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Abstract

We collect from several sources some of the most important results on the forward and back-
ward limits of points under real and complex rational functions, and in particular real and
complex Newton maps, in one variable and we provide numerical evidence that the dynamics
of Newton maps Nf associated to real polynomial maps f : R2 → R2 with no complex roots
has a complexity comparable with that of complex Newton maps in one variable. In particular
such a map Nf has no wandering domain, almost every point under Nf is asymptotic to a
fixed point and there is some non-empty open set of points whose α-limit equals the set of
non-regular points of the Julia set of Nf . The first two points were proved by B. Barna in the
real one-dimensional case.

Keywords : Newton’s Method; Barna’s Theorem; Discrete Dynamical Systems; Attractors;
Repellors; Iterated Function Systems.

1. INTRODUCTION

One of the most natural ways to understand the
behavior of a continuous surjective map f of a
compact manifold M into itself is studying the
asymptotics of the forward and backward orbits

of the points of M under f . Among the simplest

things that can happen is that there is some finite

number of attracting fixed points ci such that the

sequence of iterates {fn(x)} converges to one of

them for almost all x ∈ M (with respect to any
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R. De Leo

measure equivalent to the Lebesgue measure on
each chart) and that, again for some full mea-
sure set, the sets f−n(x) converge, in some suitable
sense, to the set of points whose forward iterates do
not converge to any ci. In other words, the action
of f on M is, asymptotically, to thicken points
near the ci while, at the same time, thinning them
out near the boundaries of the basins of attrac-
tion of the ci. We call functions with such behavior
plain.

While the large diversity and complexity of
behaviors of continuous maps of a manifold M into
itself suggests that in the general case the situation
is much more complicated, it was a surprising dis-
covery that the same is true even in case of very ele-
mentary maps such as quadratic polynomials in one
variable (e.g. the logistic map) or piecewise linear
polynomials in one variable (e.g. the tent map) —
see Refs. 1–4 and the references therein for a large
panorama of the old and recent advances in this
field.

Since being plain does not seem frequent among
continuous functions, it is particularly important
singling out properties that identify families of func-
tions that behave so nicely under iteration. A large
source of them is given by the rational maps com-
ing from complex Newton’s method. Consider, for
instance, the case of the complex polynomial f(z) =
z3−1, whose Newton map Nf : CP

1 → CP
1 is given

by Nf (z) = 2z3+1
3z2 . It is well known that Nf has

exactly three attractors, the cubic roots of the unity,
and one repellor, namely the Julia set of Nf (see
Fig. 1, top), which means that Nf is plain. Note
that the situation can get more complicated even
with different polynomials of same degree: as it was
shown first numerically by Sullivan et al.,5 in the
space of all complex cubic polynomials there is a
set of non-zero Lebesgue measure for which there
exist attracting k-cycles, k ≥ 2, and, for each of
these polynomials, the basin of attraction of such
attracting cycle has measure larger than zero (see
Fig. 2, top).

While the dynamics of Newton maps on the com-
plex line has been deeply and thoroughly studied
over the last 40 years, especially in connection with
the general problem of the dynamics of complex
rational maps in one variable initiated exactly 100
years ago by Julia6 and Fatou,7–9 in comparison
almost nothing has been done in the more gen-
eral case of Newton maps on the real plane. The
main aim of this paper is to attract the attention of
the dynamical systems community to this topic by

providing numerical evidence that Newton’s maps
on the real plane relative to generic polynomials
with only real roots are (weakly) plain.

2. PRELIMINARIES

The following concepts are central for this paper.

Definition 1. Let (M,µ) be a compact manifold
with a measure µ belonging to the Lebesgue mea-

sure class, namely a measure equivalent to the
Lebesgue measure on any chart, and let f be a
surjective continuous map of M into itself. The
ω-limit of a point x ∈ M under f is the (closed)
set of the accumulation points of its forward orbit
{x, f(x), f(f(x)), . . .}, namely

ωf (x) =
⋂

n≥0

⋃

m≥n

{fm(x)},

while its α-limit is the (closed) set of the accumula-
tion points of the sequence of preimages of x under
f , namely

αf (x) =
⋂

n≥0

⋃

m≥n

{f−m(x)}.

The ω- and α-limits of a set are defined similarly.
The forward (respectively, backward) basin Ff (C)
(respectively, Bf (C)) under f of a closed invariant
subset C ⊂ M is the set of all x ∈ M such that
ωf (x) ⊂ C (respectively, αf (x) ⊂ C). Following
Milnor,10 we say that a closed subset C ⊂ M is an
attractor (respectively, repellor) for f if:

(1) Ff (C) (respectively, Bf (C)) has strictly posi-
tive measure;

(2) there is no closed subset C ′ ⊂ C such that
Ff (C) (respectively, Bf (C)) coincides with
Ff (C ′) (respectively, Bf (C ′)) up to a null set.

Finally, we say that f is plain if it has a finite num-
ber of attracting fixed points ci, i = 1, . . . , N , so
that:

(i)
⋃N

i=1 Ff (ci) = M\J is a full measure set;
(ii) the set of x ∈ M such that αf (x) = J is a full

measure set.

If (ii) holds at least for a set of positive measure,
then we say that f is weakly plain.

Remark 1. Conditions (i) and (ii) imply that a
plain map cannot have any other attractor/repellor
besides the ci and J .
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Remark 2. While ω-limits of discrete systems have
been thoroughly studied, at least in one (real and
complex) dimension, relatively very little has been
done to date for α-limits (see Ref. 11 for a discussion
on this topic).

Throughout this paper we will endow all mani-
folds M , as above, with a measure µ belonging to
the Lebesgue measure class. Notice that all mea-
sures within the Lebesgue measure class of M have
the very same null sets so that, since all our state-
ments relative to measures of sets are about whether
some set or its complement have zero or positive
measure, our results do not depend on the particu-
lar measure used within this class. By a slight abuse
of notation, we will refer to such a measure as the

Lebesgue measure on M . The Hausdorff measures
induced on the spheres S

n by their round metric,
namely the angular distance between points, are an
example of such measures.

Finite attractors and repellors play a major role
in this theory.

Definition 2. A periodic orbit (or k-cycle) γ is a
non-empty finite set of k points minimally invariant
under f , namely that cannot be decomposed into
the disjoint union of smaller invariant sets. A 1-cycle
is also called a fixed point.

Example 1. Consider the map f of the Riemann
sphere CP

1 into itself given by f([z :w]) = [2z :w].
The only invariant proper sets of f are the two fixed
points, the south pole S = [0 : 1] (repellor) and the
north pole N = [1 : 0] (attractor). Clearly ωf (x) =
N for all x but S and αf (x) = S for all x but N ,
so that Ff (N) = CP

1\{S} and Bf (S) = CP
1\{N}.

In particular, f is plain.

The following sets are of fundamental importance
in the dynamics of a continuous map.

Definition 3. Given a compact manifold M and a
continuous map f :M → M , the Fatou set Ff ⊂ M
of f is the largest open set over which the family of
iterates {fn} is normal, namely the largest open set
over which there is a subsequence of the iterates of
f that converges locally uniformly. The complement
of Ff in M is the Julia set Jf of f . Finally, when f
is differentiable we denote by Zf the set of points
x ∈ M where its Jacobian Dxf is degenerate.

In this paper, we focus on the case of rational
functions so, from now on, we will restrict all our
definitions and statements to this case.

Theorem 1 (Refs. 6 and 7). Let f : CP
1 → CP

1

be a rational map of degree larger than 1. Then:

(1) Ff contains all basins of attractions of f ;
(2) Both Jf and Ff are forward and backward

invariant and Jf is the smallest closed set with

more than two points with such property;
(3) Jf is a perfect set;
(4) Jf has interior points if and only if Ff = ∅;
(5) Jf = Jfn for all n ∈ N;
(6) Jf is the closure of all repelling cycles of f ;
(7) ωf (z) = Jf for a generic point z ∈ Jf ;
(8) αf (z) = Jf for every point z ∈ Jf ;
(9) ∂Ff (γ) = Jf for every attracting periodic

orbit γ;
(10) The dynamics of the restriction of f to its Julia

set is highly sensitive to the initial conditions,
namely f |Jf

is chaotic.

Remark 3. The possibility that Jf = CP
1 in point

(4) above does take place. Two well-known exam-
ples of functions with empty Fatou set are the

Lattès example12 p(z) = (z2+1)2

4z(z2−1)
, related to the the-

ory of Elliptic functions (see Ref. 13), and q(z) =
(z−2)2

z2 (see Ref. 13 and Corollary 6.2.4 in Ref. 14).

In general, Ff = ∅ if and only if ωf (z) = CP
1 for

some z (see in Ref. 13, Theorem 4.3.2).

Remark 4. As soon as f has more than two
attracting fixed points, Jf must have a fractal
nature since, by point (9) above, all of its points
belong to the boundary of more than two basins of
attraction. In other words, in this case all basins of
attraction have the Wada property15 (see Ref. 16
and Sec. 4.1 of Ref. 17 for a series of examples and
pictures of fractal Julia sets of polynomial, rational
and transcendental complex maps).

Example 2. Consider the map f(z) = z2 and
denote by E, L and U respectively the equator

{|z| = 1}, the lower hemisphere {|z| < 1} and the
upper hemisphere {|z| > 1} ∪ {N}.

If z ∈ L (respectively, U), then {fn} converges
uniformly in some neighborhood of z to the constant
map z �→ S (respectively, z �→ N), so L = Ff (S) ⊂
Ff (respectively, U = Ff (N) ⊂ Ff ), namely f has
exactly two attractors (the south and north poles)
and Ff is the disjoint union of their basins. On the
contrary, if z ∈ E, then for any neighborhood of z
there will be some point converging to N and some
point converging to S under {fn}, so the family is
not normal and Jf = E.
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Notice that, as claimed by the theorem above,
∂Ff (N) = ∂Ff (S) = Jf and that f |Jf

is the
doubling map on the circle, a classic example of
chaotic map. Finally, notice that Jf is also the
only repellor of f and that its basin is given by
Bf (Jf ) = CP

1\{S,N}. In particular, f is plain.

Notice that the north and south poles in the
example above both have a finite α-limit set: the
only point in their preimages is themselves. This
exceptional behavior can happen at most at two
points for any complex rational map of degree two
or more (see point (2) above and in Ref. 13, Theo-
rem 4.2.2). The fact that the α-limit of every other
point is Jf is a general result very useful in numer-
ical exploration of Julia sets.

Theorem 2 (Ref. 8, see also in Ref. 18, Theo-
rem 6.1 and Lemma 6.3). Let f : CP

1 → CP
1 be

a rational map of degree larger than 1. Then for all

z ∈ CP
1, with at most two exceptions, αf (z) ⊃ Jf .

Moreover, αf (z) = Jf if and only if z belongs to

either Jf or to the basin of attraction of a root

of f (except the root itself if it does not belong

to Jf ). More generally, if E ⊂ CP
1 is a closed

set disjoint from ωf (Ff ), then the sequence of sets

En = f−n(E) converges uniformly to Jf .

Corollary 1. Let f : CP
1 → CP

1 be a rational map

of degree larger than 1 whose only attractors are its

fixed points and whose Julia set has measure zero.

Then f is plain.

Theorem 2 is reminiscent of what happens in case
of hyperbolic Iterated Function Systems.

Definition 4. A Iterated Function System (IFS) I
on a metric space (X, d) is a semigroup generated by
some finite number of continuous functions fi : X →
X, i = 1, . . . , n. We say that I is hyperbolic when
the fi are all contractions. The Hutchinson operator
associated to I is defined as H(A) =

⋃n
i=1 fi(A),

A ⊂ X.

Theorem 3 (Refs. 19 and 20). Let I be a hyper-

bolic IFS on X. Then there exists a unique non-

empty compact set K ⊂ X such that H(K) = K.

Moreover, limn→∞Hn(A) = K for every non-empty

compact set A ⊂ X.

In the simplest cases, like Example 2, the naive
idea is that ultimately the map f is a contraction
close to its attractors while its inverses {w1, . . . , wd}
(in case of complex rational maps, as many as their
degree) are contractions close to its repellor (in

the example above, the Julia set of f), which sug-
gests that the Julia set can be found as the unique
invariant compact set of the IFS defined by the
wi. Indeed, in Sec. 7.3 of Ref. 21, Barnsley shows
through an example how to apply these ideas to
Julia sets of rational maps, namely how to write
a Julia set as the invariant compact set of an IFS
(notice that this important point of view is seldom
mentioned in the literature about the dynamics of
complex rational maps). In the real case the number
of preimages, even taking into account multiplicity,
is not the same for every point and it seems unlikely
to be able to build in general an IFS out of them
but, nevertheless, Barnsley’s result shows that the
invariant set for an open map f under mild con-
ditions can be obtained as the limit of its inverse
images.

A similar result, weaker but much more general,
was stated by Barnsley (see Sec. 7.4 of Ref. 21)
in the setting of continuous maps between metric
spaces.

Theorem 4 (Ref. 21). Let (Y, d) be a com-

plete metric space and X a compact non-empty

proper subset of Y . Denote by K(X) the set of the

non-empty compact subsets of X endowed with the

Hausdorff distance h (recall that h makes K(X) a

complete metric space). Assume that one of the fol-

lowing conditions is satisfied :

(1) f :X → Y is an open map such that f(X) ⊃ X;
(2) f :Y → Y is an open map such that f(X) ⊃ X

and f−1(X) ⊂ X.

Then the map F :K(X)→K(X) defined by F (K) =
f−1(K) is continuous, {Fn(K)} is a Cauchy

sequence, its limit K0 = lim Fn(X) ∈ K(X) is a

repellor for f and it is equal to the set of points

that never leave X under the action of f .

A useful algorithm based on these ideas was
extracted by Hawkins and Taylor22 from a Barnsley
algorithm introduced in Ref. 21 for certain types of
hyperbolic rational maps.

Definition 5. Let f : CP
1 → CP

1 be a rational map
of degree d > 1. Given a point z0 ∈ CP

1, we call
backward orbit of z0 any sequence ζz0

= {zi}i∈N

such that f(zi) = zi−1 for all i. We endow the
space of all backward orbits of z0 with the equidis-
tributed Bernoulli measure ν, namely the measure
of the set of all sequences ζz0

with first k elements
{z0, z1, . . . , zk} is d−(k+1).
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Based on a fundamental result of Freire, Lopes
and Mañé,23 Mañé24 and, independently, Lyu-
bich,25 Hawkins and Taylor were able to prove the
following.

Theorem 5 (Ref. 22). Let f : CP
1 → CP

1 be a

rational map of degree larger than 1 and z0 a non-

exceptional point. Then, for ν-almost all backward

paths ζz0
, the set of limit points of ζz0

is equal to Jf .

Going back to forward dynamics, since contin-
uous function maps preserve connectedness, every
complex rational map f induces a mapping of the
connected components of Ff in themselves whose
dynamics tells us what happens to the points of the
Fatou set under iterations.

Theorem 6 (Ref. 26). Let f : CP
1 → CP

1 be a

rational map of degree larger than 1. Then every

connected component of Ff ends up in a finite time

inside a connected component V of one of the fol-

lowing types:

(1) an attracting basin, namely V contains an

attracting periodic point z0 of some period

N ≥ 1 such that limn→∞ fnN(z) = z0 for all

z ∈ V ;
(2) a parabolic basin, namely ∂V contains an

attracting periodic point z0 of some period

N ≥ 1 such that limn→∞ fnN(z) = z0 for

all z ∈ V ;
(3) a Siegel disc, namely f |V is conformally conju-

gate to an irrational rotation of the unit disc;
(4) a Arnold-Herman ring, namely f |V is confor-

mally conjugate to an irrational rotation of an

annulus of finite modulus.

Note that, in case of general entire maps, there
might be countably many disjoint connected com-
ponents Wn of the Fatou set such that f(Wn) ⊂
Wn+1. Such sets are called wandering domains and
the fact that they cannot arise for rational maps is
one of the most important contents of Sullivan’s the-
orem above, often called Non Wandering Domain

Theorem.
The general picture in the real case is much more

complicated. Even the simplest non-trivial case of
unimodal maps on the interval, namely smooth
maps from a closed interval into itself with a sin-
gle critical point, whose rigorous study was started
by Milnor and Thurston27 after the seminal paper
on the logistic map by biologist May,28 has been
fully understood only very recently thanks to fun-
damental contributions by Avila (see the survey by
Lyubich3 and the references therein).

We notice, first of all, that the characterization
of the Julia and Fatou sets is weaker than in the
complex case because real maps are not necessarily
open.

Theorem 7 (see Chap. 5 of Ref. 29). Let

f : RP
1 → RP

1 be a generic analytical function and

denote by γi the attracting cycles of f and by Wi

the set of wandering intervals of f, namely those

intervals whose iterates are all disjoint and that do

not converge to a cycle. Then:

(1) Ff is backward invariant ;
(2) Jf is forward invariant ;
(3) Ff = ⊔iF(γi) ⊔j Wj;
(4) Jf = αf (Zf );
(5) Jf contains the closure of the set of repelling

points of f ;
(6) f |Ff

is almost open in the sense that, if we

denote by Ui the connected components of Ff ,
then f(Ui) ⊂ Uj for some j if Ui ∩ Tf = ∅ and

f(Ui) ⊂ U j for some j otherwise.

One of the most general results on maps RP
1 →

RP
1 is the following generalization of Sullivan’s

Non-Wandering Domain theorem4,29,30:

Theorem 8 (Ref. 30). Let f : RP
1 → RP

1 be a

generic non-invertible C2 map. Then:

(1) every connected component of Ff falls, in a

finite time, in a periodic component;
(2) there are only finitely many periodic compo-

nents of Ff .

Moreover, for almost all x ∈ RP
1, the set ωf (x) is

of the following three types:

(i) a periodic orbit ;
(ii) a minimal Cantor set ;
(ii) a finite union of intervals containing a critical

point.

Remark 5. Note that just in 2016 Astorg et al.

showed31 that this result is sharp in the sense that,
both in the real and complex case, there are polyno-
mial maps KP

2 → KP
2, K = R or C, which admit

wandering domains.

In spite of an extraordinary number of articles
and books devoted to the study of rational maps
CP

1 → CP
1 in the last forty years, very few have

been dedicated to the general study of arguably
the most natural generalization of them, namely
rational maps RP

2 → RP
2. Among the few excep-

tions are the study of Julia sets of dianalytic maps
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by Hawkins et al.32–34 and of the dynamics of a
particular family of birational maps by Bedford and
Diller.35–37 A similar situation holds in the sub-
case of Newton maps, that are the subject of this
paper.

Definition 6. Let p be a polynomial in one variable
over real or complex numbers. We call Newton map

associated to p the rational map

Np(z) = z − p(z)/p′(z).

The Newton’s method for finding the root of a
function (e.g. see Refs. 38 and 39), of paramount
importance in the Numerical Analysis field, is based
on the elementary facts that, for a generic function
p, the following holds: (1) the set of the roots of p
coincides with the set of (bounded) fixed points of

Np; (2) all of these fixed points are attracting (in
fact, super-attracting). Hence iterations of Np lead
naturally to a root of p when the initial point is
chosen close enough to it — see Refs. 39 and 40
for a very general classical proof of this fact in the
context of Banach spaces and Ref. 41 for a clever
algorithm to retrieve all roots of a complex polyno-
mial based on strong general results of holomorphic
dynamics.

Newton maps of complex polynomials are quite
special rational functions: for instance, the point at
infinity is always a fixed repelling point for them.
The following theorem42 provides a full characteri-
zation for them.

Theorem 9 (Ref. 42). Every rational map

f : CP
1 → CP

1 of degree d with d distinct

Fig. 1 Basins of attraction (left) and Julia set (right) of the Newton maps associated to p(z) = z3 − 1 in the square [−2, 2]2

(top row) and q(z) = z3 − 2z + 2 in the square [−1.5, 1.5]2 (bottom row). We assigned a color to each root so that all points
belonging to a root’s basin have been plotted with that same color. The interiors of the black islands that appear in case of
q do not belong to Jq (see point (3) of Theorem 1) but rather correspond to Fatou components of points that are attracted

to a non-trivial cycle rather than any of q’s roots (equivalently, they are attracting basins of some root of fk for some k > 1).
The right column shows an approximation of the α-limit set of the point z0 = 5 + i at the 10th recursion level.
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Conjectures About Simple Dynamics for Some Real Newton Maps on R
2

superattracting fixed points is conjugate, via a

Mobius transformation, to the Newton’s map Np of

a polynomial p of degree d. If ∞ is not superattract-

ing for f and f(∞) = ∞, then f = Np.

Correspondingly, their Fatou and Julia sets have
special properties (e.g. see Ref. 43).

Theorem 10. Let p be a polynomial with complex

coefficients. Then:

(1) JNp has empty interior ;
(2) JNp is connected ;
(3) All connected component of FNp are simply

connected ;
(4) FNp has no Arnold-Herman rings;
(5) JNp = αNp(ZNp);
(6) All immediate basins Bi of the roots of p,

namely the connected components of FNp con-

taining those roots, are unbounded (i.e. ∞ ∈
∂Bi);

(7) ∞ is a repelling fixed point for Np.

Notice that it is enough to consider polynomials
of degree three in order to find cases of Newton
maps with parabolic basins and Siegel discs (e.g.
see Sec. 3.2 of Ref. 43), although there seem to be
no concrete example available in literature.

Corollary 2. Let p be a generic complex polyno-

mial of degree n with roots R = {c1, . . . , cn} and

such that Np has no Siegel domains or attracting

k-cycles for k ≥ 2 and JNp has Lebesgue measure

zero. Then αNp(ci) = JNp ∪ {ci}, i = 1, . . . , n, and

αNp(z) = JNp for any other point. Equivalently,

B(JNp) = CP
1\R and B(JNp ∪ R) = CP

1. In

particular, Np is a plain map.

Example 3. This is the case of the Newton maps
associated to the polynomials p(z) = zn − 1. Con-
sider again, for instance, the case of p(z) = z3 − 1,

so that Np(z) = 2z3+1
3z2 (see Fig. 1, top). Np has

exactly three attractors, the three roots of unity
ui, i = 1, 2, 3. There cannot be attracting cycles
other than these fixed points because, by Theo-
rem 11, if there were one then a critical point of
Np should converge to it, but for this map ZNp

coincides with the set of zeros of Np. Each for-
ward basin Fp(ui) is the disjoint union of countably
many simply connected open sets and the boundary

∂Fp(ui) = Fp(ui)\Fp(ui) of each of them is equal
to the Julia set Jf .

The Julia set is the only repellor of Np

and Bp(Jf ) = CP
1\{u1, u2, u3}. In fact, the

equation Np(w) = z has always three solu-
tions (taking into account multiplicity) and this
defines three meromorphic functions wi so that
N−1

p (z) = {w1(z), w2(z), w3(z)}. Following Barns-
ley (see Sec. 7.3 of Ref. 21), we can restrict the wi

to the complement of some open neighborhood of
the roots of p, so that the Iterated Function System
generated by these restrictions has a unique attrac-
tor, which coincides with JNp .

In this paper, we are mostly interested in the size
of the set of points that do not converge to any root.
Buff and Chéritat showed that there are complex
quadratic polynomials whose Julia set has positive
measure.44,45 As a consequence of a deep study by
Lei Tan on the dynamics of complex Newton maps
coming from cubic polynomials,46 we know that the
Julia set of any quadratic polynomial can be found
in the Julia set of the Newton map of a suitable
cubic polynomial and therefore there are Newton
maps on CP

1 whose Julia set has measure larger
than zero,43 although no concrete example appears
in literature so far. On the other side, the follow-
ing theorem allows to find easily the existence of
non-trivial attracting periodic cycles, whose pres-
ence also causes the set of non-converging points to
be of non-zero measure.

Theorem 11 (Fatou). If a rational map f :
CP

1 → CP
1 has an attracting periodic cycle, then

the orbit of at least one of its critical points will

converge to it.

When p has degree 1 or 2, the set of non-
converging points has trivially measure zero: in the
first case, Nn

p (z) converges to the root for all z ∈ C;
in the second, JNp is diffeomorphic to a circle and
the Fatou set is the disjoint union of two discs, each
of which is the immediate basin of one of the two
roots. In the first non-trivial case, when p has degree
3, it was found first numerically by Curry, Garnett
and Sullivan5 that there are such polynomials whose
Newton map Np has attracting orbits with period
larger than 1 (see Fig. 2, top). This means that, even
for such simple Newton maps, there is an open set
of points (hence with measure larger than zero) that
does not converge to any root. A simple example of
such polynomials is q(z) = z3 − 2z + 2 (see Fig. 1,
bottom).

Of course the restriction of complex polynomials
with real coefficients to the real line provides exam-
ples of dynamics of real Newton maps on RP

1, so
the example above shows that such behavior also
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R. De Leo

Fig. 2 Top: ω-limit of the origin under the Newton map of fA(z) = z3 + (A − 1)z − A for values of A in the square
[−2.3, 1.7]× [−2, 2] of the complex plane (left). For most values of A, the origin converges to one of the three roots but there is
a non-zero volume set of values (black points) for which the origin converges to a non-trivial attracting cycle. The zoom (right)
shows that the connected components of this set are the celebrated Mandelbrot fractal. Bottom: Newton method applied to
two intrinsically complex functions. On the left, f is the real version of the polynomial p(z) = z3−1 but the complex structure
has been modified so that the imaginary unit is represented by the vector (1, 1) rather than (0, 1). On the right, the function
is ψ∗f , where ψ(x, y) = (x, y + x2) and f is the real version of the polynomial p(z) = z2 − 1.

takes place in the real case (e.g. see Fig. 1, bot-
tom). It is, therefore, non-trivial and particularly
interesting the following result found by Barna,47

way before the explosion of work on complex holo-
morphic dynamics.

Theorem 12 (Ref. 47). Let p be a generic real

polynomial of degree n ≥ 4 without complex roots

and denote by c1, . . . , cn its roots and by Np : RP
1 →

RP
1 its Newton map. Then:

(1) FNp =
⋃n

i=1 F(ci);
(2) FNp has full Lebesgue measure;
(3) Np has no attracting k-cycles with k ≥ 2;
(4) Np has repelling k-cycles of any order k ≥ 2;
(5) JNp is equal, modulo a countable set, to a Can-

tor set ENp of Lebesgue measure zero.

Remark 6. In fact, it is more generally true that
the, for any complex polynomial p with all its roots
{c1, . . . , cn} simple and real, FNp =

⋃n
i=1 F(ci) has

full Lebesgue measure in CP
1 (Theorem 1.27 of

Ref. 48). Even more generally, JNp ⊂ CP
1 is a set

of Lebesgue measure zero if all critical points of Np

converge to attracting, repelling or neutral rational
cycles (Theorem 1.26 of Ref. 48). For example, this
last theorem covers all polynomials pn(z) = zn − 1,
n = 2, 3, . . . , showing that all the pn are plain.

To our knowledge, the only result in literature
about α-limits of maps on RP

1 is that Jf = αf (Zf )
(see Theorem 7). It is reasonable, though, to believe
that this property extends to almost all points of
RP

1, leading to the following.
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Conjectures About Simple Dynamics for Some Real Newton Maps on R
2

Conjecture 1. Let p be a generic real polynomial

of degree n ≥ 4 without complex roots. Then its

Newton map Np : RP
1 → RP

1 is plain.

About 30 years later, Barna’s work was revis-
ited independently in the same year by Saari and
Urenko,49 Wong50 and Hurley and Martin51 lead-
ing, in particular, to the following important results.

Theorem 13 (Ref. 50). A sufficient condition for

Barna’s theorem to hold is that the polynomial p has

no complex root and at least four distinct real roots,
possibly repeated.

Theorem 14 (Ref. 49). Let p be a generic real

polynomial of degree n ≥ 3, Ap the collection of

all bounded intervals in R\Zp and Ap the set of all

sequences of elements of Ap. Then the restriction

of Np to the Cantor set ENp is semi-conjugate to

the one-sided shift map S on Af , namely there is a

surjective homomorphism hp : ENp → Ap such that

T ◦ hp = hp ◦ Np.

Theorem 15 (Ref. 51). Let p be a generic real

polynomial of degree n ≥ 3. Then Np has at least

(n − 2)k k-cycles for each k ≥ 1 and its topological

entropy is at least log(n − 2).

Remark 7. The theorem by Saari and Urenko
actually holds for the much larger class of
“polynomial-like” functions and similarly happens
for the Hurley and Martin theorem (see Refs. 49
and 51 for details).

Despite the depth and interest of these results for
Newton maps on the real line, no attempts to mul-
tidimensional generalizations of Barna’s theorem
appear in literature. In Sec. 3, we present numeri-
cal evidence showing that a similar statement might
hold in higher dimension, or at least on the real
plane.

3. NEWTON MAPS ON R
2

The Newton method extends naturally to much
more general settings than the real and com-
plex lines, from finite-dimensional linear spaces52

to Banach spaces39,40 to Riemannian manifolds.53

Moreover, since the map f �→ Nf leaves invariant
the subset of complex maps of R

2n into itself, in each
setting one can consider separately the real and the
complex case.

In this paper, we are only interested in the finite-
dimensional real case.

Definition 7. Let f : Kn → K
n, K = R or C, be a

polynomial map. We call Newton map associated to
f the rational map Nf : KP

n → KP
n defined by

Nf (x) = x − Dxf−1(f(x)).

In this paper, we will limit our discussion to the
case n = 2. Notice that very little, compared to the
one-dimensional case, is available in literature about
Newton’s method in R

2 or C
2. The complex case

has been recently investigated in a few papers by
Hubbard and Papadopol41 and by Hubbard’s pupil
Roeder,54,55 where they classify and study of the
case of quadratic polynomials. As expected, tech-
nical difficulties are much more challenging than
in dimension one. The real case was considered, to
the author’s knowledge, only by Peitgen, Prufer and
Schmitt16,56,57 about 30 years ago, mostly from the
point of view of identifying the best definition of
Julia set in the real multidimensional context, and
about 20 years ago by Miller and Yorke,58 that stud-
ied the size of attracting basins. In this work, we are
rather interested to a somehow transversal point of
view, namely we look for real polynomial maps of
the plane into itself whose Newton maps are plain.

3.1. Points of Indeterminacy

To start, notice that, unlike the case n = 1, when
n ≥ 2 a Newton map Nf has a non-empty finite set
If of points of indeterminacy, namely points where
Nf is undefined and cannot be extended continu-
ously to KP

n. This happens even when the roots
of f are simple (e.g. see Ref. 41). Because of this,
in the study of such maps in principle one has to
deal with the following situation: either restrict-
ing Nf to the complement of the set

⋃∞
i=0 f−i(If )

of all points that fall eventually on the points of
indeterminacy or using the blowup technique59,60 to
eliminate the singularities. Both points of view lead
to non-trivial situations: in the first case, we leave
the compact setting; in the second, we are led to an
infinite series of blowups that make the space quite
non-trivial (e.g. see Ref. 61 for a detailed construc-
tion of such set in case of the complexified Henon
map).

Example 4. In case of the Newton map of the com-
plex quadratic polynomial p(z) = z2 − 1, namely
Np(z) = (z2 + 1)/(2z), it was shown already in late
19th century independently by Schröder62,63 and
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R. De Leo

Cayley64,65 that JNp ⊂ CP
1 is the circle {Im(z) =

0}∪{∞} and there are exactly two basins of attrac-
tion, corresponding to the two roots ±1 of p. Writ-
ten in homogeneous coordinates, the Newton map
of the real version of p, namely f(x, y) = (x2−y2−1,
2xy), reads

Nf ([x : y : z]) = [x(x2 + y2 + z2) : y(x2 + y2 − z2) :

2z(x2 + y2)].

Corresponding to the fact that ∞ is a repelling fixed
point for Np, at infinity (namely for z = 0) Nf

restricts to the identity map and a direct calculation
in the chart y = 1, where the circle at infinity is
the x axis, shows that the Jacobian of Nf at each
infinity point is diagonal with eigenvalue 2, namely
repelling, in the z-direction.

The problem here is the behavior of Nf at the
origin: its complex version Np sends 0 to ∞ but,
passing from CP

1 to RP
2, the point at infinity is

blown up into a whole circle and it is not clear
a priori which point of that circle should be the
image of the origin via Nf . In this elementary case,
a single blowup is enough to resolve the singularity
at p: we extend Nf to the Klein bottle K obtained
by replacing a neighborhood U of the point p with
a corresponding neighborhood of the graph of the
map U\{p} → RP

1 sending a point q ∈ U into the
unique straight line passing through p and q. In con-
crete, we switch to the coordinates (x, u) = (x, y/x)
nearby p. In this chart, Nf can be written as

(x, u) → [x2(1 + u2) + 1 : u(x2(1 + u2) − 1)

: 2x(1 + u2)]

and so, at x = 0, it extends to the smooth ratio-
nal map u → [1 : −u : 0]. Note that the topological
degree of this map is non-zero, corresponding to the
fact that it is impossible to extend Nf to p contin-
uously in RP

2.
Denote by N̂f : K → RP

2 the above extension of
Nf . While now it is clear what happens at p, we cre-
ated the same problem at two other points, namely

f−1(p) = {[1 : 0 : 1], [0 : 1 : 1]}, since N̂f would send
them to the point p but we replaced it by a circle.
Of course this can be fixed by a couple of blowups
at those points but this would just move the prob-
lem at their preimages and so on. Hubbard et al.

show in Ref. 61 how to proceed with such recur-
sive construction and finally get a compact space
on which Nf can be extended without singularities
but this process is way beyond the scope of this

paper. To us it is enough to notice that the projec-
tions on RP

2 of the trajectories of points belonging
to those blown-up circles under some globally reg-
ular extension Ñf coincide with the trajectory of
the corresponding point on RP

2 under Nf and so

all those circles belong to the Julia set of Ñf .

The example above shows that, in order to under-
stand the dynamics of Nf , we do not really need
to build a global regular extension but rather it is
enough to study its regular extensions at the points
of indeterminacy. In the case above, the only point
of indeterminacy of Nf belongs to the Julia set
because the projection of any orbit of the extension
N̂f passing over it ends up in the circle at infin-
ity, whose points are all fixed and repelling (notice

that the behavior of N̂f is completely determined
by Nf by continuity). Hence, the Julia set in RP

2

of the real version of the complex Newton map of
the polynomial p(z) = z2 − 1 is the wedge sum of
two circles: the x axis and the circle at infinity. In
Example 5, we will show a case of point of indeter-
minacy belonging to the Fatou set.

In general, given a point of indeterminacy x0 of
a Newton map Nf : RP

2 → RP
2 and an algebraic

extension N̂f : X → RP
2 with projection π : X →

RP
2 resolving the indeterminacy at x0, we assign x0

to FNf
if N̂f (π−1(x0)) ⊂ FNf

; otherwise, we assign

it to JNf
.

3.2. Intrinsically Complex Maps

Let us consider now the case of real Newton maps
whose dynamics are essentially covered by the stan-
dard theory of the complex case. From a real point
of view, complex differentiable maps f : C → C are
just real differentiable maps fR : R2 → R

2 whose
Jacobian DfR commutes with the (imaginary unit)
matrix

J =

(

0 1

−1 0

)

or, equivalently, for which fR we have that

DfR =

(

α β

−β α

)

for some α, β ∈ C0(R2). Clearly there is nothing

special about the matrix J ; that is, any matrix Ĵ
with Ĵ2 = −12 defines an equivalent complex struc-
ture on R

2 where complex maps are differentiable
maps fR whose Jacobian commutes with Ĵ .
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Conjectures About Simple Dynamics for Some Real Newton Maps on R
2

Even more generally, recall that an almost com-
plex structure on a smooth manifold M is given by
a section J :M → T (1,1)M of the bundle of vec-
tor bundle morphisms of TM into itself such that
J2

x = −12 for every x ∈ M . On a general mani-
fold not all almost complex structures give rise to
a global complex one but, for purely dimensional
reasons, this is instead the case on the plane.

Definition 8. We say that f : R2 → R
2 is intrinsi-

cally complex if it is an almost complex map with
respect to an almost complex structure J , namely
if there exists an almost complex structure J such
that Dxf ◦ Jf(x) = Jx ◦ Dxf for every x ∈ R

2.

Clearly all theorems of holomorphic dynamics
apply to real intrinsically complex maps.

Proposition 1. Let f : R2 →R
2 be a smooth intrin-

sically complex map. Then exactly one of the follow-

ing holds:

(1) f enjoys all topological properties that hold in

holomorphic dynamics (in particular, its Julia

set is non-empty and it is equal to the boundary

of any of the basins of its attracting cycles).
(2) f is conjugate via a diffeomorphism to a rota-

tion about a fixed point.

(3) {fn} converges to a constant function uni-

formly on compact sets.

Note that, in the last two cases, Jf is empty.

Proof. This is an immediate consequence of a
few important results: the integrability of all
almost complex structures in dimension 2,66 the
Uniformization Theorem and the Denjoy–Wolff
Theorem.17 By the first, every almost complex
structure gives rise to a complex structure, so that
every almost complex map, namely every map f
that preserves the almost complex structure, is a
complex map with respect to the corresponding
complex structure. By the second, this complex
structure must be diffeomorphic to one of the fol-
lowing two inequivalent ones: either the standard
one on the plane or the standard one on the unit
open disc. In the first case, f is smoothly conju-
gate to a standard complex function and therefore
all topological results of holomorphic dynamics also
apply to it. In the second case, f is conjugate to a
holomorphic map of the unit disc in itself and, by
the Denjoy–Wolff Theorem, this means that it is
either conjugate to a (hyperbolic) rotation or its
iterates converge, uniformly on compact sets, to a
constant function.

Newton maps are natural with respect to linear
transformations, namely Nψ∗f = ψ∗Nf for every
linear map ψ : R2 → R

2 (e.g. see Ref. 67), where
ψ∗f = ψ−1fψ and similarly for Nf . In other words,
the Newton map Nf of every intrinsically com-
plex map f that is complex with respect to a con-

stant almost complex structure is the pull-back of
a complex Newton map. In particular, those New-
ton maps have all properties of complex Newton
maps in one variable, the only difference being
that the point at infinity is replaced by a circle on
which the Newton map is the identity. For instance,
Fig. 2 (bottom, left) shows the Fatou components
and Julia set of the real version of the polynomial
p(z) = z3 − 1 with respect to the complex structure
where the imaginary identity is represented by the
vector (1, 1) rather than the standard (0, 1) (com-
pare with the one relative to the standard structure
in Fig. 1, top), corresponding to the constant almost
complex structure

J =

(

1 −2

1 −1

)

.

For a general diffeomorphism ψ, though, Nψ∗f 
=
ψ∗Nf , namely the Newton map of an intrinsically
complex map is not necessarily an intrinsically com-
plex map, as the example below shows.

Example 5. Consider again the map f(x, y) =
(x2 − y2 − 1, 2xy) of Example 4. Under the diffeo-
morphism ψ(x, y) = (x, y + x2), f transforms into

ψ∗f(x, y) = ψ−1fψ(x, y) = (x2 − (y + x2)2

− 1, 2x(y + x2)− (x2 − (y + x2)2 − 1)2),

which is a complex map with respect to the almost
complex structure

J(x,y) =

(

−2x −1

1 + 4x2 2x

)

.

Clearly ψ∗f and f enjoy the same dynamical and
topological properties but, on the contrary, ψ∗Nf

and Nψ∗f turn out to be very different. Let us give a
closer look to their Fatou sets. The restriction to R

2

of the Fatou set of Nf is the union of two connected
components, the left and right half-planes separated
by the Julia set, the line x = 0. Since ψ leaves the
line x = 0 invariant, the Fatou and Julia sets of
ψ∗Nf coincide with those of Nf , namely it is the
wedge sum at [0 : 1 : 0] of the circle {x = 0} (the
imaginary axis) with the circle at infinity {z = 0}.
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R. De Leo

Let us consider now Nψ∗f . A direct calculation
shows that

Nψ∗f ([x : y : z]) = [zp(x, y, z) : 2q(x, y, z)

: 2z7(x2z2 + (x2 + yz)2)],

where p and q are, respectively, homogeneous poly-
nomials of order 10 and 11 with p(x, y, 0) = x10

and q(x, y, 0) = x11 and neither p nor q contain a
term in z only. Hence Nψ∗f ([x : y : 0]) = [0 : 1 : 0]
for every [x : y : 0] 
= [0 : 1 : 0] while it is unde-
fined at [0 : 1 : 0]. Note that the third component
of Nψ∗f ([x : y : z]) can be zero only when z = 0
or x = y = 0 so there are exactly two points of
indeterminacy: the point at infinity above and the
origin [0 : 0 : 1].

We have already seen in Example 4 the reason
behind the indeterminacy of the origin. The inde-
terminacy at [0 : 1 : 0] is more interesting. Numerics
suggest the presence of three basins of attraction:
the ones shown in red and blue in Fig. 2 (bottom,
right) are the basins relative to the two roots of
ψ∗f , namely (±1, 1), while the points in the white
basin converge at infinity to [0 : 1 : 0]. Of course
an attracting point where the map is undefined is a
quite unsatisfactory situation. A direct calculation
in the projective chart y = 1, where the circle at
infinity is represented by the x axis and the point
of indeterminacy by the origin, shows that we need
two blowups to resolve this singularity: a first one
passing from coordinates (x, z) to (x, u = z/x) and
a second one from (x, v) to (x, v = u/x). The corre-
sponding extension is well-defined at (x, v) = (0, 0),
which is a fixed point. Moreover, its Jacobian at this
fixed point is equal to the zero matrix, so this point
at infinity is superattracting. Recall that infinity is,
on the contrary, always repelling for complex New-
ton maps.

We can now reformulate Lyubich Theorem (The-
orem 1.27) in Ref. 48 in our setting.

Theorem 16. Let f : R2 → R
2 be a polynomial

map with n simple real roots c1, . . . , cn which, with

respect to some constant almost complex structure,
is a complex polynomial p of degree n. Then:

(1) JNf
has Lebesgue measure zero;

(2) FNf
=

⋃n
i=1 F(ci);

(3) Nf has no wandering domains;
(4) FNf

has full Lebesgue measure;
(5) Nf has no attracting k-cycles with k ≥ 2;
(6) Nf is a plain map.

Note that a polynomial map f as in the hypothe-
ses of the theorem above has real degree n2 but can
have no more than n real solutions, since every of
its real solutions is a solution of the corresponding
complex polynomial equation. The list of properties
above suggests that having maximal number of real
roots within a given family of Newton maps grants
quite special properties. The main goal of this paper
is to provide evidence that the same is true among
the family of general polynomial maps of the plane
into itself.

Note finally that the condition of having maximal
number of real roots is not by any means necessary.
As pointed out in Remark 6, the same result holds,
for instance, for all real maps corresponding to the
complex polynomials pn(z) = zn − 1. This is the
case, for example, of the real map f(x, y) = (x3 −
6xy2 + 4y3 − 1, y(3x2 − 6xy + 2y2)), whose basins
are shown in Fig. 2 (bottom, left).

3.3. The Semilinear Case

As already pointed out by Yorke et al. in Ref. 68,
complex maps (as well as intrinsically complex
ones) are very special among real maps and it is
not to be expected that their asymptotic behavior
is shared by general real maps. For instance, com-
plex polynomials of degree n, seen as real maps on
the plane, have both components of degree n and
have n roots (counted with multiplicity), while a
real polynomial map does not need to have compo-
nents of the same degree and the number of its roots
can be as large as the product of the degrees of the
components. From the dynamical point of view, as
pointed out by Peitgen et al. in Ref. 57, unlike in
the complex case, points at infinity can be attract-
ing for real Newton maps on the plane, even in case
of Newton maps of intrinsically complex ones (e.g.
see Example 5). In particular, the circle at infinity
is not necessarily contained inside the Julia set of a
real Newton map.

In fact, it is expected that the dynamics of gen-
eral real maps on the plane be more complicated and
diverse than the one of holomorphic maps. Even in
case of the logistic map fµ = µx(1 − x), µ ∈ [0, 4],
x ∈ [0, 1], arguably one of the most elementary non-
trivial real discrete one-dimensional dynamical sys-
tems, the dynamics can be highly non-trivial. For
instance, for a Cantor subset of parameters µ of
positive Lebesgue measure, the (unique) attractor
of fµ is a cycle of intervals whose basin has full mea-
sure and on which the dynamics is chaotic69,70 while
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Conjectures About Simple Dynamics for Some Real Newton Maps on R
2

for an open set of parameter values the attractor
is a periodic orbit.71 It is therefore natural to ask
whether, besides intrinsically complex ones, there
are other classes of real polynomial (and, more gen-
erally, rational) maps on the plane whose behavior
is comparable, if not simpler, to the one of holo-
morphic maps on the complex line. In this section,
we examine the case of a simple family of Newton
maps on the plane whose behavior is essentially one-
dimensional.

We call a map semilinear f : R2 → R
2 if it has

a linear component. We can always choose coordi-
nates (x, y) so that f(x, y) = (p(x, y), y). Its Newton
map is

Nf (x, y) =

(

x∂xp(x, y) + y∂yp(x, y) − p(x, y)

∂xp(x, y)
, 0

)

.

In particular, its image is one-dimensional and the
map can be re-written as

Nf (x, y) =

(

Npy(x) + y
∂yp(x, y)

∂xp(x, y)
, 0

)

,

where py(x) = p(x, y), so in particular the action of
Nf on the x-axis is given by

Nf (x, 0) = (Np0
(x), 0).

Hence Nf is essentially a one-dimensional New-
ton map: a point (x0, y0) converges to a root
(cx, 0) under Nf if and only if the x component of
Nf (x0, y0) converges to cx under Np0

. In turn, this

means that JNf
= N−1

f (Jp0
), which makes possible

to extend Barna’s theorem to these maps.

Theorem 17. Let f : R2 → R
2 be a generic semi-

linear polynomial map of degree n ≥ 4 with n simple

real roots c1, . . . , cn. Then:

(1) JNf
is the wedge sum of a Cantor set of circles

of Lebesgue measure zero;
(2) FNf

=
⋃n

i=1 F(ci);
(3) Nf has no wandering domains;
(4) FNf

has full Lebesgue measure;
(5) Nf has no attracting k-cycles with k ≥ 2;
(6) Nf has repelling k-cycles for all k ≥ 2.

Proof. Let pr1 : R2 → R be the projection on the
first component. For a generic semilinear map f , the
gradient of the map pr1 ◦ f is zero only in a finite
number of points and so the preimages through Nf

of null sets are null sets.72 Since JNf
= N−1

f (Jp0
)

and, by hypothesis, p0 satisfies the conditions of
Barna’s theorem (Theorem 12), then Jp0

is a null

set of R so that, for a generic f , JNf
is a null set of

R2. The preimage of each regular point of Nf is a
finite number of circles and so JNf

is a Cantor set of
circles. The points where these circles meet are nec-
essarily points of indeterminacy for Nf , since level
sets of a function corresponding to different values
cannot meet.

Since the image of every point under Nf lies on
the circle y = 0 and from that moment on the
dynamics coincides with the one of Np0

, which sat-
isfies Barna’s theorem, the rest of properties follows
trivially.

Example 6. In Fig. 3 (top row), we show two pic-
tures relative to the case of the cubic polynomial
map f(x, y) = (x3 + 3xy − x, y), whose roots are
roots (0, 0), (±1, 0) and whose Newton map is

Nf (x, y) =

(

x
2x2 + 3y

3x2 − 1 + 3y
, 0

)

.

In the left picture we show the basins of attraction
of Nf in the square [−4, 4]2; the three immediate
basins of attraction are the largest visible basin for
each of the three colors and are clearly unbounded.
The extension of Nf on RP

2, in homogeneous coor-
dinates, is the map

[x : y : z] �→ [x(2x2 + 3yz) : 0 : z(3x2 − z2 + 3yz)]

that restricts at infinity to the constant map [x : y :
0] �→ [1 : 0 : 0] at all points except [0 : 1 : 0], which
is a point of indeterminacy. Nf has exactly other
three points of indeterminacy in R

2, namely the real
roots of the system of sixth degree x(2x2 + 3y) =
0, 3x2 − 1 + 3y = 0, whose projective coordinates
are [0 : 1 : 3], [−3 : −2 : 3] and [3 : −2 : 3]. These
four points correspond exactly to the nodal points
of Jf , three of which are visible in Fig. 3 (top, left).

The set of all preimages of the point [3 : 0 : 2]
up to the third recursion level is shown in Fig. 3
(top, right) and clearly suggests that Conjecture 1
holds for this type of maps. Notice that all smooth
connected components of JNf

are segments of cubic
polynomials asymptotic to the vertical direction,
corresponding to the fact that they all meet at the
nodal point at infinity [0 : 1 : 0].

In Fig. 3, we show also the Fatou and Julia
sets of the quartic polynomial map g(x, y) =
(x4 − 3x2 + xy + 2, y) (bottom, left), that has four
distinct real roots and five points of indetermi-
nacy and behaves similarly to the previous exam-
ple, and of the cubic polynomial map h(x, y) =
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R. De Leo

Fig. 3 (Top) (left) Basins of attraction of Nf , with f(x, y) = (x3 − x + 3xy, y), in the square [−4, 4]2 and (right)
the corresponding set ZNf

and a few of its preimages (right). Each of the three roots of f corresponds to a dif-
ferent color. The three visible nodes are the indeterminacy points of Nf . (Bottom, left) Basins of attraction of Ng ,

with g(x, y) = (x4 − 3x2 + xy + 2, y). In this case there are four roots and four indeterminacy points, corresponding to
the four colors and nodes in the picture. (Bottom, right) Basin of attraction of Nh, with h(x, y) = (x3 + xy − 2x + 2, y).
This map has a single root and its basin, as the picture clearly suggests, is not of full measure because of the presence of an
attracting 2-cycle.

(x3+xy−2x+2, y) (bottom, right), that instead has
one real and two complex roots. In this last case, the
Newton map has an attracting 2-cycle whose basin
is shown in black.

Notice that the Newton map operator f �→ Nf is
invariant with respect to the action on f by GL2(R)
given by g → g ◦ f , namely Ng◦f = Nf for all
g ∈ GL2(R),67 so the result above actually holds for
all maps whose two components are linear combi-
nations, via an invertible matrix, of a general poly-
nomial with a linear one.

3.4. Numerical Results

In Figs. 4–8 we show several numerical results on
the ω- and α-limits of points under iterations of
real Newton maps associated to polynomial maps

of various degrees in two variables. Every row (with
the exception of Fig. 8 and the middle row in Fig. 4)
shows, next to each other, the basins of attraction
of a Newton map (left), with a different color associ-
ated to each attractor, and the α-limit of a suitable
point under that Newton map (right) in black and
white.

First, in Fig. 4, we consider two maps with
quadratic components. The first two rows are rela-
tive to f(x, y) = (y − x2, x + 2 − (y − 2)2), whose
four roots are all real: c1 = (0, 0), c2 = (2, 4),
c3 ≃ (−1.62, 2.62) and c4 ≃ (0.62, 0.38). In the first
row we compare the basins of attraction with the
α-limit of a suitable point. Similarly to the com-
plex case, the α-limit seem to be almost identical
to Jf except for some arcs, most noticeably the arc
at the boundary of the basin F(c2), colored in cyan.
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Conjectures About Simple Dynamics for Some Real Newton Maps on R
2

Fig. 4 (Color online) ω-limits (in color, each color corresponding to a different basin of attraction) and α-limits (in
black and white) for the Newton maps of the polynomial maps f(x, y) = (y − x2, x + 2 − (y − 2)2) (first row) and g(x,

y) = f(x, y) − (0, 1) (last row).

These points of Jf are characterized by the fact that
they are isolated, in the sense that for each of these
points x ∈ Jf there is some neighborhood Ux such
that Jf ∩Ux is a single smooth curve. This pattern
will repeat in all other examples below.

Definition 9. We say that a point p of the Julia
set JF of a rational map F : R2 → R

2 is regular

if there is a neighborhood U of p such that JF ∩
U is a connected 1-dimensional submanifold and U
contains points from exactly two different basins.

Notice that, unlike the complex case, not all
points have the same α-limit: e.g. the α-limit of
a generic point in F(c2) does not contain any
bounded point. On the other side, the α-limit of
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R. De Leo

Fig. 5 ω-limits (in color, each color corresponding to a different basin of attraction) and α-limits (in black and white)
for the Newton maps of the polynomial maps (from top to bottom) f(x, y) = (6 − 9x2 + 24y − 9x2y + 9y2 + y3,

x2 + y2 − 6), g(x, y) = (5x(x2 − 1) + y, y2 + x − 2) and h(x, y) = (5x(x2 − 1) − 5y, 10(y2 + x) − 1).

a generic point below the line x + y + 1 = 0 seems
to coincide with the one shown in Fig. 4, suggesting
that in the real case one cannot expect Theorem 2
to hold in general for almost all points but rather
only for some non-empty open set.

In the middle row we show the unique invari-
ant set of the Iterated Function System If consist-
ing in the free semigroup generated by three of the
four branches of f−1. Indeed, it turns out that the
half-plane D = {x + y ≥ −1} is invariant under
the action of If and its unique compact invariant

set is shown in black in Fig. 4 (mid, left). To be
precise, what the picture actually shows is the first
3 · 105 points of a backward orbit of a single point,
suggesting that the result of Hawkins and Taylor
(Theorem 5) holds even in the real setting. Notice
that there is a small open set E ⊂ D, whose bound-
ary contains c1, c3 and c4, that is outside of the
range of f . Whenever our algorithm generating a
backward orbit fell on E, we marked that point in
green and chose a different preimage to continue
moving backwards. Those green points cover the
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Conjectures About Simple Dynamics for Some Real Newton Maps on R
2

Fig. 6 ω-limits (in color, each color corresponding to a different basin of attraction) and α-limits (in black and white) for
the Newton maps of the polynomial maps (from top to bottom) f(x, y) = (x(x2 − 1), y(y2 − 1)), g(x, y) = (20x(x2 − 1) +

y, 20y(y2 − 1) + x) and h(x, y) = (x(x2 − 1) + y, y(y2 − 1) + 3x).

part of Jf lying in E, once again except for the reg-
ular points. Finally, the red points are obtained by
applying to the black and green points the branch
of f−1 that is not among the generators of If . The
union of the red, green and black points looks indis-
tinguishable from the approximation of Jf obtained
as the α-limit of a point, suggesting that Barnsley’s
idea that Julia sets can be obtained as invariant
sets of IFS work also in the real setting (with the
exception of the regular points).

In the bottom row and in the mid right one
we show the corresponding pictures for the map
g(x, y) = f(x, y) − (0, 1). A small change pro-
duces many qualitative differences here: g has only
two roots, the points c1 ≃ (1.9, 3.7) and c2 ≃
(0.81, 0.65), whose basins are colored in cyan and
red, respectively. As above, the Julia set can be
obtained both as the α-limit of a suitable point and
as the invariant set of an IFS. Unlike above, though,
there is a third basin of attraction, colored in gold,
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R. De Leo

Fig. 7 ω-limits (in color, each color corresponding to a different basin of attraction) and α-limits (in black and white)
for the Newton maps of the polynomial maps (from top to bottom) f(x, y) = (10x(x2 − 1) + 3y, y(y2 − 1) − x), g(x, y) =
(10x(x2 − 1) + 7y, y(y2 − 1) − x) and h(x, y) = (x(x2 − 1) + 60y, y(y2 − 1) − 60x).

corresponding to a chaotic attractor contained in
an invariant line of Ng. In Fig. 8 (top, left) we show
the main elements in the dynamics of Ng: the fixed
points (red), the only bounded point of indeter-
minacy (blue), the invariant line passing through
the two roots (light blue) and the one on which
lie the third attractor (gold) together with its first
preimage (purple), the set ZNg (light blue hyper-
bola passing through the indeterminacy point) with
its first and second preimages (red and brown) and

the first 500 points of the orbit of a generic point in
the third basin (green). The orbits of points in the
golden basin are essentially one-dimensional after
the first few iterations and show high sensitivity to
the initial conditions. In particular then this basin
belongs to JNg rather than FNg . This suggests that,
in the real case, the Julia set can have a non-empty
interior without being necessarily the whole RP

2

(as it happens, instead, for intrinsically holomor-
phic maps).
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Conjectures About Simple Dynamics for Some Real Newton Maps on R
2

Fig. 8 (Top, left) Main elements of the dynamics of Ng in Fig. 4. (Top, right) A typical orbit of a cyan point in Fig. 7 (middle)
and the four invariant lines of the map. (Middle and bottom) Basins of attraction of Nfα

for fα(x, y) = (x2(x − 1) + y,

x−α−y2) with α = −0.997462, −0.997461, −0.5 in the square [−10, 10]2 and a detail in [3.00000015, 3.00000025]×[4, 4.0000001]
for α = −0.995.

We postpone to a separate paper a thorough
numerical analysis of the dynamics of Newton maps
of real polynomial maps with quadratic coefficients.
The remaining pictures show that this qualitative
behavior is not limited to such elementary maps
and reveal some further element of difference with
respect to the complex case. Figures 5 (top and
middle) and 6 (top and middle) show the basins
of attraction of Newton maps corresponding to
real polynomial maps with maximal number of real
solutions (respectively 6, 6, 9 and 9). These pictures

strongly suggest the following facts for this kind of
maps f :

(1) regular points of Jf cannot be reached via
α-limits (Fig. 5 (top));

(2) every neighborhood of every point of Jf con-
tains points from at least two basins — Fig. 7
(bottom) suggests that this is not the case when
the number of real roots is not maximal;
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R. De Leo

(3) boundaries between basins of attraction are
smooth, except at countably many nodal
points;

(4) basins of attraction are not necessarily simply
connected (Fig. 5, (middle));

(5) immediate basins arenot necessarily unbounded
(Fig. 6, (top)).

Figures 5 (bottom), 6 (bottom) and 7 (all)
show the basins of attraction of Newton maps
corresponding to polynomials with fewer roots than
maximal. Although we know from the intrinsically
holomorphic case that, for some polynomials, basins
of attraction can satisfy the same properties of those
with maximal number of roots (e.g. see Fig. 6 (bot-
tom)), numerics strongly suggest that this is not
always the case.

The α-limit of points in some non-empty open
set seems to be equal to the boundary of the Julia
set, suggesting a more suitable split of RP

2 in case
of real maps: RP

2 = ANf
⊔ RNf

, where ANf
is the

union of the Fatou set with all basins of attrac-
tion and RNf

its complement. Numerics suggest
that, with this definition, the set RNf

, as for JNf

in the intrinsically holomorphic case, has no interior
points, possibly even when f has no real roots at all,
and, for some non-empty open set, the α-limits of
points are equal to its non-regular points. Observe
that, since in the holomorphic case Newton maps
are always non-chaotic on their basins of attraction,
this split coincides with the split in the Fatou and
Julia sets in the intrinsically holomorphic case.

In Figs. 5 (bottom) and 7 (top), the basins of
attraction are intertwined in such a way to suggest
a Cantor set of circles structure with non-zero mea-
sure or Hausdorff dimension greater than 1 for the
corresponding Julia set. Following numerically the
evolution of the ω-limits in one-parametric families
close to the bifurcation point where a couple of real
roots disappear, we observed that usually the basins
of attraction of the disappeared roots get replaced
by the basin of attraction of a Cantor set lying in
some neighborhood of an invariant line (see the mid-
dle and bottom rows of Fig. 8) and then the size of
this basin usually decreases in favor of the basins of
the remaining real roots.

In Fig. 7 (middle), we show the two basins of the
Newton map of a polynomial map g of degree 9 with
a single real root. In this case the basin of attraction
of the only root (in red) is bounded and connected
(but not simply connected) while the other one is
the basin of attraction of a Cantor set (in cyan) in

some neighborhood of the union of four invariant
lines corresponding to the four pairs of mutually
conjugate pairs of complex solutions. The α-limit
seems to be equal to the difference between the Julia
set and the basin of attraction of the Cantor set.

Finally, in Fig. 7 (bottom), we show the basin of
attraction (in red) of the Newton map of a polyno-
mial map h of degree 9 with a single root and its
Julia set. Even in this case we can find points whose
α-limit is equal to the Julia set.

We conclude the paper with two conjectures
motivated by the several analytical and numerical
results presented above.

Conjecture 2. Let f : R2 → R
2 be a generic poly-

nomial map of degree n ≥ 3. Then there are non-

empty open subsets V ⊂ U ⊂ f(RP
2) such that :

(1) αNf
(x) is equal to the set of non-regular points

of the boundary of JNf
for all x ∈ U ;

(2) V ∩ Jf is the unique attractor of an IFS.

Conjecture 3. Let f : R2 →R
2 be a polynomial

map of degree n ≥ 3 with n simple real roots

{c1, . . . , cn}. Then:

(1) FNf
=

⋃n
i=1 FNf

(ci). In particular, Nf has no

wandering domains or attracting k-cycles for

k ≥ 2.
(2) JNf

is the countable union of wedge sums of

countably many circles and of Cantor sets of

circles of measure zero.

(3) Every neighborhood of any point of JNf
inter-

sects at least two distinct basins of attractions.

(4) Unlike the holomorphic case:

(a) Basins of attractions are not necessarily

simply connected.

(b) Immediate basins of attraction are not nec-

essarily unbounded.

(c) JNf
can have interior points without being

equal to the whole RP
2.

Note that, as a corollary of these two conjectures,
a Newton map Nf is weakly plain if f is a polyno-
mial map of degree n ≥ 3 with all simple real roots.
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the two in the top row of Fig. 8, were generated by
code written by the author in Python and C/C++.
All calculations were performed on the HPCC
of the College of Arts and Sciences at Howard
University.
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45. X. Buff and A. Chéritat, Quadratic Julia sets with
positive area, Ann. Math. 176(2) (2012) 673–746.

46. L. Tan, Branched coverings and cubic Newton maps,
Fund. Math. 154 (1997) 207–260.
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