
HyperService: Interoperability and Programmability
Across Heterogeneous Blockchains

Zhuotao Liu
1,2

Yangxi Xiang
3

Jian Shi
4

Peng Gao
5

Haoyu Wang
3

Xusheng Xiao
4,2

Bihan Wen
6

Yih-Chun Hu
1,2

1
University of Illinois at Urbana-Champaign

2HyperService Consortium
3
Beijing University of Posts and Telecommunications

4
Case Western Reserve University

5
University of California, Berkeley

6
Nanyang Technological University

hyperservice.team@gmail.com

ABSTRACT
Blockchain interoperability, which allows state transitions across

different blockchain networks, is critical functionality to facili-

tate major blockchain adoption. Existing interoperability protocols

mostly focus on atomic token exchanges between blockchains. How-

ever, as blockchains have been upgraded from passive distributed

ledgers into programmable state machines (thanks to smart con-

tracts), the scope of blockchain interoperability goes beyond just

token exchanges. In this paper, we present HyperService, the first
platform that delivers interoperability and programmability across

heterogeneous blockchains. HyperService is powered by two inno-

vative designs: (i) a developer-facing programming framework that

allows developers to build cross-chain applications in a unified pro-

gramming model; and (ii) a secure blockchain-facing cryptography

protocol that provably realizes those applications on blockchains.

We implement a prototype of HyperService in approximately 35,000

lines of code to demonstrate its practicality. Our experiments show

that (i) HyperService imposes reasonable latency, in order of sec-

onds, on the end-to-end execution of cross-chain applications; (ii)
the HyperService platform is scalable to continuously incorporate

new large-scale production blockchains.

CCS CONCEPTS
• Security and privacy→Distributed systems security; Secu-
rity protocols.

KEYWORDS
Blockchain Interoperability; Smart Contract; Cross-chain dApps

ACM Reference Format:
Zhuotao Liu

1,2
Yangxi Xiang

3
Jian Shi

4
Peng Gao

5
Haoyu Wang

3

and Xusheng Xiao
4,2

Bihan Wen
6

Yih-Chun Hu
1,2

. 2019. HyperService:
Interoperability and Programmability Across Heterogeneous Blockchains.

In 2019 ACM SIGSAC Conference on Computer and Communications Security
(CCS ’19), November 11–15, 2019, London, United Kingdom. ACM, New York,

NY, USA, 18 pages. https://doi.org/10.1145/3319535.3355503

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

CCS ’19, November 11–15, 2019, London, United Kingdom
© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6747-9/19/11. . . $15.00

https://doi.org/10.1145/3319535.3355503

1 INTRODUCTION
Over the last few years, we have witnessed rapid growth of sev-

eral flagship blockchain applications, such as the payment system

Bitcoin [53] and the smart contract platform Ethereum [27]. Since

then, considerable effort has been made to improve the perfor-

mance and security of individual blockchains, such as more effi-

cient consensus algorithms [3, 8, 32, 43], improving transaction

rate by sharding [20, 44, 51, 60] and payment channels [37, 40, 52],

enhancing the privacy for smart contracts [29, 39, 45], and reducing

their vulnerabilities via program analysis [24, 46, 50].

As a result, in today’s blockchain ecosystem, we see many dis-

tinct blockchains, falling roughly into the categories of public, pri-

vate, and consortium blockchains [6]. In a world deluged with iso-

lated blockchains, interoperability is power. Blockchain interoper-

ability enables secure state transitions across different blockchains,

which is invaluable for connecting the decentralized Web 3.0 [26].

Existing interoperability proposals [21, 36, 38, 61] mostly center

around atomic token exchange between two blockchains, aim-

ing to eliminate the requirement of centralized exchanges. How-

ever, since smart contracts executing on blockchains have trans-

formed blockchains from append-only distributed ledgers into pro-

grammable state machines, we argue that token exchange is not the
complete scope of blockchain interoperability. Instead, blockchain
interoperability is complete only with programmability, allowing
developers to write decentralized applications executable across

those disconnected state machines.

We recognize at least two categories of challenges for simul-

taneously delivering programmability and interoperability. First,

the programming model of cross-chain decentralized applications

(or dApps) is unclear. In general, from developers’ perspective,

it is desirable that cross-chain dApps could preserve the same

state-machine-based programming abstraction as single-chain con-

tracts [59]. This, however, raises a virtualization challenge to ab-

stract away the heterogeneity of smart contracts and accounts on

different blockchains so that the interactions and operations among

those contracts and accounts can be uniformly specified when writ-

ing cross-chain dApps.
Second, existing token-exchange oriented interoperability proto-

cols, such as atomic cross-chain swaps (ACCS) [5], are not generic

enough to realize cross-chain dApps. This is because the “executa-
bles” of those dApps could contain more complex operations than

token transfers. For instance, our example dApp in § 2.3 invokes

a smart contract using parameters obtained from smart contracts

Session 3B: Blockchain I CCS ’19, November 11–15, 2019, London, United Kingdom

549

https://doi.org/10.1145/3319535.3355503
https://doi.org/10.1145/3319535.3355503

Phase A. HSL Program Compilation

Client VES

T1

T3

T2

T4

……

A.1 HSL Program

A.2 Executable Graph

A.3 Insurance Smart Contract

if CorrectExecution:
 Pay service fee
else:
 Revert effective fund
 Enforce accountability

Phase B. Cross-Chain Execution Phase C. Insurance Claim

Client VES
State Channel

BN A BN B BN C

B.2 Post T3

B.1 Post T1

B.3 T2
B.4 T4

Network Status Blockchain
(NSB)

Action
PoA

Action

Overall Architecture

HyperService
Zoom-In

PoA

dApp
Clients

VESes

Blockchain
Networks

BN A BN B BN Z…

Universal State Model

BN A BN B BN Z…

HSL
Program

HSL
Program

HSL
Program

HSL Executables

Cross-chain Execution Reachability

Client VES

Security
Attestations

Security
Attestations

NSB or any mutual-agreed BN

Figure 1: The architecture of HyperService.

deployed on different blockchains. The complexity of this opera-

tion is far beyond mere token transfers. In addition, the executa-

bles of cross-chain dApps often contain transactions on different

blockchains, and the correctness of dApps requires those trans-

actions to be executed with certain preconditions and deadline

constraints. Another technical challenge is to securely coordinate

those transactions to enforce dApp correctness in a fully decentral-

ized manner with zero trust assumptions.

To meet these challenges, we propose HyperService, the first
platform for building and executing dApps across heterogeneous
blockchains. At a very high level, HyperService is powered by two

innovative designs: a developer-facing programming framework for

writing cross-chain dApps, and a blockchain-facing cryptography

protocol to securely realize those dApps on blockchains. Within this

programming framework, we propose Unified State Model (USM),

a blockchain-neutral and extensible model to describe cross-chain

dApps, and the HSL, a high-level programming language to write

cross-chain dApps under the USM programming model. dApps
written in HSL are further compiled into HyperService executables
which shall be executed by the underlying cryptography protocol.

UIP (short for universal inter-blockchain protocol) is the cryptog-

raphy protocol that handles the complexity of cross-chain execution.

UIP is (i) generic, operating on any blockchain with a public trans-

action ledger, (ii) secure, the executions of dApps either finish with

verifiable correctness or abort due to security violations, where mis-

behaving parties are held accountable, and (iii) financially atomic,
meaning all involved parties experience almost zero financial losses,

regardless of the execution status of dApps. UIP is fully trust-free,

assuming no trusted entities.

Contributions. To the best of our knowledge, HyperService is

the first platform that simultaneously offers interoperability and

programmability across heterogeneous blockchains. Specifically, we
make the following major contributions in this paper.

(i) We propose the first programming framework for develop-

ing cross-chain dApps. The framework greatly facilitates dApp
development by providing a virtualization layer on top of the un-

derlying heterogeneous blockchains, yielding a unified model and

a high-level language to describe and program dApps. Using our
framework, a developer can easily write cross-chain dAppswithout
implementing any cryptography.

(ii)We propose UIP, the first generic blockchain interoperabil-

ity protocol whose design scope goes beyond cross-chain token

exchanges. Rather, UIP is capable of securely realizing complex

cross-chain operations that involve smart contracts deployed on

heterogeneous blockchains. We express the security properties of

UIP via an ideal functionality FUIP and rigorously prove that UIP
realizes FUIP in the Universal Composability (UC) framework [28].

(iii)We implement a prototype of HyperService in approximately

35,000 lines of code, and evaluate the prototype with three cate-

gories of cross-chain dApps. Our experiments show that the end-to-

end dApp execution latency imposed byHyperService is in the order
of seconds, and the HyperService platform has sufficient capacity

to continuously incorporate new production blockchains.

2 HYPERSERVICE OVERVIEW
2.1 Architecture
As depicted in Figure 1, architecturally, HyperService consists of
four components. (i) dApp Clients are the gateways for dApps to
interact with theHyperService platform.When designingHyperSer-
vice, we intentionally make clients to be lightweight, allowing both

mobile and web applications to interact with HyperService. (ii) Ver-
ifiable Execution Systems (VESes) conceptually work as blockchain
drivers that compile the high-level dApp programs given by the

dApp clients into blockchain-executable transactions, which are

the runtime executables on HyperService. VESes and dApp clients

employ the underlying UIP cryptography protocol to securely exe-

cute those transactions across different blockchains. UIP itself has

two building blocks: (iii) the Network Status Blockchain (NSB) and
(iv) the Insurance Smart Contracts (ISCs). The NSB, conceptually,
is a blockchain of blockchains designed by HyperService to provide

an objective and unified view of the dApps’ execution status, based

on which the ISCs arbitrate the correctness or violation of dApp
executions in a trust-free manner. In case of exceptions, the ISCs
financially revert all executed transactions to guarantee financial

atomicity and hold misbehaved entities accountable.

2.2 Universal State Model
A blockchain, together with smart contracts (or dApps) executed
on the blockchain, is often perceived as a state machine [59]. We

desire to preserve the similar abstraction for developers when writ-

ing cross-chain dApps. Towards this end, we propose Unified State

Model (USM), a blockchain-neutral and extensible model for de-

scribing state transitions across different blockchains, which in

essential defines cross-chain dApps. USM realizes a virtualization

layer to unify the underlying heterogeneous blockchains. Such

virtualization includes: (i) blockchains, regardless of their imple-

mentations (e.g., consensus mechanisms, smart contract execution

Session 3B: Blockchain I CCS ’19, November 11–15, 2019, London, United Kingdom

550

Table 1: Example of entities, operations and dependencies in USM
Entity Kind Attributes Operation Kind Attributes Dependency Kind
account address, balance, unit payment from, to, value, exchange rate precondition
contract address, state variables[], interfaces[], source invocation interface, parameters[const, Contract.SV, ...], invoker deadline

environment, programming languages, and so on), are abstracted

as objects with public state variables and functions; (ii) developers
program dApps by specifying desired operations over those objects,
along with the relative ordering among those operations, as if all

the objects were local to a single machine.

Formally, USM is defined asM = {E,P,C} where E is a set

of entities, P is a set of operations performed over those entities,

and C is a set of constraints defining the dependencies of those
operations. Entities are to describe the objects abstracted from

blockchains. All entities are conceptually local toM, regardless

of which blockchains they are obtained from. Entities come with

kinds, and each entity kind has different attributes. The current

version of USM defines two concrete kinds of entities, accounts
and contracts, as tabulated in Table 1 (we discuss the extensions of

USM in § 6.1). Specifically, an account entity is associated with a

uniquely identifiable address, as well as its balance in certain units.

A contract entity, besides its address, is further associated with a

list of public attributes, such as state variables, callable interfaces,

and its source code deployed on blockchains. Entity attributes are

crucial to enforce the security and correctness of dApps during
compilation, as discussed in § 2.3.

An operation in USM defines a step of computation performed

over several entities. Table 1 lists two kinds of operations in USM: a

payment operation that describes the balance updates between two

account entities at a certain exchange rate; an invocation operation

that describes the execution of a method specified by the interface

of a contract entity using compatible parameters, whose values

may be obtained from other contract entities’ state variables.

Although operations are conceptually local, each operation is

eventually compiled into one or more transactions on different

blockchains, whose consensus processes are not synchronized. To

honor the possible dependencies among events in distributed com-

puting [47], USM, therefore, defines constraints to specify depen-

dencies among operations. Currently, USM supports two kinds of

dependencies: preconditions and deadlines, where an operation can

proceed only if all its preconditioning operations are finished, and

an operation must be finished within a bounded time interval after

its dependencies are satisfied. Preconditions and deadlines offer

desirable programming abstraction for dApps: (i) preconditions en-
able developers to organize their operations into a directed acyclic

graph, where the state of upstream nodes is persistent and can be

used by downstream nodes; (ii) deadlines are crucial to ensure the

forward progress of dApp executions.

2.3 HyperService Programming Language
To demonstrate the usage of USM, we developHSL, a programming

language to write cross-chain dApps under USM.

2.3.1 An Introductory Example for HSL Programs

Financial derivatives are among themost commonly cited blockchain

applications. Many financial derivatives rely on authentic data feed,

i.e., an oracle, as inputs. For instance, a standard call-option contract

1 # Import the source code of contracts written in different languages.

2 import (“broker.sol”, “option.vy”, “option.go”)
3 # Entity definition.

4 # Attributes of a contract entity are implicit from its source code.

5 account a1 = ChainX ::Account(0x7019..., 100, xcoin)
6 account a2 = ChainY ::Account(0x47a1..., 0, ycoin)
7 account a3 = ChainZ ::Account(0x61a2..., 50, zcoin)
8 contract c1 = ChainX ::Broker(0xbba7...)
9 contract c2 = ChainY ::Option(0x917f...)

10 contract c3 = ChainZ ::Option(0xefed...)
11 # Operation definition.

12 op op1 invocation c1.GetStrikePrice() using a1

13 op op2 payment 50 xcoin from a1 to a2 with 1 xcoin as 0.5 ycoin
14 op op3 invocation c2.CashSettle(10, c1.StrikePrice) using a2

15 op op4 invocation c3.CashSettle(5, c1.StrikePrice) using a3

16 # Dependency definition.

17 op1 before op2, op4; op3 after op2
18 op1 deadline 10 blocks; op2, op3 deadline default; op4 deadline 20 mins

Figure 2: A cross-chain Option dApp written in HSL.

needs a genuine strike price. Existing oracles [13, 62] require a smart

contract on the blockchain to serve as the front-end to interact with

other client smart contracts. As a result, it is difficult to build a

dependable and unbiased oracle that is simultaneously accessible to

multiple blockchains, because we cannot simply deploy an oracle

smart contract on each individual blockchain since synchronizing

the execution of those oracle contracts requires blockchain interop-

erability, i.e., we see a chicken-and-egg problem. This limitation, in

turn, prevents dApps from spreading their business across multi-

ple blockchains. For instance, a call-option contract deployed on

Ethereum forces investors to exercise the option using Ether, but

not in other cryptocurrencies.

As an introductory example, we shall see how conceptually

simple, yet elegant, it is, from developers’ perspective, to build a

universal call-option dApp that allows investors to natively exer-

cise options with the cryptocurrencies they prefer. The code snip-

pet shown in Figure 2 is the HSL implementation for the referred

dApp. In this dApp, both Option contracts deployed on blockchains

ChainY and ChainZ rely on the same Broker contract on ChainX to

provide the genuine strike price (lines 14 and 15 in Figure 2). Detailed

HSL grammar is given in Grammar 1.

2.3.2 HSL Program Compilation

The core of HyperService programming framework is the HSL
compiler. The compiler performs two major tasks: (i) enforcing
security and correctness checks onHSL programs and (ii) compiling

HSL programs into blockchain-executable transactions.

One of the key differentiations of HyperService is that it al-

lows dApps to natively define interactions and operations among

smart contracts deployed on heterogeneous blockchains. Since

these smart contracts could be written in different languages, HSL
provides a multi-language front end to analyze the source code

Session 3B: Blockchain I CCS ’19, November 11–15, 2019, London, United Kingdom

551

of those smart contracts. It extracts the type information of their

public state variables and functions, and then converts them into

the unified types defined by HSL (§ 3.1). This enables effective cor-

rectness checks on theHSL programs (§ 3.3). For instance, it ensures

that all the parameters used in a contract invocation operation are

compatible and verifiable, even if these arguments are extracted

from remote contracts written in languages different from that of

the invoking contract.

Once a HSL program passes the syntax and correctness checks,

the compiler will generate an executable for the program. The ex-

ecutable is structured in the form of a Transaction Dependency

Graph, which contains (i) the complete information for computing a

set of blockchain-executable transactions, (ii) the metadata of each

transaction needed for correct execution, and (iii) the preconditions
and deadlines of those transactions that honor the dependency

constraints specified in the HSL program (§ 3.4).

In HyperService, the Verifiable Execution Systems (VESes) are
the actual entities that own the HSL compiler and therefore re-

sume the aforementioned compiler responsibilities. Because of this,

VESes work as blockchain drivers that bridge our high-level pro-
gramming framework with the underlying blockchains. Each VES
is a distributed system providing trust-free service to compile and

execute HSL programs given by dApp clients. VESes are trust-free
because their actions taken during dApp executions are verifiable.

Each VES defines its own service model, including its reachabil-

ity (i.e., the set of blockchains that the VES supports), service fees

charged for correct executions, and insurance plans (i.e., the ex-
pected compensation to dApps if the VES’s execution is proven to

be incorrect). dApps have full autonomy to select VESes that satisfy
their requirements. In § 6.3, we lay out our visions for VESes.

Besides owning the HSL compiler, VESes also participate in the

actual executions of HSL executables, as discussed below.

2.4 Universal Inter-Blockchain Protocol (UIP)
To correctly execute a dApp, all the transactions in its executable

must be posted on blockchains for execution, and meanwhile their

preconditions and deadlines are honored. Although this executing

procedure is conceptually simple (thanks to the HSL abstraction),

it is very challenging to enforce correct executions in a fully trust-

free manner where (i) no trusted authority is allowed to coordinate

the executions on different blockchains and (ii) no mutual trust

between VESes and dApp clients are established.

To address this challenge, HyperService designs UIP, a cryptog-
raphy protocol between VESes and dApp clients to securely execute
HSL executables on blockchains. UIP can work on any blockchain

with public ledgers, imposing no additional requirements such as

their consensus protocols and contract execution environment. UIP
provides strong security guarantees for executing dApps such that

dApps are correctly executed only if the correctness is publicly ver-

ifiable by all stakeholders; otherwise, UIP holds the misbehaving

parties accountable, and financially reverts all committed transac-

tions to achieve financial atomicity.

UIP is powered by two innovative designs: the Network Status

Blockchain (NSB) and the Insurance Smart Contract (ISC). TheNSB
is a blockchain designed by HyperService to provide objective and

unified views on the status of dApp executions. On the one hand,

the NSB consolidates the finalized transactions of all underlying

blockchains into Merkle trees, providing unified representations for

transaction status in form of verifiable Merkle proofs. On the other

hand, the NSB supports Proofs of Actions (PoAs), allowing both

dApp clients and VESes to construct proofs to certify their actions

taken during cross-chain executions. The ISC is a code-arbitrator. It

takes transaction-status proofs constructed from the NSB as input

to determine the correctness or violation of dApp executions, and

meanwhile uses action proofs to determine the accountable parities

in case of exceptions.

In § 4.6, we define the security properties of UIP via an ideal

functionality and then rigorously prove that UIP realizes the ideal

functionality in UC-framework [28].

2.5 Assumptions and Threat Model
We assume that the cryptographic primitives and the consensus pro-

tocol of all underlying blockchains are secure so that each of them

can have the concept of transaction finality. On Nakamoto consen-

sus based blockchains (typically permissionless), this is achieved by

assuming that the probability of blockchain reorganizations drops

exponentially as new blocks are appended (common-prefix prop-
erty) [35]. On Byzantine tolerance based blockchains (usually per-

missioned), finality is guaranteed by signatures from a quorum of

permissioned voting nodes. For a blockchain, if the NSB-proposed
definition of transaction finality for the blockchain is accepted by

users and dApps on HyperService, the operation (or trust) model

(e.g., permissionless or permissioned) and consensus efficiency (i.e.,
the latency for a transaction to become final) of the blockchain

have provably no impact on the security guarantees of our UIP
protocol. We also assume that each underlying blockchain has a

public ledger that allows external parties to examine and prove

transaction finality and the public state of smart contracts.

The correctness of UIP relies on the correctness of the NSB.
An example implementation of NSB is a permissioned blockchain,

where any information on NSB becomes legitimate only if a quo-

rum of consensus nodes that maintain the NSB have approved the

information. We thus assume that at least K consensus nodes of

the NSB are honest, where K is the quorum threshold (e.g., the
majority). In this design, an NSB node is not required to become

either a full or light node for any of the underlying blockchains.

We consider a Byzantine adversary that interferes with our UIP
protocol arbitrarily, including delaying and reordering network

messages indefinitely, and compromising protocol participants. As

long as at least one protocol participant is not compromised by the

adversary, the security properties of UIP are guaranteed.

3 PROGRAMMING FRAMEWORK
The design of the HyperService programming framework centers

around the HSL compiler. Figure 3 depicts the compilation work-

flow. The HSL compiler has two frond-ends: one for extracting

entities, operations, and dependencies from a HSL program and

one for extracting public state variables and methods from smart

contracts deployed on blockchains. A unified type system is de-

signed to ensure that smart contracts written in different languages

can be abstracted as interoperable entities defined in the HSL pro-

gram. Afterwards, the compiler performs semantic validations on

Session 3B: Blockchain I CCS ’19, November 11–15, 2019, London, United Kingdom

552

HSL
Front-End

Unified Types Entities Operations Dependencies

Dependency
Validation

Operation
Validation

Entity
Validation

HSL Front Ends

HSL
Program

Multi-language
Front-End

HSL Validation and Compilation

…Solidity
Contract

Vyper
Contract

Go
Contract

Transaction
Compilation

Transaction Dependency Graph

Figure 3: Workflow of HSL compilation.

all entities, operations and dependencies to ensure the security and

correctness of the HSL program. Finally, the compiler produces an

executable for the HSL program, which is structured in the form

of a transaction dependency graph. We next describe the details of

each component.

3.1 Unified Type System
The USM is designed to provide a unified virtualization layer for

developers to define invocation operations in their HSL programs,

without handling the heterogeneity of contract entities. Towards

this end, the programming framework internally defines a Unified

Type System so that state variables and methods of all contract

entities can be abstracted using the unified types when writingHSL
programs. This enables the HSL compiler to ensure that all argu-

ments specified in an invocation operation are compatible (§ 3.3).
Specifically, the unified type system defines nine elementary

types, as shown in Table 2. Data types that are commonly used in

smart contract programming languages will bemapped to these uni-
fied types during compilation. For example, Solidity does not fully

support fixed-point number, but Vyper (decimal) and Go (f loat)
do. Also, Vyper’s string is fixed-sized (declared via string[Inteдer]),
but Solidity’s string is dynamically-sized (declared as string). Our

multi-lang front-end recognizes these differences and performs

type conversion to map all the numeric literals including integers

and decimals to the Numeric type, and the strings to the Strinд
type. For types that are similar in Solidity, Vyper, and Go, such

as Boolean, Map, and Struct , we simply map them to the corre-

sponding types in our unified type system. Finally, Solidity and

Vyper provide special types for representing contract addresses,

which are mapped to the Address type. But Go does not provide a

type for contract addresses, and thus Go’s Strinд type is mapped

to the Address type. The mapping of language-specific types to

the unified type system is tabulated in Table 2. Our unified type

system is horizontally scalable to support additional strong-typed

programming languages. Note that the use of complex data types

as contract function parameters has not been fully supported yet

in production. We thus leave complex types in HSL to future work.

Table 2: Unified type mapping for Solidity, Vyper, and Go
Type Solidity Vyper Go
Boolean bool bool bool

Numeric int, uint int128, uint256, deci-

mal, unit type

int, uint, uintptr, float

Address address address string

String string string string

Array array, bytes array, bytes array, slice

Map mapping map map

Struct struct struct struct

Function function, enum def func

Contract Contract file type

⟨hsl⟩ ::= (⟨import ⟩)+ (⟨entity_def ⟩)+ (⟨op_def ⟩)+ (⟨dep_def ⟩)*
Contract Imports:
⟨import ⟩ ::= ‘import’ ‘(’ ⟨file⟩ (‘,’ ⟨file⟩)* ‘)’
⟨file⟩ ::= ⟨string⟩

Entity Definition:
⟨entity_def ⟩ ::= ⟨entity_type⟩ ⟨entity_name⟩ ‘=’ ⟨chain_name⟩ ‘::’

⟨constructor ⟩
⟨entity_name⟩ ::= ⟨id ⟩
⟨chain_name⟩ ::= ‘Chain’ ⟨id ⟩
⟨constructor ⟩ ::= ⟨contract_type⟩ ‘(’ ⟨address⟩, (⟨unit ⟩)? ‘)’
⟨contract_type⟩ ::= ‘Account’ | ⟨id ⟩
⟨entity_type⟩ ::= ‘account’ | ‘contract’

Operation Definition:
⟨op_def ⟩ ::= ⟨op_payment ⟩ | ⟨op_invocation⟩
⟨op_payment ⟩ ::= ‘op’ ⟨op_name⟩ ‘payment’ ⟨coin⟩ ⟨accts⟩ ⟨exchange⟩
⟨op_name⟩ ::= ⟨id ⟩
⟨coin⟩ ::= ⟨num⟩ ⟨unit ⟩
⟨accts⟩ ::= ‘from’ ⟨acct ⟩ ‘to’ ⟨acct ⟩
⟨acct ⟩ ::= ⟨id ⟩
⟨exchange⟩ ::= ‘with’ ⟨coin⟩ ‘as’ ⟨coin⟩
⟨op_invocation⟩ ::= ‘op’ ⟨op_name⟩ ‘invocation’ ⟨call⟩ ‘using’ ⟨acct ⟩
⟨call⟩ ::= ⟨recv⟩ ‘.’ ⟨method ⟩ ‘(’ (arg)*‘)’
⟨arg⟩ ::= ⟨int ⟩ | ⟨float ⟩ | ⟨string⟩ | ⟨state_var ⟩
⟨state_var ⟩ ::= ⟨varname⟩ ‘.’ ⟨prop⟩

Dependency Definition:
⟨dep_def ⟩ ::= ⟨temp_deps⟩ | ⟨del_deps⟩
⟨temp_deps⟩ ::= ⟨temp_dep⟩ (‘;’ ⟨temp_dep⟩)*
⟨temp_dep⟩ ::= ⟨op_name⟩ (‘before’ | ‘after’) ⟨op_name⟩ (‘,’

⟨op_name⟩)*
⟨del_deps⟩ ::= ⟨del_dep⟩ (‘;’ ⟨del_dep⟩)*
⟨del_dep⟩ ::= ⟨op_name⟩ (‘,’ ⟨op_name⟩)* ‘deadline’ ⟨del_spec⟩
⟨del_spec⟩ ::= ⟨int ⟩ ‘blocks’| ‘default’ | ⟨int ⟩ ⟨time_unit ⟩

Grammar 1: Representative BNF grammar of HSL

3.2 HSL Language Design
The language constructs provided by HSL are coherent with USM,

allowing developers to straightforwardly specify entities, opera-

tions, and dependencies inHSL programs. One additional construct,

import , is added to import the source code of contract entities, as

discussed below. Grammar 1 shows the representative rules of HSL.
We omit the terminal symbols such as ⟨id⟩ and ⟨address⟩.
Contract Importing. Developers use the ⟨import⟩ rule to include

the source code of contract entities. Depending on the program-

ming language of an imported contract, HSL’s multi-lang front end

uses the corresponding parser to parse the source code, based on

which it performs semantic validation (§ 3.3). For security purpose,

the compiler should verify that the imported source code is consis-

tent with the actual deployed code on blockchain, for instance, by

comparing their compiled byte code.

Entity Definition. The ⟨entity_def⟩ rule specifies the definition of

an account or a contract entity. An entity is defined via constructor,

where the on-chain (⟨address⟩) of the entity is a required parameter.

An account entity can be initialized with an optional unit (⟨unit⟩) to
specify the cryptocurrency held by the account. All contract entities
must have the corresponding contract objects/classes in one of the

imported source code files. Each entity is assigned with a name

(⟨entity_name⟩) that can be used for defining operations.

Session 3B: Blockchain I CCS ’19, November 11–15, 2019, London, United Kingdom

553

Operation Definition. The ⟨op_def⟩ rule specifies the definition
of a payment or an invocation operation. A payment operation
(⟨op_payment⟩) specifies the transfer of a certain amount of coins

(⟨coin⟩) between two accounts thatmay live on different blockchains

(⟨accts⟩). Note that no new coins on any blockchains are ever cre-

ated during the operation. The ⟨exchange⟩ rule is used to specify

the exchange rate between the coins held by the two accounts. An

invocation operation (⟨op_invocation⟩) specifies calling one contract
entity’s public method with certain arguments (⟨call⟩). The argu-
ments passed to a method invocation can be literals (⟨int⟩, ⟨float⟩,
⟨string⟩), and state variables (⟨state_var⟩) of other contract entities.
When using state variables, semantic validation is required (§ 3.3).

Dependency Definition. The ⟨dep_def⟩ specifies the rule of defin-
ing preconditions and deadlines for operations. A precondition
(⟨temp_deps⟩) specifies the temporal constraints for the execution

order of operations. A deadline (⟨del_deps⟩) specifies the deadline
constraints of each operation. The deadline dependency may be

given either using the number of blocks on NSB (⟨int⟩ blocks) or
in absolute time (⟨int⟩ ⟨time_unit⟩), as explained in § 3.4.

3.3 Semantic Validation
The compiler performs two types of semantic validation to ensure

the security and correctness of HSL programs. First, the compiler

guarantees the compatibility and verifiability of the arguments used

in invocation operations, especially when those arguments are ob-

tained from other contract entities. For compatibility check, the

compiler performs type checking to ensure the types of arguments

and the types of method parameters are mapped to the same uni-

fied type. For verifiability check, the compiler ensures that only

literals and state variables that are publicly stored on blockchains

are eligible to be used as arguments in invocation operations. For

example, the return values of method calls to a contract entity are

not eligible if these results are not persistent on blockchains. This

requirement is necessary for the UIP protocol to construct pub-

licly verifiable attestations to prove that correct values are used to

invoking contracts during actual on-chain execution. Second, the

compiler performs dependency validation to make sure that the

dependency constraints defined in a HSL program uniquely specify

a directed acyclic graph connecting all operations. This ensures

that no conflicting temporal constraints are specified.

3.4 HSL Program Executables
Once a HSL program passes all validations, the HSL compiler gen-

erates executables for the program in form of a transaction depen-

dency graph GT . Each vertex of GT , referred to as a transaction
wrapper, contains the complete information to compute an on-chain

transaction executable on a specific blockchain, as well as additional

metadata for the transaction. The edges in GT define the precon-

ditioning requirements among transactions, which are consistent

with the dependency constraints specified by the HSL program.

Figure 4 show the GT generated for the HSL program in Figure 2.

A transaction wrapper is in form of T := [from, to, seq,meta],
where the pair <from, to> decides the sending and receiving ad-

dresses of the on-chain transaction, seq (omitted in Figure 4) rep-

resents the sequence number of T in GT , and meta stores the

structured and customizable metadata for T . Below we explain

Transaction T1 on ChainX:
 from: a1.address
 to: c1.address
Meta:
 data: c1.getStrikePrice
 <amt, dst>: <0.1 ncoin, 0x1…>
 state_proof: collect from NSB

Transaction T2 on ChainX:
 from: a1.address
 to: VES.relayX.address
Meta:
 value: 50 xcoin
 <amt, dst>: <25 ncoin, 0x2…>
 deadline: 4 NSB blocks

Transaction T3 on ChainY:
 from: VES.relayY.address
 to: a2.address
Meta:
 value: 25 ycoin
 <amt, dst>: <5 ncoin, 0x3…>
 deadline: 6 NSB blocks

Transaction T4 on ChainY:
 from: a2.address
 to: c2.address
Meta:
 data: c2.CashSettle(10, c1.StrikePrice)
 <amt, dst>: <0.1 ncoin, 0x4…>
 value_proof: T1.meta.state_proof

Transaction T5 on ChainZ

Figure 4: GT generated for the example HSL program.

the fields of meta. First, to achieve financial atomicity, meta must

populate a tuple ⟨amt, dst⟩ for fund reversion. In particular, amt
specifies the total value that the from address has to spend when T

is committed on its destination blockchain, which includes both the

explicitly paid value in T , as well as any gas fee. If the entire execu-

tion fails with exceptions whereas T is committed, the dst account
is guaranteed to receive the amount of fund specified in amt. As
we shall see in § 4.4, the fund reversion is handled by the Insurance

Smart Contract (ISC). Therefore, the unit of amt (represented as

ncoin in Figure 4) is given based on the cryptocurrency used by the

blockchain where the ISC is deployed, and the dst should live on

the hosting blockchain as well.

Second, for a transaction (such as T1) whose resulting state is

subsequently used by other downstream transactions (such as T4),
its meta needs to be populated with a corresponding state proof.

This proof should be collected from the transaction’s destination

blockchain after the transaction is finalized (c.f., § 4.2.3). Third,

a cross-chain payment operation in the HSL program results in

multiple transactions in GT . For instance, to realize the op1 in

Figure 2, two individual transactions, involving the relay accounts
owned by the VES, are generated. As blockchain drivers, each VES
is supposed to own some accounts on all blockchains that it has

visibility so that the VES is able to send and receive transactions on
those blockchains. For instance, in Figure 4, the relayX and relayY
are two accounts used by the VES to bridge the balance updates

between ChainX::a1 and ChainY::a2. Because of those VES-owned
accounts, GT is in general VES-specific.

Finally, the deadlines of transactions could be specified using

the number of blocks on the NSB. This is because the NSB con-

structs a unified view of the status of all underlying blockchains

and therefore can measure the execution time of each transaction.

Specifically, the deadline of a transaction T is measured as the

number of blocks between two NSB blocks B1 and B2 (including

B2), where B1 proves the finalization of T ’s last preconditioned

transaction and B2 proves the finalization of T itself. We explain in

detail how the finality proof is constructed based on NSB blocks in

§ 4.2.2. Transaction deadlines are indeed enforced by the ISC using

the number of NSB blocks. Note that to improve expressiveness,

the HSL language also allows developers to define deadlines in time

intervals (e.g., minutes). The compiler will then convert those time

intervals into numbers of NSB blocks.

Session 3B: Blockchain I CCS ’19, November 11–15, 2019, London, United Kingdom

554

In summary, the executable produced by the HSL complier de-

fines the blueprint of cross-blockchain execution to realize the HSL
program. It is the input instructions that direct the underlying

cryptography protocol UIP, as detailed below.

4 UIP DESIGN DETAIL
UIP is the cryptography protocol that executes HSL program exe-

cutables. The main protocol ProtUIP is divided into five preliminary

protocols. In particular, ProtVES and ProtCLI define the execution
protocols implemented by VESes and dApp clients, respectively.

ProtNSB and ProtISC are the protocol realization of the NSB and

ISC, respectively. Lastly, ProtUIP includes ProtBC, the protocol real-
ization of a general-purposed blockchain. Overall, ProtUIP has two

phases: the execution phase where the transactions specified in the

HSL executables are posted on blockchains and the insurance claim

phase where the execution correctness or violation is arbitrated.

4.1 Protocol Preliminaries
4.1.1 Runtime Transaction State

During the execution phase, a transaction may be in any of the fol-

lowing state {unknown, init, inited, open, opened, closed}, where
a latter state is considered more advanced than a former one. The

state of each transaction must be gradually promoted following the

above sequence. For each state (except for the unknown), ProtUIP
produces a corresponding attestation to prove the state. When the

execution phase terminates, the final execution status of the HSL
program is collectively decided by the state of all transactions, based

on which ProtISC arbitrates its correctness or violation.

4.1.2 Off-Chain State Channels

The protocol exchange between ProtVES and ProtCLI can be con-

ducted via off-chain state channels for low latency. One challenge,

however, is that it is difficult to enforce accountability for non-

closed transactions without preserving the execution steps by both

parties. To address this issue, ProtUIP proposes Proof of Actions

(PoAs), allowing ProtVES and ProtCLI to stake their execution steps

on NSB. As a result, the NSB is treated as a publicly-observable

fallback communication medium for the off-chain channel. The

benefit of this dual-medium design is that the protocol exchange

between ProtVES and ProtCLI can still proceed agilely via off-chain

channels in typical scenarios, whereas the full granularity of their

protocol exchange is preserved on the NSB in case of exceptions,

eliminating the ambiguity for accountability enforcement.

As mentioned in § 4.1.1, ProtUIP produces security attestations

to prove the runtime state of transactions. As we shall see below, an

attestation may come in two forms: a certificate, denoted by Cert,
signed by ProtVES or/and ProtCLI during their off-chain exchange,

or an on-chain Merkle proof, denoted byMerk, constructed using

theNSB and underlying blockchains. AnCert and its corresponding
Merk are treated equivalently by the ProtISC in code arbitration.

4.1.3 Architecture of the NSB

The NSB is a blockchain designed to provide an objective view on

the execution status of dApps. Figure 5 depicts the architecture

of NSB blocks. Similar to typical blockchain blocks, an NSB block

contains several common fields, such as the hash fields to link blocks

Block Number: N + 1

ActionRoot StatusRoot…

Block Number: NPrevHash

ActionRoot

Hash

CommonRoots StatusRoot

Blockchain X

BlockID: 2012

StateRoot: 0x1…

TxRoot: 0xf…

Blockchain X

BlockID: 2019

StateRoot: 0x2…

TxRoot: 0xe…
Cert(z)Cert(a)

Figure 5: The architecture of NSB blocks.

together and the Merkle trees to store transactions and state. To

support the extra functionality of the NSB, an NSB block contains

two additional Merkle tree roots: StatusRoot and ActionRoot.
StatusRoot is the root of a Merkle tree (referred as StatusMT)

that stores transaction status of underlying blockchains. The NSB
represents the transaction status of a blockchain based on the Tx-
Roots and StateRoots retrieved from the blockchain’s public ledger.

Although the exact namings may vary on different blockchains,

in general, the TxRoot and StateRoot in a blockchain block rep-

resent the root of a Merkle tree storing transactions and storage

state (e.g., account balance, contract state), respectively. Note that
the NSB only stores relevant blockchain state, where a blockchain

block is considered to be relevant if the block packages at least one

transaction that is part of any dApp executables.

ActionRoot is the root of a Merkle tree (referred to as ActionMT)
whose leaf nodes store certificates computed by VESes and dApp
clients. Each certificate represents a certain step taken by either

the VES or the dApp client during the execution phase. To prove

such an action, a party needs to construct a Merkle proof to demon-

strate that the certificate mapped to the action can be linked to a

committed block on the NSB. These PoAs are crucial for the ISC to

enforce accountability if the execution fails. Since the information

of each ActionMT is static, we lexicographically sort the ActionMT
to achieve fast search and convenient proof of non-membership.

Note that the construction of StatusMT ensures that each under-

lying blockchain can have a dedicated subtree for storing its trans-

action status. This makes the NSB shardable on the granularity of
individual blockchains, ensuing that theNSB is horizontally scalable

as HyperService continuously incorporates additional blockchains.

ProtNSB, discussed in § 4.5, is the protocol that specifies the detailed
construction of both roots and guarantees their correctness.

4.2 Execution Protocol by VESes
The full protocol of ProtVES is detailed in Figure 6. Below we clarify

some technical subtleties.

4.2.1 Post Compilation and Session Setup

After GT is generated, ProtVES initiates an execution session for

GT in the PostCompiliation daemon. The primary goal of the ini-

tialization is to create and deploy an insurance contract to protect

the execution of GT . Towards this end, ProtVES interacts with the

protocol ProtISC to create the insurance contract for GT , and fur-

ther deploys the contract on NSB after the dApp client D agrees

on the contract . Throughout the paper, Cert([∗]; Sig) represents a
signed certificate proving that the signing party agrees on the value

enclosed in the certificate. We use SigVsid and SigDsid to represent the

signature by ProtVES and ProtCLI, respectively.

Session 3B: Blockchain I CCS ’19, November 11–15, 2019, London, United Kingdom

555

1 Init: Data := ∅

2 Daemon PostCompiliation():
3 generate the session ID sid← {0, 1}λ

4 call [cid, contract] := ProtISC.CreateContract(GT)
5 send Cert([sid, GT , contract]; SigVsid) to ProtCLI for approval

6 halt until Cert([sid, GT , contract]; SigVsid, Sig
D
sid) is received

7 package contract as a valid transaction �contract
8 call ProtNSB.Exec(�contract) to deploy the �contract
9 halt until �contract is initialized on ProtNSB

10 call ProtISC.StakeFund to stake the required funds in ProtISC
11 halt until D has staked its required funds in ProtISC
12 initialize Data[sid] := {GT , cid, SCert=∅, SMerk=∅}

13 Daemon Watching(sid, {ProtBC, ...}) private:
14 (GT , _, SCert, SMerk) := Data[sid]; abort if not found
15 for each T ∈ GT :
16 continue if T .state is not opened
17 identify T’s on-chain counterpart T̃
18 continue if ProtBC.Status(T̃) is not committed
19 get tsclosed := ProtNSB.BlockHeight()
20 compute CTclosed := Cert([T̃ , closed, sid, T, tsclosed], SigVsid)

21 call ProtCLI.CloseTrans(CTclosed) to negotiate the closed attestation

22 call ProtBC.MerkleProof(T̃) to obtain a finalization proof for T̃
23 denote the finalization proof as Merkc1

T
(Figure 7)

24 update SCert .Add(CTclosed) and SMerk .Add(Merkc1
T
)

25 Daemon Watching(sid, ProtNSB) private:
26 (GT , _, SCert, SMerk) := Data[sid]; abort if not found
27 watch four types of attestations {Certid, Certo, Certod, Certc }
28 process fresh attestations via corresponding handlers (see below)

29 # Retrieve alternative attestations if necessary.

30 for each T ∈ GT :
31 if T .state = opened andMerkc1

T
∈ SMerk :

32 retrieve the roots [R, ...] of the proof Merkc1
T

33 call ProtNSB.MerkleProof([R, ...]) to obtain a status proofMerkc2
T

34 continue ifMerkc2
T

is not available yet on ProtNSB
35 compute the complete proof Merkc

T
:= [Merkc1

T
, Merkc2

T
]

36 update T .state := closed and SMerk .Add(Merkc
T
)

37 compute eligible transaction set S using the current state of GT

38 for each T ∈ S:
39 continue if T .state is not unknown
40 if T .from = ProtCLI:
41 compute Certi

T
:= Cert([T, init, sid]; SigVsid)

42 call ProtCLI.InitTrans(CertiT) to request initialization

43 call ProtNSB.AddAction(CertiT) to prove Certi
T
is sent

44 update SCert .Add(CertiT) and T .state := init

45 non-blocking wait until ProtNSB.MerkleProof(Certi
T
) rt.Merki

T

46 update SMerk .Add(Merki
T
)

47 else: call self.SInitedTrans(sid, T)
48 Upon Receive SInitedTrans(sid, T) private: Northbound
49 (GT , _, SCert, SMerk) := Data[sid]; abort if not found
50 compute and sign the on-chain counterpart T̃ for T

51 compute Certid
T
:= Cert([T̃ , inited, sid, T]; SigVsid)

52 call ProtCLI.InitedTrans(CertidT) to request opening of initialized T

53 call ProtNSB.AddAction(CertidT) to prove Certid
T
is sent

54 update SCert .Add(CertidT) and T .state := inited

55 non-blocking wait until ProtNSB.MerkleProof(Certid
T
) returns Merkid

T

56 update SMerk .Add(Merkid
T
)

57 Upon Receive RInitedTrans(Certid
T
) public: Southbound

58 assert Certid
T
has the valid form of Cert([T̃ , inited, sid, T]; SigDsid)

59 (_, _, SCert, SMerk) := Data[sid]; abort if not found
60 abort if the Certi

T
corresponding to Certid

T
is not in SCert

61 assert T̃ is correctly associated with the wrapper T

62 get tsopen := ProtNSB.BlockHeight()

63 compute Certo
T
:= Cert([T̃ , open, sid, T, tsopen]; SigVsid)

64 call ProtCLI.OpenTrans(CertoT) to request opening for T

65 call ProtNSB.AddAction(CertoT) to prove Certo
T
is sent

66 update SCert .Add(CertoT) and T .state := open
67 non-blocking wait until ProtNSB.MerkleProof(Certo

T
) returns Merko

T

68 update SMerk .Add(Merko
T
)

69 Upon Receive OpenTrans(CertoT) public: Northbound

70 assert CertoT has valid form of Cert([T̃ , open, sid, T, tsopen]; SigDsid)
71 (_, _, SCert, SMerk) := Data[sid]; abort if not found
72 abort if the CertidT corresponding to CertoT is not in SCert
73 assert tsopen is within a bounded range with ProtNSB.BlockHeight()

74 compute CertodT := Cert([T̃ , open, sid, T, tsopen]; SigDsid, Sig
V
sid)

75 call ProtBC.Exec(T̃) to trigger on-chain execution

76 call ProtCLI.OpenedTrans(CertodT) to acknowledge request

77 call ProtNSB.AddAction(CertodT) to prove CertodT is sent

78 update SCert .Add(CertodT) and T .state := opened

79 non-blocking wait until ProtNSB.MerkleProof(CertodT) returns MerkodT
80 update SMerk .Add(MerkodT)

81 Upon Receive OpenedTrans(CertodT) public: Southbound

82 ast.CertodT has valid form ofCert([T̃ , open, sid, T, tsopen]; SigVsid, Sig
D
sid)

83 (_, _, SCert, _) := Data[sid]; abort if not found
84 abort if the CertoT corresponding to CertodT is not in SCert
85 update SCert .Add(CertodT) and T .state := opened

86 Upon Receive CloseTrans(CTclosed) public: Bidirectional

87 assert CTclosed has valid form of Cert([T̃ , closed, sid, T, tsclosed], SigDsid)

88 assert T̃ is finalized on its destination blockchain and obtain Merkc1
T

89 assert tsclosed is within a bounded margin with ProtNSB.BlockHeight()
90 (_, _, SCert, SMerk) := Data[sid]; abort if not found
91 compute Certc

T
:= Cert([T̃ , closed, sid, T, tsclosed], SigDsid, Sig

V
sid)

92 call ProtCLI.ClosedTrans(CertcT) to acknowledged request

93 update SCert .Add(CertcT), SMerk .Add(Merkc1
T
) and T .state := closed

94 Upon Receive ClosedTrans(CertcT) public: Bidirectional

95 ast.CertcT has valid form ofCert([T̃ , closed, sid, T, tsclosed], SigVsid, Sig
D
sid)

96 (_, _, SCert, _) := Data[sid]; abort if not found
97 abort if Cert([T̃ , closed, sid, T, tsclosed], SigVsid) is not in SCert
98 update SCert .Add(CertcT) and T .state := closed
99 Daemon Redeem(sid) private:

100 # Invoke the insurance contract periodically

101 (GT , cid, SCert, SMerk) := Data[sid]; abort if not found
102 for each unclaimed T ∈ GT :
103 get the CertT from SCert

⋃
SMerk with the most advanced state

104 call ProtISC.InsuranceClaim(cid, CertT) to claim insurance

Figure 6: Protocol description of of ProtVES. Gray background denotes non-blocking operations triggered by status updates
on ProtNSB. Handlers annotated with northbound and southbound process transactions originated from ProtVES and ProtCLI,
respectively. Handlers annotated with bidirectional are shared by all transactions.

Session 3B: Blockchain I CCS ’19, November 11–15, 2019, London, United Kingdom

556

Additionally, both ProtVES and ProtCLI are required to deposit

sufficient funds to ProtISC to ensure that ProtISC holds sufficient

funds to financially revert all committed transactions regardless

of the step at which the execution aborts prematurely. Intuitively,

each party would need to stake at least the total amount of in-

coming funds to the party without deducting the outgoing funds.
This strawman design, however, require high stakes. More desir-

ably, considering the dependency requirements in GT , an party X

(ProtVES or ProtCLI) only needs to stake

max

s ∈GS

∑
T∈s ∧ T .to=X

T .meta.amt −
∑

T∈s ∧ T .from=X

T .meta.amt

where GS is the set of all committable subsets in GT , where a subset

s ⊆ GT is committable if, whenever T ∈ s , all preconditions of T
are also in s . For clarity of notation, throughout the paper, when

saying T .from =ProtVES or T is originated from ProtVES, we mean

thatT is sent and signed by an account owned by ProtVES. Likewise,
T .from =ProtCLI indicates that T is sent from an account entity

defined in the HSL program. ProtISC refunds any remaining funds

after the contract is terminated.

After the contract is instantiated and sufficiently staked, ProtVES
initializes its internal bookkeeping for the session. The two no-

tations SCert and SMerk represent two sets that store the signed

certificates received via off-chain channels and on-chain Merkle

proofs constructed using ProtNSB and ProtBC.

4.2.2 Protocol Exchange for Transaction Handling

In ProtVES, SInitedTrans and OpenTrans are two handlers process-

ing northbound transactions which originates from ProtVES. The
SInitedTrans handling for T is invoked when all its preconditions

are finalized, which is detected by the watching service of ProtVES
(c.f., § 4.2.3). The SInitedTrans computes Certid

T
to prove T is in

the inited state , and then passes it to the corresponding handler of

ProtCLI for subsequent processing. Meanwhile, SInitedTrans stakes
Certid

T
on ProtNSB, and later it retrieves a Merkle proofMerki

T
from

the NSB to prove that Certid
T
has been sent. Merkid

T
essentially is a

hash chain linking Certid
T
back to an ActionRoot on a committed

block of the NSB. The proof retrieval is a non-blocking operation
triggered by the consensus update on the NSB.

The OpenTrans handler pairs with SInitedTrans. It listens for a
timestamped Certo

T
, which is supposed to be generated by ProtCLI

after it processes Certid
T
from ProtVES. OpenTrans performs special

correctness check on the tsopen enclosed in Certo
T
. In particular,

ProtVES and ProtCLI use the block height of the NSB as a calibrated

clock. By checking that tsopen is within a bounded range of the

NSB height, ProtVES ensures that the tsopen added by ProtCLI is
fresh. After all correctness checks on Certid

T
are passed, the state

of T is promoted from open to opened. OpenTrans then computes

certificate to prove the updated state and posts T̃ on its destination

blockchain for on-chain execution. Throughout the paper, T̃ denotes

the on-chain executable transaction computed and signed using

the information contained in T . Note that the difference between

the Certo
T

received from ProtCLI and a post-open (i.e., opened)
certificateCertod

T
computed by ProtVES is that latter one is signed by

both parties. Only the tsopen specified in Certod
T

is used by ProtISC
when evaluating the deadline constraint of T .

TxRoot: Rx StateRoot: Ry

TxHash: 0x3…

Value A

StatusRoot

Blockchain X

BlockID: 2019

StateRoot: Ry

TxRoot: RxValue B

Blockchain X The NSB

… … … …

Figure 7: The complete on-chain proof (denoted by Merkc
T
)

to prove that the state of a transaction is eligible to be pro-
moted as closed. The left-side part is the finalization proof
(denoted by Merkc1

T
) for the transaction collected from its

destination blockchain; the right-side part is the blockchain
status proof (denoted by Merkc2

T
) collected from the NSB.

Southbound transactions originating from ProtCLI are processed
by ProtVES in a similar manner as the northbound transactions, via

the RInitedTrans and OpenedTrans handlers. We clarify a subtlety

in the RInitedTrans handler when verifying the association between
T̃ and T (line 61). If T̃ depends on the resulting state from its up-

stream transactions (for instance, T4 depends on the resulting state

of T1 in Figure 4), ProtVES needs to verify that the state used by T̃
is consistent with the state enclosed in the finalization proofs of

those upstream transactions.

4.2.3 Proactive Watching Services

Cross-chain execution makes forward progress when all session-

relevant blockchains and the NSB make progress on transactions.

As the driver of execution, ProtVES internally creates two watching
services to proactively read the status of those blockchains.

In the watching daemon to one blockchain, ProtVES mainly reads

the public ledger of ProtBC to monitor the status of transactions

that have been posted for on-chain execution. If ProtVES notices

that an on-chain transaction T̃ is recently finalized, it requests the

closing process for T by sending ProtCLI a timestamped certificate

Cclosed. The pair of handlers, CloseTrans and ClosedTrans, are used
by both ProtVES and ProtCLI in this exchange. Both handlers can

be used for handling northbound and southbound transactions,

depending on which party sends the closing request. In general, a

transaction’s originator has a stronger motivation to initiate the

closing process because the originator would be held accountable

if the transaction were not timely closed by its deadline.

In addition, ProtVES needs to retrieve aMerkle Proof from ProtBC
to prove the finalization of T̃ . This proof, denoted byMerkc1

T
, serves

two purposes: (i) it is the first part of a complete on-chain proof

to prove that the state T̃ can be promoted to closed, as shown in

Figure 7; (ii) if the resulting state of T̃ is used by its downstream

transactions, Merkc1
T
is necessary to ensure that those downstream

transactions indeed use genuine state.

In the watching service to ProtNSB, ProtVES performs following

tasks. First, as described in § 4.1.2, NSB is treated as a fallback

communication medium for the off-chain channel. Thus, ProtVES
searches the sorted ActionMT to look for any session-relevant cer-

tificates that have not been received via the off-chain channel. Sec-

ond, for each opened T whose closed attestation is still missing

after ProtVES has sent Cclosed (indicating slow or no reaction from

Session 3B: Blockchain I CCS ’19, November 11–15, 2019, London, United Kingdom

557

1 Init: Data := ∅

2 Upon Receive CreateContract(GT):
3 generate the arbitration cod, denoted by contract , as follows
4 initialize three maps Tstate, Arevs and Fstake
5 for each T ∈ GT :
6 compute an internal identifier for T as tid := H (T)
7 initialize Tstate[tid] := [unknown, T, tsopen=0, tsclosed=0, stproof]
8 retrieve tid’s fund-reversion account, denoted as dst
9 initialize Arevs[tid] := [amt=0, dst]

10 compute an identifier for contract as cid := H (
−→
0 , contract)

11 initialize Data[cid] := [GT , Tstate, Arevs, Fstake]
12 send [cid, contract] to the requester for acknowledgment

13 Upon Receive StakeFund(cid):
14 (_, _, _, _, Fstake) := Data[cid]; abort if not found
15 update Fstake[msg.sender] := Fstake[msg.sender] +msg.value
16 Upon Receive InsuranceClaim(cid, Atte):
17 (_, _, Tstate, _, _) := Data[cid]; abort if not found
18 compute tid := H (Atte.T); T := Tstate[tid] abort if not found
19 abort if T.state is more advanced the state enclosed by Cert
20 if Atte is a certificate signed by both parties :
21 assert SigVerify(Atte) is true
22 if Atte is Certod

T
: update T.state := opened; T.tsopen := Atte.tsopen

23 else : update T.state := closed; T.tsclosed := Atte.tsclosed
24 else : # Atte is in form of a Merkle proof

25 assertMerkleVerify(Atte) is true
26 if Atte is aMerki

T
orMerkid

T
orMerko

T
:

27 retrieve the certificate Certi
T
or Certid

T
or Certo

T
from Atte

28 assert the T̃ enclosed in Certid
T
or Certo

T
is genuine

29 assert the tsopen enclosed in Certo
T
is genuine

30 update T.state := Atte.state
31 elif Atte is Merkod

T
:

32 retrieve the certificate Certod
T

from Atte

33 update T.state := opened and T.tsopen := Certod
T
.tsopen

34 elif Atte is Merkc
T
:

35 update T.stproof based on Merkc1
T

if necessary

36 update T.tsclosed as the height of the block attaching Merkc2
T

37 update T.state := closed
38 Upon Timeout SettleContract(cid): Internal Daemon
39 (GT , Tstate, Arevs, Fstake) := Data[cid]; abort if not found
40 for (tid, T) ∈ Tstate :
41 continue if T.state is not closed
42 update Arevs[tid].amt := T.T .meta.amt
43 if DeadlineVerify(T) = true : update T.state := correct
44 compute S := DirtyTrans(GT , Tstate) # non-empty if execution fails.

45 execute fund reversion for non-zero entries in Arevs if S is not empty

46 initialize a map resp to record which party to blame

47 for each (tid, T) ∈ S :
48 if T.state = closed | open | opened : resp[tid] := T.T .from
49 elif T.state = inited : resp[tid] := T.T .to
50 elif T.state = init : resp[tid] := D
51 else : resp[tid] := V
52 return any remaining funds in Fstake to corresponding senders

53 call Data.erase[cid] to stay silent afterwards

Figure 8: ProtISC: the protocol realization of the ISC arbitrator.

ProtCLI), ProtVES tries to retrieve the second part of Merkc
T
from

ProtNSB. The second proof, denoted as Merkc2
T
, is to prove that the

Merkle roots referred inMerkc1
T
are correctly linked to a StatusRoot

on a finalized NSB block (see Figure 7). OnceMerkc
T
is fully con-

structed, the state of T is promoted as closed. Finally, ProtVES may

find a new set of transactions that are eligible to be executed if their

preconditions are finalized due to any recently-closed transactions.

If so, ProtVES processes them by either requesting initialization

from ProtCLI or calling SInitedTrans internally, depending on the

originators of those transactions.

4.2.4 ProtISC Invocation

ProtVES periodically invokes ProtISC to execute the contract. All

internally stored certificates and complete Merkle proofs are accept-

able. However, for any T , ProtVES should invoke ProtISC only using

the attestation with the most advanced state, since lower-ranked

attestations for T are effectively ignored by ProtISC (c.f., § 4.4).

4.3 Execution Protocol by dApp Clients
ProtCLI specifies the protocol implemented by dApp clients. ProtCLI
defines the following set of handlers to match ProtVES. In partic-

ular, the InitedTrans and OpenedTrans match the SInitedTrans
and OpenTrans of ProtVES, respectively, to process Certid and

Certod sent by ProtVES when handling transactions originated from
ProtVES. The InitTrans andOpenTrans processCerti andCerto sent
by ProtVES when executing transactions originated from ProtCLI.

The CloseTrans and ClosedTrans of ProtCLI match their counter-

parts in ProtVES to negotiate closing attestations.

For usability, HyperService imposes smaller requirements on

the watching daemons implemented by ProtCLI. Specially, ProtCLI
still proactively watches ProtNSB to have a fallback communica-

tion medium with ProtVES. However, ProtCLI is not required to

proactively watch the status of underlying blockchains or dynami-

cally compute eligible transactions whenever the execution status

changes. We intentionally offload such complexity on ProtVES to
enable lightweight dApp clients. ProtCLI, though, should (and is

motivated to) check the status of self-originated transactions in

order to request transaction closing.

4.4 Protocol Realization of the ISC
Figure 8 specifies the protocol realization of the ISC. The Create-
Contract handler is the entry point of requesting insurance contract
creation using ProtISC. It generates the arbitration code, denoted

as contract , based on the given dApp executable GT . The contract
internally uses Tstate to track the state of each transaction in GT ,

which is updated when processing security attestations in the In-
suranceClaim handler. For clear presentation, Figure 8 extracts

the state proof and fund reversion tuple from T as dedicated vari-

ables stproof and Arevs. When the ProtISC times out, it executes the

contract terms based on its internal state, after which its funds

are depleted and the contract never runs again. Below we explain

several technical subtleties.

Session 3B: Blockchain I CCS ’19, November 11–15, 2019, London, United Kingdom

558

Correct
Close /

Opened

No party to

blame

Open

Originator:

Violated deadline

Inited

Originator: Failed

to dispatch

Init

Dest: Failed to

request opening

dApp: Failed to

initialize

Unknown

VES: Failed to

proactively drive

Negative Branch Positive Branch

Figure 9: The decision tree to decide the accountable party
for a dirty transaction.

4.4.1 Insurance Claim

The InsuranceClaim handler processes security attestations from

ProtVES and ProtCLI. Only dual-signed certificates (i.e., Certod and

Certc) or complete Merkle proofs are acceptable. Processing dual-

signed certificates is straightforward as they are explicitly agreed

by both parties. However, processing Merkle proof requires addi-

tional correctness checks. First, when validating a Merkle proof

Merki
T
,Merkid

T
orMerko

T
, ProtISC retrieves the single-party signed

certificate Certi
T
, Certid

T
or Certo

T
enclosed in the proof and per-

forms the following correctness check against the certificate. (i) The
certificate must be signed by the correct party, i.e., Certi

T
is signed

by ProtVES, CertidT is signed by T ’s originator and Certo
T
is signed

by the destination of T . (ii) The enclosed on-chain transaction T̃ in

Certid
T
andCerto

T
is correctly associated with T . The checking logic

is the same as the on used by ProtVES, which has been explained

in § 4.2.2. (iii) The enclosed tsopen in Certo
T
is genuine, where the

genuineness is defined as a bounded difference between tsopen and

the height of the NSB block that attaches Merko
T
.

4.4.2 Contract Term Settlement

ProtISC registers a callback SettleContract to execute contract terms

automatically upon timeout. ProtISC internally defines an additional

transaction state, called correct. The state of a closed transaction

is promoted to correct if its deadline constraint is satisfied. Then,
ProtISC computes the possible dirty transactions in GT , which are

the transactions that are eligible to be opened, but with non-correct
state. Thus, the execution succeeds only if GT has no dirty transac-

tions. Otherwise, ProtISC employs a decision tree, shown in Figure 9,

to decide the responsible party for each dirty transaction. The deci-

sion tree is derived from the execution steps taken by ProtVES and
ProtCLI. In particular, if a transaction T ’s state is closed, opened or

open, then it is T ’s originator to blame for either failing to fulfill the

deadline constraint or failing to dispatch T̃ for on-chain execution.

If a transaction T ’s state is inited, then it is T ’s destination party’s

responsibility for not proceeding with T even though Certid
T
has

been provably sent. If a transaction T ’s state is init (only transac-

tions originated from dApp D can have init status), then D (the

originator) is the party to blame for not reacting on the Certi
T
sent

byV . Finally, if transaction T ’s state is unknown, thenV is held

accountable for not proactively driving the initialization of T , no

matter which party originates T .

4.5 Specification of ProtNSB and ProtBC
ProtBC specifies the protocol realization of a general-purpose block-

chain where a set of consensus nodes run a secure protocol to agree

upon the public global state. In this paper, we regard ProtBC as a

conceptual party trusted for correctness and availability, i.e., ProtBC
guarantees to correctly perform any predefined computation (e.g.,
Turing-complete smart contract programs) and is always avail-

able to handle user requests despite unbounded response latency.

ProtNSB specifies the protocol realization of the NSB. ProtNSB is

an extended version of ProtBC with additional capabilities. Due

to space constraint, we move the detailed protocol description of

ProtBC and ProtNSB to our technical report that is available on both

our source code repository [4] and arXiv.

4.6 Security Theorems
To rigorously prove the security properties of UIP, we first present
the cryptography abstraction of the UIP in form of an ideal func-

tionality FUIP. The ideal functionality articulates the correctness

and security properties that UIP wishes to attain by assuming a

trusted entity. Then we prove that ProtUIP, our the decentralized
real-world protocol containing the aforementioned preliminary

protocols, securely realizes FUIP using the UC framework [28], i.e.,
ProtUIP achieves the same functionality and security properties as

FUIP without assuming any trusted authorities. Since the rigorous

proof requires non-trivial simulator construction within the UC

framework, we defer detailed proof to a dedicated section § 8.

5 IMPLEMENTATION AND EXPERIMENTS
In this section, we present the implementation of a HyperService
prototype and report experiment results on the prototype. At the

time of writing, the total development effort includes (i) ∼1,500
lines of Java code and ∼3,100 lines of ANTLR [54] grammar code

for building the HSL programming framework, (ii) ∼21,000 lines of
code, mainly in Go and Python, for implementing the UIP protocol;

and ∼8,000 lines of code, mainly in Go, for implementing the NSB;
and (iii) ∼1,000 lines of code, in Solidity, Vyper, Go and HSL, for
writing cross-chain dApps running on HyperService. The released
source code is available at [4]. The HyperService Consortium is

under active development for HyperService.

5.1 Platform Implementation
To demonstrate the interoperability and programmability across

heterogeneous blockchains on HyperService, our current proto-
type incorporates Ethereum, the flagship public blockchain, and a

permissioned blockchain built atop the Tendermint [17] consensus

engine, a commonly cited cornerstone for building enterprise block-

chains. We implement the necessary accounts (wallets), the smart

contract environment, and the on-chain storage to deliver the per-

missioned blockchain with full programmability. The NSB is also

built atop Tendermint with full support for its claimed capabilities,

such as action staking and Merkle proof retrieval.

For the programming framework, we implement the HSL com-

piler that takes HSL programs and contracts written in Solidity,

Vyper, and Go as input, and produces transaction dependency

graphs. We implement the multi-lang front end and the HSL front

end using ANTLR [54], which parse the input HSL program and

contracts, build an intermediate representation of theHSL program,

and convert the types of contract entities into our unified types.

We also implement the validation component that analyzes the

Session 3B: Blockchain I CCS ’19, November 11–15, 2019, London, United Kingdom

559

intermediate representation to validate the entities, operations, and

dependencies specified in the HSL program.

Our experience with the prototype implementation is that the
effort for horizontally scaling HyperService to incorporate a new
blockchain is lightweight: it requires no protocol change to both UIP
and the blockchain itself. We simply need to add an extra parser

to the multi-lang front end to support the programming language

used by the blockchain (if this language is new to HyperService),
and meanwhile VESes extend their visibility to this blockchain. The
HyperService consortium is continuously working on on-boarding

additional blockchains, both permissioned and permissionless.

5.2 Application Implementation
Besides the platform implementation, we further implement and

deploy three categories of cross-chain dApps on HyperService.
Financial Derivatives. Financial derivatives are among themostly

cited blockchain applications. However, external data feed, i.e., an
oracle, is often required for financial instructions. Currently, ora-

cles are either built atop trusted third-party providers (e.g., Ora-
clize [11]), or using trusted hardware enclaves [62]. HyperService,
for the first time, realizes the possibility of using blockchains them-
selves as oracles. With the built-in decentralization and correctness

guarantees of blockchains,HyperService fully avoids trusted parties
while delivering genuine data feed to smart contracts. In this appli-

cation sector, we implement a cross-chain cash-settled Option dApp
in which options can be natively traded on different blockchains (a

scaled-up version of the introductory example in § 2.3).

Cross-Chain Asset Movement. HyperService natively enables

cross-chain asset transfers without relying on any trusted entities,

such as exchanges. This primitive could power a wide range of

applications, such as a global payment network that interconnects

geographically distributed bank-backed consortium blockchains [9],

an initial coin offering in which tokens can be sold in various

cryptocurrencies, and a gaming platform where players can freely

trade and redeem their valuables (in form of non-fungible tokens)

across different games. In this category, we implement an asset

movement dApp with hybrid operations where assets are moved

among accounts and smart contracts across different blockchains

Federated Computing. In a federated computing model, all par-

ticipants collectively work on an umbrella task by submitting their

local computation results. In the scenario where transparency and

accountability are desired, blockchains are perfect platforms for

persisting both the results submitted by each participant and the

logic for aggregating those results. In this application category, we

implement a federated voting system where delegates in different

regions can submit their votes to their regional blockchains, and

the logic for computing the final votes based on the regional votes

is publicly visible on another blockchain.

5.3 Experiments
We ran experiments with three blockchain testnets: one private

Ethereum testnet, one Tendermint-based blockchain, and the NSB.
Each of those testnets is deployed on a VM instance of a public cloud

on different continents. For experiment purposes, dApp clients and

VES nodes can be deployed either locally or on cloud.

Financial

Derivatives

CryptoAsset

Movement

Federated

Computing

Mean % Mean % Mean %

HSL Compilation 1.1769 ∼16 0.2598 ∼4 1.095 ∼15

Session Creation 4.2399 ∼58 4.1529 ∼67 4.2058 ∼60

Action/Status Staking 0.6754 ∼10 0.7295 ∼12 0.7592 ∼11

Proof Retrieval 1.0472 ∼15 1.0511 ∼17 0.9875 ∼14

Total 7.1104 6.1933 7.0475

Table 3: End-to-end dApp execution latency on HyperSer-
vice, with profiling breakdown. All times are in seconds.

 0

 200

 400

 600

 800

 1000

 1200

 0 20 40 60 80 100 120 140

T
h

ro
u

g
h

p
u

t
(K

B
/s

)

Batch Size

Cert. Size 200 Bytes

Cert. Size 250 Bytes

Cert. Size 500 Bytes

Figure 10: The throughput of theNSB, measured as the total
size of committed certificates on the NSB per second.

5.3.1 End-to-End Latency

We evaluated all three applications mentioned in § 5.2 and reported

their end-to-end execution latency introduced by HyperService in
Table 3. The reported latency includes HSL program compiling,

dApp-VES session creation, and (batched) NSB action staking and

proof retrieval during the UIP protocol exchange. All reported

times include the networking latency across the global Internet.

Each datapoint is the average of more than one hundred runs.

We do not include the latency for actual on-chain execution since

the consensus efficiency of different blockchains varies and is not

controlled by HyperService. We also do not include the time for

ISC insurance claims in the end-to-end latency because they can

be done offline anytime before the ISC expires.

These dApps show similar latency profiling breakdown, where

the session creation is the most time consuming phase because it

requires handshakes between the dApp client and VES, and also

includes the time for ISC deployment and initialization. The Cryp-

toAsset dApp has a much lower HSL compilation latency since its

operation only involves one smart contract, whereas the rest two

dApps import three contracts written in Go, Vyper, and Solidity. In

each dApp, all its NSB-related operations (e.g., action/status stak-
ing and proof retrievals) are bundled and performed in a batch for

experiment purpose, even though all certificates required for ISC
arbitration have been received via off-chain channels. The sizes of

actions and proofs for three dApps are different since their executa-
bles contain different number of transactions.

5.3.2 NSB Throughput and HyperService Capacity

The throughput of the NSB affects aggregated dApp capacity on

HyperService. In this section, we report the peak throughput of

the currently implemented NSB. We stress tested the NSB by ini-

tiating up to one thousand dApp clients and VES nodes, which

concurrently dispatched action and status staking to the NSB. We

batchedmultiple certificate stakings by different clients into a single

Session 3B: Blockchain I CCS ’19, November 11–15, 2019, London, United Kingdom

560

NSB-transaction, so that the effective certificate-staking through-

put perceived by those clients can exceed the consensus limit of the

NSB. Figure 10 plots theNSB throughput, measured as the total size

of committed certificates by all clients per second, under different

certificate and batch sizes. The results show that as the batch size

increases, regardless of the certificate sizes, the NSB throughput

converged to about 1000 kilobytes per second. Given any certificate

size, further enlarging the batch size cannot boost the throughput,

whereas the failure rate of certificate staking increases, indicating

that the NSB is fully loaded.

Given the aboveNSB throughput, the actual dApp capacity of the
HyperService platform further depends on how often the communi-

cation between dApp clients and VESes falls back to theNSB. In par-
ticular, each dApp-transaction spawns at most sixNSB-transactions
(five action stakings and one status staking), assuming that the

off-chain channel is fully nonfunctional (zero NSB transaction if

otherwise). Thus, the lower bound of the aggregate dApp capacity

on HyperService, which would be reached only if all off-chain chan-

nels among dApp clients and VESes were simultaneously broken, is

about
170000

s transactions per second (TPS), where s is the (average)
size (in bytes) of a certificate. This capacity and the TPS of most

PoS production blockchains are of the same magnitude. Further,

considering (i) the NSB is horizontally shardable at the granularity

of each underlying blockchain (§ 4.1.3) and (ii) not all transactions
on an underlying blockchain are cross-chain related, we anticipate

that the NSBwill not become the bottleneck as HyperService scales
to support more blockchains in the future.

6 DISCUSSION
In this section, we discuss several aspects that have not been thor-

oughly addressed in this paper, and present our vision for future

work on HyperService and its impact.

6.1 Programming Framework Extension
HSL is a high-level programming language designed to write cross-

chain dApps under the USM programming model. The language

constructs provided by HSL allow developers to directly specify

entities, operations, and dependencies in HSL programs. To ensure

the determinism of operations, which is an important property

for the NSB and the ISC to determine the correctness or viola-

tion of dApp executions, the language constructs do not include

control-flow operations such as conditional branching, looping, and

calling/returning from a procedure. Additionally, dynamic trans-

action generation is also not supported by HSL, since it has led

to a new class of bugs known as re-entrancy vulnerabilities [55].

These design choices are consistent with the recent blockchain

programming languages that emphasize on safety guarantees, such

as Move [22] for Facebook’s Libra blockchain.

In future work, we plan to extend the design of the UIP protocol

to support dynamic transaction graphs, which allows conditional

execution of operations and certain degree of indeterminism of

operation executions, such as repeating an operation for a specific

times based on the values of state variables computed from previous

operations.With those extensions, we are able to implement control-

flow operations into HSL and provide both static and dynamic

verification to ensure the correctness of dApps.

6.2 Cross-Shards and Cross-Worlds
HyperService is motivated by heterogeneous blockchain interoper-

ation. Thanks to its generic design, HyperService can also enable

cross-shard smart contracting and transactions for sharded block-

chain platforms (e.g.,OmniLedger [44] and RapidChain [60]). On the

one hand, the HSL programming framework is blockchain-neutral

and extensible. Thus, writing dApps that involve smart contracts

and accounts on different blockchains is conceptually identical

to writing dApps that operate contracts and accounts on differ-

ent shards. In fact, given that most of those sharded blockchains

are homogeneously sharded (i.e., all shards have the same format

of contracts and accounts), developing and compiling cross-shard

dApps using HSL are even simpler than cross-chain dApps. On the

other hand, realizing UIP on sharded blockchains also requires less

overhead since maintaining an NSB for all (homogeneous) shards

is more lightweight than maintaining an NSB supporting hetero-

geneous blockchains. In fact, many sharded blockchain platforms

already maintain a dedicated global blockchain as their trust anchor

(e.g., the identity chain of OmniLedger [44] and the beacon chain

of Harmony [2]), to which the NSB functionality can be ported.

Additionally, we envision that the fully connectedWeb 3.0 should

also include centralized platforms (i.e., Cloud) to compensate for

functionality (e.g., performing computationally intensive tasks) that

is difficult to execute on-chain. We recognize that two additional

capabilities, with minimal distribution of their operation models,

are required from those centralized platforms to make them compat-

ible with HyperService: (i) any public state they publish should be

coupled with verifiable proofs to certify the correctness of the state

(where the definition of correctness could be application-specific),

and (ii) all published state should have the concept of finality. With

such capabilities, dApps on HyperService can trustlessly incorpo-

rate the state published by those centralized platforms.

6.3 Interoperability Service Providers
VESes play vital roles on HyperService platform. We envision that

VESes would enter the HyperService ecosystem as Cross-chain

Interoperability Service Providers (CSPs) by providing required

services to support cross-chain dApps, such as compiling HSL pro-

grams into transaction dependency graphs and speaking the UIP
protocol. This vision is indeed strengthened by the practical archi-

tectures of production blockchains, where all peer-to-peer nodes

evolve into a hierarchy of stakeholders and a number of organi-

zations operate (without necessarily owning) most of the mining

power for Proof-of-Work blockchains or/and stakes for Proof-of-

Stake blockchains (whether such a hierarchical architecture under-

mines decentralization is debatable, and beyond the scope of Hy-
perService). Those organizations are perfectly qualified to operate

as CSPs since they have good connectivity to multiple blockchains

and maintain sufficient token liquidity to support insurance staking,

contract invocation, and token transfers that are required in a wide

range of cross-chain dApps.
CSPs (VESes) could be found via a community-driven directory

(similar to Tor’s relay directories [18, 31]), which we envision to be

an informal list of CSPs. Each CSP has its own operation models,

including the set of reachable blockchains, service fees charged

for correct dApp executions, and insurance plans to compensate

Session 3B: Blockchain I CCS ’19, November 11–15, 2019, London, United Kingdom

561

for CSP-induced dApp failures. Developers have full autonomy

to select CSPs based on their dApp requirements. Since all dApp
execution results are publicly verifiable, it is possible to build a CSP

reputation system to provide a valuable metric for CSP selection.

CSPs thus misbehave at their own risk.

Because a CSP may wish to limit its staked funds at risk in the

ISC, a dApp may be too large for any single CSP. Alternatively, a

dApp may span a set of blockchains such that no single CSP has

reachability to all of them. In such cases, a cross-chain dApp could

be co-executed by a collection of VESes. By design, HyperService
allowsmulti-VES executions since theUIP protocol does not restrict
the number of VESes or dApp clients.

We envision the industrial impact of HyperService to be the

birth of a CSP-formed liquidity network interconnected by the UIP
protocol, powering a wide range of cross-chain dApps.

6.4 Complete Atomicity for dApps
In the context of cross-chain applications, dApps should be treated

as first-class citizens because the success or failure of any individual

transaction cannot fully decide the state of a dApp. HyperService
follows this design philosophy by providing security guarantees

at the granularity of dApps. However, the current version of Hy-
perService is not fully dApp-atomic since UIP is unable to revert

any state update to smart contracts when a dApp terminates pre-

maturely. We recognize this as a fundamental challenge due to the

finality guarantee of blockchains.

To deliver full dApp-atomicity on HyperService, we propose the
concept of stateless smart contracts where contracts are able to their
load state from the blockchain before execution. As a result, even

if the state persistent on block Bn for a smart contact C eventually

becomes dirty due to dApp failure, subsequent dApps can still load

clean state for the contract C from a block (prior toBn) agreed by all

parties. Although this design imposes additional requirements on

underlying blockchains, it is practical and deliverable using “layer-

two” protocols where smart contract executions could be decoupled

from the consensus layer, for instance, via the usage of Trusted

Execution Environment (e.g., Intel SGX [30] and Keystone [48]).

6.5 Privacy-Preserving Blockchains
The primary challenge of supporting privacy-preserving block-

chains on HyperService is the lack of a generic abstraction for

those systems. In particular, various designs have been proposed

to enhance blockchain privacy, such as encrypting blockchain

state [29], obfuscating and mixing transactions via cryptography

signature [58]. As a result, none of those blockchains can be ab-

stracted as generic programmable state machines. Therefore, our ap-

proach towards interoperating privacy-preserving blockchains will

be dApp-specific, such as relying on fast zero-knowledge proofs [25]
to allow dApps to certify the state extracted from those blockchains.

7 RELATED WORK
Blockchain interoperability is often considered as one of the pre-

requisites for the massive adoption of blockchains. The recent

academic proposals have mostly focused on moving tokens be-

tween two blockchains via trustless exchange protocol, includ-

ing side-chains [21, 36, 41], atomic cross-chain swaps [5, 38], and

cryptocurrency-backed assets [61]. However, programmability, i.e.,
smart contracting across heterogeneous blockchains, is largely ig-

nored in those protocols.

In industry, Cosmos [7] and Polkadot [12] are two notable projects

that advocate blockchain interoperability. They share the similar

spirit: each of them has a consensus engine to build blockchains (i.e.,
Tendermint [17] for Cosmos and Substrate [16] for Polkadot), and

a mainchain (i.e., the Hub in Cosmos and RelayChain for Polkadot)

to bridge individual blockchains. Although we do share the similar

vision of “an Internet of blockchains”, we also notice two notable

differences between them and HyperService. First and foremost,

the cross-chain layer of Cosmos, powered by its Inter-blockchain

Communication Protocol (IBC) [15], mainly focuses on preliminary

network-level communications. In contrast, HyperService proposes
a complete stack of designs with a unified programming framework

for writing cross-chain dApps and a provably secure cryptography

protocol to execute dApps. Further, at the time of writing, the most

recent development of Cosmos and industry adoption are heading

towards homogeneity where only Tendermint-powered blockchains

are interoperable [1]. This is in fundamental contrast with Hyper-
Service where the blockchain heterogeneity is a first-class design

requirement. Polkadot proceeds relatively slower than Cosmos:

Substrate is still in early stage [16].

Existing blockchain platforms such as Ethereum [59] and Nebu-

las [10] allow developers to write contracts using new languages

such as Solidity [14] and Vyper [19] or a tailored version of the

existing languages such as Go, Javascript, and C++. Facebook re-

cently released Move [22], a programming language in their block-

chain platform Libra, which adopts the move semantics of Rust

and C++ to prohibit copying and implicitly discarding coins and

allow only move of the coins. To unify these heterogeneous pro-

gramming languages, we propose HSL that has a multi-lang front

end to parse those contacts and convert their types to unified types.

Although there exist domain-specific languages in a variety of

security-related fields that have a well-established corpus of low

level algorithms, such as secure overlay networks [42, 49], net-

work intrusions [23, 56, 57], and enterprise systems [33, 34], these

languages are explicitly designed to solve their domain-specific

problems, and cannot meet the needs of the unified programming

framework for writing cross-chain dApps.

8 SECURITY THEOREMS
In this section, we present the main security theorems for UIP, and
rigorously prove them using the UC-framework [28].

8.1 Ideal Functionality FUIP
We first present the cryptography abstraction of the UIP in form of

an ideal functionality FUIP. The ideal functionality articulates the

correctness and security properties that HyperService wishes to
attain by assuming a trusted entity. The detailed description of FUIP
is given in Figure 11. Below we provide additional explanations.

Session Setup. Through this interface, a pair of parties (Pa ,Pz)

(e.g., a dApp client and a VES) requests FUIP to securely execute a

dApp executable. They provide the executable in form of a transac-

tion dependency graph GT , as well as the correctness arbitration

code contract . As a trusted entity, FUIP generates keys for both

Session 3B: Blockchain I CCS ’19, November 11–15, 2019, London, United Kingdom

562

1 Init: Data := ∅

2 Upon Receive SessionCreate(GT , contract, Pa, Pz):
3 generate the session ID sid← {0, 1}λ and keys for both parties

4 send Cert([sid, GT , contract]; Sig
Pz
sid , Sig

Pa
sid) to both parties

5 halt until both parties deposit sufficient fund, denoted as stake
6 start a blockchain monitoring daemon for this session

7 set an expiration timer timer for executing the contract term
8 for T ∈ GT : initialize the annotations for T
9 update Data[sid] := {GT , contract, stake, timer}

10 Upon Receive ReqTransInit(T, sid, P):
11 (GT , _, _, _) := Data[sid]; abort if not found
12 assert P is Pz

13 assert T is eligible to be opened according the state of GT

14 update T .state := init

15 compute Certi
T
:= Cert([T, init, sid]; SigPzsid)

16 send Certi
T
to both {Pa, Pz } to inform action

17 Upon Receive ReqTransInited(T, sid, P)
18 (GT , _, _, _) := Data[sid]; abort if not found
19 assert P = T .from and T .state = init
20 compute the on-chain transaction T̃ for T

21 update T .state := inited and T .trans := T̃
22 compute Certid

T
:= Cert([T̃ , inited, sid, T]; SigPsid)

23 send Certid
T
to both {Pa, Pz } to inform action

24 Upon Receive ReqTransOpen(T, sid, T̃ , P):
25 (GT , _, _, _) := Data[sid]; abort if not found
26 assert P = T .to, T .state = inited and T .trans = T̃
27 update T .state = open and get tsopen := now()

28 compute Certo
T
:= Cert([T̃ , open, tsopen, sid, T]; SigPsid)

29 send Certo
T
to both {Pa, Pz } to inform action

30 Upon Receive ReqTransOpened(T, sid, T̃ , P, tsopen):
31 (GT , _, _, _) := Data[sid]; abort if not found

32 assert P = T .from, T .state = open and T .trans = T̃
33 assert tsopen is within the error boundary with now()
34 update T .state = opened and get T .tsopen := tsopen
35 post T̃ on Fblockchain for on-chain execution

36 compute Certod
T

:= Cert([T̃ , open, tsopen, sid, T); Sig
Pa
sid , Sig

Pz
sid)

37 send Certod
T

to both {Pa, Pz } to inform action

38 Upon Receive ReqTransClose(T, sid, T̃ , tsclosed):
39 (GT , _, _, _) := Data[sid]; abort if not found
40 assert T .state = opened and T .trans = T̃
41 query the ledger of Fblockchain for T̃ ’s status
42 abort if T is not finalized on Fblockchain

43 assert tsclosed is within the error boundary with current time now()
44 update T .state := closed and T .tsclosed := tsclosed
45 compute Certc

T
:= Cert([T , closed, tsclosed, sid, T); Sig

Pa
sid , Sig

Pz
sid)

46 send Certc
T
to both {Pa, Pz } to inform action

47 Upon Receive TermExecution(sid, P ∈ (Pa, Pz)) public:
48 (GT , contract, stake, timer) := Data[sid]; abort if not found
49 abort if timer has not expired
50 # The following is the arbitration logic specified by contract
51 initialize a map resp to record which party to blame

52 compute eligible transactions set S given current state of GT

53 for T ∈ S :
54 if T .state = unknown : update resp[T] := Pz
55 elif T .state = init : update resp[T] := Pa
56 elif T .state = inited : update resp[T] := T .to
57 elif T .state = open and T .state = opened :
58 update resp[T] := T .from
59 elif T .state = closed and deadline constraint fails :
60 update resp[T] =: T .from
61 financially revert all closed transactions if resp is not empty

62 return any remaining funds in stake to corresponding senders

63 remove the internal bookkeeping of sid from Data

Figure 11: The ideal functionality FUIP.

parties, allowing FUIP to sign transactions and compute certificates

on their behalf. Both parties are required to stake sufficient funds,

derived from the contract , into FUIP. FUIP annotates each transac-

tion wrapper T in GT with its status (initialized to be unknown),
its open/close timestamps (initialized to 0s), and its on-chain coun-

terpart T̃ (initialized to be empty). To accurately match FUIP with

the real-world protocol ProtUIP, in Figure 11, we assume that Pa is

the dApp client and Pz is the VES.
Since FUIP does not impose any special requirements on the

underlying blockchains, we model the ideal-world blockchain as an

ideal functionality Fblockchain that supports two simple interfaces:

(i) public ledger query and (ii) state transition triggered by transac-

tions (where FUIP imposes no constraint on both the ledger format

and the consensus logic of state transitions).

Transaction State Updates. FUIP defines a set of interfaces to

accept external calls for updating transaction state. In each interface,

FUIP performs necessary correctness check to guarantee that the

state promotion is legitimate. In all interfaces, FUIP computes an

attestation for the corresponding transaction state, and sends it to

both parties to formally notify the actions taken by FUIP.

Financial Term Execution. Upon the expiration of timer , both
parties can invoke the TermExecution interface to trigger the con-

tract code execution. The arbitration logic is also derived from

decision tree mentioned in Figure 9. However, FUIP decides the

final state of each transaction merely using its internal state due to

the assumed trustiness.

Verbose Definition of FUIP. We intentionally define FUIP ver-

bosely (that is, sending many signed messages) in order to accu-

rately match FUIP to the real world protocol ProtUIP. For instance,
in the SessionCreate interface, FUIP certifies (GT , contract, sid) on
behalf of both parties to simulate the result of a successful hand-

shake between two parties in the real world. Another example is

that the attestations generated in those state update interfaces are

not essential to ensure correctness due to the assumed trustiness

of FUIP. However, FUIP still publishes attestations to emulate the

side effects of ProtUIP in the real world. As we shall see below, such

emulation is crucial to prove that FUIP UC-realizes ProtUIP.
Correctness and Security Properties of FUIP.With the assumed

trustiness, it is not hard to see that FUIP offers the following cor-

rectness and security properties. First, after the pre-agreed timeout,

the execution either finishes correctly with all precondition and

Session 3B: Blockchain I CCS ’19, November 11–15, 2019, London, United Kingdom

563

deadline rules satisfied, or the execution fails and is financially

reverted. Second, regardless of the stage at which the execution

fails, FUIP holds the misbehaved parties accountable for the failure.

Third, if Fblockchain is modeled with bounded transaction finality

latency, Op is guaranteed to finish correctly if both parties are

honest. Finally, FUIP, by design, makes the contract public. This is
because in the real world protocol ProtUIP, the status of execution
is public both on the ISC and the NSB. We leave the support for

privacy-preserving blockchains on HyperService to future work.

8.2 Main Security Theorems
In this section, we claim the main security theorem of HyperService.
The correctness of Theorem 8.1 guarantees that ProtUIP achieves

same security properties as FUIP.

Theorem 8.1. Assuming that the distributed consensus algorithms
used by relevant BNs are provably secure, the hash function is pre-
image resistant, and the digital signature is EU-CMA secure (i.e.,
existentially unforgeable under a chosen message attack), our decen-
tralized protocol ProtUIP securely UC-realizes the ideal functionality
FUIP against a malicious adversary in the passive corruption model.

We further consider a variant of ProtUIP, referred to asH-ProtUIP,
that requires PVES and PCLI to only use PNSB as their communica-

tion medium.

Theorem 8.2. With the same assumption of Theorem 8.1, the UIP
protocol variantH-ProtUIP securely UC-realizes the ideal functionality
FUIP against a malicious adversary in the Byzantine corruption model.

8.3 Proof Overview
We now the prove our main theorems.We start with Theorem 8.1. In

the UC framework [28], the model of ProtUIP execution is defined

as a system of machines (E,A,π1, ...,πn) where E is called the

environment, A is the (real-world) adversary, and (π1, ...,πn) are
participants (referred to as parties) of ProtUIP where each party may

execute different parts of ProtUIP. Intuitively, the environment E

represents the external system that contains other protocols, includ-

ing ones that provide inputs to, and obtain outputs from, ProtUIP.
The adversary A represents adversarial activity against the pro-

tocol execution, such as controlling communication channels and

sending corruption messages to parties. E and A can communi-

cate freely. The passive corruption model (used by Theorem 8.1)

enables the adversary to observe the complete internal state of

the corrupted party whereas the corrupted party is still protocol

compliant, i.e., the party executes instruction as desired. § 8.6 dis-

cusses the Byzantine corruption model, where the adversary takes

complete control of the corrupted party.

To prove that ProtUIP UC-realizes the ideal functionality FUIP,

we need to prove that ProtUIP UC-emulates IFUIP , which is the ideal
protocol (defined below) of our ideal functionality FUIP. That is, for

any adversary A, there exists an adversary (often called simulator)

S such that E cannot distinguish between the ideal world, featured

by (IFUIP , S), and the real world, featured by (ProtUIP, A). Math-

ematically, on any input, the probability that E outputs

−→
1 after

interacting with (ProtUIP, A) in the real world differs by at most

a negligible amount from the probability that E outputs

−→
1 after

interacting with (IFUIP , S) in the ideal world.

The ideal protocol IFUIP is a wrapper around FUIP by a set of

dummy parties that have the same interfaces as the parties of

ProtUIP in the real world. As a result, E is able to interact with

IFUIP in the ideal world the same way it interacts with ProtUIP in

the real world. These dummy parties simply pass received input

from E toFUIP and relay output ofFUIP to E, without implementing

any additional logic. FUIP controls all keys of these dummy parties.

For the sake of clear presentation, we abstract the real-world par-

ticipants of ProtUIP as five parties {PVES, PCLI, PISC, PNSB, PBC }.

The corresponding dummy party of PVES in the ideal world is

denoted as PIVES. This annotation applies for other parties.

Based on [28], to prove that ProtUIP UC-emulates IFUIP for any

adversaries, it is sufficient to construct a simulator S just for the

dummy adversary A that simply relays messages between E and

the parties running ProtUIP. The high-level process of the proof
is that the simulator S observes the side effects of ProtUIP in the

real world, such as attestation publication on the NSB and contract

invocation of the ISC, and then accurately emulates these effects

in the ideal world, with the help from FUIP. As a result, E cannot

distinguish the ideal and real worlds.

8.4 Construction of the Ideal Simulator S
Next, we detail the construction of S by specifying what actions S

should take upon observing instructions from E. As a distinguisher,

E sends the same instructions to the ideal world dummy parities

as those sent to the real world parties.

• Upon E gives an instruction to start an inter-BN session between

PICLI and P
I
VES, S emulates the GT and contract setup (c.f., § 8.5)

and constructs a SessionCreate call to FUIP with parameter (GT ,

contract , PICLI, P
I
VES).

• Upon E instructs PIVES to send an initialization request for a

transaction intent T , S extracts T and sid from the instruction

of E, and constructs a ReqTransInit call to FUIP with parameter

(T , sid,PIVES). Other instructions in the same category are han-

dled similarly by S. In particular, for instruction to SInitedTrans,
S calls ReqTransInited of FUIP; for instructions to RInitedTrans,
S calls ReqTransOpen of FUIP; for instructions to OpenTrans, S
calls ReqTransOpened of FUIP; for instructions to CloseTrans, S
calls ReqTransClose of FUIP. S ignores instructions to Opened-
Trans and ClosedTrans. S may also extract the T̃ from the in-

struction, which is used by some interfaces of FUIP to ensure the

association between T and T̃ .
• Due to the asymmetry of interfaces defined by PICLI and P

I
VES, S

acts slightly differently when observing instructions sent to PIVES.

In particular, for instructions to InitTrans, S calls ReqTransInited
of FUIP; for instructions to InitedTrans, S calls ReqTransOpen
of FUIP; for instructions to OpenTrans, S calls ReqTransOpened
of FUIP. The rest handlings are the same as those of PIVES.

• Upon E instructs PIVES to invoke the smart contract, S locally

executes the contract and the instructs FUIP to published the

updated contract to PIISC.

8.5 Indistinguishability of Real and Ideal Worlds
To prove indistinguishability of the real and ideal worlds from

the perspective of E, we will go through a sequence of hybrid

Session 3B: Blockchain I CCS ’19, November 11–15, 2019, London, United Kingdom

564

arguments, where each argument is a hybrid construction of FUIP,

a subset of dummy parties of IFUIP , and a subset of real-world

parties of ProtUIP, except that the first argument that is ProtUIP
without any ideal parties and the last argument is IFUIP without

any real world parties. We prove that E cannot distinguish any

two consecutive hybrid arguments. Then based on the transitivity

of protocol emulation [28], we prove that the first argument (i.e.,
ProtUIP) UC-emulates the last argument (i.e., IFUIP).
Real World.We start with the real world ProtUIP with a dummy

adversary that simply passes messages to and from E.

HybridA1.HybridA1 is the same as the real world, except that the

(PVES, PCLI) pair is replaced by the dummy (PIVES, P
I
CLI) pair. Upon

observing an instruction from E to execute some dApp executables

GT , S calls the CreateContract interface of PISC (living in the

Hybrid A1) to obtain the contract code contract . Upon contract is
received,S calls the SessionCreate interface of FUIP with parameter

(GT , contract , PIVES, P
I
CLI), which will output a certificate to both

dummy parties to emulate the handshake result between PVES and

PCLI in the real world. S also deploys contract on PNSB or PBC in

the HybridA1. Finally,S stakes required funds into FUIP to unblock

its execution.

Upon observing an instruction from E (sent to either dummy

parties) to execute a transaction in GT , based on its construction

in § 8.4, S has enough information to construct a call to FUIP
with a proper interface and parameters. If the call generates a

certificate Cert, S retrieves Cert to emulate the PoAs staking in

the real world. In particular, if in the real world, PVES (and PCLI)

publishes a certificate on PNSB after receiving the same instruction

from E, then S publishes the corresponding certificate on PNSB
in the Hybrid A1 as well. Otherwise, S skip the publishing. Later,

S retrieves (and stores) the Merkle proof from PNSB, and then

instructs FUIP to output the proof to the dummy party which, from

the point view of E, should be the publisher of Cert.
Upon observing an instruction from E (to either dummy party)

to invoke the smart contract, S uses its saved certificates or Merkle

proofs to invoke PISC in the Hybrid A1 accordingly.

Note that in the real world, the execution of GT is automatic in

the sense thatGT can continuously proceed evenwithout additional

instructions from E after successful session setup. In the HybridA1,

although PVES and PCLI are replaced by dummy parties, S, with

fully knowledge of GT , is still able to drive the execution of GT so

that from E’s perspective, GT is executed automatically. Further,

since PISC still lives in the Hybrid A1, S should not trigger the

TermExecution interface of FUIP to avoid double execution on the

same contract terms. S can still reclaim its funds staked in FUIP via

“backdoor” channels since S and FUIP are allowed to communicate

freely under the UC framework.

Fact 1. With the aforementioned construction of S and FUIP, it is
immediately clear that the outputs of both dummy parties in the
Hybrid A1 are exactly the same as the outputs of the corresponding
actual parties in the real world, and all side effects in the real world
are accurately emulated by S in the Hybrid A1. Thus, E cannot
distinguish with the real world and the Hybrid A1.
Hybrid A2. Hybrid A2 is the same as the Hybrid A1, expect that

PISC is further replaced by the dummy PIISC. As a result, S is

required to resume the responsibility of PISC in the Hybrid A2.

In particular, when observing an instruction to execute a GT , S

computes the arbitration code contract , and then instructs FUIP to

publish the contract on PIISC, which is observable by E. For any

instruction to invoke contract , S locally executes contract with the

input and then publishes the updated contract to PIISC via FUIP.

Finally, upon the predefined contract timeout, S calls the TermExe-
cution interface of FUIP with parameter (sid, PIVES) or (sid, P

I
CLI)

to execute the contract , which emulates the arbitration performed

by PISC in the Hybrid A1.

It is immediately clear that with the help of S and FUIP, the out-

put of the dummy PIISC and all effects in the Hybrid A2 are exactly

the same as those in the Hybrid A1. Thus, E cannot distinguish

these two worlds.

Hybrid A3. Hybrid A3 is the same as the Hybrid A2, expect that

PNSB is further replaced by the dummy PINSB. Since the structure of

PNSB and messages sent to PNSB are public, simulating its function-

ality by S is trivial. Therefore, Hybrid A3 is identically distributed

as Hybrid A2 from the view of E.

Hybrid A4, i.e., the ideal world. Hybrid A4 is the same as the

Hybrid A3, expect that PBC (the last real-world party) is further

replaced by the dummy PIBC. Thus, the Hybrid A4 is essentially

IFUIP . Since the functionality of PBC is a strict subset of that of

PNSB, simulating PBC by S is straightforward. Therefore, IFUIP is

indistinguishable with the Hybrid A3 from E’s perspective.

Then given the transitivity of protocol emulation, we show that

ProtUIP UC-emulates IFUIP , and therefore prove that ProtUIP UC-

realizes FUIP. Throughout the simulation, we maintain a key in-

variant: S and FUIP together can always accurately simulate the

desired outputs and side effects on all (dummy and real) parties

in all Hybrid worlds. Thus, from E’s view, the indistinguishability

between the real and ideal worlds naturally follows.

8.6 Byzantine Corruption Model
Theorem 8.1 considers the passive corruption model. In this section,

we discuss the more general Byzantine corruption model for PVES
and PCLI (by assumption of this paper, blockchains and smart con-

tracts are trusted for correctness). Previously, we construct S and

FUIP accurately to match the desired execution of ProtUIP. However,
if one party is Byzantinely corrupted, the party behaves arbitrarily.

As a result, a Byzantine-corrupted party may send conflicting mes-

sages to off-chain channels and PNSB. Note that for any transaction

state, ProtUIP always processes the first received attestation (either

a certificate from channels or Merkle proof from the PNSB) and

effectively ignores the other one. The adversary could then inject

message inconsistency to make the protocol execution favors one

type of attestations over the other. This makes it impossible for S

to always accurately emulate its behaviors, resulting in difference

between the ideal world and the real world from E’s view.

To incorporate the Byzantine corruption model into our security

analysis, we consider a variant of ProtUIP, referred to as H-ProtUIP,
that requiresPVES andPCLI to only use PNSB as the communication

medium. Thus, the full granularity of protocol execution is guar-

anteed to be public and unique, allowing S to emulate whatever

actions a (corrupted) part may take in the real world. Therefore, it

is not hard to conclude the Theorem 8.2.

Session 3B: Blockchain I CCS ’19, November 11–15, 2019, London, United Kingdom

565

9 CONCLUSION
In this paper, we presented HyperService, the first platform that

offers interoperability and programmability across heterogeneous

blockchains. HyperService is powered by two innovative designs:

HSL, a programming framework for writing cross-chain dApps by
unifying smart contracts written in different languages, and UIP,
the universal blockchain interoperability protocol designed to se-

curely realize the complex operations defined in these dApps on
blockchains. We implemented a HyperService prototype in approx-

imately 35,000 lines of code to demonstrate its practicality, and ran

experiments on the prototype to report the end-to-end execution

latency for dApps, as well as the aggregate platform throughput.

10 ACKNOWLEDGMENTS
We thank the anonymous reviewers for their valuable feedback. We

thank Harmony Protocol for their discussion on cross-shard trans-

actions. This material is based upon work partially supported by

NSF under Contract Nos. CNS-1717313 and TWC-1518899, and by

National Key Research and Development Program of China under

grant No. 2018YFB0803605 and NSFC under grant No. 61702045.

Correspondence authors are Zhuotao Liu and Haoyu Wang.

REFERENCES
[1] Cosmos WhitePaper. https://cosmos.network/resources/whitepaper, 2019.

[2] Harmony: Technical Whitepaper. https://harmony.one/whitepaper.pdf, 2019.

[3] Monoxide: Scale Out Blockchain with Asynchronized Consensus Zones. In

USENIX NSDI (2019).
[4] Open Source Code for HyperService by HyperService-Consortium. https://github.

com/HyperService-Consortium, 2019.

[5] Bitcoin Wiki: Atomic Cross-Chain Trading. https://en.bitcoin.it/wiki/Atomic_

swap, Accessed on 2019.

[6] CoinMarketCap. https://coinmarketcap.com, Accessed on 2019.

[7] Cosmos. https://cosmos.network, Accessed on 2019.

[8] DPOS Consensus Algorithm. https://steemit.com/dpos/@dantheman/dpos-

consensus-algorithm-this-missing-white-paper, Accessed on 2019.

[9] J.P. Morgan: Blockchain and Distributed Ledger. https://www.jpmorgan.com/

global/blockchain, Accessed on 2019.

[10] Nebulas. https://github.com/nebulasio, Accessed on 2019.

[11] Oraclize. http://www.oraclize.it, Accessed on 2019.

[12] Polkadot. https://polkadot.network, Accessed on 2019.

[13] rhombus. https://rhombus.network, Accessed on 2019.

[14] Solidity. https://solidity.readthedocs.io/en/v0.5.6/, Accessed on 2019.

[15] Standards for the Cosmos network & Interchain Ecosystem. https://github.com/

cosmos/ics, Accessed on 2019.

[16] Substrate. https://github.com/paritytech/substrate, Accessed on 2019.

[17] Tendermint Core. https://tendermint.com, Accessed on 2019.

[18] Tor Directory Authorities. https://metrics.torproject.org/rs.html#search/flag:

authority, Accessed on 2019.

[19] Vyper. https://github.com/ethereum/vyper, Accessed on 2019.

[20] Al-Bassam, M., Sonnino, A., Bano, S., Hrycyszyn, D., and Danezis, G.

Chainspace: A Sharded Smart Contracts Platform. NDSS (2017).
[21] Back, A., Corallo, M., Dashjr, L., Friedenbach, M., Maxwell, G., Miller, A.,

Poelstra, A., Timón, J., and Wuille, P. Enabling Blockchain Innovations with

Pegged Sidechains. URL: tinyurl. com/mj656p7 (2014).

[22] Blackshear, S., Cheng, E., Dill, D. L., Gao, V., Maurer, B., Nowacki, T., Pott,

A., Qadeer, S., Rain, Russi, D., Sezer, S., Zakian, T., and Zhou, R. Move: A

language with programmable resources. Tech. rep., The Libra Association, 2019.

[23] Borders, K., Springer, J., and Burnside, M. Chimera: A Declarative Language

for Streaming Network Traffic Analysis. In USENIX Security Symposium (2012).

[24] Breidenbach, L., Cornell Tech, I., Daian, P., Tramer, F., and Juels, A. Enter the

Hydra: Towards Principled Bug Bounties and Exploit-Resistant Smart Contracts.

In 27th USENIX Security Symposium (2018).

[25] Bünz, B., Bootle, J., Boneh, D., Poelstra, A., Wuille, P., and Maxwell, G.

Bulletproofs: Short proofs for Confidential Transactions and More. In 2018 IEEE
Symposium on Security and Privacy (SP) (2018), IEEE, pp. 315–334.

[26] Buterin, V. Chain Interoperability. R3 Reports (2016).
[27] Buterin, V., et al. A Next-Generation Smart Contract and Decentralized Appli-

cation Platform. white paper (2014).

[28] Canetti, R. Universally Composable Security: A New Paradigm for Crypto-

graphic Protocols. In IEEE Symposium on Foundations of Computer Science (2001).
[29] Cheng, R., Zhang, F., Kos, J., He, W., Hynes, N., Johnson, N. M., Juels, A.,

Miller, A., and Song, D. Ekiden: A Platform for Confidentiality-Preserving,

Trustworthy, and Performant Smart Contract Execution. In IEEE EuroS&P (2019).

[30] Costan, V., and Devadas, S. Intel SGX explained, Accessed on 2019. https:

//eprint.iacr.org/2016/086.pdf.

[31] Dingledine, R., Mathewson, N., and Syverson, P. Tor: The Second-Generation

Onion Router. In USENIX Security Symposium (2004).

[32] Eyal, I., Gencer, A. E., Sirer, E. G., and Van Renesse, R. Bitcoin-NG: A Scalable

Blockchain Protocol. In USENIX NSDI (2016).
[33] Gao, P., Xiao, X., Li, D., Li, Z., Jee, K., Wu, Z., Kim, C. H., Kulkarni, S. R., and

Mittal, P. SAQL: A Stream-based Query System for Real-time Abnormal System

Behavior Detection. In USENIX Security Symposium (2018).

[34] Gao, P., Xiao, X., Li, Z., Jee, K., Xu, F., Kulkarni, S. R., and Mittal, P. AIQL:

Enabling Efficient Attack Investigation from System Monitoring Data. In USENIX
ATC (2018).

[35] Garay, J., Kiayias, A., and Leonardos, N. The Bitcoin Backbone Protocol with

Chains of Variable Difficulty. In Annual International Cryptology Conference
(2017).

[36] Gazi, P., Kiayias, A., and Zindros, D. Proof-of-stake Sidechains. In IEEE
Symposium on Security & Privacy (2019).

[37] Green, M., and Miers, I. Bolt: Anonymous Payment Channels for Decentralized

Currencies. In ACM CCS (2017).
[38] Herlihy, M. Atomic Cross-Chain Swaps. In ACM PODC (2018).

[39] Kalodner, H., Goldfeder, S., Chen, X., Weinberg, S. M., and Felten, E. W.

Arbitrum: Scalable, Private Smart Contracts. In USENIX Security Symposium
(2018).

[40] Khalil, R., and Gervais, A. Revive: Rebalancing Off-blockchain Payment Net-

works. In ACM CCS (2017).
[41] Kiayias, A., and Zindros, D. Proof-of-work Sidechains. Tech. rep., Cryptology

ePrint Archive, Report 2018/1048, 2018.

[42] Killian, C. E., Anderson, J. W., Braud, R., Jhala, R., and Vahdat, A. M. Mace:

Language support for building distributed systems. In ACM PLDI (2007).
[43] Kogias, E. K., Jovanovic, P., Gailly, N., Khoffi, I., Gasser, L., and Ford, B. En-

hancing Bitcoin Security and Performance with Strong Consistency via Collective

Signing. In USENIX Security Symposium (2016).

[44] Kokoris-Kogias, E., Jovanovic, P., Gasser, L., Gailly, N., Syta, E., and Ford, B.

OmniLedger: A Secure, Scale-out, Decentralized Ledger via Sharding. In IEEE
Symposium on Security and Privacy (2018).

[45] Kosba, A., Miller, A., Shi, E., Wen, Z., and Papamanthou, C. Hawk: The

Blockchain Model of Cryptography and Privacy-preserving Smart Contracts. In

IEEE Symposium on Security and Privacy (2016).

[46] Krupp, J., and Rossow, C. teEther: Gnawing at Ethereum to Automatically

Exploit Smart Contracts. In USENIX Security Symposium (2018).

[47] Lamport, L. Time, Clocks, and the Ordering of Events in a Distributed System.

Communications of the ACM (1978).

[48] Lee, D., Kohlbrenner, D., Shinde, S., Song, D., and Asanović, K. Keystone: A

Framework for Architecting TEEs. arXiv preprint arXiv:1907.10119 (2019).
[49] Loo, B. T., Condie, T., Garofalakis, M., Gay, D. E., Hellerstein, J. M., Maniatis,

P., Ramakrishnan, R., Roscoe, T., and Stoica, I. Declarative networking:

Language, execution and optimization. In SIGMOD (2006).

[50] Luu, L., Chu, D.-H., Olickel, H., Saxena, P., and Hobor, A. Making Smart

Contracts Smarter. In ACM CCS (2016).
[51] Luu, L., Narayanan, V., Zheng, C., Baweja, K., Gilbert, S., and Saxena, P. A

Secure Sharding Protocol for Open Blockchains. In ACM CCS (2016).
[52] Malavolta, G., Moreno-Sanchez, P., Kate, A., Maffei, M., and Ravi, S. Con-

currency and Privacy with Payment-channel Networks. In ACM CCS (2017).
[53] Nakamoto, S. Bitcoin: A Peer-to-Peer Electronic Cash System. https://bitcoin.

org/bitcoin.pdf, 2008.

[54] Parr, T. Antlr. https://www.antlr.org/, 2014.

[55] Sergey, I., and Hobor, A. A Concurrent Perspective on Smart Contracts. In

Financial Cryptography and Data Security (2017).

[56] Sommer, R., Vallentin, M., De Carli, L., and Paxson, V. Hilti: An abstract

execution environment for deep, stateful network traffic analysis. In IMC (2014).

[57] Vallentin, M., Paxson, V., and Sommer, R. VAST: A Unified Platform for

Interactive Network Forensics. In USENIX NSDI (2016).
[58] Van Saberhagen, N. CryptoNote v 2.0. https://cryptonote.org/whitepaper.pdf,

2013.

[59] Wood, G. Ethereum: A secure decentralised generalised transaction ledger.

Ethereum Project Yellow Paper (2014).
[60] Zamani, M., Movahedi, M., and Raykova, M. RapidChain: Scaling Blockchain

via Full Sharding. In ACM CCS (2018).
[61] Zamyatin, A., Harz, D., Lind, J., Panayiotou, P., Gervais, A., and Knottenbelt,

W. XCLAIM: Trustless, Interoperable, Cryptocurrency-Backed Assets. In IEEE
Symposium on Security and Privacy (2019).

[62] Zhang, F., Cecchetti, E., Croman, K., Juels, A., and Shi, E. Town Crier: An

Authenticated Data Feed for Smart Contracts. In ACM CCS (2016).

Session 3B: Blockchain I CCS ’19, November 11–15, 2019, London, United Kingdom

566

https://cosmos.network/resources/whitepaper
https://harmony.one/whitepaper.pdf
https://github.com/HyperService-Consortium
https://github.com/HyperService-Consortium
https://en.bitcoin.it/wiki/Atomic_swap
https://en.bitcoin.it/wiki/Atomic_swap
https://coinmarketcap.com
https://cosmos.network
https://steemit.com/dpos/@dantheman/dpos-consensus-algorithm-this-missing-white-paper
https://steemit.com/dpos/@dantheman/dpos-consensus-algorithm-this-missing-white-paper
https://www.jpmorgan.com/global/blockchain
https://www.jpmorgan.com/global/blockchain
https://github.com/nebulasio
http://www.oraclize.it
https://polkadot.network
https://rhombus.network
https://github.com/cosmos/ics
https://github.com/cosmos/ics
https://github.com/paritytech/substrate
https://tendermint.com
https://metrics.torproject.org/rs.html#search/flag:authority
https://metrics.torproject.org/rs.html#search/flag:authority
https://eprint.iacr.org/2016/086.pdf
https://eprint.iacr.org/2016/086.pdf
https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf
https://cryptonote.org/whitepaper.pdf

	Abstract
	1 Introduction
	2 HyperService Overview
	2.1 Architecture
	2.2 Universal State Model
	2.3 HyperService Programming Language
	2.4 Universal Inter-Blockchain Protocol (UIP)
	2.5 Assumptions and Threat Model

	3 Programming Framework
	3.1 Unified Type System
	3.2 HSL Language Design
	3.3 Semantic Validation
	3.4 HSL Program Executables

	4 UIP Design Detail
	4.1 Protocol Preliminaries
	4.2 Execution Protocol by VESes
	4.3 Execution Protocol by dApp Clients
	4.4 Protocol Realization of the ISC
	4.5 Specification of ProtNSB and ProtBC
	4.6 Security Theorems

	5 Implementation and Experiments
	5.1 Platform Implementation
	5.2 Application Implementation
	5.3 Experiments

	6 DISCUSSION
	6.1 Programming Framework Extension
	6.2 Cross-Shards and Cross-Worlds
	6.3 Interoperability Service Providers
	6.4 Complete Atomicity for dApps
	6.5 Privacy-Preserving Blockchains

	7 Related Work
	8 Security Theorems
	8.1 Ideal Functionality FUIP
	8.2 Main Security Theorems
	8.3 Proof Overview
	8.4 Construction of the Ideal Simulator S
	8.5 Indistinguishability of Real and Ideal Worlds
	8.6 Byzantine Corruption Model

	9 Conclusion
	10 Acknowledgments
	References

