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Abstract—In this paper, an ensemble learning approach is
proposed for load forecasting in urban power systems. The
proposed framework consists of two levels of learners that inte-
grate clustering, Long Short-Term Memory (LSTM), and a Fully
Connected Cascade (FCC) neural network. Historical load data
is first partitioned by a clustering algorithm to train multiple
LSTM models in the level-one learner, and then the FCC model
in the second level is used to fuse the multiple level-one models. A
modified Levenberg-Marquardt (LM) algorithm is used to train
the FCC model for fast and stable convergence. The proposed
framework is tested with two public datasets for short-term and
mid-term forecasting at the system, zone and client levels. The
evaluation using real-world datasets demonstrates the superior
performance of the proposed model over several state-of-the-art
schemes. For the ISO-NE Dataset for Years 2010 and 2011, an
average reduction in mean absolute percentage error (MAPE) of
10.17% and 11.67% are achieved over the four baseline schemes,
respectively.

Index Terms—Load forecasting, deep learning, ensemble
learning, long short-term memory (LSTM), smart grid, green
communications.

I. INTRODUCTION

R
APID progress in urbanization brings about significant

changes in people’s lifestyles. In light of this trend, many

challenging problems - such as environmental pollution, traffic

problems, high energy consumption, and so on - are raised.

In order to address these issues, the concept of urban comput-

ing is introduced, which involves collecting, integrating, and

analyzing the data generated by devices in an urban area to

improve people’s life quality [1], [2]. With the fast develop-

ment of artificial intelligence, machine learning, in particular,

deep learning, techniques show high potential for address-

ing many urban computing problems. This is mainly due to

the breakthroughs in computing and the rapid advances in

sensing and data acquisition, transmission, and storage [3].
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Researchers now have the capability of handling large-scale

data and utilizing it more wisely.

Today’s sustainable urban power systems, i.e., the smart

grid, are characterized by high energy efficiency, demand-side

management, renewable energy sources, and a two-way flow

of information and electricity, as enabled by the integration

of communications, control, and signal processing [4]–[7].

Such work involves managing the generation and usage of

electricity, as assisted by a communications network for data

collection and control, to make the earth green. With the same

goal of reducing energy use, the concept of green commu-

nications and networking comes out in recent years, which

involves the development and application of greener and more

energy-efficient communication technologies [8]. Home Area

Network (HAN) and Home Energy Management (HEM) are

two main applications. In HEM, at the system level, the uncer-

tainty in power supply and demand poses one of the major

challenges for energy management. Moreover, in HAN, at the

client level, the deployment of renewables, such as electric

vehicles (EVs) and home solar systems, brings about greatly

increased randomness in the client load. A technique that

can accurately predict future generation (e.g., from renewable

sources) and load at both the system and client levels cooper-

ating with energy-efficient communication technologies would

be highly desirable [9]–[11], which is indispensable to achieve

high power quality, save energy, and better utilize renewable

energy sources and reduce costs [12].

Consequently, many methods have been proposed for load

forecasting. Machine learning and statistical methods are the

two main approaches that are widely applied. For example,

in [13], the authors propose an ensemble approach based

on extreme learning machine for short-term load forecasting.

Radial Basis Function (RBF) neural networks trained with a

second-order algorithm are utilized in [14] for short-term load

forecasting. These two schemes both have a shallow structure

in their neural network design. Deep learning has become a

hot technique due to their recent demonstrated success in com-

puter vision and natural language processing (NLP). Among

various deep learning models, recurrent neural networks, e.g.,

Long Short Term Memory (LSTM), has been proposed for

handling residential data in [15], [16]. It is shown in [15]

that an LSTM-based Sequence to Sequence (S2S) architec-

ture can handle both one-minute and one-hour resolution data

for one residential customer. In [16], the authors focus on

short-term forecasting individual customer’s consumption of

power using LSTM. Effectiveness of accurate short-term load

forecasting has been demonstrated in [17] by using a Deep

Residual Network (res-net). In addition, Quantile Regression
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is a popular statistic technique for load forecasting. In [18],

the authors exploit the quantile regression model to enhance

forecasting performance. In [19], the authors improve the tra-

ditional quantile regression neural network and demonstrate

its reliability in probabilistic load forecasting.

In this paper, an ensemble learning approach is proposed to

tackle the load forecasting problem. Our proposed framework

consists of two levels of learners. The first-level learner utilizes

the LSTM model to obtain the first-level predictions, while

a fully connected cascade (FCC) neural networks are incor-

porated in the second-level learner for the purpose of model

fusion. Our proposed framework has three notable features.

First, point load forecasting is a regression problem, to which

unsupervised learning techniques can be easily applied. The

proposed framework integrates unsupervised learning with a

supervised learning model for accurate load prediction, which

is a novel approach comparing to existing load forecasting

models. Specifically, clustering algorithms are incorporated

in our framework, to partition data into individual clusters

according to their similarity. Each data cluster is then used

to generate an LSTM base model to obtain the first-level

prediction. Then the first-level prediction results are fused by

the second-level FCC neural network as supervised learning

to enhance the accuracy of load forecasting.

Second, for various learning problems, a deep neural

network may not always be the chosen one; it is critical to

choose the right neural network structure properly. In this

work, we select a deep (LSTM) and a shallow (FCC) struc-

ture in the two different levels of learning, respectively. It

is well-known that the deeper the neural network, the more

likely overfitting will occur. Thus, it is highly desirable to have

a learner that can provide a sufficient learning ability, while

using as few layers as possible. In the proposed framework,

the first-level learner captures most of the nonlinear relation-

ship between input and output data, while the second-level

learner discerns the linear connection between them. This is

the criterion that guides our choice of proper neural architec-

ture in the proposed framework. Third, ensemble learning is

used in the proposed framework. The boosted fusion model

(ensemble) in the second level enhances the accuracy of load

prediction [20].

Our contributions in this work can be briefly summa-

rized as follows. First, an ensemble learning approach is

proposed to integrate state-of-the-art machine learning algo-

rithms, i.e., clustering, LSTM, and FCC, for accurate load

forecasting. We also study four different, representative clus-

tering algorithms applied in the first level of learning and

found the integration of HDBSCAN and LSTM achieve the

best performance. Second, we propose to use an FCC neural

network for model fusion in the second-level learner and a fast

converging and stable modified Levenberg-Marquardt (LM)

optimization algorithm for training the second-level learner.

The FCC network captures the relationship among individual

models and thus improve the prediction accuracy. Third, we

validate our proposed framework with two public datasets and

compare its performance with several state-of-the-art schemes,

where superior performance is demonstrated for the proposed

framework. Fourth, the proposed framework can effectively

deal with both short-term (e.g., hour-ahead) and mid-term

(e.g., week-ahead) load forecasting, for not only system-level

but also zone-level and client/residential-level forecasting.

The remainder of this paper is organized as follows. In

Section II, we describe our proposed framework. We then dis-

cuss optimization and training in Section III. Experimental val-

idation of the proposed framework is presented in Section IV.

Section V concludes this paper.

II. THE PROPOSED FRAMEWORK

In this section, we first formulate the power load forecasting

problem. We then discuss the details of our proposed frame-

work in the remainder of the section, including the design of

the two levels of learners.

A. Problem Statement

In this paper, we focus on the load forecasting problem.

Consider a time series signal Y T = {f 1, f 2, . . . , f m−1, �},

where Y T ∈ R
m×T . Y T consists of two components, i.e.,

the feature part and load part. In the feature part, f i =
{fi1, fi2, . . . , fiT }, which is the historical data of the ith fea-

ture that affects load. For example, temperature is one of the

most important features that affect the power load. If features

are not provided in the dataset, this part would set to null, and

the forecasting will use historical load data only. The load part

consists of � = {�1, �2, . . . , �T }, i.e., the historical load data.

The goal is to forecast the load at a future time T + τ in

a rolling predicting fashion, where τ is the amount of time

ahead of the current time T. That is, we assume that only the

information at and before T, i.e., Y t , for t ≤ T, is available

when predicting �T+τ . For example, to forecast the load value

at time T + 1 (i.e., one time step ahead), Y T is available

and used. In order to ease training and reduce the training

time, a window filter W is applied to Y T , which stores only

the data for w time steps, from the current time T back to

time T − w + 1. The input matrix ST is thus defined as

ST = W (Y T ), which is an m × w matrix.

Fig. 1 presents the mechanism of window filter and the

formation of input and output data. The forecast value �̂T+τ

is obtained by a fitting function as

�̂T+τ = g(ST ). (1)

The goal of our proposed machine learning based predictive

method is to learn the fitting function g(·) from the dataset

Y T that is available.

B. The Proposed Ensemble Learning Framework

To achieve high accuracy of power load forecasting, the

concept of stacking is incorporated in our framework [21].

Stacking is a procedure of first training individual machine

learning models and then integrating them [20]. There are two

levels of learners in our proposed framework, where the first-

level learner consists of multiple individual learning models

and the second-level learner is used to combine the outputs

from the individual learners in the first level for an integrated

output. In order to meet the feature of stacking and testing,

the data should first be divided into three parts. The first-level
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Fig. 1. Input and output of the proposed neural network model.

Algorithm 1: Small Build the First Level LSTM Predictors

1 Partition the input data in dataset D1 into k clusters using a
clustering algorithm;

2 Divide dataset D1 into k individual datasets (i.e., including both
input/output data) according to the clustering results:
{D11,D12, ...,D1k}, where D1i is the ith dataset produced by
the ith cluster;

3 Use each dataset D1i , i = 1, 2, ..., k to train an individual
LSTM model i;

learners use the first part of data (denoted by D1). After the

First-level learning models are built and trained, new data are

generated from this level of learner, which is combined with

the second and third parts of data (denoted by D2 and D3,

respectively). The combined two parts of data are used to train

the second-level learner and test the framework.

In this paper, we propose to use LSTM a recurrent neu-

ral network model, for the first-level learning and the FCC

neural network for second-level learning. Fig. 2 illustrates the

structure of the proposed framework. After preprocessing, the

dataset is clustered into three parts, D1, D2, and D3 for train-

ing and testing purposes. The proposed predictor consists of a

clustering algorithm, a set of LSTM models in the first-level

learner, and an FCC model in the second-level learner. We

discuss the design of these components in detail in the rest of

this section.

C. First Level Learner

The first-level learner consists of a set of LSTM predictive

models as well as a clustering algorithm, whose procedure is

presented in Algorithm 1. The clustering algorithm partition

the input data D1 into D11,D12, . . . ,D1k , each being used

to train an individual LSTM model.

1) Clustering: Before data can be used by the LSTM mod-

els, we employ a clustering algorithm to partition the dataset

based on the similarity among input data samples. Clustering

is usually an unsupervised machine learning technique, refer-

ring to the process of grouping unlabeled data into clusters of

similar features [22].

Note this is different from classification, which is based on

given labeled data. It is well-known that the electricity demand

is correlated with various obvious factors, such as tempera-

ture and calendar dates (e.g., weekday, holiday, month, season,

Fig. 2. The proposed load prediction framework with two levels of learners.

etc.), while also being affected by uncertainties or latent factors

as well.

We propose the use of unsupervised learning in our forecast-

ing model with the following reasons. First of all, group input

data of load forecasting into suitable sets and use different

learning model for each set, are beneficial to better explore

the correlation in the dataset [11]. Second, we assume that

short term load variations are affected by the historical data

of the time immediately before the current time. With unla-

beled historical electric load data, clustering can group the data

samples automatically and reasonably. Last but not least, par-

titioning the training dataset first and combining the learning

results from the models later, resembles a kind of resampling

process. This is similar to the process of cross-validation tech-

nique, which can mitigate the overfitting problem in machine

learning.

2) Clustering Algorithms: The collected power load time

series data is usually susceptible to noise, shifting, and defor-

mation [23]. It is important to choose an appropriate clustering

method, from various existing techniques, to handle such

data. In this paper, we choose four representative algorithms

from three categories of clustering methods, i.e., (i) parti-

tioning methods, (ii) hierarchical methods, and (iii) density

based methods. The chosen methods are K-means++ [24],

BIRCH [25], DBSCAN [26], and HDBSCAN [27], [28],

as summarized in Table I. Note that for DBSCAN and

HDBSCAN, some data samples are identified as outliers. Such

group of outlier data is treated as one unique cluster in our

proposed framework.
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Fig. 3. An unfolded view of the LSTM neural cell structure.

TABLE I
CLUSTERING ALGORITHMS USED IN THIS PAPER

3) Long Short-Term Memory (LSTM): Inspired by the novel

idea of using three types of gates to regulate information

flow and remembering information for over an arbitrary time

interval [30], LSTM overcomes the limitation of long memory

capability in recurrent neural networks. An unfolded illustra-

tion of the LSTM neural network is presented in Fig. 3. Input

gate it , forget gate ft , output gate ot , and state unit ct are

the four key components in each LSTM cell (for time t). The

state of LSTM cell at time t is calculated as

it = σ
(

W iht−1 +U ixt + bi
)

(2)

ft = σ
(

W f ht−1 +U f xt + bf
)

(3)

ct = ft · ct−1 + it · σ(W ht−1 +U xt + b) (4)

ot = σ(W oht−1 +U oxt + bo) (5)

ht = tanh(ct−1) · ot . (6)

In the training phase, each LSTM model LSTMi will

be trained with the corresponding data cluster D1i , i =
1, 2, . . . , k , as shown in Fig. 2.

4) Testing Process in the First Level Learner: During the

training phase for the level two learner and the testing phase,

new input data samples beyond D1 (i.e., in D2 and D3, respec-

tively) arrives and are fed into the first-level learner. How

to deal with them should be carefully designed. One way is

to select the most similar cluster and use the corresponding

trained LSTM model as in our prior work [11]. In this paper,

however, we propose to use ensemble learning, which is based

on the assumption that power load prediction is driven by each

of the homogeneous first level models. Thus the new data sam-

ple is fed into each first-level LSTM model, and an FCC neural

network is used in the second level to fuse the outputs from

the LSTM models to produce a single prediction.

D. Second Level Learner

Dataset D2 is used to train the second-level learner.

Specifically, the data samples in D2 are first fed into each

trained LSTM predictors in the first-level. Each LSTM pre-

dictor then generates a prediction value. These outputs are

used as input to train the second-level learner.

The FCC neural network is incorporated for ensemble learn-

ing at level two. Fig. 4 shows an example of the FCC

ensemble neural network. In this example, k base models are

available and to be fused by five neurons. The first four neu-

rons are activated by the tanh(·) activation function, given by

tanh(z ) = ez−e−z

ez+e−z . The last neuron is a linear summation.

With the same number of neurons in level two, the FCC neural

network architecture is superior to traditional neural network

structures [31], as it provides more connections (and weights)

than the traditional architecture, which make it deeper. The

FCC neural network is similar to Deep Residual Networks [32]

in some sense, which has an identity mapping for every input

and latent variable to every neuron.

III. OPTIMIZATION AND TRAINING

A. Problem Formulation

We use the sum square error as the default lost function

for the two levels of learners. The corresponding objective

function of the LSTM model i at lever one is defined as

L(L1; i) = minimize
ωi
lstm

∑

T∈D1i

∥

∥

∥
�̂
L1,i
T+τ

− �T+τ

∥

∥

∥

2

+ α ·
∥

∥ω
i
lstm

∥

∥, (7)
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Fig. 4. An example of FCC ensemble neural network used in the second-level
learner.

where �̂L1,i
T+τ is the predicted value of load by LSTM model

i for time T + τ , �T+τ is the ground truth (i.e., label), and

ω
i
lstm are the wights of LSTM model i at the first level.

Supposing there are k trained LSTM models in the first-

level learner, the load predicted by the level-two learner at

time T + τ is given by

�̂L2

T+τ = f
(

�̂
L1;1
T+τ , �̂

L1;2
T+τ , . . . , �̂

L1;k
T+τ ;ωfcc

)

, (8)

where f () is the output of the ensemble FCC neural network,

�̂L1;i
T+τ is the load forecast value predicted by LSTM model

i, and ωfcc are the weights of the ensemble FCC neu-

ral network. The corresponding optimization objective over

the validation and ensemble dataset D2 in level two is

given by

L(L2) = minimize
ωfcc

∑

T∈D2

∥

∥

∥
�̂L2

T+τ − �T+τ

∥

∥

∥

2
+ β ·

∥

∥ωfcc

∥

∥. (9)

In both the first-level and second-level optimization objective

functions, the L1 regulation is used to prevent overfitting in

the neural network training process.

B. Gradient Descent Algorithms

First-order gradient descent algorithms, such as error back

propagation, Stochastic Gradient Decent (SGD), and its vari-

ants Adam, are quite successful in training deep neural

networks. However, ill-conditioning and local-minima are

common challenges for these algorithms. In [33], a second-

order gradient descent algorithm is proved as an effective

solution for optimizing problems with an objective function

that exhibits pathological curvature. However, the second-

order gradient descent algorithm also has its limitations. One

challenge is that, for very deep neural networks, the second-

order algorithm calculates the Hessian Matrix of the neural

network, which takes a relatively longer period of time to train.

The other issue is that, as the number of layers is increased,

the large values of weights may get stuck in the saturated

region, whose derivative of gradient tends to zero, and thus

causing a vanishing gradient condition (known as the flat-spot

problem) [34].

Algorithm 2: The Modified Levenberg MarQuardt Method

1 Set 0 < m < α1 and 0 < p0 < p1 < p2 < 1, where

α1 = 10−6, m = 10−7, p0 = 10−4, p1 = 0.2, p2 = 0.8, and
e = 1;

2 Calculate Jacobian Matrix J (ωe
fcc) and approximate the

Hessian matrix of the FCC neural network at the second level
at iteration e = 1;

3 The normal LM step as de = ∆ω
e
fcc ;

4 A line search for approximating the LM step ∆ω
e′

fcc ;

5 Combine Steps 2 and 3 as se = ∆ω
e
fcc + αe∆ω

e′

fcc ;

6 If J (ωe
fcc)

TJ (ωe
fcc) = 0, then stop;

7 Compute re = Re
a/R

e
p , and set

ω
e+1
fcc =

{

ω
e
fcc + se , if re > p0

ω
e
fcc , otherwise;

(10)

8 Compute

αe+1 =

⎧

⎨

⎩

4αe , if re < p1
αe , if re ∈ [p1, p2]
max(0.25αe ,m), if re > p1;

(11)

9 Set e = e + 1, and go to Step 2;

Given all the advantages and disadvantages of second-order

gradient descent algorithms, we choose to apply the Adam

algorithm [35], which is a first order gradient-based algorithm,

to solve the regression task problem at level one, due to its

deep structure. At level two, where FCC is a shallow neural

network, we utilize the modified Levenberg-Marquardt (LM)

Algorithm [36], which is a second-order optimization algo-

rithm. The reason for a shallow architecture is applied at level

two is that, we aim to provide a sufficient learning capacity

for the training samples with the least number of neurons to

overcome the overfitting problem.

C. Modified Levenberg-Marquardt (LM) Algorithm

In this section, we introduce how to apply the modified

LM in training the ensemble neural network at level two. The

procedure is presented in Algorithm 2. The convergence of

this method is proven in [36], [37].

The Jacobian Matrix J (ωe
fcc) at iteration e is calculated by

the derivative of (9), which is given by

J
(

ω
e
fcc

)

=
[

∂L(L2)
∂ωe

1

,
∂L(L2)
∂ωe

2

, . . . ,
∂L(L2)
∂ωe

Z

]

, (12)

where ω
e
fcc is the weights of the FCC neural network

at iteration e, which has Z weight values denoted by

{ωe
1 , ω

e
2 , . . . , ω

e
Z }. The Hessian matrix can be approximated

by J (ωe
fcc)J (ωe

fcc)
T . A damping factor µe is updated itera-

tively as

µe = αe

∥

∥

∥
L
(

L2,ω
e
fcc

)∥

∥

∥

β
, (13)

where β ∈ (0, 2]. At each iteration, the weights of the FCC

neural network are updated as

ω
e+1
fcc

= ω
e
fcc + se , (14)
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or

ω
e+1
fcc

= ω
e
fcc +∆ω

e
fcc + αe∆ω

e′

fcc , (15)

where se
.
= ∆ω

e
fcc + αe∆ω

e′

fcc ; de
.
= ∆ω

e
fcc =

−[J (ωe
fcc)

TJ (ωe
fcc) + µeI ]

−1 J (ωe
fcc)

T L(L2,ω
e
fcc) is the

normal LM step; ∆ω
e′

fcc is a line search for approximating the

LM step, which is defined as

∆ω
e′

fcc = −
[

J
(

ω
e
fcc +∆ω

e
fcc

)T
J
(

ω
e
fcc +∆ω

e
fcc

)

+ µ′

eI
]

−1

× J
(

ω
e
fcc +∆ω

e
fcc

)T
L
(

L2,ω
e
fcc +∆ωe

)

, (16)

where µ′e = ‖L(L2,ω
e
fcc +∆ω

e
fcc)‖

β , αe is a parameter

iterative updated as in (11) in Algorithm 2; J (ωe
fcc +∆ω

e
fcc)

is approximated by J (ωe
fcc); and µ′e is approximated by

µe for reducing the computational overhead. Then we can

rewrite (16) as

∆ω
e′

fcc = −

[

J
(

ω
e
fcc

)T
J
(

ω
e
fcc

)

+ µeI

]−1

× J
(

ω
e
fcc

)T
L
(

L2,ω
e
fcc +∆ω

e
fcc

)

. (17)

In order to justify whether se is a good step or not, the

trust region technique is used. The actual reduction Re
a and the

newly predicted reduction Re
p at the eth iteration are defined

in (18) and (19), respectively.

Re
a =

∥

∥

∥
L
(

L2,ω
e
fcc

)
∥

∥

∥

2
−
∥

∥

∥
L
(

L2,ω
e
fcc + se

)
∥

∥

∥

2
(18)

Re
p =

∥

∥

∥
L
(

ω
e
fcc

)
∥

∥

∥

2
−
∥

∥

∥
L
(

ω
e
fcc

)

+ J
(

ω
e
fcc

)

de

∥

∥

∥

2

+
∥

∥

∥
L
(

ω
e
fcc + de

)∥

∥

∥

2

−
∥

∥

∥
L
(

ω
e
fcc + de

)

+ αeJ
(

ω
e
fcc

)

∆ω
e′

fcc

∥

∥

∥

2
. (19)

Their values are then compared by re = Re
a/R

e
p , and the

weights are updated according to the value of re as in (10) in

Algorithm 2.

IV. EVALUATION WITH REAL-WORLD DATASETS

Extensive experiments of load forecasting are conducted

on two datasets at the system level and the residential level,

respectively, to validate the performance of the proposed

ensemble learning framework. The proposed framework is

implemented with Keras 2.2.4, TensorFlow 2.0-beta, and

Sklearn 0.20.0 in the Python 3.7 environment. The neural

network for model fusion at level two is implemented using

ADNBN coded by us using MATLAB R2018a.

A. Datasets

1) Dataset Description: The following two public bench-

mark datasets are used for performance evaluation.

• The ISO-NE dataset [38]: This is a collection of hourly

temperature and load data over 12 years from Jan. 1, 2007

to Dec. 31, 2018 in the New England area, including data

for each of the eight zones (i.e., Connecticut-CT, Maine-

ME, New Hampshire-NH, Rhode Island-RI, Vermont-

VT, Massachusetts of NEM-NEMASS, Massachusetts of

TABLE II
THE SEARCH SPACES OF ALGORITHM PARAMETERS

SEM-SEMASS, and Massachusetts of WC-WCMASS)

and for the entire ISO-NE transmission system. Fig. 5

presents the entire system level load and temperature data

of the ISO-New England dataset in 2018. The load of

each of the eight zones in 2018 is plotted in Fig. 6.

• The Residential Electricity Consumption dataset [39]:

This is a collection of 370 clients’ electricity consumption

recorded for every 15 minutes during a period of three

years from 2011 to 2014. Portuguese clients can be either

residential or industrial consumers. Note that we only use

the data for 320 clients, as the data for the remaining 50

clients are collected after 2011 (i.e., incomplete).

2) Preprocessing: A sliding window technique of P sam-

ples is implemented on historical time-series dataset during the

training process. The period of P is divided into three parts,

as shown in Fig. 2. The ratio of split is 2:1:1. For example,

if hourly day-ahead load of Year the 2017 is predicted, the

period P is set to 4 years. The data for one year from 2014

to 2015 partitioned to dataset D1, the data for 2016 and 2017

become D2 and D3, respectively. When forecasting the load

for the Year 2018, P is chosen from 2015 to 2018.

Normalization is applied in the preprocessing process. As

shown in [40]–[42], normalization can not only speed up the

convergence of training, but also reveal the true similarity

between time series data. In order to prevent data snooping in

time series prediction, which makes use of future information

to enhance performance of forecast, only datasets D1 and D2

are normalized. In the testing set D3, new data generated by

the first-level learner is restored from normalized form to the

original form. The definition of normalization is

Snorm
T ;i =

ST ;i −min
(

ST ;i

)

max
(

ST ;i

)

−min
(

ST ;i

) , (20)

where Snorm
T ;i and ST ;i are the normalized and original form

of data sample i in dataset ST , respectively.

B. Experiments and Results

In our experiments, the grid search technique is applied for

hyper-parameters tuning. The search space for the parameters

in each machine learning algorithm is presented in Table II.

1) System Level Prediction Performance: At the overall

system level, short and mid term load forecasting are con-

ducted on the ISO-NE dataset. The first case we examine is
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Fig. 5. The 2018 overall system level load and temperature of the ISO-New England dataset.

Fig. 6. The individual load for each of the eight Zones in Year 2018 of the ISO-New England dataset.

short-term forecasting, which predicts the load of the next day

24-hours ahead. In order to compare our method’s performance

with the existing cutting-edge technique, the system load in

the Year 2010 and 2011 of ISO-NE are predicted individu-

ally, each using the three previous years’ data as training and

ensemble learning (see Section IV-A2). We utilize the similar

inputs as in [17]. Table III summarized the input of this case.

For feature9, the actual value of the temperature of the next

day is used in all the schemes, based on the assumption that

this information is available and the fact weather forecast is

extremely accurate now-days.

Three state-of-the-art models proposed in [13], [14], [17]

and the traditional LSTM recurrent neural network model are

used as benchmarks for comparison with our proposed frame-

work. The performance results in the form of mean absolute

percentage error (MAPE) are shown in Table IV. The num-

ber of first-level learners in our proposed module is presented

in the second column for each year as well. The table shows

that the four variants of our proposed framework all outper-

form the four benchmark schemes. An average reduction in

MAPE of 10.17% in the Year 2010 and 11.67% in the Year

2011 are achieved over the four baseline schemes.

We also find that the HDSCAN based approach outperforms

the other variants of our framework. To illustrate the effi-

cacy of ensemble learning, we also present the performance of

the first-level and second-level learners in Table V. The table

Authorized licensed use limited to: Auburn University. Downloaded on May 21,2020 at 01:08:45 UTC from IEEE Xplore.  Restrictions apply. 



WANG et al.: ENSEMBLE LEARNING FOR LOAD FORECASTING 623

Fig. 7. System load forecast results for the last two weeks of 2011 on the ISO-NE dataset using the HDBSCAN-LSTM model.

TABLE III
INPUT DATA AND OUTPUT FOR SHORT-TERM LOAD

FORECASTING AT TIME h

TABLE IV
COMPARISON OF PROPOSED MODEL WITH OTHER MODELS USING THE

ISO-NE DATASET FOR YEARS 2010 AND 2011

shows that there are 15 and 13 base LSTM models f Years

2010 and 2011, respectively. That is, for each year, the dataset

D1 is partitioned into 15 and 13 groups, respectively, for train-

ing the first-level LSTM models. The table also shows that the

second-level learning by the FCC neural network effectively

TABLE V
INDIVIDUAL HDBSCAN BASED MODEL RESULTS AND THE ENSEMBLE

METHOD IMPROVEMENT FOR THE SYSTEM LEVEL LOAD

IN YEARS 2010 AND 2011

further reduces the MAPE. Compared with the MAPEs in the

first-level learner, the FCC achieves an average improvement

in MAPE of 21.59% and 25.60% for the Year 2010 and 2011,

respectively. To visualize the performance results, the fore-

cast results of the last two weeks in 2011 predicted by the

HDBSCAN based LSTM model are plotted along with the

ground truth in Fig. 7. It can be seen that the forecast curve

matches the ground truth tightly.

In the 2011 prediction results, the performance of model 12

is marked with a symbol “†,” which indicates the worst score

MAPE among all the 13 LSTM models. We carefully examine

this case and plot the clustering result for this prediction in

Fig. 8. It can be seen that each of the other 12 clusters has

a sufficient number of samples, while only 69 samples are

grouped into the 12th cluster. This level-one learner (LSTM

model 12) is trained with a very small dataset. As a result, it

has a comparatively weak ability of generalization. It achieves

the worst performance as the features extracted by this model
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Fig. 8. Sample distribution of the HDBSCAN model for system level load
prediction in Year 2011.

TABLE VI
THE EFFECT OF THE NUMBER OF HIDDEN NEURONS

ON THE TRAINING PROCESS

are not general enough and are only suitable and specific to

the sample dataset (Cluster 12).

We further explore the effect of the number of hidden neu-

rons in the second level of learning on the prediction. Table VI

shows the average training and testing error (i.e., Normalized

Root Mean Square Error) learned by the HDBSCAN based

LSTM model with different numbers of hidden neurons. In

each trial, the neural network with the same number of hid-

den neurons is trained 100 times, and the average training and

testing errors are presented in the table. As shown in the table,

increasing the number of hidden neurons does not guarantee

to reduce the training and testing errors. The minimum train-

ing and testing errors are achieved with 8 hidden neurons for

ISONE (SYS) 2010 and with 11 hidden neurons for ISONE

(SYS) 2011. Finding a proper parameter (i.e., the number of

hidden neurons) is vital for the training process. Thus, the grid

search technique is applied in our proposed framework.

As mentioned in Section II-D, the FCC neural network’s

hidden neurons are activated by the tanh(·) function. In order

to explain why we choose this activation function, we compare

the performance (i.e., the learning curve) of different activa-

tion functions. The model is trained by tanh(·), sigmoid(·),
and ReLU(·), respectively, with the same input and neural

network structure. This experiment is implemented with the

Fig. 9. Learning curves of the ensemble neural networks (FCC) with different
activation functions.

HDBSCAN-LSTM model, which has 3 hidden neurons, using

Year 2010 data. Fig. 9 presents the learning curves, train-

ing and testing errors, as well as training and testing time. It

indicates that the tanh(·) and sigmoid(·) activation functions
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TABLE VII
COMPARISON OF THE FOUR VARIANTS OF THE PROPOSED MODEL WITH THE BASIC LSTM MODEL ON THE ISO-NE DATASET FOR WEEKLY AHEAD

HOURLY LOAD FORECAST ON WEEKEND DAYS IN YEAR 2018: TESTING ERRORS

TABLE VIII
COMPARISON OF THE FOUR VARIANTS OF THE PROPOSED MODEL WITH THE BASIC LSTM MODEL ON THE ISO-NE DATASET FOR WEEKLY AHEAD

HOURLY LOAD FORECAST ON WEEKEND DAYS IN YEAR 2018: TRAINING ERRORS

TABLE IX
MAPE COMPARISON OF THE CLUSTERING BASED MODEL AND THE BASIC LSTM MODEL ON RESIDENTIAL DATA

are more stable than the ReLU(·) function. Although the

sigmoid(·) function takes less time for training, the tanh(·)
function achieves a slightly better performance on reducing

the training and testing error.

The second case we examine is to forecast week-ahead

power load on weekends (i.e., for Saturday and Sunday) at

both the zone level and system level for the Year 2018. The

data from 2015 to 2017 are used for training the models. The

output is the weekend’s hourly load values. In this task, we

only use historical temperature data as a feature. The current

temperature (i.e., at t+τ ) is not used in this forecast, which is

different from the previous case. This is because in practice,

weekly ahead weather forecast is not as precise as day-ahead

weather forecast. In order to mimic the actual situation in fore-

casting, we only use the feature information that is available

at the forecasting time instance in this study (i.e., no future

information is available). Therefore, the input of this case is

weekly lagged temperature and power load time series data.

The evaluation results of both Root Mean Square Error

(RMSE) and MAPE are summarized in Table VII (testing

errors) and Table VIII (training errors), for both the overall

system-level load prediction (the first row) and that for each of

the zones in the New England area (the remaining eight rows).

We compare the four variants of the proposed framework with

the basic LSTM model using the same input. Apparently,

our proposed framework performances better than the tradi-

tional LSTM model. The HDBSCAN based model consistently

outperforms all the other models in this experiment.

2) Residential Level Prediction Performance: We next

study the load forecasting problem for individual clients using

the proposed ensemble learning model on the Residential

Electricity Consumption dataset [39]. The electricity load

data is aggregated from every 15 minutes to one hour. The

aggregated dataset is spitted into three parts as described in

Section IV-A2. Then the 320 clients are classified into several

groups using the HDBSCAN clustering algorithm based on
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Fig. 10. Distribution of classified residents based on the DBSCAN clustering algorithm.

the data of the first three months in 2012. Fig. 10 presents

the clustering result. It shows that the consumers are grouped

into five clusters. In Figs. 10(a)-(e), each curve represents

the normalized load of a client, while Fig. 10(f) shows the

number of clients in each cluster. We find that each clus-

ter is visually different. For example, the load curves in

Cluster 4 are all relatively flat and are close to 0.5, the

load curves in Clusters 2 and 3 are serrated and ranging

from 0.2 to 1, and the load curves in Cluster 5 exhibit

an obvious daily pattern (indicating these are residential

clients).

In each cluster, we randomly select a client to predict its

load. Thus, for each client, historical load time series right

before time step t is used as the training set, where the window

size W is set to 168 (the number of hours in seven days). The

dimension of input m × W at time t is 1 × 168 since we only

use the historical load data (i.e., m = 1). The output is the

predicted load for a future time t + τ .

We use the traditional LSTM model as a baseline scheme.

Table IX summarizes the evaluation results in the form of

MAPE for the five chosen clients (one from each cluster as

shown in Fig. 10). The horizon τ is set to be 1, 12, and

24, respectively, which means we predict hour ahead, half-

day ahead, and day-ahead load values for the five selected

clients. Compared with LSTM, the proposed ensemble learn-

ing models achieve a much higher precision in this experiment.

For example, for Client 4, the BIRCH MAPEs are 23.35%,

26.43%, and 33.64% of the corresponding LSTM MAPEs

for τ = 1, τ = 12, and τ = 24, respectively. The best

result for different clients and horizon τ is different. However,

the proposed ensemble learning models all achieve the best

performance. Among all the results, BIRCH and HDBSCAN
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based models perform better, which achieve the lowest errors

comparing to others. Considering HDBSCAN is an improved

algorithm of DBSCAN, density-based algorithm HDBSCAN

and hierarchical algorithm BIRCH are superior to partitioning

algorithm K-means++, which suffers from outliers or noise,

in this case.

For all models, the MAPE of Client 1 is relatively high,

while the MAPE of all the other clients are all below 21. From

Fig. 10, we can see that in cluster one, there is no obvious trend

for this group of data, which might explain why this group

of data is difficult to forecast. It is extremely challenging to

accurately predict every client’s load due to different lifestyles

or activities. Classifying the clients and predict load by the

group is quite feasible as shown in this experiment.

V. CONCLUSION

In this paper, we proposed a novel ensemble learning

approach based on deep learning (i.e., LSTM) and unsuper-

vised learning (i.e., clustering) for load forecasting. In the first

level of learning, a set of LSTM models are generated by data

clusters. In the second-level learner, an FCC neural network

enhanced by a modified second-order optimization algorithm

fuses and improves the predictions by the first-level learners.

Superior performance was demonstrated by using two real-

world datasets for load forecasting at both the system and

client levels. Such accurate predictions can be very helpful

for energy management in the urban grid system.
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