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ABSTRACT

End-to-end data-driven image compressive sensing recon-
struction (EDCSR) frameworks achieve state-of-the-art re-
construction performance in terms of reconstruction speed
and accuracy. However, due to their end-to-end nature,
existing EDCSR frameworks can not adapt to a variable
compression ratio (CR). For applications that desire a vari-
able CR, existing EDCSR frameworks must be trained from
scratch at each CR, which is computationally costly and
time-consuming. This paper presents a generic compression
ratio adapter (CRA) framework that addresses the variable
compression ratio (CR) problem for existing EDCSR frame-
works with no modification to given reconstruction models
nor enormous rounds of training needed. CRA exploits an
initial reconstruction network to generate an initial estimate
of reconstruction results based on a small portion of the
acquired measurements. Subsequently, CRA approximates
full measurements for the main reconstruction network by
complementing the sensed measurements with resensed ini-
tial estimate. Our experiments based on two public image
datasets (CIFAR10 and Set5) show that CRA provides an
average of 13.02 dB and 5.38 dB PSNR improvement across
the CRs from 5 to 30 over a naive zero-padding approach and
the AdaptiveNN approach(a prior work), respectively. CRA
addresses the fixed-CR limitation of existing EDCSR frame-
works and makes them suitable for resource-constrained
compressive sensing applications.

Index Terms— compressive sensing, neural network, sig-
nal processing, estimate resensing

1. INTRODUCTION

Compressive sensing (CS) is a signal sensing technique that
senses signals in a compressed manner to save sensing and
transmission costs [1, 2]. The sensing in CS is a simple lin-
ear mapping of the original signal, and the reconstruction in

This work is supported by a NSF grant (IIS/CPS-1652038) and an unre-
stricted gift (CG#1319167) from Cisco Research Center. The NVIDIA TI-
TAN X GPUs used for this research were donated by the NVIDIA Corpora-
tion.

CS is a complicated inverse problem. Most existing CS re-
construction methods [3, 4, 5, 6, 7, 8] formulate the recon-
struction process as an optimization problem and search for
the solution iteratively. We refer to them as iterative recon-
struction methods. Recently, as neural networks have been
proven to be powerful tools for approximation and gener-
ation tasks, many neural network models [9, 10, 11] have
been proposed to approximate the inverse mapping of CS di-
rectly. We refer to the neural network models that directly
map CS measurements to reconstruction results as end-to-end
data-driven CS reconstruction (EDCSR) frameworks. Com-
pared with the conventional iterative reconstruction methods,
the EDCSR frameworks offer significant improvements on
both reconstruction speed and accuracy, especially at high
compression ratios(CRs) [9, 11], establishing the possibility
to perform real-time, high-accuracy image CS reconstruction
[12].

Allowing for a variable CR that can be adaptive to the
available battery level, storage space, or communication
bandwidth at run time is critical to many resource-constrained
CS applications [13, 14, 15]. Unfortunately, a major limita-
tion of the existing EDCSR frameworks is that they can only
perform reconstruction at fixed CRs once they are trained.
For reconstruction at a different CR, an EDCSR framework
must be trained at that CR from scratch, which greatly limits
their application in variable CR scenarios.

In this paper, we propose to apply the concept of esti-
mate resensing to empower EDCSR frameworks with the
adaptability to variable CR. Our approach is structured as a
generic CR adapter (CRA) that can be independently applied
to the existing EDCSR frameworks with no modification to a
given reconstruction model nor enormous rounds of training
needed. Given a user-defined lower and upper bounds of the
CR, CRA exploits an initial reconstruction network which is
trained at the highest CR to generate an initial estimate of
reconstruction results with the sensed measurements. Subse-
quently, CRA approximates full measurements for the main
reconstruction network, which is trained at the lowest CR, by
complementing the sensed measurements available at any in-
termediate CR with resensed initial estimate. As such, CRA
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Fig. 1. The data flow of the sensing and reconstruction
process of CRA. 1: first m rows of the sensing matrix A. 2:
sensed measurements Y1→m. 3: first mmin measurements.
4: initial reconstruction network finit. 5: initial estimate X ′.
6: last mmax − m rows of the sensing matrix A. 7: pseudo
measurements Y ′m+1→mmax

. 8: concatenated measurement
vector Ŷ . 9: main reconstruction network fmain. 10: recon-
struction result X̂ . Details are in Section 3.

can enable flexible reconstruction with an arbitrary number
of measurements and extend the supported CR to a user-
defined lower and upper bounds at a fine granularity. The
main advantage of CRA is that it is generic and provides an
approximately linear trade-off between the number of mea-
surements and the reconstruction accuracy for all EDCSR
frameworks.

The contributions of this paper are two-fold. First, we
propose a simple yet effective approach to empower EDCSR
frameworks with adaptability to variable CR, which makes
them suitable for resource-constrained CS application sce-
narios. The proposed CRA significantly improves the recon-
struction accuracy of the existing EDCSR frameworks in the
context of variable CR compared to a naive zero-padding ap-
proach and the prior work [16]. Second, our approach is
generic for all EDCSR frameworks and can empower them
to deal with a variable CR at run time with no modification to
the given network model nor enormous training time needed.

2. RELATED WORK

2.1. Iterative Reconstruction Methods

Most of the existing reconstruction methods of CS are itera-
tive reconstruction methods [3, 4, 5, 6, 7, 8]. Iterative recon-
struction methods can inherently adapt to a variable CR but
are limited by their low reconstruction speed due to their it-
erative nature as well as low reconstruction accuracy at high
CRs. [11] shows empirically that most of the iterative recon-
struction methods have lower reconstruction accuracy at high
CRs compared with EDCSR methods.

2.2. Rate-adaptive Neural Network(AdaptiveNN)

To the best of our knowledge, AdaptiveNN [16] is the only
work so far that aims to solve the variable CR problem for
EDCSR frameworks. AdaptiveNN proposes to constrain the
first layer of an EDCSR framework to be the pseudo inverse of
the sensing matrix during the training. The main limitations
of AdaptiveNN are low reconstruction accuracy, long training
time needed, and the lack of generality. Overcoming these
limitations, the proposed CRA approach achieves more than
20% higher reconstruction accuracy (Fig 2, Fig 3) with 75x
less training training time (Table 1) compared to AdaptiveNN.
Moreover, CRA is generic and can be applied to all EDCSR
frameworks.

3. METHODOLOGY

Gaussian random sensing matrices are used in this work as
they are the most widely used sensing matrices in CS re-
lated studies. Assume the original signal is a n-dimensional
vector X = [x1, · · · , xn]. The user-defined lower and up-
per bounds of CR are CRmin = n

mmax
, CRmax = n

mmin
.

Conventionally, for a signal that has to be sensed at the CR
n
m ,mmin ≤ m ≤ mmax, the sensing step is a linear transfor-
mation of the signal, i.e. Y = AX , where A denotes a sensing
matrix in the size of m by n, and Y = [y1, · · · , ym] denotes
the compressively sensed measurements of X . The corre-
sponding EDCSR network that is trained at the CR n

m with
A is essentially a high-dimensional, vector-valued function
that maps a m-dimensional space to a n-dimensional space,
i.e. X̂ = f(Y,Θ), where f is the reconstruction franework
with trainable parameters Θ, and X̂ = [x̂1, · · · , x̂n] is the
reconstruction result. The sensing matrix A is predefined be-
fore the training of f and the trainable parameters Θ are fixed
once the network is trained.

The overall process of sensing and reconstruction with
CRA is shown in Fig 1. A random sensing matrix A in the size
of mmax by n is predefined. Two EDCSR frameworks named
initial reconstruction network(finit) and main reconstruction
network(fmain) are pretrained at CRmax and CRmin with
the first mmin rows of A and all rows of A, respectively. For
performing the sensing and reconstruction of a signal X at
arbitrary CR = n

m between CRmin and CRmax, the first
m row of A are used to sense X to get measurements Y =
[y1, · · · , ym]. CRA adopts finit to generate an initial es-
timate X ′ = [x′1, · · · , x′n] of the signal by taking the first
mmin sensed measurements Y1→mmin = [y1, · · · , ymmin ] as
input. Subsequently, mmax −m additional pseudo measure-
ments Y ′m+1→mmax

= [y′m+1, · · · , y′mmax
] of the signal X

are generated by resensing the initial estimate X ′ with the
last mmax −m rows of A. Finally, the full measurements at
the CRmin are approximated by concatenating sensed mea-
surements Y1→m and pseudo measurments Y ′m+1→mmax

to
Ŷ = [y1, · · · , ym, y′m+1, · · · , y′mmax

]. As such, regardless of
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Fig. 2. Reconstruction accuracy comparison on CIFAR10

the CR at run-time, CRA can always provide approximated
full measurements Ŷ that can be directly fed into fmain for
the final reconstruction of the signal, i.e. X̂ = fmain(Ŷ ,Θ).

4. EXPERIMENTS

The common setups of all the experiments are shown below.
The CRmax and CRmin are set to 30 and 5, respectively. We
conduct two sets of experiments on different datasets. The
first set of experiments uses CIFAR10 [17](resized to 64 by
64) for both training and testing. The second set of experi-
ments uses the dataset made by [11] for training and Set5(cut
into 64 by 64 blocks) [18] for testing. For each sample, com-
pressive sensing with the same sensing matrix is performed
for each RGB channel(The 2-D tensor of each channel is row-
wise vectorized to a 4096-dimensional vector before sensing).
The reconstruction is performed using the measurements of
all three channels. The neural network library used is Py-
torch [19]. The EDCSR frameworks used in the experiments
are ReconNet[9] and LAPRAN[11]. For the simplicity of il-
lustration, the experiment results are plotted with respect to
measurement rate (MR), which is defined as MR = 1

CR . For
each training dataset, 5% of the training samples are randomly
selected as the validation set to avoid over-fitting. The model
is tested on the validation set at the end of each training itera-
tion. The model offers the best performance on the validation
set is used for the final testing.

4.1. Comparison With Existing Solutions

To demonstrate the effectiveness of CRA, we compare
the reconstruction accuracy against a modified version of
AdaptiveNN[16] (the only prior work to the best of our
knowledge), and a naive zero-padding approach. As the
source codes of AdaptiveNN are unavailable, we re-implement
the AdaptiveNN model based on its original paper using
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Fig. 3. Reconstruction accuracy comparison on Set 5

Approach MultiNN AdaptiveNN CRA

per epoch (second) 22 73 22
num of epoches 204900 7430 600
in total (hour) 1252 150 4

Table 1. Training time comparison on CIFAR10. For fair
comparison, ReconNet is used in all approaches. Each exper-
iment is done on a single Nvidia GTX Titan X GPU.

PyTorch. We find that the performance of AdaptiveNN is
unexpectedly low and can be improved with some simple
modifications. Specifically, we add the batch normalization
layer [20] right behind each convolution layer and switch
the activation function from ReLU to Tanh. Experiments on
the CIFAR10 dataset show that the modified AdaptiveNN
achieves more than 10000% and 10% improvement on the
training speed and reconstruction accuracy, respectively, over
the original AdaptiveNN. Zero-padding is a naive approach.
Given the EDCSR framework that is trained at the lowest
CR, the measurements that are sensed at a higher CR are
simply complemented by zeros. The experiments results
(Fig 2 and 3) on the CIFAR10 and Set5 datasets show that
CRA can achieve a 2.56-11.05dB and 0-16.45dB peak signal-
to-noise ratio (PSNR) improvement over the AdaptiveNN
and zero-padding approach, respectively, across the MRs of
0.33-0.2(CRs of 30-5).

In theory, the accuracy-optimal approach for EDCSR
frameworks to handle variable CR at run time is to train
multiple reconstruction networks at each CR needed sepa-
rately. We refer to this brute-fource approach as MultiNN. In
practice, the MultiNN approach is often impractical or unaf-
fordable due to the enormous training time and computational
resources required. Table 1 compares the total training time
of MultiNN, AdaptiveNN, and CRA needed for handling a
variable CR (from 5 to 30) at a fine granularity (step size of
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Fig. 4. Comparing MultiNN with CRA and MultiNN

m is 1). The num of epoches of MultiNN is estimated as
(mmax−mmin)

step size of m × 300, where mmax = n
CRmin

= 4096
5 = 819,

mmin = n
CRmax

= 4096
30 = 136 and 300 is the predefined

number of training iterations of a single ReconNet. The per
epoch training time of ReconNet is estimated by averaging
the per epoch training time of ReconNets trained at CRs of 5
and 30. The experiment results show that the training time of
CRA is 99.5% and 97% less than MultiNN and AdaptiveNN,
respectively. Specifically, MultiNN takes more than 52 days
to train in this case.

4.2. Combining MultiNN and CRA

Interestingly, one can combine the MultiNN approach with
CRA to further improve the reconstruction accuracy with rea-
sonable additional training time. The key is to divide the
MR values between the lowest and highest MR into M non-
overlapping intervals. For each interval i, a corresponding
initial reconstruction network f i

init and a main reconstruction
network f i

main are trained at the lowest MR and the highest
MR of the interval, respectively. For an arbitrary MR (equiva-
lently CR), one should find the interval j that the MR belongs
to and use the corresponding f j

init and f j
main to reconstruct

the signal. Additionally, as the highest MR of each interval i
is equal to the lowest MR of next interval i+1, each f i

maincan
be used as f i+1

init . Consequently, the total number of EDCSR
frameworks to be trained is M + 1. Total training time is
proportional to the number of frameworks to be trained.

To illustrate the impact of combining CRA with MultiNN,
we compare the accuracy-MR trade-off curve between Multi-
NN only and MultiNN combined with CRA for the cases of
1, 2, and 7 intervals in Fig 4. It is shown that the MultiNN
approach with a small number of intervals (reasonable train-
ing time) can only provide a piece-wise constant approxima-
tion of the theoretically optimal accuracy-MR trade-off curve.
Differently, MultiNN combined with CRA is able to provide
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Fig. 5. Comparing EDCSR framework combinations

a piece-wise linear approximation of the theoretically optimal
accuracy-MR trade-off curve for EDCSR frameworks to han-
dle variable CR at run time.

4.3. Combining Two Different EDCSR Frameworks

Since CRA is generic, one can also adopt two different ED-
CSR models as the finit and fmain, respectively. We are in-
terested in how do different EDCSR models affect the recon-
struction performance of CRA. Fig. 5 shows the reconstruc-
tion performance of combining ReconNet and LAPRAN[11]
by applying the CRA in all possible combinations. It is shown
that for low and high MRs, the reconstruction accuracy is
more determined by choice of the EDCSR model as the initial
and the main reconstruction network, respectively.

5. CONCLUSION

CRA is a simple yet effective approach to address the vari-
able CR problem of the existing EDCSR frameworks. By
using an initial reconstruction network to provide an initial
estimate of the reconstruction result based on the acquired
measurements and generate additional pseudo measurements
by resensing the initial estimate is the key to enabling flexi-
ble, accurate reconstruction at an arbitrary measurement size.
CRA is generic and can leverage the superior reconstruction
speed and accuracy of any existing EDCSR framework to
deal with variable CR at run time with no modification to
the given network models nor long additional training time
required. Our experiments on two public datasets show that
CRA provides an average of 13.02 dB and 5.38 dB PSNR
improvement across the CRs of 5-30 comparing with a naive
zero-padding approach and the prior work [16], respectively.
The proposed CRA approach addresses a big limitation of
the existing EDCSR frameworks and makes them suitable for
resource-constrained application scenarios.
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