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Abstract—In this paper, an ensemble learning approach is
proposed for load forecasting in urban power systems. The
proposed framework consists of two levels of learners that inte-
grate clustering, Long Short-Term Memory (LSTM), and a Fully
Connected Cascade (FCC) neural network. Historical load data
is first partitioned by a clustering algorithm to train multiple
LSTM models in the level-one learner, and then the FCC model
in the second level is used to fuse the multiple level-one models. A
modified Levenberg-Marquardt (LM) algorithm is used to train
the FCC model for fast and stable convergence. The proposed
framework is tested with two public datasets for short-term and
mid-term forecasting at the system, zone and client levels. The
evaluation using real-world datasets demonstrates the superior
performance of the proposed model over several state-of-the-art
schemes. For the ISO-NE Dataset for Years 2010 and 2011, an
average reduction in mean absolute percentage error (MAPE) of
10.17% and 11.67 % are achieved over the four baseline schemes,
respectively.

Index Terms—Load forecasting, deep learning, ensemble
learning, long short-term memory (LSTM), smart grid, green
communications.

I. INTRODUCTION

APID progress in urbanization brings about significant
R changes in people’s lifestyles. In light of this trend, many
challenging problems - such as environmental pollution, traffic
problems, high energy consumption, and so on - are raised.
In order to address these issues, the concept of urban comput-
ing is introduced, which involves collecting, integrating, and
analyzing the data generated by devices in an urban area to
improve people’s life quality [1], [2]. With the fast develop-
ment of artificial intelligence, machine learning, in particular,
deep learning, techniques show high potential for address-
ing many urban computing problems. This is mainly due to
the breakthroughs in computing and the rapid advances in
sensing and data acquisition, transmission, and storage [3].
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Researchers now have the capability of handling large-scale
data and utilizing it more wisely.

Today’s sustainable urban power systems, i.e., the smart
grid, are characterized by high energy efficiency, demand-side
management, renewable energy sources, and a two-way flow
of information and electricity, as enabled by the integration
of communications, control, and signal processing [4]-[7].
Such work involves managing the generation and usage of
electricity, as assisted by a communications network for data
collection and control, to make the earth green. With the same
goal of reducing energy use, the concept of green commu-
nications and networking comes out in recent years, which
involves the development and application of greener and more
energy-efficient communication technologies [8]. Home Area
Network (HAN) and Home Energy Management (HEM) are
two main applications. In HEM, at the system level, the uncer-
tainty in power supply and demand poses one of the major
challenges for energy management. Moreover, in HAN, at the
client level, the deployment of renewables, such as electric
vehicles (EVs) and home solar systems, brings about greatly
increased randomness in the client load. A technique that
can accurately predict future generation (e.g., from renewable
sources) and load at both the system and client levels cooper-
ating with energy-efficient communication technologies would
be highly desirable [9]-[11], which is indispensable to achieve
high power quality, save energy, and better utilize renewable
energy sources and reduce costs [12].

Consequently, many methods have been proposed for load
forecasting. Machine learning and statistical methods are the
two main approaches that are widely applied. For example,
in [13], the authors propose an ensemble approach based
on extreme learning machine for short-term load forecasting.
Radial Basis Function (RBF) neural networks trained with a
second-order algorithm are utilized in [14] for short-term load
forecasting. These two schemes both have a shallow structure
in their neural network design. Deep learning has become a
hot technique due to their recent demonstrated success in com-
puter vision and natural language processing (NLP). Among
various deep learning models, recurrent neural networks, e.g.,
Long Short Term Memory (LSTM), has been proposed for
handling residential data in [15], [16]. It is shown in [15]
that an LSTM-based Sequence to Sequence (S2S) architec-
ture can handle both one-minute and one-hour resolution data
for one residential customer. In [16], the authors focus on
short-term forecasting individual customer’s consumption of
power using LSTM. Effectiveness of accurate short-term load
forecasting has been demonstrated in [17] by using a Deep
Residual Network (res-net). In addition, Quantile Regression
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is a popular statistic technique for load forecasting. In [18],
the authors exploit the quantile regression model to enhance
forecasting performance. In [19], the authors improve the tra-
ditional quantile regression neural network and demonstrate
its reliability in probabilistic load forecasting.

In this paper, an ensemble learning approach is proposed to
tackle the load forecasting problem. Our proposed framework
consists of two levels of learners. The first-level learner utilizes
the LSTM model to obtain the first-level predictions, while
a fully connected cascade (FCC) neural networks are incor-
porated in the second-level learner for the purpose of model
fusion. Our proposed framework has three notable features.
First, point load forecasting is a regression problem, to which
unsupervised learning techniques can be easily applied. The
proposed framework integrates unsupervised learning with a
supervised learning model for accurate load prediction, which
is a novel approach comparing to existing load forecasting
models. Specifically, clustering algorithms are incorporated
in our framework, to partition data into individual clusters
according to their similarity. Each data cluster is then used
to generate an LSTM base model to obtain the first-level
prediction. Then the first-level prediction results are fused by
the second-level FCC neural network as supervised learning
to enhance the accuracy of load forecasting.

Second, for various learning problems, a deep neural
network may not always be the chosen one; it is critical to
choose the right neural network structure properly. In this
work, we select a deep (LSTM) and a shallow (FCC) struc-
ture in the two different levels of learning, respectively. It
is well-known that the deeper the neural network, the more
likely overfitting will occur. Thus, it is highly desirable to have
a learner that can provide a sufficient learning ability, while
using as few layers as possible. In the proposed framework,
the first-level learner captures most of the nonlinear relation-
ship between input and output data, while the second-level
learner discerns the linear connection between them. This is
the criterion that guides our choice of proper neural architec-
ture in the proposed framework. Third, ensemble learning is
used in the proposed framework. The boosted fusion model
(ensemble) in the second level enhances the accuracy of load
prediction [20].

Our contributions in this work can be briefly summa-
rized as follows. First, an ensemble learning approach is
proposed to integrate state-of-the-art machine learning algo-
rithms, i.e., clustering, LSTM, and FCC, for accurate load
forecasting. We also study four different, representative clus-
tering algorithms applied in the first level of learning and
found the integration of HDBSCAN and LSTM achieve the
best performance. Second, we propose to use an FCC neural
network for model fusion in the second-level learner and a fast
converging and stable modified Levenberg-Marquardt (LM)
optimization algorithm for training the second-level learner.
The FCC network captures the relationship among individual
models and thus improve the prediction accuracy. Third, we
validate our proposed framework with two public datasets and
compare its performance with several state-of-the-art schemes,
where superior performance is demonstrated for the proposed
framework. Fourth, the proposed framework can effectively
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deal with both short-term (e.g., hour-ahead) and mid-term
(e.g., week-ahead) load forecasting, for not only system-level
but also zone-level and client/residential-level forecasting.

The remainder of this paper is organized as follows. In
Section II, we describe our proposed framework. We then dis-
cuss optimization and training in Section III. Experimental val-
idation of the proposed framework is presented in Section I'V.
Section V concludes this paper.

II. THE PROPOSED FRAMEWORK

In this section, we first formulate the power load forecasting
problem. We then discuss the details of our proposed frame-
work in the remainder of the section, including the design of
the two levels of learners.

A. Problem Statement

In this paper, we focus on the load forecasting problem.
Consider a time series signal Y = {f1,f9,.- -, fm—1,24}
where Y 7 € R™X T Y 7 consists of two components, i.e.,
the feature part and load part. In the feature part, f, =
{fi1, fias-- -, fiT}, which is the historical data of the ith fea-
ture that affects load. For example, temperature is one of the
most important features that affect the power load. If features
are not provided in the dataset, this part would set to null, and
the forecasting will use historical load data only. The load part
consists of £ = {¢1,02,...,L7}, i.e., the historical load data.

The goal is to forecast the load at a future time 7' + 7 in
a rolling predicting fashion, where 7 is the amount of time
ahead of the current time 7. That is, we assume that only the
information at and before T, i.e., Y4, for ¢t < T, is available
when predicting £ 7 . For example, to forecast the load value
at time 7 + 1 (i.e., one time step ahead), Y p is available
and used. In order to ease training and reduce the training
time, a window filter W is applied to Y 7, which stores only
the data for w time steps, from the current time 7 back to
time 7 — w + 1. The input matrix S 7 is thus defined as
St = W(Y p), which is an m x w matrix.

Fig. 1 presents the mechanism of window filter and the
formation of input and output data. The forecast value i T4r
is obtained by a fitting function as

(e =g(ST). (1)

The goal of our proposed machine learning based predictive
method is to learn the fitting function g(-) from the dataset
Y 1 that is available.

B. The Proposed Ensemble Learning Framework

To achieve high accuracy of power load forecasting, the
concept of stacking is incorporated in our framework [21].
Stacking is a procedure of first training individual machine
learning models and then integrating them [20]. There are two
levels of learners in our proposed framework, where the first-
level learner consists of multiple individual learning models
and the second-level learner is used to combine the outputs
from the individual learners in the first level for an integrated
output. In order to meet the feature of stacking and testing,
the data should first be divided into three parts. The first-level
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Fig. 1. Input and output of the proposed neural network model.

Algorithm 1: Small Build the First Level LSTM Predictors

1 Partition the input data in dataset D1 into k clusters using a
clustering algorithm;

2 Divide dataset D1 into k individual datasets (i.e., including both
input/output data) according to the clustering results:
{D1y,D15,...,D1,}, where D1; is the ith dataset produced by
the ith cluster;

3 Use each dataset D1;, ¢ = 1,2, ..., k to train an individual
LSTM model i;

learners use the first part of data (denoted by D1). After the
First-level learning models are built and trained, new data are
generated from this level of learner, which is combined with
the second and third parts of data (denoted by D2 and D3,
respectively). The combined two parts of data are used to train
the second-level learner and test the framework.

In this paper, we propose to use LSTM a recurrent neu-
ral network model, for the first-level learning and the FCC
neural network for second-level learning. Fig. 2 illustrates the
structure of the proposed framework. After preprocessing, the
dataset is clustered into three parts, D1, D2, and D3 for train-
ing and testing purposes. The proposed predictor consists of a
clustering algorithm, a set of LSTM models in the first-level
learner, and an FCC model in the second-level learner. We
discuss the design of these components in detail in the rest of
this section.

C. First Level Learner

The first-level learner consists of a set of LSTM predictive
models as well as a clustering algorithm, whose procedure is
presented in Algorithm 1. The clustering algorithm partition
the input data D1 into D1y, D1s,..., D1, each being used
to train an individual LSTM model.

1) Clustering: Before data can be used by the LSTM mod-
els, we employ a clustering algorithm to partition the dataset
based on the similarity among input data samples. Clustering
is usually an unsupervised machine learning technique, refer-
ring to the process of grouping unlabeled data into clusters of
similar features [22].

Note this is different from classification, which is based on
given labeled data. It is well-known that the electricity demand
is correlated with various obvious factors, such as tempera-
ture and calendar dates (e.g., weekday, holiday, month, season,

Time-Series Preprocessing
Data Data
LSTM Model LSTM Model
LSTM Model | . D1 Testingand | ., Testing and | . D3
Training Data Ensemble Model Ensemble Model
Training Data Testing Data

Fig. 2. The proposed load prediction framework with two levels of learners.

etc.), while also being affected by uncertainties or latent factors
as well.

We propose the use of unsupervised learning in our forecast-
ing model with the following reasons. First of all, group input
data of load forecasting into suitable sets and use different
learning model for each set, are beneficial to better explore
the correlation in the dataset [11]. Second, we assume that
short term load variations are affected by the historical data
of the time immediately before the current time. With unla-
beled historical electric load data, clustering can group the data
samples automatically and reasonably. Last but not least, par-
titioning the training dataset first and combining the learning
results from the models later, resembles a kind of resampling
process. This is similar to the process of cross-validation tech-
nique, which can mitigate the overfitting problem in machine
learning.

2) Clustering Algorithms: The collected power load time
series data is usually susceptible to noise, shifting, and defor-
mation [23]. It is important to choose an appropriate clustering
method, from various existing techniques, to handle such
data. In this paper, we choose four representative algorithms
from three categories of clustering methods, i.e., (i) parti-
tioning methods, (ii) hierarchical methods, and (iii) density
based methods. The chosen methods are K-means++ [24],
BIRCH [25], DBSCAN [26], and HDBSCAN [27], [28],
as summarized in Table I. Note that for DBSCAN and
HDBSCAN, some data samples are identified as outliers. Such
group of outlier data is treated as one unique cluster in our
proposed framework.
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Fig. 3. An unfolded view of the LSTM neural cell structure.

TABLE 1
CLUSTERING ALGORITHMS USED IN THIS PAPER

Partitioning

K-Means++ [24]

1.1 Choose seeds (i.e., the initial cluster
centers) for K -means
1.2 Improve speed and accuracy of K-means

Hierarchical

BIRCH [25]

2.1 Balanced Iterative Reducing and
Clustering using Hierarchies

2.2 Based on the concept of Clustering Feature
(CF) and CF tree

2.3 Does not need a predetermined number
of clusters k

2.4 Can remove noise (outliers)

Density Based
DBSCAN [26]

3.1 Density Based Spatial Clustering of
Application with Noise

3.2 Uses parameters (e, Minpts) to
characterize the density of the data space

4.1 Hierarchical DBSCAN

4.2 Removes border points in DBSCAN

4.3 Superior to DBSCAN from a qualitative
clustering perspective [29]

HDBSCAN [27], [28]

3) Long Short-Term Memory (LSTM): Inspired by the novel
idea of using three types of gates to regulate information
flow and remembering information for over an arbitrary time
interval [30], LSTM overcomes the limitation of long memory
capability in recurrent neural networks. An unfolded illustra-
tion of the LSTM neural network is presented in Fig. 3. Input
gate iz, forget gate f;, output gate oy, and state unit c; are
the four key components in each LSTM cell (for time ). The
state of LSTM cell at time ¢ is calculated as

i = a(Wiht_l + Ul + bi) 2)
ft:a(tht_1+fot—|—bf) 3)
ct = ft cCp—1 + it 'U(Whtfl + Uz + b) 4)
o = O'( Woht_l + UOZEt + bo) 5
hy = tanh(ci—1) - oy (6)

In the training phase, each LSTM model LSTM; will
be trained with the corresponding data cluster D1;, i =
1,2,...,k, as shown in Fig. 2.

4) Testing Process in the First Level Learner: During the
training phase for the level two learner and the testing phase,
new input data samples beyond D1 (i.e., in D2 and D3, respec-
tively) arrives and are fed into the first-level learner. How
to deal with them should be carefully designed. One way is
to select the most similar cluster and use the corresponding
trained LSTM model as in our prior work [11]. In this paper,
however, we propose to use ensemble learning, which is based
on the assumption that power load prediction is driven by each
of the homogeneous first level models. Thus the new data sam-
ple is fed into each first-level LSTM model, and an FCC neural
network is used in the second level to fuse the outputs from
the LSTM models to produce a single prediction.

D. Second Level Learner

Dataset D2 is used to train the second-level learner.
Specifically, the data samples in D2 are first fed into each
trained LSTM predictors in the first-level. Each LSTM pre-
dictor then generates a prediction value. These outputs are
used as input to train the second-level learner.

The FCC neural network is incorporated for ensemble learn-
ing at level two. Fig. 4 shows an example of the FCC
ensemble neural network. In this example, k base models are
available and to be fused by five neurons. The first four neu-
rons are activated by the tanh(-) activation function, given by
tanh(z) :Zig:i The last neuron is a linear summation.
With the same number of neurons in level two, the FCC neural
network architecture is superior to traditional neural network
structures [31], as it provides more connections (and weights)
than the traditional architecture, which make it deeper. The
FCC neural network is similar to Deep Residual Networks [32]
in some sense, which has an identity mapping for every input
and latent variable to every neuron.

III. OPTIMIZATION AND TRAINING
A. Problem Formulation

We use the sum square error as the default lost function
for the two levels of learners. The corresponding objective
function of the LSTM model i at lever one is defined as

N . 2 .
L(Li;i) = minimize > 057~ trie ||+ o |ofn], (D)

TeDI1,

Istm
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Fig. 4. An example of FCC ensemble neural network used in the second-level
learner.

where E%J’:T is the predicted value of load by LSTM model
i for time T + 7, {7, is the ground truth (i.e., label), and
w%stm are the wights of LSTM model i at the first level.

Supposing there are k trained LSTM models in the first-
level learner, the load predicted by the level-two learner at
time T + 7 is given by

Lo _ 7L1;1 50152 7L1k |
ET—H’ _f(ET-‘rT’gT-‘rT""’ET-‘rT’waC)’ ®)

where f() is the output of the ensemble FCC neural network,
éél_;_zT is the load forecast value predicted by LSTM model
i, and wf., are the weights of the ensemble FCC neu-
ral network. The corresponding optimization objective over
the validation and ensemble dataset D2 in level two is
given by
A 2
£(L2) = miimize - |0, = o]+ 8- Jlogeell- ©
TeD2

In both the first-level and second-level optimization objective
functions, the L1 regulation is used to prevent overfitting in
the neural network training process.

B. Gradient Descent Algorithms

First-order gradient descent algorithms, such as error back
propagation, Stochastic Gradient Decent (SGD), and its vari-
ants Adam, are quite successful in training deep neural
networks. However, ill-conditioning and local-minima are
common challenges for these algorithms. In [33], a second-
order gradient descent algorithm is proved as an effective
solution for optimizing problems with an objective function
that exhibits pathological curvature. However, the second-
order gradient descent algorithm also has its limitations. One
challenge is that, for very deep neural networks, the second-
order algorithm calculates the Hessian Matrix of the neural
network, which takes a relatively longer period of time to train.
The other issue is that, as the number of layers is increased,
the large values of weights may get stuck in the saturated
region, whose derivative of gradient tends to zero, and thus
causing a vanishing gradient condition (known as the flat-spot
problem) [34].

Algorithm 2: The Modified Levenberg MarQuardt Method

1 Set 0 <m < aq and 0 < pg < p1 < pg < 1, where
a1 =107% m =107, pg =107%, p; = 0.2, py = 0.8, and
e =1,

2 Calculate Jacobian Matrix J (wecc) and approximate the
Hessian matrix of the FCC neural network at the second level
at iteration e = 1;

3 The normal LM step as de = Awfcc;

4 A line search for approximating the LM step Awﬁ; o
5 Combine Steps 2 and 3 as se¢ = Aw}cc + aeAw}ic;
6 If J(w;CC)TJ(w]?CC) = 0, then stop;

7 Compute 7¢ = RS/ Rg, and set

e .
(oectl: w]écc+se’lf Te>.p,0 (10)
@ otherwise;
8 Compute
dae, if re < p1
Qetp] =4 Qe, if re € [p1, P2l 11

max(0.25ae, m), if re > py;

9 Sete = e + 1, and go to Step 2;

Given all the advantages and disadvantages of second-order
gradient descent algorithms, we choose to apply the Adam
algorithm [35], which is a first order gradient-based algorithm,
to solve the regression task problem at level one, due to its
deep structure. At level two, where FCC is a shallow neural
network, we utilize the modified Levenberg-Marquardt (LM)
Algorithm [36], which is a second-order optimization algo-
rithm. The reason for a shallow architecture is applied at level
two is that, we aim to provide a sufficient learning capacity
for the training samples with the least number of neurons to
overcome the overfitting problem.

C. Modified Levenberg-Marquardt (LM) Algorithm

In this section, we introduce how to apply the modified
LM in training the ensemble neural network at level two. The
procedure is presented in Algorithm 2. The convergence of
this method is proven in [36], [37].

The Jacobian Matrix J(@%,.) at iteration e is calculated by
the derivative of (9), which is given by

_ [8L(L2) OL(L2) 9L(La)
J(w]%CC) - [ Bwa ’ 8w§2 L -

owg,  |? (12)
where ®? = is the weights of the FCC neural network
at iteration e, which has Z weight values denoted by
{w{,ws,...,wg}. The Hessian matrix can be approximated
by J (coj?C J (“’;c C)T. A damping factor p. is updated itera-
tively as

a(LQ, w}’cc> (13)

where 8 € (0,2]. At each iteration, the weights of the FCC
neural network are updated as

B
He = Qe H ,

e+1

wht (14)

_ (=4
- wfcc + Se,
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or
wﬁff:@%,+Awﬁc+aeAwﬁw (15)
where Se = Aw;cc + OéeA(z)fc/C; de = Awﬁcc =

—[J(@f,) T T (@F,,) + ned) ™ T(@f,)" L(L2,0f,,) is the
normal LM step; Awec, . 1s a line search for approximating the
LM step, which is defined as
e/ € € T € € -1
Awfcc = - [J<wfcc + A"’)fcc) J(wfcc + A(’ofcc) + :u/e‘[}
x J (05 + A0f.) L(La, 05, + Awe),  (16)

where ), = HE(LQ,w]‘?CC—kAw]‘%CC)Hﬁ, ae is a parameter
iterative updated as in (11) in Algorithm 2; J (w;;c .+ A0S )
is approximated by J (a);?cc); and p, is approximated by

e for reducing the computational overhead. Then we can

rewrite (16) as
N [J (w;zcc> TJ(w]%cc) + /LGI] B

x T (0f,c) Tﬁ(Lg,w]?chrAw;icc). a7

In order to justify whether s, is a good step or not, the
trust region technique is used. The actual reduction R{ and the
newly predicted reduction Ry at the eth iteration are defined
in (18) and (19), respectively.

i = [0 ) |

5 = (o) - (o) + 9 (o5 e
oo+ a)

—||£(0fic + ae) + acd (0f) A0 ’

Their values are then compared by r. = RS/RS, and the

weights are updated according to the value of 7, as in (10) in
Algorithm 2.

Awfcc =

_ Hc(LQ,w;’CC n se) H2 (18)
2

19)

IV. EVALUATION WITH REAL-WORLD DATASETS

Extensive experiments of load forecasting are conducted
on two datasets at the system level and the residential level,
respectively, to validate the performance of the proposed
ensemble learning framework. The proposed framework is
implemented with Keras 2.2.4, TensorFlow 2.0-beta, and
Sklearn 0.20.0 in the Python 3.7 environment. The neural
network for model fusion at level two is implemented using
ADNBN coded by us using MATLAB R2018a.

A. Datasets

1) Dataset Description: The following two public bench-

mark datasets are used for performance evaluation.

o The ISO-NE dataset [38]: This is a collection of hourly
temperature and load data over 12 years from Jan. 1, 2007
to Dec. 31, 2018 in the New England area, including data
for each of the eight zones (i.e., Connecticut-CT, Maine-
ME, New Hampshire-NH, Rhode Island-RI, Vermont-
VT, Massachusetts of NEM-NEMASS, Massachusetts of
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TABLE II
THE SEARCH SPACES OF ALGORITHM PARAMETERS

Algorithms ~ Parameters Search Space
K-means++  number of clusters [2:1:20]
Birch number of clusters [2:1:20]
DBSCAN maximum distance between [.5:.05:.8]
samples
minimum number of samples  [5:5:30]
HDBSCAN  minimum number of samples  [5:5:30]
LSTM number of hidden neurons [16,32,64,128]
learning rate [0.001,0.05,0.01]
training epochs [50:50:200]
FCC number of hidden neurons [2:1:11]
training epochs [50:50:150]

activation function [tanh,sigmoid,ReL.U]

SEM-SEMASS, and Massachusetts of WC-WCMASS)
and for the entire ISO-NE transmission system. Fig. 5
presents the entire system level load and temperature data
of the ISO-New England dataset in 2018. The load of
each of the eight zones in 2018 is plotted in Fig. 6.

o The Residential Electricity Consumption dataset [39]:
This is a collection of 370 clients’ electricity consumption
recorded for every 15 minutes during a period of three
years from 2011 to 2014. Portuguese clients can be either
residential or industrial consumers. Note that we only use
the data for 320 clients, as the data for the remaining 50
clients are collected after 2011 (i.e., incomplete).

2) Preprocessing: A sliding window technique of P sam-
ples is implemented on historical time-series dataset during the
training process. The period of P is divided into three parts,
as shown in Fig. 2. The ratio of split is 2:1:1. For example,
if hourly day-ahead load of Year the 2017 is predicted, the
period P is set to 4 years. The data for one year from 2014
to 2015 partitioned to dataset D1, the data for 2016 and 2017
become D2 and D3, respectively. When forecasting the load
for the Year 2018, P is chosen from 2015 to 2018.

Normalization is applied in the preprocessing process. As
shown in [40]-[42], normalization can not only speed up the
convergence of training, but also reveal the true similarity
between time series data. In order to prevent data snooping in
time series prediction, which makes use of future information
to enhance performance of forecast, only datasets D1 and D2
are normalized. In the testing set D3, new data generated by
the first-level learner is restored from normalized form to the
original form. The definition of normalization is

norm ST;i — min(STﬂ)

T~ maX(S T;i) — min(STﬂ-) ’ 20)

where S777™ and S 7.; are the normalized and original form

of data saﬁlple i in dataset S, respectively.

B. Experiments and Results

In our experiments, the grid search technique is applied for
hyper-parameters tuning. The search space for the parameters
in each machine learning algorithm is presented in Table II.

1) System Level Prediction Performance: At the overall
system level, short and mid term load forecasting are con-
ducted on the ISO-NE dataset. The first case we examine is

Authorized licensed use limited to: Auburn University. Downloaded on May 21,2020 at 01:08:45 UTC from IEEE Xplore. Restrictions apply.



622 IEEE TRANSACTIONS ON GREEN COMMUNICATIONS AND NETWORKING, VOL. 4, NO. 2, JUNE 2020
%104 2018 system load of ISO-New England
25F \ 1 1 \ =
— 2 n
s |
s .l
st W'
©
o
—
1 —
05 | | | | | | | |
0 1000 2000 3000 4000 5000 6000 7000 8000
Hour
100 2018 hourly temperature of ISO New England
Dry Bulb Temperature (DBT)
_ 80 } uw “ M lM 1“ N* U\ m || — Dew Point Temperature(DPT) ||
c fi il iy
AT L A T
E= et g
D[ A RCLTLT
- ”,M}vw W. G Mw& m W il
T ool v |
20 | | | | | | | |
0 1000 2000 3000 4000 5000 6000 7000 8000
Hour
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Fig. 6. The individual load for each of the eight Zones in Year 2018 of the ISO-New England dataset.

short-term forecasting, which predicts the load of the next day
24-hours ahead. In order to compare our method’s performance
with the existing cutting-edge technique, the system load in
the Year 2010 and 2011 of ISO-NE are predicted individu-
ally, each using the three previous years’ data as training and
ensemble learning (see Section IV-A2). We utilize the similar
inputs as in [17]. Table III summarized the input of this case.
For featurey, the actual value of the temperature of the next
day is used in all the schemes, based on the assumption that
this information is available and the fact weather forecast is
extremely accurate now-days.

Three state-of-the-art models proposed in [13], [14], [17]
and the traditional LSTM recurrent neural network model are

used as benchmarks for comparison with our proposed frame-
work. The performance results in the form of mean absolute
percentage error (MAPE) are shown in Table IV. The num-
ber of first-level learners in our proposed module is presented
in the second column for each year as well. The table shows
that the four variants of our proposed framework all outper-
form the four benchmark schemes. An average reduction in
MAPE of 10.17% in the Year 2010 and 11.67% in the Year
2011 are achieved over the four baseline schemes.

We also find that the HDSCAN based approach outperforms
the other variants of our framework. To illustrate the effi-
cacy of ensemble learning, we also present the performance of
the first-level and second-level learners in Table V. The table
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Fig. 7. System load forecast results for the last two weeks of 2011 on the ISO-NE dataset using the HDBSCAN-LSTM model.
TABLE III TABLE V
INPUT DATA AND OUTPUT FOR SHORT-TERM LOAD INDIVIDUAL HDBSCAN BASED MODEL RESULTS AND THE ENSEMBLE
FORECASTING AT TIME h METHOD IMPROVEMENT FOR THE SYSTEM LEVEL LOAD
IN YEARS 2010 AND 2011
Input
feature; Load of the hth hour of the day that are 1, 2, 3, 4 and ‘ ISONE (SYS) 2010 ‘ ISONE (SYS) 2011
months prior to the next day Model | MAPE | MAPE
feature,  Load of the hth hour of the day that are 1, 2, 3, 4 weeks
prior to the next day 1 1'682 228(9)
features  Load of the hth hour of the day that are 1 days prior to § %"9”5 i'472
the next day : .
feature,  Load of the most recent 24 hours prior to the hth hour of 4 2171 1317
the next day 5 1'778 %‘128
features  Temperature of the same hour as feature, 6 7198 347
featureg  Temperature of the same hour as feature, 7 2.196 1.396
feature,  Temperature of same hour as features 8 }'4?0 ;378
featureg  Temperature of the hth hour of the next day 9 S18 -808
featureg  Indicator (1,0) for season (winter, summer), weekend, and 10 1.373 1.351
holiday 11 1.506 1.386
. 12 1.307 19.685
L Load at t h
h oad & fime 13 1.448 1377
Output 14 1.757 -
= - 15 2.303 -
Lht24 24 hours ahead load, i.e., 7 = 24
Combined Model | 1.291 | 1.299

TABLE IV
COMPARISON OF PROPOSED MODEL WITH OTHER MODELS USING THE
ISO-NE DATASET FOR YEARS 2010 AND 2011

| ISONE (SYS) 2010 | ISONE (SYS) 2011

Model’s | MAPE Number | MAPE Number

ErrCorr modified [14] 1.75 - 1.98 -
ELM-PLSR [13] 1.50 - 1.80 -
DRN [17] 1.50 - 1.64 -

LSTM 1.58 - 1.50 -
K-means++-LSTM 1.30 8 1.32 8
DBSCAN-LSTM 1.37 6 1.34 7
BIRCH-LSTM 1.43 9 1.34 11
HDBSCAN-LSTM 1.29 15 1.30 13

shows that there are 15 and 13 base LSTM models f Years
2010 and 2011, respectively. That is, for each year, the dataset
D1 is partitioned into 15 and 13 groups, respectively, for train-
ing the first-level LSTM models. The table also shows that the
second-level learning by the FCC neural network effectively

further reduces the MAPE. Compared with the MAPEs in the
first-level learner, the FCC achieves an average improvement
in MAPE of 21.59% and 25.60% for the Year 2010 and 2011,
respectively. To visualize the performance results, the fore-
cast results of the last two weeks in 2011 predicted by the
HDBSCAN based LSTM model are plotted along with the
ground truth in Fig. 7. It can be seen that the forecast curve
matches the ground truth tightly.

In the 2011 prediction results, the performance of model 12
is marked with a symbol “f,” which indicates the worst score
MAPE among all the 13 LSTM models. We carefully examine
this case and plot the clustering result for this prediction in
Fig. 8. It can be seen that each of the other 12 clusters has
a sufficient number of samples, while only 69 samples are
grouped into the 12th cluster. This level-one learner (LSTM
model 12) is trained with a very small dataset. As a result, it
has a comparatively weak ability of generalization. It achieves
the worst performance as the features extracted by this model
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Fig. 8. Sample distribution of the HDBSCAN model for system level load
prediction in Year 2011.

TABLE VI
THE EFFECT OF THE NUMBER OF HIDDEN NEURONS
ON THE TRAINING PROCESS

ISONE (SYS) 2010 | ISONE (SYS) 2011
Number of Average NRMSE Average NRMSE
Hidden Neurons | Training  Testing | Training Testing
2 0.0203 0.0212 0.0191 0.0216
3 0.0209 0.0218 0.0185 0.0209
4 0.0215 0.0223 0.0183 0.0207
5 0.0203 0.0212 0.0186 0.0209
6 0.0206 0.0214 0.0187 0.0211
7 0.0207 0.0215 0.0184 0.0206
8 0.0192 0.0201 0.0182 0.0205
9 0.0216 0.0224 0.0188 0.0212
10 0.0208 0.0217 0.0180 0.0201
11 0.0198 0.0208 0.0179 0.0201

are not general enough and are only suitable and specific to
the sample dataset (Cluster 12).

We further explore the effect of the number of hidden neu-
rons in the second level of learning on the prediction. Table VI
shows the average training and testing error (i.e., Normalized
Root Mean Square Error) learned by the HDBSCAN based
LSTM model with different numbers of hidden neurons. In
each trial, the neural network with the same number of hid-
den neurons is trained 100 times, and the average training and
testing errors are presented in the table. As shown in the table,
increasing the number of hidden neurons does not guarantee
to reduce the training and testing errors. The minimum train-
ing and testing errors are achieved with 8 hidden neurons for
ISONE (SYS) 2010 and with 11 hidden neurons for ISONE
(SYS) 2011. Finding a proper parameter (i.e., the number of
hidden neurons) is vital for the training process. Thus, the grid
search technique is applied in our proposed framework.

As mentioned in Section II-D, the FCC neural network’s
hidden neurons are activated by the tanh(-) function. In order
to explain why we choose this activation function, we compare
the performance (i.e., the learning curve) of different activa-
tion functions. The model is trained by tanh(-), sigmoid(-),
and ReLU(-), respectively, with the same input and neural
network structure. This experiment is implemented with the

10"

=)
°

NRMSE errors

o

102

iterations

(a) tanh activation function: average training error (NRMSE) is
0.0210 £ 0.0011, average testing error (NRMSE) is 0.0219 +

0.0011, and average training time is 42.0660 seconds.
10’ T T T T T

=)
°

NRMSE errors

=)

102

iterations

(b) sigmoid activation function: average training error (NRMSE)
is 0.0214 + 0.0010, average testing error (NRMSE) is 0.0222 £+
0.0009, ad average training time is 38.1347 seconds.

NRMSE errors

iterations

(c) ReLU activation function: average training error (NRMSE) is
0.1347 £ 0.3834, average testing error (NRMSE) is 0.1331 +
0.3698, and average training time is 42.8419 seconds.

Fig. 9. Learning curves of the ensemble neural networks (FCC) with different
activation functions.

HDBSCAN-LSTM model, which has 3 hidden neurons, using
Year 2010 data. Fig. 9 presents the learning curves, train-
ing and testing errors, as well as training and testing time. It
indicates that the tanh(-) and sigmoid(-) activation functions
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TABLE VII
COMPARISON OF THE FOUR VARIANTS OF THE PROPOSED MODEL WITH THE BASIC LSTM MODEL ON THE ISO-NE DATASET FOR WEEKLY AHEAD
HOURLY LOAD FORECAST ON WEEKEND DAYS IN YEAR 2018: TESTING ERRORS

| LSTM | Kmeans++-LSTM | DBSCAN-LSTM | BRICH-LSTM | HDBSCAN-LSTM

ZONE | RMSE MAPE | RMSE MAPE | RMSE MAPE | RMSE MAPE | RMSE MAPE

ISONE(SYS) | 1279.639 6.396 | 1172.054 5.987 | 1138.088 5.829 | 1143.666 5.878 | 754.019 4.369

CT 332.453 7.008 336.177 7.274 324.761 6.881 332.367 6.821 187.77 4.610

NH 108.098 5.822 107.734 5.779 105.366 5.671 108.381 5.812 75.092 4.837

ME 79.852 4.487 78.204 4.427 76.080 4.327 79.336 4.485 60.137 3.680

RI 92.787 6.411 89.279 6.566 85.895 6.243 87.864 6.606 48.600 4.431

VT 58.264 7.614 50.924 6.172 53.261 6.554 53.478 6.783 46.746 5.829

SEWASS 178.423 7.330 168.339 7.210 169.527 7.352 166.968 7.168 113.50 5.512

WCMASS 173.362 6.421 158.812 6.114 164.382 6.223 163.230 6.327 | 129.867 5.687

NEWASS 290.23 6.747 278.474 7.071 259.557 6.393 262.456 6.535 177.01 5.059
TABLE VIII

COMPARISON OF THE FOUR VARIANTS OF THE PROPOSED MODEL WITH THE BASIC LSTM MODEL ON THE ISO-NE DATASET FOR WEEKLY AHEAD
HOURLY LOAD FORECAST ON WEEKEND DAYS IN YEAR 2018: TRAINING ERRORS

\ LSTM | Kmeans++LSTM | DBSCAN-LSTM | BRICH-LSTM | HDBSCAN-LSTM

ZONE | RMSE MAPE | RMSE MAPE | RMSE MAPE | RMSE MAPE | RMSE  MAPE

ISONE(SYS) | 1203.829  6.049 | 652.820  4.059 | 637.553  3.990 | 605226  3.789 | 576.435 3.412

CT | 318441 6335 | 168.854 4373 | 187350 4745 | 176.095  4.699 | 174.893 4383

NH | 96405 5175 | 59.860  3.901 | 60260  3.963 | 58.533  3.836 | 57.924 3.567

ME | 59.889 3734 | 47.506  3.041 | 45875  2.895 | 44.091 2792 | 50.535 2.973

RI | 77740 5381 | 34034 3263 | 35478 3461 | 37404  3.617 | 36910 3.274

VT | 52537 6644 | 50396 6019 | 52812 6403 | 53261 6554 | 45.881 5.801

SEWASS 147.80  5.864 | 94.874 4951 | 103.588 5225 | 92165  5.001 | 91.264 4.960

WCMASS | 149.845 5502 | 108455  4.609 | 112473  4.824 | 97.647  4.406 | 94.990 4436

NEWASS | 142367  3.938 | 108.531  3.489 | 116474  3.669 | 94975  3.020 | 93.519 3.097
TABLE IX

MAPE COMPARISON OF THE CLUSTERING BASED MODEL AND THE BASIC LSTM MODEL ON RESIDENTIAL DATA

| K-means++ | BIRCH | DBSCAN | HDBSCAN | LSTM

5
Blr7=1 7=12 7=24|7=1 7=12 7=24|7=1 7=12 rt=24|7=1 7=12 7=24|7=1 71=12 71=24
&

1 18.15 43.59 43.51 18.16 55.28 46.89 | 23.74 45.36 44.54 19.33 42.21 4432 | 36.15 42.88 48.85
2 3.79 7.70 8.34 3.70 7.76 8.45 3.66 6.78 8.33 3.75 7.33 7.96 14.51 10.27 9.78
3 11.90 17.06 15.81 15.54 15.15 15.24 12.72 1541 16.33 11.21 15.24 1512 | 22.23 24.50 23.12
4 9.31 16.41 13.92 8.53 10.19 12.90 12.09 12.29 13.11 8.83 12.55 1294 | 36.53 38.55 38.34
5 12.63 16.27 14.76 14.53 20.52 14.40 12.57 15.71 1490 | 11.24 14.91 1522 | 27.74 23.58 24.19

are more stable than the ReLU(:) function. Although the
sigmoid(-) function takes less time for training, the tanh(-)
function achieves a slightly better performance on reducing
the training and testing error.

The second case we examine is to forecast week-ahead
power load on weekends (i.e., for Saturday and Sunday) at
both the zone level and system level for the Year 2018. The
data from 2015 to 2017 are used for training the models. The
output is the weekend’s hourly load values. In this task, we
only use historical temperature data as a feature. The current
temperature (i.e., at ¢+ 7) is not used in this forecast, which is
different from the previous case. This is because in practice,
weekly ahead weather forecast is not as precise as day-ahead
weather forecast. In order to mimic the actual situation in fore-
casting, we only use the feature information that is available
at the forecasting time instance in this study (i.e., no future
information is available). Therefore, the input of this case is
weekly lagged temperature and power load time series data.

The evaluation results of both Root Mean Square Error
(RMSE) and MAPE are summarized in Table VII (testing
errors) and Table VIII (training errors), for both the overall
system-level load prediction (the first row) and that for each of
the zones in the New England area (the remaining eight rows).
We compare the four variants of the proposed framework with
the basic LSTM model using the same input. Apparently,
our proposed framework performances better than the tradi-
tional LSTM model. The HDBSCAN based model consistently
outperforms all the other models in this experiment.

2) Residential Level Prediction Performance: We next
study the load forecasting problem for individual clients using
the proposed ensemble learning model on the Residential
Electricity Consumption dataset [39]. The electricity load
data is aggregated from every 15 minutes to one hour. The
aggregated dataset is spitted into three parts as described in
Section IV-A2. Then the 320 clients are classified into several
groups using the HDBSCAN clustering algorithm based on
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Fig. 10. Distribution of classified residents based on the DBSCAN clustering algorithm.

the data of the first three months in 2012. Fig. 10 presents
the clustering result. It shows that the consumers are grouped
into five clusters. In Figs. 10(a)-(e), each curve represents
the normalized load of a client, while Fig. 10(f) shows the
number of clients in each cluster. We find that each clus-
ter is visually different. For example, the load curves in
Cluster 4 are all relatively flat and are close to 0.5, the
load curves in Clusters 2 and 3 are serrated and ranging
from 0.2 to 1, and the load curves in Cluster 5 exhibit
an obvious daily pattern (indicating these are residential
clients).

In each cluster, we randomly select a client to predict its
load. Thus, for each client, historical load time series right
before time step ¢ is used as the training set, where the window
size W is set to 168 (the number of hours in seven days). The
dimension of input m x W at time ¢ is 1 x 168 since we only

use the historical load data (i.e., m = 1). The output is the
predicted load for a future time ¢ + 7.

We use the traditional LSTM model as a baseline scheme.
Table IX summarizes the evaluation results in the form of
MAPE for the five chosen clients (one from each cluster as
shown in Fig. 10). The horizon 7 is set to be 1, 12, and
24, respectively, which means we predict hour ahead, half-
day ahead, and day-ahead load values for the five selected
clients. Compared with LSTM, the proposed ensemble learn-
ing models achieve a much higher precision in this experiment.
For example, for Client 4, the BIRCH MAPEs are 23.35%,
26.43%, and 33.64% of the corresponding LSTM MAPEs
for 7 = 1, 7 = 12, and 7 = 24, respectively. The best
result for different clients and horizon 7 is different. However,
the proposed ensemble learning models all achieve the best
performance. Among all the results, BIRCH and HDBSCAN
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based models perform better, which achieve the lowest errors
comparing to others. Considering HDBSCAN is an improved
algorithm of DBSCAN, density-based algorithm HDBSCAN
and hierarchical algorithm BIRCH are superior to partitioning
algorithm K-means+-+, which suffers from outliers or noise,
in this case.

For all models, the MAPE of Client 1 is relatively high,
while the MAPE of all the other clients are all below 21. From
Fig. 10, we can see that in cluster one, there is no obvious trend
for this group of data, which might explain why this group
of data is difficult to forecast. It is extremely challenging to
accurately predict every client’s load due to different lifestyles
or activities. Classifying the clients and predict load by the
group is quite feasible as shown in this experiment.

V. CONCLUSION

In this paper, we proposed a novel ensemble learning
approach based on deep learning (i.e., LSTM) and unsuper-
vised learning (i.e., clustering) for load forecasting. In the first
level of learning, a set of LSTM models are generated by data
clusters. In the second-level learner, an FCC neural network
enhanced by a modified second-order optimization algorithm
fuses and improves the predictions by the first-level learners.
Superior performance was demonstrated by using two real-
world datasets for load forecasting at both the system and
client levels. Such accurate predictions can be very helpful
for energy management in the urban grid system.
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