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Although strong electronic correlations are known to be responsible for some highly unusual behaviors
of solids such as metal-insulator transitions, magnetism, and even high-temperature superconductivity,
their interplay with recently discovered topological states of matter awaits a full exploration. Here, we use a
modern electronic structure method, combining the density functional theory of band electrons with
dynamical self-energies of strongly correlated states, to predict that two well-known phases of actinide
compound UNiSn, a paramagnetic semiconducting and antiferromagnetic metallic, correspond to
topological insulator (TI) and Weyl semimetal (WSM) phases of topological quantum matter. Thus,
the famous unconventional insulator-metal transition observed in UNiSn is also a TI-to-WSM transition.
Driven by a strong hybridization between U f-electron multiplet transitions and band electrons, multiple
energy gaps open up in the single-particle spectrum whose topological physics is revealed using the
calculation of Z2 invariants in the strongly correlated regime. A simplified physical picture of these
phenomena is provided based on a periodic Anderson model of strong correlations and multiple band
inversions that occur in this fascinating compound. Studying the topology of interacting electrons reveals
interesting opportunities for finding exotic phase transitions in strongly correlated systems.
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I. INTRODUCTION

Strongly correlated systems are known for a whole range
of spectacular phenomena such as, e.g., colossal magneto-
resistance of manganese oxides [1], high-temperature
superconductivity of cuprates [2] and iron arsenides [3],
enormous volume expansions in elemental cerium [4] and
plutonium [5], heavy electron-mass renormalizations in
compounds containing f and, sometimes, d electrons [6],
etc. Recently, the theme of strong correlations has come
into play with the notion of topology in electronic band
structures, whose robust quantum states are insensitive to
perturbations and are currently attracting a great interest in
materials such as topological insulators (TIs) [7] and Weyl
semimetals (WSMs) [8]. Starting from an original proposal
that pyrochlore iridates, subjected to a moderate Coulomb
repulsion of their 5d electrons, should exhibit a dispersion
in the vicinity of the bulk Fermi level characteristic of Weyl

fermions in particle physics and the associated Fermi-arc
surface states [9], the field has been enriched by the
discoveries of topological Kondo insulator [10] behavior
in SmB6 [11] and filled skutterudites [12] and plutonium
and americium TIs based on rocksalt structure [13], as well
as heavy-fermion Weyl-Kondo semimetals [14]. These
systems, representing a merge between paradigms of corre-
lations and topology, could serve as the basis for studying
yet-unknown electronic phases, transitions, and functional-
ities and may lead to interesting applications in the future.
Unfortunately, identifying topological properties of cor-

related electrons represents a challenge due to a well-
known problem associated with redistribution of spectral
weight driven by the interplay between Coulomb repulsion
and kinetic degrees of freedom for the electrons. As a result,
signatures of localized electronic states originating from
atomic multiplet transitions, known as Hubbard bands, as
well as strongly renormalized quasiparticle bands in the
vicinity of the Fermi level, often both appear in materials
with strong correlations. Such competition between locali-
zation and delocalization is at the heart of the Mott
transition problem [15], which has been well understood
through the development of the dynamical mean-
field theory (DMFT) [16]. This approach defies static
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mean-field approximation as, e.g., implemented in density
functional theory (DFT) -based electronic structure cal-
culations [17]. These methods provide a single-particle
framework for computing topological indices [18–21] and
are currently playing a central role in identifying topo-
logical materials, using, in particular, a powerful method of
high-throughput screening that allows testing hundreds or
even thousands of compounds [22–25]. The strongly
correlated problem generally requires studying the topo-
logical character, such as Berry phases, of many-body wave
functions [19,26,27] and is primarily addressed on the level
of many-body model Hamiltonians [28–30].
Nowadays, modern electronic structure approaches

based on combinations of the local density approximation
(LDA) [17] and DMFT (LDAþ DMFTmethod) [31] allow
for a more accurate treatment of Coulomb correlations via
computations of local self-energies ΣðωÞ for the interacting
electrons. This computation is achieved by treating a
correlated atomic shell as an impurity hybridized with
the noninteracting bath, which is then periodized and
subjected to self-consistency. Searches of correlated topo-
logical matter with the use of LDAþ DMFT are advanta-
geous, as they incorporate the detailed chemistry and
structure of a material into the calculation. It is the purpose
of this work to demonstrate how the LDAþ DMFT
method can be applied to uncover the rich topological
behavior of the actinide system UNiSn and provide a
framework for studying other compounds where genuine
many-body effects need to be taken into account while
searching for their topological properties.
An unusual phase transition at TN ¼ 43 K between a

higher-temperature paramagnetic semiconducting (PMS)
and low-temperature antiferromagnetic metallic (AFMM)
phase was discovered for UNiSn long ago [32]. This
actinide compound was extensively studied during the past
several decades owing to the unconventional (inverse)
nature of this metal-insulator transition with the gap
opening above TN and the associated behavior of its
strongly correlated 5f electrons. It crystallizes in a cubic
structure (MgAgAs type) [see Fig. 1(a)], and its para-
magnetic semiconducting phase has an estimated energy
gap of about 100 meV [33]. Its antiferromagnetic structure
is found to be of type I with the ordered U moment 1.55μB
oriented along the (001) axis [32].
The central issue in understanding the physical proper-

ties of actinides is the degree to which their 5f electrons are
localized. Because of the absence of any signatures of
heavy fermion behavior in the specific heat data [33], the
magnetic properties of UNiSn are explained [34] on the
basis of a localized 5f2 (U4þ) ionic state, whose ground
state multiplet 3H4 (J ¼ 4) subjected to a cubic crystal field
is split into a doublet (Γ3), two triplets (Γ4 and Γ5), and a
singlet ðΓ1Þ [35]. Measured temperature-dependent sus-
ceptibility and magnetic entropy analysis suggests that the
nonmagnetic doublet is the lowest-lying state 180 K below

the Γ4 triplet and 430 K below the Γ1 singlet [see Fig. 1(b)].
Since Γ3 has a quadrupole moment, it is further proposed
that tetragonal distortions and quadrupolar ordering exists
below TN [32]. The valence band photoemission spectra
reveal a dominant 5f electron character for the states in the
vicinity of the Fermi level with a contribution from U 6d,
Ni 3d, and Sn 6p states [36].

Previous band structure calculations of UNiSn empha-
size the role of relativistic effects and electronic correla-
tions among 5f electrons [37]. Both PMS and AFMM
behavior are captured correctly within the LDAþ U
framework [38], where on-site Coulomb correlations
among f electrons are treated via the introduction of the
Hubbard U term and subsequent static mean-field approxi-
mation. Such a method is expected to work well in a
symmetry-broken AFM state but is invalid for the genuine
two-electron Γ3 doublet represented by a mixture of Slater
determinants. One can, however, assume that paramagnet-
ism originates from the nonmagnetic Γ1 singlet, for which
LDAþ U should be sufficient. Within a single-particle
picture, this assumption is interpreted as a doubly occupied
Γ7 level that appears when a 14-fold degenerate manifold of
5f electrons subjected to spin-orbit coupling and a cubic
crystal field is split into Γ7 and Γ8 (for j ¼ 5=2) and Γ6, Γ7,
and Γ8 (for j ¼ 7=2) sublevels. Detailed comparisons
between the theory and experiment reveal discrepancies
in the position of the occupied f band with respect to the
Fermi energy: −0.3 eV in the photoemission vs −1 eV in
the LDAþ U calculation [36].
In the present work, we go beyond static mean-field

approaches and utilize a modern LDAþ DMFT method in
order to account for the interaction effect among 5f
electrons more accurately. As our main result, we uncover
that the two well-known phases of actinide compound
UNiSn, correspond to TI and WSM phases of topological
quantum matter. Thus, the unconventional insulator-metal
transition observed in UNiSn is also a TI-to-WSM
transition. The ability to trigger changes in topological
phases by varying the temperature is interesting both

FIG. 1. (a) Crystal structure of UNiSn showing antiferromag-
netic type-I ordering [32]. (b) Effect of the cubic crystal field
splitting on the 3H4 ground state multiplet of the U f2 two-
electron state with its lowest nonmagnetic Γ3 doublet as found
experimentally [34].
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fundamentally and from the point of view of applications,
since metal-insulator transitions are very attractive, in
general, for making all kinds of electrical and thermal
conductivity switches or optical modulators. Using the
magic of a highly conductive coating in terms of disorder-
tolerant surface states that exist in TIs and WSMs can
provide additional control in those applications, as, for
example, Weyl semimetals thin films or nanostructures
exhibiting ultrahigh conductivities [39,40]. Other function-
alities could take advantage of very different responses to
an applied magnetic field relevant for magnetotransport or
differences between spin textures of the Dirac-cone or
Fermi-arc states that could allow a temperature control of
current-induced surface spin polarization relevant for spin-
tronics [41,42].
This paper is organized as follows: In Sec. II, we

describe the details of how the LDAþ DMFT method
treats the correlated uranium 5f electrons in this system.
Section III is split onto two parts: In Sec. III A, we discuss
the results of our calculations for paramagnetic insulating
phase and prove its topological insulating behavior by
computing both Z2 invariants in the strongly correlated
regime as well as its surface spectrum exhibiting the Dirac-
cone states. A simplified physical picture based on the
periodic Anderson model of strong correlations and multi-
ple band inversions that occur in UNiSn is provided.
In Sec. III B, we show the results of our calculation for
the antiferromagnetic metallic phase and prove the exist-
ence of Weyl points in the vicinity of the Fermi level using
our recently developed monopole mining method [25].
A 4 × 4 k · p model is developed here in order to illustrate
the appearance of the Weyl points along the magnetization
direction and the associated Fermi-arc surface states. In
Sec. IV, we conclude with a perspective on other correlated
uranium compounds that could exhibit related phenomena.
An Appendix provides the details of our LDAþ DMFT
framework and the computation of topological invariants
that is utilized in this work.

II. METHOD

An improved treatment of Coulomb interactions in
UNiSn should include a frequency-dependent self-energy
ΣfðωÞ within the spin-orbit coupled space of the 5f
electrons (dimension 14) which is incorporated into the
single-particle LDA Hamiltonian describing all other
(weakly correlated) states. A family of approaches that
allow such a combination of the self-energy with LDA (the
SELDA family) has been developed with the help of
projector operators long ago [43]. The LDAþ DMFT
method [31] delivers ΣfðωÞ by iteratively solving an
auxiliary Anderson impurity model (AIM) that considers
hybridization between 5f states and other noninteracting
electrons as a self-consistent function that changes during
the DMFT iterations. The charge density self-consistency is
subsequently utilized in a manner prescribed by the DFT.

The exact solution of the AIM is possible, in principle, via a
recently developed continuous time quantum Monte Carlo
(CTQMC) method [44], although accounting for the full
Hilbert space of interacting f electrons together with spin-
orbit and crystal field terms represents a challenge. In
addition, the CTQMC works on the imaginary time-
frequency axis, and obtaining the frequency dependence
of the self-energy on the real axis involves an analytical
continuation algorithm, which is known to be not very
accurate.
In order to study the topology of correlated electrons in

UNiSn here, we take a pragmatic approach and make the
DMFT impurity problem numerically tractable by using the
experimental fact that the uranium f electrons are localized
in their 5f2 Γ3 ground state, from which the one-electron
multiplet transitions can be obtained by exact diagonaliza-
tion. The corresponding f-electron self-energies are sub-
sequently expanded in the Laurent series, which allows us
to replace the nonlinear (in energy) Dyson equation by
a linear Schrödinger-like equation in an extended
subset of “pole states” [45] (see the Appendix for details).
Remarkably, the pole representation for the self-energy
results in the appearance of many-body satellites and
multiplets in the spectra as effective band states, in general,
carrying a fractional occupancy due to the spectral weight
transfer. It is ideally suited for studying topological indices,
as the corresponding auxiliary wave functions representing
the many-body features carry all the necessary information
about the Berry phase of the interacting electrons [46].
For UNiSn, we carry out all calculations by treating the f

electrons in their 5f2 Γ3 ground state. The Coulomb
interaction matrix elements needed for the exact diagonali-
zation procedure (Fð0Þ, Fð2Þ, Fð4Þ, and Fð6Þ Slater integrals)
are found from the atomic 5f-electron wave functions and
scaled to account for screening effects. We cover a range
of these parameters: 2–4 eV for the Hubbard U ¼ Fð0Þ and
0–1 eV for the exchange J¼ð286Fð2Þþ195Fð4Þþ250Fð6ÞÞ=
6435, in order to make sure that our conclusions are not
altered by the lack of an accurate procedure for determining
the screening. It has been argued earlier that these values
are typical for obtaining the best agreement between the
theory and experiment for several uranium compounds
[36,37]. The position of the bare f level is fixed by
reproducing the experimentally observed f2 → f1 electron
removal transition at −0.3 eV [36]. The charge density
self-consistency is carried out within LDAþ DMFT as
implemented by one us earlier [47]. For a PM calculation,
the spin-up and spin-down self-energies are forced to be
equivalent, which prevents developing a magnetic state.
The AFM instability is studied by first introducing a
staggered magnetic field perturbation and letting the
self-consistent solution converge. If sustainable, the spin-
up and spin-down self-energies become different, and the
solution develops magnetic moments on corresponding
sites of the lattice.
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III. RESULTS

A. Paramagnetic phase

We now present the results of our calculation for the
paramagnetic phase of UNiSn. Figure 2 shows our calcu-
lated many-body electronic spectrum in the vicinity of the
Fermi level using a set of Slater integrals Fð0Þ ¼ 0.15,
Fð2Þ ¼ 0.3, Fð4Þ ¼ 0.2, and Fð6Þ ¼ 0.15 in Rydberg units.
Although cast into a conventional band structure plot, we
stress that the 5f electron states are treated here as true one-
electron removal (f2 → f1) and addition (f2 → f3) proc-
esses that come from exact diagonalization, and the
corresponding “energy bands” carry noninteger occupa-
tion. This treatment can be seen by realizing that the
multiplet transitions within the j ¼ 5=2manifold (shown in
Fig. 2 by red and blue) are represented by six energy bands
that appear both below and above the Fermi level. These are
the famous lower and upper Hubbard bands within the Mott
gap picture that acquire a significant dispersion due to
hybridization with U 6d and Sn 5p orbitals. The deduced
value of the indirect energy gap shows some dependence on
the Slater integrals but falls into the same range as the
experiment (∼100 meV [33]).
We now turn to the prediction of topological properties

for the paramagnetic semiconducting phase of UNiSn.
First, we point out that the underlying crystal structure

is not centrosymmetric; therefore, the Fu and Kane parity
criterion [18] developed for insulators with both time
reversal and inversion symmetries does not apply.
Nevertheless, given the fact that the uranium sites arrange
themselves on an inversion symmetric face-centered cubic
sublattice with their odd-parity localized 5f electrons lying
in close proximity to the Fermi level, it is interesting to
speculate whether the possibility of inversion with the even-
parity U 6d band is taking place. Such an f − d band
inversion is at the center of recent interest for several
topological Kondo insulator materials with 4f electrons
[10], as well as in some actinide systems such as AmC [13].
While the U 6d band is expected to be unoccupied, it is
very wide, with its lower portion hybridized with the
Hubbard bands. The Fu and Kane criterion then implies
the existence of topological Dirac-cone states in UNiSn.
To uncover the topological physics, one needs to

compute Z2 invariants [19] for the occupied band manifold
in the difficult regime of strong correlations. Fortunately, it
was recently proved that utilizing a pole representation for
the self-energy [45] reduces this problem to an effective
noninteracting system in the extended set of pole states,
whose topological indices are exactly matched [46]. We
develop and carry out this computation within the n-field
approach [21] (see the Appendix for details). However,
some care should be taken to define an appropriate energy
panel, because, as is seen from our calculations, multiple
gaps appear in the excitational spectrum of UNiSn (we
show the panels by various colors and denote the gaps
between them as ΔL, ΔF, and ΔU in Fig. 2). For example,
the six dispersive features that represent the lower Hubbard
bands (blue “spaghetti” in Fig. 2 labeled as LHB) are
completely gapped from the remaining band manifold
everywhere in the BZ. The same is seen for the six
eigenstates representing the upper Hubbard bands above
the EF (red spaghetti in Fig. 2 labeled UHB). Our
computations of Z2 invariants for the four energy panels
separated by ΔL, ΔF, and ΔU reveal their topological
indices, which we indicate in the right margin in Fig. 2. The
energy panels below and above the fundamental gap
correspond to the indices equal to 1;(000) in the notations
of Ref. [19] (we denote this result by Z2 ¼ 1 in Fig. 2). This
computation proves that UNiSn is a strong topological
insulator and suggests the existence of protected Dirac-
cone states at its surface.
To understand which orbitals are responsible for the

appearance of the topological phase, we carry out calcu-
lations using a constrained hybridization approach [48]. In
this method, the energies of particular orbitals are shifted by
applying a constant potential constrained within the orbital
space by projector operators. This method is similar to the
LDAþ U, LDAþ DMFT, and other SELDA families of
methods, restricting the application of the self-energy to the
subspace of correlated orbitals. Utilizing this procedure, we
are able to dehybridize various states, such as U − 5f,

FIG. 2. Calculated electronic structure of UNiSn using the
density functional theory combined with dynamical self-energies
for the uranium f electrons assuming the experimentally deter-
mined 5f2 Γ3 doublet as a ground state [34]. The locations of
energy panels with nonzero Z2 invariants and corresponding gaps
(ΔL, ΔF, and ΔU) are indicated.
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U − 6d, Ni-3d, Sn-5p, etc., by shifting their energies away
from the relevant energy window, and recompute Z2 invari-
ants. The outcome of this study is the existence of multiple
band inversions in UNiSn: The upper Hubbard band is
invertedwith theU 6d electrons around theΓ point of theBZ,
while the lower Hubbard band is inverted with Sn 5p
electrons. On top of that, U 6d electrons at the very bottom
of the conduction band and Sn 5p states at the very top of the
valence band are also inverted around the X point of the BZ
(see Fig. 2). These multiple band inversions are responsible
for the topological insulator behavior in UNiSn.
To illustrate the emergent physical picture, we use the

periodic Anderson model (PAM) of strong correlations. It
has been recently employed for developing the concept of
topological Kondo insulators where the Fermi level falls
into the gap between a heavy fermion (f-like) and non-
interacting (d-like) bands [10]. It has also been recently
used to describe Weyl-Kondo semimetals via hybridization
of a heavy-fermion state with noninteracting bands con-
taining the nodal points [14]. In our case, the f electrons
are localized, and their self-energies behave similarly to the
famous Hubbard I approximation: ΣðωÞ ¼ U2=4ω. The
solution of the PAM in this limit is schematically illustrated
in Fig. 3(a). Hybridization between wide d-band and
f-electron multiplet transitions denoted as LHB and
UHB results in the appearance of two gaps in the spectrum
and three energy panels (shown by black lines). Both gaps
are seen to be topologically nontrivial due to the d − f
band inversion mechanism. For a centrosymmetric lattice,
this mechanism can be understood based on the Fu and
Kane parity criterion [18]: For the lower (upper) panel, the
parities of the eigenstates are odd (even) at the X and L time

reversal invariant momenta (TRIM) but even (odd) at Γ.
As a result, the energy gap above (below) the panel is
topological. For the central panel, the parities of the
eigenstates are odd everywhere, but this result does not
preclude having a topological gap both below and above
the panel, each with its own Dirac cone (the total number
of cones is even). We illustrate the corresponding surface
spectrum in magenta. Note that, since the Hubbard bands
carry no integer occupation, the spectral weight of the Dirac
cones is also redistributed between the two gaps.
Now, in UNiSn, our constrained hybridization procedure

reveals multiple band inversions around different TRIM
points in the BZ: First, as illustrated in Fig. 3(b), the upper
Hubbard band is inverted with the U 6d at Γ. Because of
the d − f band inversion, the topological Dirac cone is
expected to appear inside the gap ΔU at the surface
spectrum. Since uranium atoms occupy sites of the cen-
trosymmetric face-centered cubic lattice, this expectation
can be understood based on the parity criterion [18]. For the
lower Hubbard band, U 5f and Sn 5p orbitals are both odd
but belong to different irreducible representations, which
makes it possible to produce a strong topological insulator
with a Dirac cone inside the gap ΔL. This picture emerges
when the bottom of the U 6d and the top of the Sn 5p bands
are not inverted around the X point, making the funda-
mental gap ΔF not topological, as we show in Fig. 3(b).
Realizing the band inversion between the U 6d and Sn 5p
bands at the X point [see Fig. 3(c)] results in the
fundamental gap ΔF becoming topological. Additionally,
we monitor the cancellation of the topological features
inside the gaps ΔU and ΔL. This cancellation is apparently
due to a more complex overlap between various orbitals in

FIG. 3. Band inversion mechanism applicable for UNiSn. (a) In the periodic Anderson model, hybridization between a wide d band
centered at the k ¼ 0 Γ point and f-electron multiplet transitions [lower and upper Hubbard bands (LHB and UHB, respectively)]
results in three energy panels (shown by black lines) and two gaps that are both topologically nontrivial. The corresponding surface
spectrum is shown by magenta, where the spectral weight of the Dirac cone is distributed between the two gaps. (b) In UNiSn, the upper
Hubbard band is inverted with the wide 6d band of uranium, while the lower Hubbard band is inverted with the 5p band of tin, resulting
in four energy panels and three gaps. With two such band inversions, upper (ΔU) and lower (ΔL), the hybridization gaps are topological,
while the fundamental bulk gap ΔF is not. (c) The band inversion between U 6d and Sn 5p states around the zone boundary X point
makes the fundamental gap ΔF topological. The topological features of the gaps ΔU and ΔL are seen to disappear in the LDAþ DMFT
calculation, but this disappearance is not a requirement within the considered model (Z2 invariants shown in parentheses are expected).
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the real calculation than the one assumed in the simplified
model illustrated in Fig. 3(c), where one would, in
principle, expect all three gaps to become topological
[Z2 ¼ 0 for the LHB and UHB, and Z2 ¼ 1 for the
lowermost and topmost panels as shown in brackets in
Fig. 3(c)].
To shed some additional light on the nature of the

topological phase, we check the one-electron spectrum for
a slab that is oriented along the 001 direction and
terminated at the top by the U-Sn atomic plane and at
the bottom by the Ni plane, where we expect to see the
topological boundary states originating from the two
surfaces around the TRIM points of the surface BZ where
the band inversion occurs. We perform a real space trans-
formation of our LDAþ DMFT Hamiltonian that is
possible due to the use of nonorthogonal tight-binding
linear muffin-tin orbital representation seen as the unitary
transformation of the linear muffin-tin orbital basis set [49].
The slab size containing 48 original unit cells along the z
axis provides a completely convergent surface spectrum.
Our results are plotted in Fig. 4, where we show both the
projected bulk spectrum [Fig. 4(a)] and the top and bottom
surface states that are fattened according to the partial
character of the topmost (U-Sn, green) and bottommost (Ni,
red) atomic plane [Fig. 4(b)]. We find clear evidence of the
Dirac-cone states that appear around the Γ̄ point of the
surface BZ [see the inset in Fig. 4(b)]. Note that, because
we are considering the 001 surface, one bulk X point is
actually projected onto the surface Γ̄ point; therefore, the
appearance of the Dirac cone around the surface Γ̄ point is
likely due to the band inversion around the bulk X point.
We also identify Dirac cones in the immediate vicinity of
the X̄ point. However, we see that they do not span across
the gap, likely due to hybridization with other surface states
that appear in this energy range. Nevertheless, we can
easily count that there is always an odd number of surface
states that cross the Fermi level between the time reversal
invariant momenta. For example, there are three “green”
states and three “red” states that cross the Fermi energy
shown in Fig. 4(b) between Γ̄ and X̄. The emergent physical
picture resembles the case of SmB6 [11], where the band
inversion between Sm 4f and 5d states around the bulk X
point and the apparent lack of trivial surface states for the
001 surface result in Dirac cones spanning across the
energy gaps around the surface X̄ and Γ̄ points.

B. Antiferromagnetic phase

We now turn to discussing the results of our calculation
for the low-temperature AFM phase of UNiSn. The origin
of magnetism has been explained earlier [34] based on a
molecular-field model, where, owing to the second-order
effect in the magnetic exchange field, the Γ3 doublet is split
into two levels with a deduced magnetic moment value of
approximately 2.6μB. Here, our exact diagonalization for
the 5f states is almost identical to the static mean-field

solution, because the double degeneracy of Γ3 is broken
and a single Slater determinant description suffices. It has
been also proven earlier that the LDAþ DMFT method
reduces to the LDAþ U in the Hartree-Fock limit [50]. Our
calculation with Slater integrals Fð0Þ ¼ 0.15, Fð2Þ ¼ 0.3,
Fð4Þ ¼ 0.2, and Fð6Þ ¼ 0.15 in Rydberg units, converges
to an antiferromagnetic state with a total magnetic moment
of 2.1μB (þ3.2μB for its orbital and −1.1μB for its spin
counterparts), slightly larger than the experimentally
deduced value of 1.55μB [32]. This result is in agreement
with previous works [36,37] that also point out the inclusion
of spin fluctuations as a possible way to reduce these values.
Our calculated spin densitymatrices resemble those obtained
from the molecular-field exchange model [34].
Figure 5(a) shows our calculated band structure along the

major high-symmetry directions of the BZ. A few energy
bands are seen to cross the Fermi level, indicating the
metallic nature of the solution. Since both time reversal and
inversion symmetries are now broken, it is interesting to see

FIG. 4. (001) surface spectrum of UNiSn calculated along high-
symmetry lines of the surface Brillouin zone, Γ̄ð000Þ, X̄ð100Þ,
and M̄ð1

2
1
2
0Þ, using the LDAþ DMFT method, assuming a 5f2

Γ3 doublet as a ground state. (a) The projected bulk spectrum is
shown by magenta. (b) Top (green) and bottom (red) surface
states are fattened according to the partial character of the
topmost (U-Sn) and bottommost (Ni) atomic plane of the slab.
The inset provides a close view of the Dirac states near
the Γ̄ point.
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if there are any Weyl points in close proximity to the Fermi
level. It is well known that the Weyl point acts as a Dirac
monopole in k space and produces a nonzero Berry flux
through an area surrounding it [23,51]. We take advantage
of this result and utilize a monopole mining method
developed by us recently [25] in order to search for their
locations (see the Appendix for details). This search is
rewarded by finding two Weyl points that appear exactly
along the ΓZ line of the BZ, serving here as the magneti-
zation direction. The corresponding band structure is
shown in Fig. 5(b). Despite the Weyl points aligning with
ΓZ, their positions along this line are found to be sensitive
to the value of Hund’s rule J for 5f electrons used in the
calculation, as the latter controls the shape of the bands in
this energy range. The WSM phase begins to appear
starting with J ¼ 0.2 eV and persists for higher values
of J. Figure 5(c) shows the positions of these Weyl points in
the Brillouin zone for J ¼ 0.3 eV. Their precise locations
are given by the wave vectors kWP1 ¼ ð0; 0; 0.317Þ2π=a

(chiral positive, energy relative to EF is −5 meV) and
kWP2 ¼ ð0; 0; 0.492Þ2π=a (chiral negative, energy relative
to EF is −42 meV). Unfortunately, in the absence of
detailed knowledge about how the screening reduces the
intra-atomic exchange interaction, these data can serve only
as a guideline to possible experimental verification.
Nevertheless, it should be easy to locate these Weyl points,
since they are expected to appear along the ΓZ line
regardless of the inaccuracies in our predictions of their
coordinates. Also, it would be interesting to check the value
of the longitudinal magnetoresistance, whose negative sign
could indicate that our predicted WSM phase and the
associated chiral anomaly exist. Negative magnetoresist-
ance is, in fact, reported for this compound [52,53], but
the setup is related to measuring the (transverse) Hall
coefficient.
To understand the physical origin behind amagnetization-

inducedWeyl state in UNiSn, we introduce a k · pmodel for
two relativistic orbitals with an inversion-breaking term.

The Hamiltonian reads

Heff ¼

0
BBBBB@

AðkÞ þ Δ1 0 Pkz þ iVkxky Pk− þ Vkzkþ
0 BðkÞ − Δ1 Pkþ − Vkzk− −Pkz − iVkxky

Pkz − iVkxky Pk− − Vkzkþ CðkÞ þ Δ2 0

Pkþ þ Vkzk− −Pkz þ iVkxky 0 DðkÞ − Δ2

1
CCCCCA
; ð1Þ

where k� ¼ kx � iky and diagonal elements are para-
metrized as follows: AðkÞ¼A0þA1k2, BðkÞ ¼ B0þ
B1k2 − B2k4, CðkÞ¼C0þC1k2−C2k4, and DðkÞ ¼
D0 þD1k2 (we include quartic terms to allow multiple
Weyl points to exist). The parameter P controls the
inversion breaking. A similar model was previously used
to describe topological insulator and Weyl semimetal
phases in zincblendelike structures [54]. Here, we apply
a Zeeman splitting by setting the parameters Δ1;2 ≠ 0

along the magnetization (z) axis. Once the effective

“spin-up” and “spin-down” states cross, they produce
Weyl points exactly along the 001 direction in
the BZ, while the gap between these bands is open for
all other k points. We illustrate this behavior in
Fig. 6(a), which shows the dispersion of the eigenvalues
of Eq. (1) and the existence of twoWeyl points along the kz
axis. The parameters of the model are the following:
A0 ¼ B0 ¼ 0.24, A1 ¼ B1 ¼ 1, B2 ¼ 3.376, C0 ¼ D0 ¼
−0.56, C1 ¼ D1 ¼ 0.3, C2 ¼ 0.3, P ¼ 0.9, V ¼ 0.5,
Δ1 ¼ 0.3, and Δ2 ¼ 0.6.

FIG. 5. Calculations for antiferromagnetic configuration of UNiSn. (a) Energy band dispersions along major high-symmetry lines of
the Brillouin zone. (b) Enlarged area along the ΓZ direction of the BZ showing the locations of the Weyl points with their coordinates
kWP1 ¼ ð0; 0; 0.317Þ2π=a (chiral positive, energy relative to EF is −5 meV) and kWP2 ¼ ð0; 0; 0.492Þ2π=a (chiral negative, energy
relative to EF is −42 meV). (c) Brillouin zone of the AFM UNiSn with the positions of the Weyl points (magenta refers to positive and
cyan refers to negative chiral charges).
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One of the most striking features of Weyl semimetals
is the presence of the Fermi arcs in their one-electron
surface spectra [9]. Although computations of their
shapes are possible via a self-consistent supercell (slab)
calculation of the surface energy bands, given the variety
of regular Fermi states that emerge from our AFM
calculation together with the fact that the Weyl points
are not exactly pinned at the Fermi level, it is hard to
resolve them in the actual surface spectrum of UNiSn.
Nevertheless, since the arcs connect the Weyl points of
different chirality, one can expect the existence of long
arclike features in UNiSn that should be protected from
perturbations such as disorder [39].
To illustrate the shape of the Fermi arcs, we perform

the diagonalization for the k � p model that is periodized
on the cubic lattice with subsequent construction of
the Hamiltonian for the slab oriented perpendicular to
the x axis. The results are shown in Fig. 6(b), where almost
straight Fermi arcs stretched along the kz axis are seen to
connect the Weyl points of opposite chirality. The param-
eters of the model are exactly the same as used in Fig. 6(a).
If these numbers are tweaked a little to simulate the case
seen in Fig. 5(b) for UNiSn so that one Weyl point sinks
just below the Fermi level producing a small Weyl Fermi
sphere, the portion of the arc merging with this Weyl point
rotates slightly away from the kz axis and now merges into
the Fermi circle originating from the projection of the Weyl
sphere to the surface BZ. At the end, we note that the limit
of straight arc geometry was recently found [39] to be
remarkably disorder tolerant, making it capable of produc-
ing ultrahigh conductivities of WSM nanostructures [40].
The present physical picture could, therefore, serve as one
way to engineer such arcs and make a control of topological
surface transport possible.

IV. CONCLUSION

In conclusion, based on a computational approach
combining the density functional theory of electronic
structure and the dynamical mean-field theory of strong
correlations, we show that two topological phases of
quantum matter, topological insulator and Weyl semimetal,
accompany the unconventional insulator-metal transition in
the 5f electron compound UNiSn. We uncover the physical
origin of its topological insulator behavior via the occur-
rence of multiple band inversions between localized f
electrons and regular band states. We also conclude that the
magnetic ordering triggers the Weyl state with the nodal
points appearing along the magnetization direction.
Our study reveals interesting opportunities for finding

other topological phase transitions in strongly correlated
systems. Of particular interest are some noncentrosymmet-
ric actinide compounds. A sister compound UPtSn is
known to exhibit properties that are similar to UNiSn
[33]. Another series that has been studied in the past
through transport, heat capacity, neutron diffraction, and
magnetic measurements is given by the uranium com-
pounds in an expanded half-Heusler structure [MgCu4Sn-
type, cF24-F43m, derived from the cubic AuBe5 lattice.]
Among those, UCu4Pd is one of the most heavily inves-
tigated compounds owing to its strange dependence of the
resistivity, magnetization, and specific heat, which scale as
T1=3 for temperatures below 10 K [55]. The quantum
critical point and non-Fermi-liquid behavior of this com-
pound is fairly well understood, but the transition between
low- and higher-temperature phases has not fully been
explained. Other famous systems to mention here are
UCu4Ni [56] and UPt4Au [57]. Understanding the interplay
between delocalized band electrons and correlated 5f states
known for their largest spin-orbit coupling is expected to
provide an ideal playground for studying topological
properties of interacting electrons.
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APPENDIX: THEORETICAL DETAILS

Schematically, the LDAþ DMFT method requires a
self-consistent solution of the Dyson equation

½ω1 −H0ðkÞ − ΣðωÞ�Gðk;ωÞ ¼ 1 ðA1Þ

for the one-electron Green function Gðk;ωÞ. The poles of
its momentum-integrated function GlocðωÞ contain infor-
mation about the true local spectrum of excitations [31].
Here, H0ðkÞ is the effective single-particle Hamiltonian,
while ΣðωÞ is a local self-energy operator. To improve the

FIG. 6. (a) Dispersion of eigenstates of a 4 × 4 k � p model
used to illustrate the magnetization-induced Weyl semimetal state
in UNiSn. The band structure is gapped for all k points in the BZ
except along the ΓZ line, where the Weyl points are formed.
(b) Position of the Weyl points in the BZ of the k � p model
periodized on the cubic lattice as well as shapes of the Fermi-arc
surface states for the slab geometry with the normal along the x
axis. Magenta refers to positive and cyan refers to negative chiral
charges.
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speed of the calculation, we earlier proposed a representa-
tion of the self-energy in terms of the Laurent series [45]

ΣðωÞ ¼ Σð∞Þ þ
X
i

Vþ
i ðω − PiÞ−1Vi; ðA2Þ

where weights Vþ
i and Vi and poles Pi are generally

matrices. Such a form of the self-energy allows us to
replace the nonlinear (over energy) Dyson equation by a
linear Schrödinger-like equation in extended subset of
“pole states,” which is clear due to a mathematical identity

�
ω −H0ðkÞ − Σð∞Þ Vþ

V ω − P

�−1

¼

0
B@ ½ω −H0ðkÞ − Σð∞Þ − Vþðω − PÞ−1V�−1 � � �

..

. . .
.

1
CA;

ðA3Þ

which relates our original matrix inversion required to find
Gðk;ωÞ (first element in the matrix from the right) to the
matrix inversion in the extended “pole space.”
For the problem of UNiSn, we first exactly diagonalize

the interacting Hamiltonian for the atomic 5f electrons in
the f1, f2, and f3 configurations using the set of Slater
integrals and the positions of the f levels described in
the main text. Second, the f-electron self-energy is
extracted via the calculation of the atomic 5f Green
function describing the one-electron addition (f2 → f3)
and removal (f2 → f1) processes to and from the Γ3 f2

ground state. Third, the expansion (A2) for the self-energy
is utilized, and the poles of the Green function matrix (A3)
are found by diagonalization. Fourth, the Fermi level is
adjusted, the charge density is calculated, and the entire
procedure is made self-consistent. Finally, the poles of
the self-consistent LDAþ DMFT Green function (A3) are
plotted in Figs. 2, 4, and 5.
To study topological invariants, we take advantage of a

recent proof [46] that utilizing pole representation (A2)
makes the topological indices Z2 of the interacting system
[right part of Eq. (A3)] and the noninteracting one [left part
of Eq. (A3)] equivalent. The corresponding eigenstates of
Eq. (A3) behave as effective quasiparticles described by the
Bloch waves jkji and can be used for Berry phase
calculations as follows. We represent the BZ by reciprocal
lattice translations Gν¼1;2;3 and divide it onto N1 × N2 ×
N3 microcells. Each microcell is spanned by primitive
vectors qν¼1;2;3 ¼ Gν=Nν with its origin given by the grid
of k points represented by three integers nν ¼ 0, Nν − 1 as
k ¼ n1q1 þ n2q2 þ n3q3. For each k, we define a so-
called link field that was introduced before [21] while
evaluating the Berry phase using the finite difference
method:

UqðkÞ ¼
det ½hkþ qj0jeiqrjkji�
j det ½hkþ qj0jeiqrjkji�j : ðA4Þ

The Berry flux through each face of the microcell (pla-
quette) can be conveniently encoded into the following
formula [21]:

2πΦ≡ Im ln

�
UqμðkÞUqνðkþ qμÞ
UqνðkÞUqμðkþ qνÞ

�
: ðA5Þ

For evaluating Z2 invariants of the TI phase, we sum
Berry fluxes through those plaquettes that constitute two-
dimensional tori introduced in Ref. [20] (pairs of reciprocal
vectors GμGν with an origin either at zero or shifted
halfway along the third vector Gξ). For locating the
Weyl points of the WSM phase, we use the fact that they
should behave as Dirac monopoles inside the microcells
whose Berry fluxes give their chiralities [51,58]. Thus, we
need to sum Berry fluxes through faces of the microcells,
which makes the procedure very similar to the one
employed while evaluating Z2 invariants, since the 3D k
grid can be viewed as spanned by pairs of the reciprocal
vectors GμGν with a fixed fractional value along the third
vectorGξ [25]. We need only to take care of the fact that the
flux through each plaquette as given by Eq. (A5) produces
right- (alternatively, left-) handed circulation of the Berry
connection, but the inner (or outer) normal should be
chosen consistently for the total flux through each surface
of the microcell. The advantage of this logarithmic for-
mulation is a guarantee that the total flux is always an
integer (and so are Z2 invariants or the monopole’s chiral
charges), since individual contributions (A5) from adjacent
plaquettes cancel each other up to an addition of 2πn.
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