i = 1, . . . , N , represent N stocks, r > 0
is the interest rate, bi > 0 is the appreciation rate, and \{ \sigma ij\} ni

j=1 is the volatility of
the ith stock. An investor's total wealth at time t, when holding hi(t) shares of the

ith asset, is given as x(t) =
\sum N

i=0 hi(t)Si(t). The design objective here is to find hi
to (a) maximize the average return, and (b) minimize the volatility of x.

Inspired by [61], instead of solving the above portfolio optimization problem di-
rectly, we consider an auxiliary multiplayer non-zero-sum differential game composed
with the following cost:

Ji(u) = E

\left[  \int \infty 

0

\left(  Qi\=x
2 +

N\sum 
j=1

Rij \=ui\=uj

\right)  dt

\right]  , i = 1, . . . N,(24)

subject to

d\=x =

\Biggl( 
r\=x+

\sum 
i

(bi  - r)\=ui

\Biggr) 
dt+

\sum 
i,j

\sigma ij \=uidwj ,

where \=x = x  - \gamma , and \gamma > 0 represents the tradeoff between the two objectives in
the portfolio optimization problem. A larger \gamma means more weights on the average
return, and a small \gamma means more weights on the volatility. Note that the first term
in the integrand in (24) is related to the variance of \=x (and hence x) at the steady
state, and the second term guarantees that the shares for the ith bond/stock do not
diverge to the infinity.

Since the volatilities of assets are usually difficult to estimate, we borrow the idea
of stochastic robust optimal solution from [14, section 5], by choosing sufficiently small
Qi > 0 and Rij > 0 to guarantee the small-gain condition. Then, the above non-zero-
sum differential game can be solved using Algorithm 4, with Ai = r and Bi = bi  - r.
Based on the desired expected return, \gamma is chosen as 200. Once \=u\ast i :=  - K\ast 

i \=x is
obtained, the optimal share of the ith asset at time t is chosen asK\ast 

i (\gamma  - \=x(t)). In total
20 stocks and one bond are used to construct the portfolio. The interest rate is chosen
as 2.5\%, and the appreciation rates are randomly selected from 0\% to 15\%. After 1000
iterations, all Pi's converge to their optimal values. The prices of the portfolio and
the paths of Pi's are shown in Figure 1. Note that the portfolio constructed using
the non-zero-sum differential game approach has a higher return, while maintaining
approximately the same volatility compared with the uniform allocation of the asset.

5.2. ADP for time-series variance minimization. In this example, we use
the ADP method developed in subsection 4.1 to study the variance minimization
problem for a class of time series with unknown parameters. Note that this is a
classical problem which has been studied in both finance and the signal processing
community, and can be easily addressed using the Kalman filter when the model
parameters are known.

Consider the following time series in continuous time:
...
S = \alpha 3

\"S + \alpha 2
\.S + \alpha 1S + \sigma 0v0,
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P i

Fig. 1. Example 5.1: Portfolio optimization solved from robust VI.

where \sigma 0 and \alpha i, i = 1, 2, 3, are unknown model parameters, and v0 is a Gaussian
white noise that drives the output S. Suppose the system is asymptotically stable in
mean square sense. Our objective here is to minimize the variance of S.

We can rewrite the above differential equation in state space form, by assuming
states x1 = S + \sigma 1w1, x2 = \.S + \sigma 2w2, x3 = \"S + \sigma 3w3 and a control input u. Here
wi, i = 0, 1, 2, 3, are Brownian motions representing the observation noises, and \sigma i,
i = 1, 2, 3, are unknown noise magnitudes. Note that even if u \equiv 0, Exi, i = 1, 2, 3,
can decrease to 0 asymptotically since we assume the system is asymptotically stable
in mean square sense. However, the variance of xi may be extremely large due to
the presence of \sigma 0v0. To reduce the variance of xi, Algorithm 3 is used to develop
an ergodic controller. Notice that by the law of large numbers,

\int \infty 
0
widt = 0 for all i.

Hence, the two terms \sigma 2w2dt and \sigma 3w3dt have little influence in the time integration
in Algorithm 3.

In the simulation, we choose \alpha 1 =  - 4, \alpha 2 =  - 1, \alpha 3 =  - 4, \sigma 0 = 1, \sigma 1 = 0.6,
\sigma 2 = 0.4, and \sigma 3 = 0.5. For illustration purposes, the weighting matrices in the cost
are chosen as Q = 0.1I and R = 0.01. Pk is updated in real time after every second.
Both the optimal solution P \ast and the near-optimal solution \^P \ast from ADP learning
are shown below:

P \ast =

\left[  0.2859 0.1492 0.0110
0.1492 0.3366 0.0539
0.0110 0.0539 0.0206

\right]  , \^P \ast =

\left[  0.2854 0.1479 0.0106
0.1479 0.3377 0.0529
0.0106 0.0529 0.0262

\right]  .
The system trajectories and Pk are given in Figure 2. Note that the controller derived
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Fig. 2. Example 5.2: The trajectories of xi, i = 1, 2, 3, and Pk.

from Algorithm 3 significantly reduces the variance of the output signal.

6. Summary. This paper develops a new framework of robust DP. This novel
theory resolves a long-standing issue in DP theory: how to develop DP algorithms
that are robust to different types of disturbances. Empowered by nonlinear and robust
control theories, robust DP allows us to develop various DP and RL algorithms with
guaranteed convergence to the optimal solution in the presence of different types of
disturbances, including stochastic noise, external disturbances, and modeling errors
such as nonlinear dynamic uncertainties. To be specific, we have conducted an inno-
vative input-output gain analysis for the DMRE in section 3, and applied the result
together with the nonlinear small-gain theory to develop a novel robust VI algorithm.
It has been shown that this new algorithm is robust to different kinds of internal
and external disturbances, and hence is especially useful in solving non-model-based
optimal control problems.

Due to space limitation, we list only a few illustrative applications of our robust
DP method in section 4. These examples have demonstrated that robust DP obtained
in the present paper is a powerful tool for addressing adaptive optimal control and
DP problems.
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Appendix A. Proofs of some technical results.

A.1. Proof of Theorem 3.8. To prove part (i), we first introduce the following
finite-horizon cost:

\scrJ t(x(t);u,Q\Delta ) = xT (0)P\Delta (0)x(0) +

\int 0

t

(xT (s)Q\Delta (s)x(s) + uT (s)Ru(s))ds,

where t < 0 is an arbitrary time instant, and Q\Delta (s) = Q + \Delta (s). Since Q\Delta (s) \geq 0
on [t, 0], we know from the linear quadratic regulator theory [36, Chapter 6.1] that
infu \scrJ t(x(t);u,Q\Delta ) = xT (t)M(t)x(t), where M(s) =MT (s) > 0, s \in [t, 0], satisfies

 - \.M = ATM +MA - MBR - 1BTM +Q+\Delta , M(0) = P\Delta (0).

Moreover, the optimal controller for \scrJ t is uo(s) :=  - R - 1BTM(s).
Next, we have from the conditions on Q\Delta that there exists a constant matrix

Q \in \scrS , such that 0 \leq Q\Delta (s) < Q for all s. Thus,

0 \leq xT (t)M(t)x(t) \leq xT (0)P\Delta (0)x(0) +

\int 0

t

(xTQ\Delta (s)x+ (\=uo)TR\=uo)ds

\leq xT (0)P\Delta (0)x(0) +

\int 0

t

(xTQx+ (\=uo)TR\=uo)ds,(25)

where \=uo := arg infu \scrJ t(x(t);u,Q). Since Q is positive definite, we know there exists
a real symmetric matrix M > 0, such that

inf
u
\scrJ t(x(t);u,Q) < xT (t)Mx(t).

Then, we have from (25) that 0 \leq M(t) < M for all t < 0. Comparing the definitions
of M and P\Delta , we know M(t) = P\Delta ( - t). Thus, 0 \leq P\Delta (t) < M for all t > 0.

To prove part (ii), note from part (i) that P\Delta is bounded on R+. Then, since P (t)
converges to P \ast , for any \varepsilon > 0, there exists T0 > 0, such that supT>T0

| P (t+T ) - P \ast | <
\varepsilon , given P (t) = P\Delta (t) for any t > 0. In addition, by [45, Theorem 55], for any T1 > 0
and \varepsilon > 0, we can find t0 > 0 under which supt\geq t0 | \Delta (t)| is sufficiently small, so that
supT\in [0,T1] | P (t+ T ) - P\Delta (t+ T )| < \varepsilon , given P (t) = P\Delta (t) for all t > t0.

Now, by picking T1 = 2T0, one can guarantee from the above analysis that | P \ast  - 
P\Delta (t+ T )| < 2\varepsilon for all t > t0 and T \in [T0, 2T0]. Thus, we know supt>t0+T0

| P\Delta (t) - 
P \ast | \leq 2\varepsilon . Since t0 exists for any \varepsilon , which can be made arbitrarily small, we have
limt\rightarrow \infty P\Delta (t) = P \ast .

Moreover, choosing the same Lyapunov function in the proof of Proposition 3.6,
we know there exist positive constants C1, C2, and \varepsilon 1, such that

\.V ( \~P\Delta ) \leq  - C1| \~P\Delta | 2 + C2| \~P\Delta | | \Delta | \forall | \~P\Delta | < \varepsilon 1,(26)

where \~P\Delta = P\Delta  - P \ast . By completing the squares, we have from (26) that (10) admits
a finite linear L2 gain in a neighborhood of P \ast . Thus, by H\infty control theory [56],
\~P\Delta \in L2 if \Delta \in L2.

Now, we prove part (iii). Note from (12) and (26) that by defining \=V (P,M) =

V (P ) +
C2

2

C1
Vf (M),

d

dt
\=V ( \~P\Delta , \~M) \leq  - C1| \~P\Delta | 2 + C2| \~P\Delta | | \Delta |  - 

C2
2

C1
| \Delta | 2 + C2

2

C1
\gamma 2| \~P\Delta | 2

=  - 
\biggl( 
C1

2
 - C2

2

C1
\gamma 2
\biggr) 
| \~P\Delta | 2  - 

C2
2

2C1
| \Delta | 2 \forall | \~P\Delta | < \varepsilon 1, | \~M | < \varepsilon 0.

D
ow

nl
oa

de
d 

01
/2

1/
20

 to
 1

42
.2

55
.1

09
.1

25
. R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.si
am

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

CONTINUOUS-TIME ROBUST DYNAMIC PROGRAMMING 4169

Take \gamma < C1\surd 
2C2

. Since (11) is zero-state detectable, we have from LaSalle's invariance

principle [28, Corollary 4.1] that (P\Delta ,M) is asymptotically stable at (P \ast ,M\ast ).
Finally, to prove part (iv) involving stochastic disturbance, from It\^o's lemma [49]

and (26), it follows that

\scrL V ( \~P\Delta ) \leq  - C1| \~P\Delta | 2 + C3

N\sum 
i=1

| \Delta i| 2 \forall | \~P\Delta | < \varepsilon ,

for some positive constants \varepsilon and C3, where \scrL denotes the differential generator. Note
that C3 is bounded because \partial 2xV is bounded on any compact sets, since V is smooth.
Obviously, if we pick \gamma = C1/(2C3), then

\scrL V ( \~P\Delta ) \leq  - 
1

2
C1| \~P\Delta | 2 \forall | \~P\Delta | < \varepsilon .

This concludes the proof.

A.2. Proof of Theorem 3.14. The proof is inspired by the analysis in [18].
Before proving part (i), we denote an operator \scrR : \scrS n \rightarrow \scrS n, such that

\scrR (P ) = ATP + PA - PBR - 1BTP +Q.

Suppose P0 \not = P \ast . By Lemma 3.3 and shifting the equilibrium of (5) to P \ast , we
know there exists a smooth Lyapunov function \scrV : RA \rightarrow R+, where RA \subset \scrS n is the
region of attraction of P \ast , such that8

\langle \partial x\scrV (P ),\scrR (P )\rangle F < 0, \scrV (P ) > 0 \forall P \in RA \setminus \{ P \ast \} ,
lim

P\rightarrow \partial RA

\scrV (P ) =\infty , \langle \partial x\scrV (P \ast ),\scrR (P \ast )\rangle F = 0 \scrV (P \ast ) = 0.

As a result, \{ P : \scrV (P ) \leq C\} is a compact subset of RA for all C > 0. Then, there
exist C0 > 0 and C1 > 0, such that C0 < \scrV (P0) < C1. Furthermore, we can find a
sufficiently small constant \varepsilon \delta > 0, such that for all \zeta \in \scrS n satisfying | \zeta | < \varepsilon \delta ,

sup
\{ P :C0\leq \scrV (P )\leq C1\} 

\{ \langle \partial x\scrV (P ), (\scrR (P ) + \zeta )\rangle F \} =  - \delta (27)

for some \delta > 0.
By contradiction, suppose \{ Pk\} \infty k=0 is unbounded. Then, there exists an up-

crossing interval [C2, C3], with \scrV (P0) < C2 < C3 < C1, such that \{ \scrV (Pk)\} \infty k=0 crosses
this interval from below infinitely many times.

From the conditions onWk, we know there exists E \in \scrF with P(E) = 1, such that
for all \omega \in E, \{ Wk(\omega )\} \infty k=0 is bounded. Fixing \omega \in E, we can define two subsequences
\{ Pkj
\} , \{ Pk\prime 

j
\} \subset \{ Pk\} , such that

\scrV (Pkj - 1) < C2 \leq \scrV (Pm) < C3 < \scrV (Pk\prime 
j
) \forall kj \leq m < k\prime j .(28)

Choose a sufficiently small \varepsilon > 0, such that for any P \in \{ Pkj\} , B\varepsilon (P ) \subset \{ P \in \scrS n+ :

8Note that \scrV defined here is different from the Lyapunov function used in the proof of Proposi-
tion 3.6.
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\scrV (P ) < C1\} . Suppose q is sufficiently large. Then, for any j \in Z+,

\varepsilon < | PL\varepsilon (j)  - Pkj
| =

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
L\varepsilon (j) - 1\sum 
i=kj

hi(\scrR (Pi) + \Delta i +Wi)

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
\leq 

L\varepsilon (j) - 1\sum 
i=kj

hi(| \scrR (Pi)| + | \Delta i| + | Wi| ) \leq \varepsilon C
L\varepsilon (j) - 1\sum 
i=kj

hi,

where L\varepsilon (j) = inf\{ i \geq kj : | Pi - Pkj | > \varepsilon \} , and \varepsilon C > 0 is a constant independent of j.
Then, by the assumption on Wk, one has

\scrV (PL\varepsilon (j)) - \scrV (Pkj
)

=

\int 1

0

\bigl\langle 
\partial x\scrV (Pkj + t(PL\varepsilon (j)  - Pkj )), (PL\varepsilon (j)  - Pkj )

\bigr\rangle 
F
dt

=
\bigl\langle 
\partial x\scrV (Pkj

), (PL\varepsilon (j)  - Pkj
)
\bigr\rangle 
F

+

\int 1

0

\int 1

0

\biggl\langle 
d

ds
\partial x\scrV (Pkj

+ st(PL\varepsilon (j)  - Pkj
)), (PL\varepsilon (j)  - Pkj

)

\biggr\rangle 
F

dsdt

=

L\varepsilon (j) - 1\sum 
i=kj

hi
\bigl\langle 
\partial x\scrV (Pkj

), (\scrR (Pkj
) + \=\Delta i,j)

\bigr\rangle 
F
+

\Biggl\langle 
\partial x\scrV (Pkj

),

L\varepsilon (j) - 1\sum 
i=kj

hiWi

\Biggr\rangle 
F

+

\int 1

0

\int 1

0

\biggl\langle 
d

ds
\partial x\scrV (Pkj + st(PL\varepsilon (j)  - Pkj )), (PL\varepsilon (j)  - Pkj )

\biggr\rangle 
F

dsdt,(29)

where \=\Delta i,j = \Delta i + \scrR (Pi)  - \scrR (Pkj
). Note that limj\rightarrow \infty | PL\varepsilon (j)  - Pkj

| = \varepsilon , because
limk\rightarrow \infty hk = 0. Then, since Pkj

is bounded and \scrV is smooth,

lim
j\rightarrow \infty 

\bigm| \bigm| \bigm| \bigm| \int 1

0

\int 1

0

\biggl\langle 
d

ds
\partial x\scrV (Pkj + st(PL\varepsilon (j)  - Pkj )), (PL\varepsilon (j)  - Pkj )

\biggr\rangle 
F

dsdt

\bigm| \bigm| \bigm| \bigm| = O(\varepsilon 2).

Since limj\rightarrow \infty 
\sum L\varepsilon (j) - 1

i=kj
hiWi = 0, there exists a sufficiently large \=j, such that for all

j > \=j, by choosing sufficiently small \varepsilon and \delta 0, we have | \=\Delta i,j | < \varepsilon \delta , and by (27) and
(29) it follows that

\scrV (PL\varepsilon (j)) - \scrV (Pkj
) \leq 

\Biggl\langle 
\partial x\scrV (Pkj

),

L\varepsilon (j) - 1\sum 
i=kj

hiWi

\Biggr\rangle 
F

 - \delta 
L\varepsilon (j) - 1\sum 
i=kj

hi +O(\varepsilon 2)

\leq 

\Biggl\langle 
\partial x\scrV (Pkj

),

L\varepsilon (j) - 1\sum 
i=kj

hiWi

\Biggr\rangle 
F

 - \delta \varepsilon 

\varepsilon C
+O(\varepsilon 2) < 0.

Since limk\rightarrow \infty \scrV (Pkj ) = C2, we know that for a large enough k, if Pk \in \{ Pkj\} , then
there exists k\prime > k, such that \scrV (Pk\prime ) < C2, and Pi stays in a \varepsilon -neighborhood of
Pk for k \leq i \leq k\prime . Thus, Pk is bounded, and the proof of part (i) is concluded by
contradiction.

Now, we prove part (ii). First, rewrite the updating equation in Algorithm 2 as

Pk+1 = Pk + hk(\scrR (Pk) + \Delta k +Wk) + Zk, k \geq N, Pk \in \scrS 0,
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where N is chosen as in part (i), and the projection term Zk is defined as

Zk =

\Biggl\{ 
P0  - Pk+1/2 if Pk+1/2 \not \in \scrS 0,
0 otherwise.

Define the following continuous-time interpolation:

P 0(t) =

\Biggl\{ 
P0, t \leq 0,

Pk, t \in [tk, tk+1),
\Delta 0(t) =

\Biggl\{ 
\Delta 0, t \leq 0,

\Delta k, t \in [tk, tk+1),

where t0 = 0 and tk =
\sum k - 1

i=0 hi for k \geq 1. Define the shifted process P k(t) = P 0(tk+t)
and \Delta k(t) = \Delta 0(tk + t) for all t \in R.

Then, we have for all k \geq N and t \geq 0 that

P k(t) = Pk +

m(t+tk) - 1\sum 
i=k

hi(\scrR (Pi) + \Delta i) +W k(t) + Zk(t)

= Pk +Hk(t) + ek(t) +W k(t) + Zk(t),(30)

where

Hk(t) =

\int t

0

(\scrR (P k(s)) + \Delta k(s))ds, Zk(t) =

m(t+tk) - 1\sum 
i=k

Zi,

W k(t) =

m(t+tk) - 1\sum 
i=k

hiWi, m(t) =

\Biggl\{ 
j, 0 \leq tj \leq t < tj+1,

0, t < 0,

and ek(t) is due to replacing
\sum m(t+tk) - 1

i=k hi(\scrR (Pi) +\Delta i) with H
k(t). By convention,

the above definition assumes
\sum m(t+tk) - 1

i=k \ast = 0, when 0 \leq t < hk. Note that for all
\omega \in E, W k(\cdot , \omega ) converges to 0 uniformly on any finite time interval.

Fixing T > 0 and following the proof of [14, Theorem 3.3], we can show that
\{ Hk(\cdot )\} \infty k=N , \{ Zk(\cdot )\} \infty k=N , and \{ ek(\cdot )\} \infty k=N are all relatively compact in \scrD ([0, T ],\scrS n),
where \scrD ([0, T ],\scrS n) denotes the space of functions from [0, T ] to \scrS n that are right-
continuous with left-hand limits, equipped with the Skorokhod topology [44]. Fol-
lowing the procedure in the proof of [1, Lemma 3.4], one can show that the limit of
\{ Zk(\cdot )\} \infty k=N is identically 0. Then, the limit of \{ Pk,\Delta k\} satisfies

\.P = \scrR (P ) + \Delta ,

where \Delta converges to 0 by its definition. By part (i), we know \{ Pk\} \infty k=N remains in
the region of attraction of P \ast . Thus, part (ii) is established by Theorem 3.8, part (ii),
and Part 2 of the proof of [33, Theorem 5.2.1].

To prove part (iii), we note from part (iii) of Theorem 3.8 that the following
coupled system is asymptotically stable at (P \ast ,M\ast ):

\.P = \scrR (P ) + \Delta (P,M),

\.M = f(M,P ).

Moreover, by defining \=\scrV (P,M) = \=V (P  - P \ast ,M  - M\ast ), where the Lyapunov function
\=V is defined in the proof of Theorem 3.8, we also have

\langle \partial P \=\scrV (P,M), (\scrR (P ) + \Delta )\rangle F + \langle \partial M \=\scrV (P,M), f(M,P )\rangle F < 0
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for all (P,M) in a small neighborhood of (P \ast ,M\ast ) with (P,M) \not = (P \ast ,M\ast ). Since
Mk is bounded, \Delta k is bounded for all bounded Pk. Now, following the steps in part
(i), we can show (Pk,Mk) is bounded, provided P0 stays in a small neighborhood of
P \ast , and \varepsilon 0 is small enough. Applying the analysis in part (ii), we know (Pk,Mk)
converges to the solution to the above coupled ODE. By part (iii) of Theorem 3.8,
this completes the proof.

A.3. Proof of Corollary 3.17. We need only show that Pk is bounded. Then,
we easily have

\sum \infty 
k=0 hkWk < \infty with probability one [18, Remark 1], and the con-

vergence is proved by part (ii) of Theorem 3.14.
By contradiction, suppose \{ Pk\} \infty k=0 is unbounded. Following the analysis in the

proof of Theorem 3.14, part (i), we still have

\varepsilon < | PL\varepsilon (j)  - Pkj
| =

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
L\varepsilon (j) - 1\sum 
i=kj

hi(\scrR (Pi) + \Delta i(Pi) + \sigma i(Pi)vi)

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \leq \varepsilon C
L\varepsilon (j) - 1\sum 
i=kj

hi

for some \varepsilon C > 0, where \varepsilon , kj , L\varepsilon (j), and \scrR follow the same definitions as in Appen-
dix A.2. Since limk\rightarrow \infty \Delta k = 0 uniformly on any compact set, supi\in [kj ,L\varepsilon (j)]\cap Z+

| \Delta i(Pi)| 
can be made arbitrarily small by choosing a large enough j. Then, there exists a suf-
ficiently large \=j, such that for all j > \=j,

V (PL\varepsilon (j)) - V (Pkj ) \leq 

\Biggl\langle 
\partial xV (Pkj ),

L\varepsilon (j) - 1\sum 
i=kj

hi\sigma i(Pi)vi

\Biggr\rangle 
F

 - \delta \varepsilon 

\varepsilon C
+O(\varepsilon 2).(31)

Now, define a sequence \{ Mk\} , such that

Mk =
\sum 

i\in \cup j\in \{ j\in Z+:k\prime 
j
\leq k\} ([kj ,L\varepsilon (j) - 1]\cap Z+)

hi\sigma i(Pi)vi,

where k\prime j is defined in (28). Obviously, \{ Mk\} is a martingale with respect to \{ \scrF k\} ,
and E

\bigl[ 
| Mk| 2

\bigr] 
is bounded, since \{ Pi\} i\in [kj ,L\varepsilon (j)]\cap Z+

is bounded,
\sum \infty 

k=0 h
2
k < \infty , and

vk has finite variance. By the martingale convergence theorem [49, Theorem 2.6],

Mk converges with probability one, and thus limj\rightarrow \infty 
\sum L\varepsilon (j) - 1

i=kj
hi\sigma i(Pi)vi = 0. This,

together with (31), shows that Pk is bounded with probability one.
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