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Abstract— This paper presents a first solution to the problem
of adaptive LQR for continuous-time linear periodic systems.
Specifically, reinforcement learning and adaptive dynamic pro-
gramming (ADP) techniques are used to develop two algorithms
to obtain near-optimal controllers. Firstly, the policy iteration
(PI) and value iteration (VI) methods are proposed when the
model is known. Then, PI-based and VI-based off-policy ADP
algorithms are derived to find near-optimal solutions directly
from input/state data collected along the system trajectories,
without the exact knowledge of system dynamics. The effective-
ness of the derived algorithms is validated using the well-known
lossy Mathieu equation.

I. INTRODUCTION

Recently, with significant progress in reinforcement learn-
ing and adaptive dynamic programming (ADP), innovative
solutions have been obtained for various kinds of problems
ranging from engineering to neuroscience, (see [1], [2] and
the references therein). In ADP, data generated through the
interactions between the plant and the controller is exploited
to find approximate optimal controllers without explicitly
identifying the plant model. Despite these significant pro-
gresses over the past decade [3], [4], [5], [6], little research
has been devoted to the adaptive optimal control problem
for time-varying systems. It is widely recognized that, for
general uncertain time-varying systems, the problem is fun-
damentally challenging [7], [8]. Thus it is more suitable
to focus on special classes of time-varying systems. In
this paper, we will study a class of continuous-time linear
periodic (CTLP) systems with unknown dynamics.

Indeed, the analysis and control of CTLP systems has been
studied by many authors (see [9], [10] and the references
therein), due to its important role in modeling practical
problems including spacecraft attitude control [11], vibration
attenuation [12], online advertising [13] and so on. Optimal
control problems of CTLP systems are addressed in [14],
[15], [16], assuming the complete knowledge of the system
dynamics. Adaptive control of CTLP systems can be found
in [7], [8], [17], where optimality was not addressed.

In this paper, two reinforcement learning based ADP
algorithms are proposed, such that the adaptive optimal
control problem of CTLP systems is solved in the absence of
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the exact knowledge of system dynamics. Firstly, the model-
based policy iteration (PI) and value iteration (VI) for CTLP
systems are proposed, based on [14, Theorem 6.2] and [16,
Corollary], respectively. Then, we develop the PI-based and
VI-based off-policy ADP algorithms, to find approximate
optimal controllers directly from input/state data, when the
system dynamics are unknown. Under mild conditions, both
algorithms converge uniformly to the optimal solutions. With
appropriate choice of an initial stabilizing policy, the PI-
based ADP algorithm enjoys quadratic convergence rate,
while the VI-based ADP algorithm does not require the
knowledge of any initial stabilizing controller. The feasibility
and effectiveness of both algorithms are demonstrated by
the optimal control design for the well-known lossy Mathieu
equation.

Notations. Z+ is the set of nonnegative integers. Sn de-
notes the vector space of all n-by-n real symmetric matrices.
| · | and ‖·‖ represent the Euclidean norm for vectors and the
Frobenius norm for matrices, respectively. [x]j denotes the
jth element of vector x ∈ Rn. [X]i,j denotes the element
in the ith row and jth column of matrix X ∈ Rm×n. bxc
represents the largest integer less than or equal to x ∈ R.

II. PROBLEM FORMULATION AND
PRELIMINARIES

Consider the following class of continuous-time linear
periodic systems

ẋ(t) = A(t)x(t) +B(t)u(t), (1)

where x(t) ∈ Rn is the system state, u(t) ∈ Rm is the
control input, A(·) : R → Rn×n, B(·) : R → Rn×m are
continuous and T -periodic matrix-valued functions, T ∈ R+.

By [14, Section 6.5.1.1], the periodic linear quadratic op-
timal control problem consists of finding a linear stabilizing
control policy u(·) that minimizes the quadratic cost function

J(t0, ξ, u(·)) =

∫ ∞
t0

r(x(t), u(t))dt, (2)

where u(t) = −K(t)x(t), r(x(t), u(t)) = |C(t)x(t)|2 +
uT (t)R(t)u(t), K(·) : R → Rm×n, C(·) : R → Rl×n,
R(·) : R → Rm×m are continuous and T -periodic, with
R(·) > 0; x(t) is the solution of equation (1) with initial
state x(t0) = ξ. Associated with the optimal control problem
is the well-known periodic Riccati equation (PRE)

−Ṗ (t) = AT (t)P (t) + P (t)A(t)

− P (t)B(t)R−1(t)BT (t)P (t) + CT (t)C(t).
(3)
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Under certain conditions, the optimal solution to the periodic
linear quadratic control problem exists and is unique.

Assumption 1 ([18, Theorem 4]). (A(·), B(·)) is stabilizable
and (A(·), C(·)) is detectable.

Lemma 1 ([14, Theorems 6.5 and 6.12]). There exists a
unique symmetric, periodic and positive semidefinite (SPPS)
solution of the PRE, and the corresponding closed-loop sys-
tem is stable, if and only if Assumption 1 is satisfied. Denote
the unique SPPS solution as P ∗(·). Then the cost function
(2) is minimized by the optimal control gain K∗(t) =
R−1(t)BT (t)P ∗(t), and the corresponding minimum cost is
J∗(t0, ξ) = J(t0, ξ, u

∗(·)) = ξTP ∗(t0)ξ.

In this paper, Fourier basis functions are adopted to ap-
proximate different periodic functions. Suppose f(·) : R →
R is a periodic function with period T . Then, define the
partial sums of Fourier series of f(·) as

fN (t) =
a0

2
+

N∑
n=1

(an cos (ωnt) + bn sin (ωnt)) ,

where ω = 2π/T , an and bn are the Fourier coefficients.
The following lemma gives the asymptotic property of using
fN to approximate f .

Lemma 2 ([19, Theorem 1.5.1]). If f is T -periodic, continu-
ous and piecewise continuously differentiable, then fN → f
uniformly on R, as N →∞.

When the matrices A(·) and B(·) are unknown, the PRE
can hardly be directly solved. By reinforcement learning
techniques, PI-based and VI-based ADP algorithms are pro-
posed to find approximate optimal controllers directly from
the collected data in the next two sections, respectively.

Definition 1. For matrices X ∈ Rn×m, Y ∈ Sm, and vector
v ∈ Rn, define

vec(X) = [xT1 , x
T
2 , · · · , xTm]T ,

vecs(Y ) = [y11,
√

2y12, · · · ,
√

2y1m, y22,
√

2y23,

· · · ,
√

2ym−1,m, ym,m]T ∈ R
1
2m(m+1),

ṽ = [v2
1 ,
√

2v1v2, · · · ,
√

2v1vn, v
2
2 ,
√

2v2v3,

· · · ,
√

2vn−1vn, v
2
n]T ∈ R

1
2n(n+1),

where xi is the ith column of X . Let vecs−1(·) and vec−1(·)
denote the inverse functions of vecs(·) and vec(·), resp..

As it can be directly checked, we have

Lemma 3. For X ∈ Sn, Y ∈ Rm×n, |vecs(X)| = ‖X‖,
|vec(Y )| = ‖Y ‖.

In the rest of this paper, we omit the dependence of
variables on time t when there is no ambiguity.

III. PI-BASED ADP ALGORITHM FOR CTLP
SYSTEMS

A. Model-based PI for known CTLP Systems
Theorem 1. Under Assumption 1, let K0(·) be a continuous,
T -periodic stabilizing control gain. Set i = 0, and consider

the following stepwise procedure:
1) (Policy Evaluation) Solve the unique SPPS solution

Pi(·) from the periodic Lyapunov equation

−Ṗi = AT
i Pi + PiAi + CTC +KT

i RKi, (4)

where Ai = A−BKi.
2) (Policy Improvement) Obtain an improved control policy

using
Ki+1 = R−1BTPi. (5)

3) Let i = i+ 1, and return to Step 1).
Then for all i ∈ Z+:

(i) Ai(·) is stable.
(ii) 0 ≤ P ∗(t) ≤ Pi+1(t) ≤ Pi(t), ∀t ∈ R.

(iii) Pi(·) and Ki(·) converge uniformly to P ∗(·) and K∗(·),
respectively.

Sketch of Proof : In [14, Theorem 6.2], if (A(·), B(·)) is
stabilizable, it is shown that Pi(·) converge pointwise and
monotonically to the maximal solution [14, Section 6.3.1.1]
of PRE (3) . By Lemma 1, if further (A(·), C(·)) is de-
tectable, P ∗(·) is equal to the maximal solution. Then it is
established that {Pi(·)}∞i=0 is equicontinuous. The uniform
convergence follows by the Arzelà-Ascoli theorem.

B. PI-based ADP Algorithm for Unknown CTLP Systems

Define the periodic control gains

K̊i(t) = vec−1
(
X̊

(2)
i−1FN (t)

)
, i ∈ Z+, (6)

where

FN (t) = [1, cos (ωt), sin (ωt), cos (2ωt), sin (2ωt),

· · · , cos (Nωt), sin (Nωt)]
T
, N ∈ Z+,

X̊
(2)
i ∈ Rmn×(2N+1), i ∈ Z+ is the weight matrix to be

determined in ith iteration, X̊(2)
−1 is chosen to make K̊0(t)

stabilizing. Let P̆i(·) denote the unique SPPS solution of
periodic Lyapunov equation,

− ˙̆
Pi = ÅT

i P̆i + P̆iÅ
T
i + CTC + K̊T

i RK̊i, (7)

where ÅT
i = A(t)−B(t)K̊i(t). If K̊i(t) is stabilizing, such

a P̆i(t) always exists by [20, Lemma 2]. Then an improved
control gain can be obtained

K̆i+1 = R−1BT P̆i. (8)

Apply a feedback control policy u0 to system (1), which
yields the boundedness of the solutions of the closed-loop
system. We obtain

ẋ = Åix+B(K̊ix+ u0). (9)

By (7), (8) and (9), differentiating xT P̆ix with respect to t
yields

dxT P̆ix

dt
= xT (−CTC − K̊iRK̊i)x

+ 2(u0 + K̊ix)TRK̆i+1x.

(10)

3323

Authorized licensed use limited to: New York University. Downloaded on June 04,2020 at 02:26:29 UTC from IEEE Xplore.  Restrictions apply. 



By integrating both sides of (10) from tj to tj+1, where tj =
j∆t, j ∈ Z+, ∆t is the sampling interval, and rearranging
the terms, we have

x̃T (tj+1)vecs(P̆i(tj+1))− x̃T (tj)vecs(P̆i(tj))

−
∫ tj+1

tj

(
xT ⊗ (2(u0 + K̊ix)TR)

)
vec(K̆i+1)dt

= −
∫ tj+1

tj

xTCTCxdt−
∫ tj+1

tj

vec(K̊i)
T

(xT ⊗ Im)TR(xT ⊗ Im)vec(K̊i)dt.

(11)

If j = 1, 2 · · · ,M , M ∈ Z+\{0}, substituting (6) and the
following approximations into (11)

vecs(P̆i(t)) = X̊
(1)
i FN (t) + e̊

(1)
i,N (t),

vec(K̆i+1(t)) = X̊
(2)
i FN (t) + e̊

(2)
i,N (t),

(12)

where e̊(1)
i,N and e̊(1)

i,N are approximation errors, we obtain

Θ̊i

[
vec(X̊

(1)
i )

vec(X̊
(2)
i )

]
= Ψ̊i + E̊i,N , (13)

where E̊i,N summarizes the effects of the approximation
errors e̊(1)

i,N and e̊(1)
i,N ,

Θ̊i =


Fx(t1)−Fx(t0), −Fxu0,0−vecT (X̊

(2)
i−1)∆1,0

Fx(t2)−Fx(t1), −Fxu0,1−vecT (X̊
(2)
i−1)∆1,1

...
...

Fx(tM )−Fx(tM−1), −Fxu0,M−1−vecT (X̊
(2)
i−1)∆1,M−1

 ,

Ψ̊i =


−c0 − vecT (X̊

(2)
i−1)∆2,0vec(X̊

(2)
i−1)

−c1 − vecT (X̊
(2)
i−1)∆2,1vec(X̊

(2)
i−1)

...
−cM−1 − vecT (X̊

(2)
i−1)∆2,M−1vec(X̊

(2)
i−1)

 ,

∆1,j =

∫ tj+1

tj

FT
n ⊗ xT ⊗ 2FN ⊗ x⊗Rdt,

cj =

∫ tj+1

tj

xTCTCxdt,

∆2,j =

∫ tj+1

tj

(FN ⊗ x⊗ Im)R
(
FT
N ⊗ xT ⊗ Im

)
dt,

Fxu0,j =

∫ tj+1

tj

FT
N ⊗ xT ⊗ (2uT0 R)dt,

Note that we hope the approximation errors can be made as
small as possible in (12) and (13). To this end, the following
assumption is imposed in the spirit of persistent excitation
(PE) in adaptive control [21].

Assumption 2. For all i ∈ Z+, there exist M̄ > 0 and
α > 0, such that for all M > M̄ , M ∈ Z+, we have

1

M
Θ̊T

i Θ̊i ≥ αI(n1+n2)(2N+1),

where n1 = n(n+ 1)/2, n2 = mn.

The convergence of the PI-based off-policy ADP algorithm
to the optimal solutions is true under Assumption 2 and the
following assumption.

Assumption 3. Matrix-valued functions B(·) and R(·) are
piecewise continuously differentiable.

Lemma 4. Under Assumptions 2 and 3, if K̊i(·) is stabilizing
for all i ∈ Z+, then ∀ε > 0, ∃N̄ > 0, such that ∀N >
N̄,N ∈ Z+, ∀t ∈ R,

‖P̊i(t)− P̆i(t)‖ < ε, ‖K̊i+1(t)− K̆i+1(t)‖ < ε.

Sketch of Proof : Firstly P̆i(t) is expanded to

vecs(P̆i(t)) = X̆
(1)
i FN (t) + ĕ

(1)
i,N (t),

where X̆
(1)
i ∈ Rn1×(2N+1) is Fourier coefficients, ĕi,N is

truncation error. Secondly by Lemma 2, Assumption 2 and
the property of least square regression, it is shown that X̊(1)

i

can be made arbitrarily close to X̆(1)
i by choosing large N .

Then limN→∞ P̊i(t) = P̆i(t) follows from Lemma 2. The
proof for K̊i(t) and K̆i(t) is similar.

Lemma 5. For all i ∈ Z+, if limN→∞ K̊i(t) = Ki(t)
uniformly on R, then

(i) When N is large enough, K̊i(·) is stabilizing.
(ii) limN→∞ P̆i(t) = Pi(t) uniformly on R.

Proof : By continuity, [22, Theorem 3.4] and [20, Lemma
2], this lemma is not hard to derive, thus omitted.

Theorem 2. Under Assumptions 2 and 3, given ī ∈ Z+, for
any ε > 0, ∃N̄ > 0, such that ∀N > N̄ , N ∈ Z+, K̊i(·) is
stabilizing, and

‖P̊i(t)−Pi(t)‖ < ε, ‖K̊i+1(t)−Ki+1(t)‖ < ε, ∀t ∈ R,

for i = 1, 2, · · · , ī.

Sketch of Proof : By suitable applications of Lemmas 4 and
5, we can prove that ∃N̄i > 0, such that ∀N > N̄i,

‖P̊i(t)− Pi(t)‖ < ε, ‖K̊i+1(t)−Ki+1(t)‖ < ε,

for i = 1, 2, · · · , ī. The proof is completed by setting N̄ =
maxi N̄i.

Corollary 1. Under Assumptions 1, 2, 3 and the conditions
of Theorem 1, ∀ε > 0, ∃ī ∈ Z+, ∃N̄ > 0, such that ∀N > N̄ ,
N ∈ Z+,

‖P̊ī(t)− P ∗(t)‖ < ε, ‖K̊ī+1(t)−K∗(t)‖ < ε, ∀t ∈ R.

Proof : It follows directly from Theorem 1 and Theorem 2,
by the well-known triangle inequality.

IV. VI-BASED ADP ALGORITHM FOR CTLP
SYSTEMS

As Newton’s method, PI enjoys quadratic convergence
rate [14, Section 6.3.1.5]. However, it may be not easy to
find an initial stabilizing controller required in Theorem
1. In this section, VI is adopted to find the approximate
optimal controller without the knowledge of any stabilizing
controller.
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A. Model-based VI for known CTLP Systems

The value iteration method is based on the asymptotic
property of the solution to the finite-horizon periodic linear
quadratic optimal control problem [5]. For any t0 < tf and a
measurable locally essentially bounded input u : [t0, tf ) →
Rm, define mapping

T u
[t0,tf )(F )(ξ) = x(tf )TFx(tf ) +

∫ tf

t0

r(x(t), u(t))dt,

for all ξ ∈ Rn and F ≥ 0, where x(t0) = ξ. Starting with
P (tf ) = F at tf , the corresponding solution of the PRE (3)
at time t < tf , denoted by P (t; tf , F ), satisfies

ξTP (t; tf , F )ξ = min
u
T u

[t,tf )(F )(ξ).

The model-based VI is presented in the following theorem.

Theorem 3. Under Assumption 1, if F ≥ 0, then

lim
t→−∞

(P (t; tf , F )− P ∗(t)) = 0. (14)

Sketch of Proof : If F > 0, [16, Corollary] and Assumption
1 implies (14). If F = 0, (14) follows by finding that
P (t; tf , 0) is nondecreasing and bounded from the above.
The remaining case is proved by the application of the
Squeeze theorem to the first and second cases.

B. VI-based ADP Algorithm for Unknown CTLP Systems

Assumption 4. A(·), B(·) and R(·) are T -periodic and
continuously differentiable on R.

To avoid confusion, next we use s ∈ R for the algorithmic
time, and t ∈ R is reserved for the system evolution time.
By Theorem 3, we are interested in solving following final
value problem on [0, sf ] for large sf > 0

− Ṗ (s) = AT (s)P (s) + P (s)A(s) + CT (s)C(s)

− P (s)B(s)R−1(s)BT (s)P (s), P (sf ) = F,
(15)

where F ≥ 0. Notice that P (·) exists and is bounded on
[0, sf ].

Define matrix-valued functions

H(s, t) = AT (t)P (s) + P (s)A(t),

Kt(s) = R(t)−1BT (t)P (s).
(16)

Assuming a measurable locally essentially bounded input
u0 is applied to system (1) to collect input/state data for
learning, we have

dxT (t)P (s)x(t)

dt
= ẋT (t)P (s)x(t) + xT (t)P (s)ẋ(t)

= xT (t)H(s, t)x(t) + 2uT0 (t)R(t)Kt(s)x(t).

(17)

Integrating both sides of (17) from tj to tj+1, and rearranging
the terms, we obtain

(x̃(tj+1)− x̃(tj))
T vecs(P (s)) =∫ tj+1

tj

x̃T (t)vecs(H(s, t))dt+∫ tj+1

tj

(
xT (t)⊗ 2uT0 (t)R(t)

)
vec(Kt(s))dt.

(18)

Note that for fixed s ∈ [0, sf ], H(s, t) and Kt(s) are
periodic with respect to time t ∈ R. Thus we can express
vecs(H(s, t)) and vec(Kt(s)) by their Fourier series

vecs(H(s, t)) = X(1)(s)FN (t) + e
(1)
N (s, t),

vec(Kt(s)) = X(2)(s)FN (t) + e
(2)
N (s, t),

(19)

where X(1)(s) ∈ Rn1×(2N+1) and X(2)(s) ∈ Rn2×(2N+1)

are Fourier coefficients at algorithmic time s. Analogous to
(13), we can construct a linear matrix equation from (18)

Θ

[
vec(X(1)(s))
vec(X(2)(s))

]
+ EN (s) = Γx̃vecs(P (s)), (20)

where

Θ =


∫ t1
t0

FT
N⊗x̃

T dt,
∫ t1
t0

FT
N⊗x

T⊗2uT
0 Rdt∫ t2

t1
FT

N⊗x̃
T dt,

∫ t2
t1

FT
N⊗x

T⊗2uT
0 Rdt

...
...∫ tM

tM−1
FT

N⊗x̃
T dt,

∫ tM
tM−1

FT
N⊗x

T⊗2uT
0 Rdt

 ,

Γx̃ =


x̃T (t1)−x̃T (t0)

x̃T (t2)−x̃T (t1)

...
x̃T (tM )−x̃T (tM−1)

 ,

EN (s) = [e0,N (s), e1,N (s), · · · , eM−1,N (s)]
T
,

ej,N (s) =

∫ tj+1

tj

x̃T (t)e
(1)
N (s, t)dt

+

∫ tj+1

tj

(
xT (t)⊗ 2uT0 (t)R(t)

)
e

(2)
N (s, t)dt.

(21)

Similar to Assumption 2, we make the following assumption
on the data-based matrix Θ.

Assumption 5. Given N > 0, there exist M̄ > (n1 +
n2)(2N + 1) and α > 0 (independent of N ), such that for
all M > M̄ , M ∈ Z+,

1

M
ΘT Θ ≥ αI(n1+n2)(2N+1). (22)

Moreover, for all t ∈ [0, tM ], |x(t)| ≤ β, β independent of
N .

Under Assumption 5, let Ψ = (ΘT Θ)−1ΘT , (20) can be
rewritten as[

vec(X(1)(s))
vec(X(2)(s))

]
= Ψ (Γx̃vecs(P (s))− EN (s)) . (23)

Lemma 6. X(1)(·), X(2)(·), e(1)
N (·, t), e(2)

N (·, t) and EN (·)
are continuously differentiable in algorithmic time s.

Proof : From the definition (16), H(s, t) and ∂sH(s, t) are
continuous both in s and t. Then by Leibniz integral rule
and the definition of Fourier coefficients, we have

[Ẇ (1)(s)]i,k =
2

T

∫ T/2

−T/2

[vecs(∂sH(s, t))]ip(k, t)dt, (24)
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where i = 1, 2, · · · , n1, k = 1, 2, · · · , 2N + 1 and

p(k, t) =


1, if k = 1

cos (ωtk/2), if k is even
sin (ωtbk/2c), if k is odd and k > 1

.

Thus by [23, Definition 10.1], X(1)(·) is continuously dif-
ferentiable in s. By (19), e(1)

N (·, t) is continuously differen-
tiable in s. With similar arguments, we know that X(2)(·)
and e

(2)
N (·, t) are continuously differentiable in s. Note that

e
(1)
N (s, t), e(2)

N (s, t), ∂se
(1)
N (s, t) and ∂se

(2)
N (s, t) are continu-

ous both in s and t. Again, by Leibniz integral rule, (21) and
[23, Definition 10.1], EN (·) is continuously differentiable in
s. This completes the proof.

Lemma 6 allows us to take derivatives with respect to
s on both sides of (23). Combined with the PRE (15) and
definitions in (16), we obtain[

vec(Ẋ(1)(s))

vec(Ẋ(2)(s))

]
= H (X(s), s) + G (X(s), s) , (25)

where

H (X(s), s) = ΨΓx̃

[
−X(1)(s)FN (s)+

vecs
(

(vec−1(X(2)(s)FN (s)))TR(s)vec−1(X(2)(s)FN (s))
)

−vecs(CT (s)C(s))
]
,

X(s) =

[(
X(1)(s)

)T
,
(
X(2)(s)

)T]T
,

and G(X(s), s) summarizes the effect of the truncation
errors. If G(X(s), s) is ignored, we can define the following
differential equation[

vec(
˙̂
X(1)(s))

vec(
˙̂
X(2)(s))

]
= H

(
X̂(s), s

)
, X̂(sf ) = 0. (26)

Lemma 7. Under Assumptions 1, 4 and 5, for any −∞ <
s′ < sf :

1) e(1)
N (s, t), e(2)

N (s, t), ∂se
(1)
N (s, t), ∂se

(2)
N (s, t) all con-

verge uniformly to 0 on [s′, sf ]× R, as N →∞.
2) for any ε > 0, there exists N̄ > 0, such that ∀N > N̄ ,

sup
s∈[s′,sf ]

|G (X(s), s) | < ε.

Proof : Please see the proof of Lemma 5 in [24].

Lemma 8. Let F = 0 in PRE (15). Under Assumptions 1,
4 and 5, for any ε > 0 and any 0 < sf < ∞, there exists
N̄ > 0, such that ∀N > N̄ , ∀s ∈ [0, sf ]

‖X(1)(s)− X̂(1)(s)‖ < ε, ‖X(2)(s)− X̂(2)(s)‖ < ε.

Proof : Please see the proof of Lemma 6 in [24].

Next, we can solve equation (26) by any numerical method
backward in time on [0, sf ]. Suppose the numerical solutions
of (26) are {X̂(1)

k }Lk=0 and {X̂(2)
k }Lk=0, with s0 = 0, sL =

sf , and the maximum step size h > 0. As long as sf is large

enough, we are able to choose a L̄ ∈ Z+, satisfying sL̄ > T
and bL/2c > L̄ > 2N + 1. Define

U =
[
FN (s0) FN (s1) · · · FN (sL̄)

]T
,

V =
[

vecs(Ĥ0) vecs(Ĥ1) · · · vecs(ĤL̄)
]T
,

W =
[

vec(K̂0) vec(K̂1) · · · vec(K̂L̄)
]T
,

vecs(Ĥk) = X̂
(1)
k FN (sk), vec(K̂k) = X̂

(2)
k FN (sk).

Let

H̄(t) = vecs−1(X̄(1)FN (t)), K̄(t) = vec−1(X̄(2)FN (t)),

where

(X̄(1))T = (UTU)−1UTV,
(X̄(2))T = (UTU)−1UTW.

(27)

The novel VI-based off-policy ADP algorithm is presented
in Algorithm 1, whose convergence analysis is contained in
following theorem.

Assumption 6. Given N > 0, there exist bL/2c > L̄0 >
2N + 1 and α > 0 (independent of N ), such that for all
bL/2c > L̄ > L̄0, sL̄ > T ,

1

L̄
UTU ≥ αI2N+1.

Theorem 4. Consider the infinite-horizon periodic linear
quadratic optimal control problem of system (1) with cost
function (2). Under Assumptions 1, 4, 5 and 6, for any ε > 0,
there exist s̄f > 0, N̄ > 0, h̄ > 0, such that ∀sf > s̄f ,
∀N > N̄ , any 0 < h < h̄, we have

sup
t∈R
‖H̄(t)−H∗(t)‖ < ε, sup

t∈R
‖K̄(t)−K∗(t)‖ < ε,

where H∗ = ATP ∗ + P ∗A,K∗ = R−1BTP ∗, and L̄ is
chosen to satisfy sL̄ > T , bL/2c > L̄ > 2N + 1.

Sketch of Proof : By Lemma 7, Lemma 8, Theorem 3, and
the triangle inequalities, for any ε0 > 0, there exist large
enough sf , N , and small enough h, such that

sup
k∈{1,2,··· ,L̄}

‖Ĥk −H∗(sk)‖ < ε0.

This fact combined with equation (27) and Assumption 6
means X̄(1) is close to the optimal value (same for X̄(2)).
Then Theorem 4 is obtained by Lemma 2.

Algorithm 1 VI-based off-policy ADP
1: Choose ∆t > 0, large enough M > 0, N > 0, sf > 0,

and small enough h > 0.
2: Apply u0 (with exploration noise) to system (1), collect

input/state data to construct Θ and Γx̃.
3: Solve (26) on [0, sf ] by any numerical method.
4: Choose L̄ satisfying sL̄ > T , bL/2c > L̄ > 2N + 1.
5: (X̄(2))T ← (UTU)−1UTW.
6: K̄(t)← vec−1(X̄(2)FN (t)).
7: Approximate optimal control ū(t) = −K̄(t)x(t).
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V. NUMERICAL EXAMPLE

In this section, the proposed methods are applied to the
optimal control design of the well-known lossy Mathieu
equation [15]. Consider the following second-order linear
period system

ẋ(t) =

[
0 1

−(a− 2q cos(ωpt)) −2ζ

]
x(t) +

[
0
1

]
u(t), (28)

where ωp = 2 is the pumping frequency; a represents the
constant part of the dynamics; q is the pumping amplitude;
and ζ is the damping ratio. Here, T = π.

Notice that the parameters a, q and ζ in (28) are not
required to be known for the application of our learning
methods. Here the parameters are assumed to satisfy the
following condition:

|a| < 3, |q| < 3, |ζ| < 3. (29)

In the simulation, the exploration noise is chosen as

ue(t) = 0.2
10∑
j=1

sin (ωjt), (30)

where ωj is sampled from the uniform distribution over
[−10, 10]. Other parameters are chosen as C = I2, R = 1,
ε = 0.01, N = 9, M = 100, ∆t = 0.1, sf = 20, h = 0.001,
and L̄ = 8000.

For the PI-based ADP, by [22, Theorem 4.9], a choice of
initial controller gain K0 = [10, 7] stabilizes the system (28)
with parameters satisfying (29). The convergence of PI-based
ADP is shown in Figure 1. The convergence of Algorithm 1
is presented in Figure 1. In both cases, the underlying system
parameters are chosen as a = 2.5, q = 1, and ζ = 0.2.
These results are consistent with our convergence analysis
in previous sections.
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Fig. 1. PI-based ADP convergence
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Fig. 2. VI-based ADP convergence

VI. CONCLUSION

In this paper, using reinforcement learning techniques, PI-
based and VI-based ADP algorithms are proposed to solve
the adaptive LQR problem for CTLP systems. The two
algorithms converge uniformly to the optimal solutions under
mild conditions. Furthermore, both algorithms are off-policy,
which is data-efficient. The case study in the lossy Mathieu
equation has been used to demonstrate the efficacy of our
new results in adaptive optimal control.
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inforcement learning for control: Performance, stability, and deep
approximators,” Annual Reviews in Control, vol. 46, pp. 8 – 28, 2018.

[3] F. L. Lewis and D. Liu, Eds., Reinforcement Learning and Approxi-
mate Dynamic Programming for Feedback Control. Hoboken: Wiley-
IEEE Press, 2013.

[4] Y. Jiang and Z.-P. Jiang, Robust Adaptive Dynamic Programming.
Hoboken: Wiley-IEEE Press, 2017.

[5] T. Bian and Z.-P. Jiang, “Value iteration and adaptive dynamic
programming for data-driven adaptive optimal control design,” Au-
tomatica, vol. 71, pp. 348 – 360, 2016.

[6] B. Pang, T. Bian, and Z.-P. Jiang, “Adaptive dynamic programming
for finite-horizon optimal control of linear time-varying discrete-time
systems,” Control Theory and Technology, vol. 17, no. 1, pp. 18–29,
2019.

[7] K. S. Narendra and K. Esfandiari, “Adaptive control of linear periodic
systems using multiple models,” in IEEE 57th Annual Conference on
Decision and Control (CDC), Miami, FL, USA, 2018, pp. 589–594.

[8] J.-X. Xu, “A new periodic adaptive control approach for time-varying
parameters with known periodicity,” IEEE Transactions on Automatic
Control, vol. 49, no. 4, pp. 579–583, 2004.

[9] J. A. Richards, Analysis of Periodically Time-Varying Systems. Hei-
delberg: Springer, 1983.

[10] S. Bittanti and P. Colaneri, Periodic Systems: Filtering and Control.
London: Springer, 2009.

[11] M. L. Psiaki, “Magnetic torquer attitude control via asymptotic peri-
odic linear quadratic regulation,” Journal of Guidance, Control, and
Dynamics, vol. 24, no. 2, pp. 386–394, Mar 2001.

[12] S. Bittanti and F. A. Cuzzola, “Periodic active control of vibrations
in helicopters: a gain-scheduled multi-objective approach,” Control
Engineering Practice, vol. 10, no. 10, pp. 1043 – 1057, 2002.

[13] N. Karlsson, “Control of periodic systems in online advertising,”
in IEEE 57th Annual Conference on Decision and Control (CDC),
Miami, FL, USA, 2018, pp. 5928–5933.

[14] S. Bittanti, P. Colaneri, and G. De Nicolao, “The periodic Riccati
equation,” in The Riccati Equation, S. Bittanti, A. J. Laub, and J. C.
Willems, Eds. Berlin: Springer, 1991, ch. 6, pp. 127–162.

[15] N. M. Wereley, “Analysis and control of linear periodically time
varying systems,” Ph.D. dissertation, Massachusetts Institute of Tech-
nology, Cambridge, Massachusetts, 1990.

[16] G. De Nicolao, “On the convergence to the strong solution of periodic
riccati equations,” International Journal of Control, vol. 56, no. 1, pp.
87–97, 1992.

[17] Z. Zhang and A. Serrani, “Adaptive robust output regulation of
uncertain linear periodic systems,” IEEE Transactions on Automatic
Control, vol. 54, no. 2, pp. 266–278, 2009.

[18] S. Bittanti, “Deterministic and stochastic linear periodic systems,” in
Time Series and Linear Systems, S. Bittanti, Ed. Berlin: Springer,
1986, ch. 5, pp. 141–182.

[19] D. Anton, A First Course in Harmonic Analysis, 2nd ed. New York:
Springer, 2005.

[20] S. Bittanti, P. Bolzern, and P. Colaneri, “Stability analysis of linear
periodic systems via the Lyapunov equation,” in 9th IFAC World
Congress, Budapest, Hungary, 1984, pp. 213 – 216.

[21] I. Mareels and J. W. Polderman, Adaptive Systems: An Introduction.
Boston: Birkhauser, 2012.

[22] H. K. Khalil, Nonlinear Systems, 3rd ed. Upper Saddle River:
Prentice-Hall, 2002.

[23] W. Rudin, Principles of Mathematical Analysis. New York: McGraw-
hill, 1976.

[24] B. Pang and Z.-P. Jiang, “Adaptive optimal control of linear peri-
odic systems: An off-policy value iteration approach,” arXiv preprint
arXiv:1901.08650v2, 2019.

3327

Authorized licensed use limited to: New York University. Downloaded on June 04,2020 at 02:26:29 UTC from IEEE Xplore.  Restrictions apply. 


