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ABSTRACT

The long-term trend of sea surface salinity (SSS) reveals an intensification of the global hydrological cycle
due to human-induced climate change. This study demonstrates that SSS variability can also be used as a
measure of terrestrial precipitation on interseasonal to interannual time scales, and to locate the source of
moisture. Seasonal composites during El Nifio-Southern Oscillation/Indian Ocean dipole (ENSO/IOD)
events are used to understand the variations of moisture transport and precipitation over Australia, and their
association with SSS variability. As ENSO/IOD events evolve, patterns of positive or negative SSS anomaly
emerge in the Indo-Pacific warm pool region and are accompanied by atmospheric moisture transport
anomalies toward Australia. During co-occurring La Nifia and negative IOD events, salty anomalies around
the Maritime Continent (north of Australia) indicate freshwater export and are associated with a significant
moisture transport that converges over Australia to create anomalous wet conditions. In contrast, during co-
occurring El Nifio and positive IOD events, a moisture transport divergence anomaly over Australia results in
anomalous dry conditions. The relationship between SSS and atmospheric moisture transport also holds for
pure ENSO/IOD events but varies in magnitude and spatial pattern. The significant pattern correlation be-
tween the moisture flux divergence and SSS anomaly during the ENSO/IOD events highlights the associated
ocean—-atmosphere coupling. A case study of the extreme hydroclimatic events of Australia (e.g., the 2010/11
Brisbane flood) demonstrates that the changes in SSS occur before the peak of ENSO/IOD events. This raises
the prospect that tracking of SSS variability could aid the prediction of Australian rainfall.
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1. Introduction

The water cycle is an integral part of the climate sys-
tem that regulates the temperature of our planet by
maintaining the balance between energy and mass via
evaporation, condensation, and precipitation processes
(Bowen 2011). The presence of water vapor in Earth’s
atmosphere serves as a greenhouse gas, and its distri-
bution is subjected to climate change (Raval and
Ramanathan 1989; Bindoff et al. 2013). Due to the effect
of anthropogenic climate change, the water cycle has
intensified over the past few decades, and some of the
best evidence for this intensification is in the long-term
ocean salinity measurements (Huntington 2006;
Helm et al. 2010; Durack et al. 2012). The intensifi-
cation of the global water cycle on long time scales
follows the paradigm ‘‘rich-gets-richer and the poor-
gets-poorer,” which means wet regions are getting
wetter and dry regions are getting drier (Trenberth
2011). However, some studies (Greve et al. 2014;
Kumar et al. 2015; Feng and Zhang 2016; Polson and
Hegerl 2017) show that the wet-gets-wetter and dry-
gets-drier paradigm has discrepancies on regional
and short temporal scales between the expected re-
sponse of the hydrological cycle to global warming
and observed changes over land. While the ocean
salinity patterns reflect the intensified global water
cycle (Helm et al. 2010; Durack et al. 2012), it also serves
the purpose of nature’s rain gauge (Yu 2011) and is an
effective tool to estimate global evaporation E and pre-
cipitation P changes (Hosoda et al. 2009).

In the context of using regional SSS as nature’s rain
gauge, its links with the terrestrial precipitation are also
gaining attention and raising the prospects of using SSS
as a precursor for terrestrial precipitation (Li et al.
2016a,b; Chen et al. 2019). Examples are the assimila-
tion of SSS in coupled models to improve rainfall pre-
dictions (through the improvement of the upper ocean
thermal structure) (Yaremchuk 2006; Koul et al. 2018;
Seelanki et al. 2018). Moreover, SSS also plays an active
role in the development of ENSO and IOD events and
aids in improving the forecast of these events (Zhu et al.
2014; Hackert et al. 2019; Sun et al. 2019).

Various studies show the effect of SST and large-scale
atmospheric circulation anomalies on Australian rainfall
during ENSO/IOD events (Ashok et al. 2003; Cai et al. 2009;
Ummenhofer et al. 2009, 2011; Taschetto et al. 2011; King
et al. 2015) but the link between SSS and the moisture
transport during these events from the adjacent ocean basins
has not been addressed. In this study, we demonstrate that
variations in the SSS across the Indo-Pacific warm pool re-
gion on interannual time scales are profoundly linked with
the moisture transport over Australia. In particular, we use a
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FIG. 1. Annual mean of sea surface salinity (SSS) for the study
area overlaid with the boxes for the dipole mode index (DMI;
cyan), salinity dipole index (purple), and Nifio-3.4 index (green).

composite analysis of SSS, Australian precipitation, and
convergence/divergence of atmospheric moisture during the
ENSO/IOD events to demonstrate these linkages.

An application of these linkages is demonstrated for
the case of an extreme hydroclimatic event in Australia
during 2010/11 austral summer that brought one of the
worst floods on record to Brisbane with 35 deaths and
estimated damage to be more than $2 billion (NCCARF
2011; Holmes 2012; Hayes and Goonetilleke 2013;
Queenland Government 2015). The year of 2010/11 was a
co-occurring La Nifia and negative IOD event, which gen-
erally brings high rainfall to northeast Australia (Evans and
Boyer-Souchet 2012); a drop of Smm in global mean sea
level also resulted from this event (Boening et al. 2012;
Fasullo et al. 2013; Lim and Hendon 2015).

2. Data and methodology
a. Data

We focus our analyses on the Indo-Pacific region
40°E-100°W, 50°S-10°N (i.e., the domain shown in
Fig. 1). Monthly means of oceanic and atmospheric
parameters from 1961 to 2017 are used from various
observational and reanalysis products. To assess the
interseasonal to interannual climate variability, we used
the Nifio-3.4 index for ENSO and the dipole mode index
(DMI) for IOD. The ENSO index is the area average
SST anomaly bounded by the region 5°S-5°N, 170°-
120°W and based on the monthly time series of ERSSTvS
(Huang et al. 2017). The DMl is based on Saji et al. (1999)
and represents the SST anomaly difference between the
western equatorial (50°-70°E, 10°S-10°N) and the
southeastern equatorial (90°-~110°E, 10°S—0°N) the Indian
Ocean. Both indices were linearly detrended for further
analysis to focus on interseasonal to interannual climate
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FIG. 2. Monthly normalized time series of (a) the El Nifio-Southern Oscillation (ENSO) index of the Nifio-3.4 region
(170°=120°W, 5°S-5°N) (black) and SSS anomaly averaged over the Nifio-3.4 region (blue) and (b) the Indian Ocean dipole
(IOD) index (black) and the dipole index of SSS anomaly (blue), which is the difference of the central equatorial Indian Ocean
(70°-90°E, 5°S-5°N) and the region off the Sumatra/Java coast (100°~110°E, 13°-3°S). The red dashed line indicates the

threshold of +0.5 standard deviation of the Nifio-3.4 index and

DML The correlation cofficient r at zero lead/lag between the

SSS anomaly and the Nifio-3.4 index (SSSy/Nifios4) is —0.25 and for the SSS anomaly dipole and IOD index (SSSyIOD) is
—0.17. Similarly, the lead/lag correlation shows that the SSS anomaly lags Nifio-3.4 index by 6 months (SSS_¢/Nifios 4) with
maximum r of —0.47 and lags IOD index by 4 months (SSS_4IOD) with maximum r of —0.37. All of the correlation
coefficients are statistically significant at 95% from a two-tailed Student’s ¢ test.

variability. The sources for the monthly time series data
of the ENSO index and DMI are https://origin.cpc.ncep.
noaa.gov/products/analysis_monitoring/ensostuff/ONI_v5.
php and https://www.esrl.noaa.gov/psd/gcos_wgsp/Timeseries/
DML.

We used monthly values of specific humidity and
horizontal winds between 1000 and 500 hPa and surface
wind components from NCEP-NCAR Reanalysis 1
(Kalnay et al. 1996).

Monthly SST data are from HadISST1 (Rayner et al.
2003), and monthly SSS data is from Hadley Centre
subsurface objective analyses (EN 4.2.1) (Gouretski and
Reseghetti 2010; Good et al. 2013). Terrestrial precipi-
tation data over Australia is from the Australian Water
Availability Project (AWAP) (Raupach et al. 2009).

Analyses shown in the results section were repeated
with different observational and reanalysis products
which include SSS from ORAS4 (Balmaseda et al.
2013), SST from ERSSTVS5 (Huang et al. 2017), terres-
trial precipitation from Climate Research Unit (CRU)
(New et al. 2000), zonal and meridional winds and spe-
cific humidity between 1000 and 500 hPa from ERA-
Interim (Dee et al. 2011). Results were qualitatively
similar and are not shown here.

b. Methods

The seasonal composite from the anomaly fields of
SST, 10-m surface winds, SSS, moisture flux divergence

(MFD), and its divergent component and Australian
precipitation has been constructed for years of ENSO
and IOD events. The years of ENSO and IOD events
were selected using the seasonally averaged time series of
the ENSO index and DMI during November—February
(NDJF) and August-November (ASON), respectively.
To include a maximum number of significant events in
the composite fields, we select years where the index in
question (seasonally averaged time series) exceeds a
threshold of +0.5 standard deviation of the respective
long-term time series (Lestari and Koh 2016) (Fig. 2).
The choice of other thresholds, e.g., =0.7 or =1.0 stan-
dard deviation, does not cause any significant change
in the results. The years that satisfy this criterion in
the seasonally averaged time series of NDJF for
ENSO and ASON for DMI are chosen and further
divided into six categories, as shown in Table 1. These
categories are pure El Nifio, pure La Niiia, pure pos-
itive IOD, pure negative IOD, co-occurring El Nifio
and positive 10D, and co-occurring La Nifia and
negative IOD events. Most of the ENSO and 10D
years, classified by our study into different categories
agree with previous studies (Saji and Yamagata 2003;
Meyers et al. 2007; Ummenhofer et al. 2011; Pepler et
al. 2014), and also with the years identified by the
Bureau of Meteorology and the National Weather
Service Climate Prediction Center (Table 1). The re-
sults from co-occurring events are shown in the main
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TABLE 1. ENSO and IOD events in six categories with their respective years from 1961 to 2017 based on the methodology adopted in
this study. Symbols are as follows: an asterisk (*) indicates years similar to Meyers et al. (2007) and Ummenhofer et al. (2011), * indicates
years similar to Bureau of Meteorology, Australia, * indicates years similar to Saji and Yamagata (2003), * indicates years similar to Pepler
et al. (2014), and © indicates ENSO years similar to the National Weather Service Climate Prediction Center.

Event category

Years of occurrence

Pure El Nifio

Pure La Nifia

Pure positive IOD

Pure negative IOD

Co-occurring El Nifio and positive IOD

1965/66"*€1969/707*5€, 1979/80°, 1986/87°*€, 2004/05", 2009/10*%€,
2014/15*¢

1985/86™, 1988/89"+"€ 1995/96, 1999/2000$%, 2000/01, 2008/09* %

1961"*% 1966, 2012+%

1980%, 1981**, 1992°+# 2001

1963/64" € 1972/73" %€ 1976/77°, 1977/78%®, 1982/83"**©_1987/88°,

1991/927°, 1994/957%€ 1997/98"+#© 2002/03, 2006/07+%€, 2015/167°

Co-occurring La Nifia and negative IOD

1964/657%€1970/719, 1971/72%¢, 1973174, 1974/75, 1975/76"#5€,

1984/85%, 1996/97", 1998/99*©, 2005/06%, 2010/11 %€, 2016/17¢

text and the remaining pure events in the auxiliary
information.
The computation of MFD is carried out by us-

ing Eq. (1):
MFD = @)V : J:Xqup ~(E-P), (1)

where MFD is the moisture flux divergence, g is the
gravitational acceleration (9.8ms ?), g is specific hu-
midity (gkg '), V is horizontal wind velocity (ms™'), E
is evaporation, and P is precipitation. Moisture flux gV
is computed at each pressure level of the reanalysis and
then integrated from the surface (1000 hPa) to 500 hPa.
The upper limit of integration is taken as 500 hPa, as the
majority of moisture in the atmosphere is concentrated
below that level, as suggested by previous studies (Zhou
and Yu 2005; Li et al. 2013; Seager and Henderson 2013;
Li et al. 2016b). The divergent component of moisture
flux (MF) is computed by solving Poisson equations
(Lynch 1988). The transport and divergent component
of moisture flux together show the pathway of atmo-
spheric moisture that directly link the oceanic sources of
moisture with the terrestrial sink regions.

For significance testing of the composite analysis, we
use Hotelling’s T-square test (Hotelling 1931). The null
hypothesis is that the composite mean (u;) = long-term
seasonal mean (u,). The number of composite samples
is equal to the number of ENSO and IOD events in each
category; the number of seasonal mean samples is 57
(i.e., the total number of years in the reanalysis time
series). The test statistic for Hotelling’s 7-square test is
shown in Eq. (2); see also appendix A for more detail.

o EHE) o (DS (- DS
, (1 1 ? ool n+on =2 .

S 1(— +—

poo nl nz

)

The null hypothesis will be rejected at «/2 significance
level when T =1, 4,,-2.an With ny + n; — 2 degrees of
freedom.

We also performed a linear correlation for the rela-
tionship between SSS and MFD during co-occurring
ENSO and 10D events. In the interest of conciseness,
results are only shown for co-occurring ENSO and IOD
events in the subsequent subsections.

3. SST and SSS in the Nifio-3.4 and DMI regions

The relationship between ENSO/IOD events and SSS
can be established by examining the monthly time series
of various standard ENSO and DMI indices and SSS in
the study region. Figure 2a shows the monthly time se-
ries of the Nifo-3.4 index, and the SSS anomaly aver-
aged over the Nifio-3.4 region and Fig. 2b for the DMI
and the SSS dipole mode. The SSS dipole mode is de-
fined as the difference of SSS anomaly averaged over the
central equatorial Indian Ocean (70°-90°E, 5°S-5°N)
and the region off the Sumatra and Java coast (100°-
110°E, 13°-3°S) (J. Li et al. 2016). The main advantage of
using the SSS dipole mode index is for detecting and
characterizing its relationship with the SST anomaly
dipole and providing positive feedback to the formation
of the IOD events (J. Li et al. 2016; Sun et al. 2019).

The correlation between the SSS and SST anomaly
over the Nifio-3.4 region is —0.25 at zero lag but the
correlation increases to —0.47 (significant at 95% con-
fidence) when the Nifio-3.4 index leads the SSS anomaly
by 6 months (Fig. 2a). This result is consistent with
Ballabrera-Poy et al. (2002) and Singh and Delcroix
(2011), where they show that the signal of ENSO in SSS
lags the ENSO signal in SST by 3-6 months. Moreover,
this negative correlation exists between the Nifio-3.4
SST, and equatorial SSS anomalies is due to the increase
of local rainfall and anomalous eastward advection of
low-salinity warm pool waters in the equatorial band
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associated with El Nifio (Ballabrera-Poy et al. 2002;
Singh and Delcroix 2011).

Zhu et al. (2014) and Hackert et al. (2019) also sug-
gested that the SSS significantly contributes to the sur-
face dynamics of the western and south-central Pacific to
trigger ENSO events. According to Ballabrera-Poy et al.
(2002), Hackert et al. (2011, 2019), Zhu et al. (2014),
Zhao et al. (2016), and Zhi et al. (2019), fresh anomalies
advected from the Southern Hemisphere to the western
equatorial region through subduction processes lead to
increased barrier layer thickness and a shoaling of mixed
layer depth (MLD). Fresh anomalies at the surface re-
duce mixing, decrease buoyancy, and shoal the ther-
mocline, thus enhancing the Kelvin wave amplification,
which leads to more efficient air-sea ENSO coupling.
Moreover, Hackert et al. (2019) show that by improving
near-surface density structure via SSS assimilation in
coupled models, ENSO forecasts are improved with
respect to observed Nifio-3.4 SST anomalies for both the
temporal (i.e., correlation) and amplitude [root-mean-
square difference (RMSD)] signals and particularly for
the 2-10-month lead times.

The correlation of SSS anomaly with DMI at zero
lead/lag —0.17 and increases to —0.37 when DMI leads
the SSS anomaly by four months (Fig. 2b). Previous
studies (J. Li et al. 2016; Kido and Tozuka 2017; Kido et
al. 2019; Sun et al. 2019) suggest that the SSS anomalies
due to evaporation, precipitation, zonal advection by
winds and mesoscale eddies impact the development of
10D events.

4. Climatological conditions over the Indo-Pacific

In the seasonal cycle, there are clear associations be-
tween ocean salinity and atmospheric moisture fluxes.
The seasonal climatology of SSS, SST, Australian pre-
cipitation, MFD, and the divergent component of
moisture flux is shown in Fig. 3. From MAM (March-
May) to DJF (December—February), the relatively high
(low) SSS around 20°-40°S (10°N-10°S) is in good
agreement with divergence (convergence) of moisture
over the ocean (Fig. 3, all panels). The divergence of
moisture leaves an imprint of increased SSS whereas the
convergence of moisture leaves an imprint of freshened
SSS in the ocean. The region of high SSS (Fig. 3, first
column) around Australia and in the tropical Pacific
between 150°E and 100°W shows the oceanic source of
atmospheric moisture associated with MFD (Fig. 3,
second column). Similarly, the low SSS (Fig. 3, first
column) of the intertropical convergence zone (ITCZ)
and South Pacific convergence zone (SPCZ) is indicative
of the convergence of atmospheric moisture (Fig. 3, sec-
ond column). The Indian Ocean off western Australia
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and the Pacific Ocean off eastern Australia are the pri-
mary sources of moisture supply (Fig. 3, second column)
for the mean Australian precipitation. The moisture
originating from the Indo-Pacific Ocean converges over
land, as shown by the vectors of the divergent component
of moisture flux and high precipitation on the north-
western, northeastern, southwestern, southeastern, and
east coasts of Australia (Fig. 3, third column).

This analysis shows that the atmospheric moisture
originating from the ocean leaves an imprint on SSS and
this atmospheric moisture converges over Australia
where it can precipitate. Hence, from the climatological
perspective, the Indian and the Pacific Oceans adjacent
to Australia are the main sources of moisture for mean
Australian precipitation, and the mean SSS signal is a
robust indicator of this atmospheric moisture transport.
However, the maxima and minima of MFD are dis-
placed with respect to the maxima and minima of SSS
(Fig. 3, cf. columns 1 and 2), which warrants further in-
vestigation. Moreover, during climactic events (e.g.,
ENSO and IOD), the conditions vary considerably from
the mean state.

5. Evolution of the SSS signature during co-
occurring ENSO and 10D events with links for
Australian precipitation

In this section, we show the link between Australian
precipitation and SSS signatures during co-occurring
ENSO/IOD events. We focus here on these types of
events because they have the strongest signal for dem-
onstrating the relationship between precipitation and
SSS. In co-occurring events, IOD peaks in strength
during SON and is generally followed by ENSO that
peaks during DJF. A positive IOD (pIOD) event is
followed by El Nifio, and negative IOD (nIOD) is fol-
lowed by La Nifa; this sequence/combination is known
as a co-occurring event. Based on this sequence there
are 12 co-occurring El Nifio and pIOD events (1963/64,
1972/73, 1976/77, 1977/78, 1982/83, 1987/88, 1991/92,
1994/95, 1997/98, 2002/03, 2006/07, and 2015/16) and 12
co-occurring La Nifia and nIOD events (1964/65, 1970/
71,1971/72,1973/74, 1974/75, 1975/76, 1984/85, 1996/97,
1998/99, 2005/06, 2010/11, and 2016/17) (Table 1).
However, the independence of ENSO and the IOD is
still debated (Allan et al. 2001; Meyers et al. 2007; Stuecker
et al. 2017).

a. Co-occurring El Nifio and positive IOD event

In co-occurring El Nifio and pIOD events, anoma-
lously warm SST anomalies appear in the equatorial
Pacific during boreal summer (JJA). The Indian Ocean
shows a pIOD signature starting from JJA, peaking in
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FIG. 3. Seasonal climatology of (a),(d),(g),(j) sea surface salinity (SSS; shaded) overlaid by SST (contoured), (b),(e),(h),(k) moisture flux
divergence (shaded) where positive indicates convergence and negative indicates divergence overlaid by the divergent component of

moisture flux (vectors), and (c),(f),(i),(1) precipitation over Australia.

SON, and dissipating in DJF (i.e., the season when
ENSO peaks) (Fig. 4, first column). During these events,
surface winds show significant coherence with the SST
anomaly pattern. The intensification of the anomalous
easterlies off the Java/Sumatra coast in the Indian
Ocean during SON coincides with the SST anomaly
pattern of pIOD. Similarly, the relaxation of easterlies
over the equatorial Pacific coincides with the El Nifio—
related SST anomaly pattern (Fig. 4, first column).

The anomalous SSS anomaly pattern (Fig. 4, second
column) around northern Australia starts evolving prior
to the peak seasons of ENSO and IOD. The SSS
anomaly signature appears during the boreal spring and
peaks progressively with the ENSO and IOD events.
During these events, the region of positive SSS anomaly

around northern Australia exhibits large-scale patterns
of salinification, whereas the equatorial Indian and the
Pacific Ocean, away from the Maritime Continent, ex-
hibit freshening (Fig. 4, second column). This pattern in
SSS, to a large extent, reflects the enhanced evaporation
and precipitation associated with the co-occurring
ENSO/IOD events across the Indo-Pacific. This pat-
tern of SSS anomaly is also reflected in MFD. MFD is
taken to be a proxy for total precipitable water present
in the atmospheric column (Fig. 4, third column).
Positive MFD reflects the convergence of moisture,
and negative MFD reflects the divergence. The MFD
signature in the atmosphere evolves simultaneously with
the SSS anomaly in the ocean. The divergence (con-
vergence) of moisture flux generally coincides with a
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FIG. 4. Seasonal composite mean during co-occurring El Nifio and pIOD of (a),(e),(i),(m) SST anomaly (shaded; °C) overlaid by 10-m
anomalous surface winds (vectors; ms ™ 1), (b),(),(j),(n) sea surface salinity (SSS) anomaly (shaded; psu) overlaid by seasonal climatology
of SSS (contour), (c),(g),(k),(0) moisture flux divergence anomaly (MFD; mm day ™ '; shaded) overlaid by the divergent component of
moisture flux anomaly (kg m ™~ 's™!; vectors), and (d),(h),(1),(p) Australian precipitation anomaly (mm day !). Black dots indicate regions

that are statistically significant at 95%, thick black vectors are statistically significant at 90%, and thick magenta vectors are statistically

significant at 95% from Hotelling’s 7-square test.

positive (negative) SSS anomaly signature. During co-
occurring El Nifo/pIOD, the divergence of moisture
flux evolves over northern Australia and becomes more
organized as pIOD and El Nifio peak in SON and DJF,
respectively. A large part of the atmospheric moisture
originates and is transported from the Indonesian seas
and SPCZ region, as shown by the vectors of the diver-
gent component of moisture flux (Fig. 4, third column).
The vectors of the divergent component of moisture flux
show the pathways of moisture transport.

The divergence and convergence of moisture over
land are as important as those over the ocean because
they indicate the increased likelihood for terrestrial
precipitation. During co-occurring El Nifio and pIOD
event, the mean moisture supply toward Australia is
weakened by an anomalous reversal of the direction of
moisture flux (Fig. 4, third column). The reduced mean
moisture transport coincides with the divergence over
the Australian continent and is thus less likely to pre-
cipitate during co-occurring El Nifio and pIOD events.
During these events, weak convergence of moisture is
present over southern Australia (Fig. 40), which is

associated with an increase in precipitation over the
same region during DJF (Fig. 4p). In contrast, the strong
divergence over northern Australia (Fig. 40) associated
with negative rainfall anomalies (Fig. 4p) coincides with
the strong subsidence over northern Australia and anom-
alously dry conditions (Taschetto et al. 2011).

The co-occurring El Niflo and pIOD brings strong
anomalous dry conditions over Australia (Fig. 4, fourth
column) because the moisture originating from the
ocean encounters strong divergence over land. The
weak convergence over western and central Australia
during JJA shows relatively less dry conditions as com-
pared to southeastern Australia (Fig. 4h). As pIOD and
El Nifio evolve and peak in SON and DJF, respectively,
the magnitude of moisture transport anomaly becomes
intensified. During SON (Fig. 4k), western Australia
receives significant moisture transport from the Indian
Ocean and coincides with a weak convergence of
moisture. In contrast, the moisture transport from the
Pacific Ocean coincides with divergence from eastern to
central Australia (Fig. 4k). This results in moderately
wet conditions over western Australia and significant
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FIG. 5. Seasonal composite mean during co-occurring La Nifia and nIOD of (a),(e),(i),(m) sea surface temperature anomaly (SST

anomaly; shaded; °C) overlaid by 10-m anomalous surface winds (vectors;ms 1), (b),(f),(j),(n) sea surface salinity anomaly (SSS anomaly;
shaded; psu) overlaid by seasonal climatology of sea surface salinity (SSS; contour), (c),(g),(k),(0) moisture flux divergence anomaly
(MFD; mm day '; shaded) overlaid by the divergent component of moisture flux anomaly (kgm ™~ 's™'; vectors), and (d),(h),(1),(p)
Australian precipitation anomaly (mm day1). Black dots indicate regions that are statistically significant at 95%, thick black vectors are

statistically significant at 90%, and thick magenta vectors are statistically significant at 95% from Hotelling’s 7-square test.

drying over the rest of Australia (Fig. 41). In the boreal
winter season DJF (Fig. 40), the moisture transport from
the Indian and the Pacific Ocean coincides with weak
convergence (strong divergence) over southern (north-
ern) Australia. This results in weak positive precipita-
tion anomalies in southern Australia and significant dry
anomalies over northern Australia (Fig. 4p).

This overall suppression of rainfall over Australia
during co-occurring El Nifio and pIOD events is likely to
be due to a tropical and extratropical teleconnection,
triggered by the diabatic heating anomalies and Rossby
wave trains (Cai et al. 2011).

Our analysis (Fig. 4) suggests that the exchange of
moisture between ocean and atmosphere leaves a dis-
tinct signature in SSS on the ocean, earlier than the peak
SST anomalies during El Nifio and pIOD events (e.g.,
Figs. 2 and 4) and that these patterns can be traced
through the atmospheric moisture pathway.

b. Co-occurring La Niiia and negative 10D event

The following analysis of co-occurring La Nifia and
nIOD also reveals these same relationships but of

opposite sign (Fig. 5). During co-occurring La Nifia and
nlOD events, a negative SST anomaly developed in the
equatorial Pacific Ocean during boreal summer (JJA)
and peaks in boreal winter (DJF). While in the Indian
Ocean, the nIOD peaks in SON, as shown in Fig. 5 (first
column). The anomalous SST condition is supported by
the intensification of westerlies in the equatorial Indian
Ocean and easterlies in the equatorial Pacific during
SON and DJF, respectively.

During the development of La Nifia and nIOD
events, a significant positive anomaly of SSS evolves in
the equatorial Indian and Pacific Oceans between 10°S
and 10°N during MAM (Fig. 5b), off the Maritime
Continent. Similarly, another positive anomaly of SSS
over 10°-30°S, 170°E-150°W is also observed. As the co-
occurring La Nifia and nIOD evolve, the region around
northern Australia gets fresher whereas the region of
the Indian and the Pacific Ocean off the Maritime
Continent gets saltier (Fig. 5, second column).

Similarly, the atmospheric moisture is divergent over
the region of positive SSS anomaly and convergent over
the negative SSS anomaly (i.e., fresher region) (Fig. 5,
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third column). During JJA, a significant amount of
moisture moves toward the Australian continent from
two branches connected to the Pacific Ocean (Fig. 5g).
The first branch is a direct route crossing northeast
Australia from the equatorial Pacific, as shown by
Brown et al. (2009). The second branch crosses south-
east Australia over the Tasman Sea. Both branches co-
incide with weak convergence over Australia, and this is
reflected in enhanced rainfall over Australia (Fig. 5h).
In the following season (SON), both the Indian and
the Pacific Ocean contribute moisture transport toward
Australia (Fig. 5k). During this season, there is a three-
way moisture supply that includes the two branches
from the Pacific Ocean, as described above, and an ad-
ditional branch from the Indian Ocean toward south-
western Australia. Similar conditions prevail in DJF
with further intensification and widespread convergence
of moisture over the Australian continent (Fig. 50). This
suggests that the SSS anomaly is organized by the at-
mospheric circulation and reflects the regions dominated
by evaporation and precipitation during co-occurring La
Nifia and nIOD events.

Australian precipitation progressively increases from
JJA to DJF during co-occurring La Nifia and nIOD
(Fig. 5, fourth column), due to enhanced mean moisture
supply toward Australia. This anomalous transport of
moisture from the Indian and the Pacific Ocean expe-
riences strong convergence over the Australian conti-
nent and is likely to precipitate. The anomalously wet
condition over Australia during co-occurring La Niifia
and nIOD events is likely to be associated with the
moisture convergence due to lower surface pressure and
cyclonic anomalies from the barotropic Rossby wave
trains that emanate from the tropical Indian Ocean
(McBride and Nicholls 1983; Meyers et al. 2007; Cai et
al. 2011; Lim et al. 2016). These wet conditions contrast
with the situation during co-occurring El Nifio and
pIOD events when conditions over Australia are anoma-
lously dry. The conditions during co-occurring La Nifia
and nIOD events bring a significant amount of rain, and
the origin of moisture that feeds the precipitation is
evident in the SSS anomaly in the prior season.

The analyses for the remaining categories (i.e., pure
El Nifio, pure La Nifa, pure pIOD, and pure nIOD) are
shown in the appendices (see Figs. B1-B4). It is worth
mentioning that the magnitude of anomalies generated
by pure ENSO and IOD events (Figs. B1-B4) are weak
compared to co-occurring ENSO and IOD events
(Figs. 4 and 5). The underlying mechanism for this
contrast, which involves the ENSO and IOD dynamics,
is explained by previous studies (Meyers et al. 2007;
Risbey et al. 2009; Ummenhofer et al. 2009, 2011; Cai et
al. 2011).
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6. Relationship between moisture flux divergence
and SSS anomaly

In the previous section, we have described the oceanic
and atmospheric links between SSS anomaly and MFD
during co-occurring ENSO and IOD events. In this
section, we demonstrate the statistical relationship be-
tween SSS anomaly and MFD and show the evolution of
the signal throughout the event. The seasonal evolution
of the relationship between SSS anomaly and MFD in
the Indian and Pacific Ocean for each co-occurring
event is obtained from the pattern correlation.

Prior to pattern correlation analysis, we masked and
regridded the MFD field to the 1° X 1° spatial resolution
of the SSS anomaly field. We then normalized these
fields by their respective spatial standard deviation to
provide a comparable contribution from each field at
each grid point. Each point of the scatterplot of the
pattern present in the normalized SSS anomaly and
MFD field corresponds to the value of the SSS
anomaly and MFD field at the same grid point (Fig. 6).

The coupling between SSS anomaly and MFD is pri-
marily tested over the tropical region of the Indian (60°-
120°E, 30°S-10°N) and Pacific Oceans (150°E-150°W,
30°S-10°N) where a strong signal is present.

a. Pacific Ocean during co-occurring ENSO and
10D events

The evolution of ocean-atmosphere coupling be-
tween the SSS anomaly and MFD in the Pacific Ocean
during co-occurring ENSO/IOD events is shown in
Figs. 6a—d. As ENSO predominantly influences the
Pacific Ocean, the pattern correlation between the SSS
anomaly and MFD during co-occurring El Nifio and
pIOD events progressively strengthens from MAM to
DJF. Similar behavior in the correlation is also observed
for co-occurring La Nifia and nIOD events exceptin JJA
when the correlation is slightly weaker (0.31) compared
to 0.36 in MAM. The maximum correlation is observed
during DJF (i.e., when ENSO peaks), with 0.64 and 0.46
for co-occurring El Nifio/pIOD and co-occurring La
Nifia/nIOD events respectively and significant at 95%
confidence (Fig. 6d). The strengthening of coupling
between the SSS anomaly and MFD anomaly from
MAM to DJF shows the enhancement of the signal from
the weak developing state of ENSO and 10D to the
strong mature state. The progressive increment in cor-
relation from MAM to DJF (Figs. 6a—d) also shows the
organization and synchronization of ocean—-atmosphere
coupling during these large-scale climatic fluctuations.
This represents the signal of SSS anomaly intensifying
with the convergence/divergence of moisture in the
atmosphere.
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b. Indian Ocean during co-occurring ENSO and
10D events

The Indian Ocean also shows a strengthening of the
pattern correlation from MAM to DJF (Figs. 6e-h) as
both ENSO and IOD influence it. However, the effect
of ENSO on the Indian Ocean lasts longer than the
IOD when the anomalous dipole mode pattern of SST
anomaly during SON vanishes in DJF and turns into
basinwide warming. During co-occurring El Nifio and
pIOD events, maximum correlation is observed during
DJF (0.47) at 95% confidence. However, during the co-
occurring La Nifia and nIOD event, DJF has a maxi-
mum correlation of 0.34 significant at 95% as compared
to the previous seasons but lower than for the co-occurring
EINifio and pIOD events. This asymmetrical correlation is
plausibly the combined effect of the co-occurring ENSO
and IOD events and the asymmetry in the ENSO events
(Hong et al. 2010).

It is important to note that the spread of the correla-
tion pattern is reduced considerably in the Pacific Ocean
from MAM to DJF. In the Indian Ocean, the spread is
large in all seasons except in DJF, when it is more
aligned along the best fit line. This observation suggests
that in the Pacific Ocean the ocean—-atmosphere cou-
pling evolves with the ENSO events, while in the Indian
Ocean this coupling is weak (Jansen et al. 2009). Figure 6
also shows that the correlation coefficient for the co-

occurring El Nifio and pIOD events is greater than that for
La Nifia and nIOD events in both the Indian and the Pacific
Ocean. One possible reason for this is the positive skewness
of the ENSO and IOD events; that is, the anomalies gen-
erated by the co-occurring El Nifio and pIOD events are
larger in magnitude than the co-occurring La Nifia and
nlOD (Hong et al. 2010; Cai et al. 2012).

This correlation analysis (Fig. 6), along with Figs. 4
and 5, corroborates the relationship between the SSS
and the precipitation over Australia via atmospheric
moisture transport. It is important to note that the cor-
relation analysis (Fig. 6) has no consideration of the
lead/lag component at this stage. However, when
incorporating a lead of 1 month to the SSS anomaly with
respect to the MFD anomaly, the correlation is mar-
ginally improved in most of the seasons in both events
(Fig. BS). This suggests that the relationship between
SSS and the MFD could be improved with the con-
sideration of some moderate lead/lag associated with
these fields.

7. Case study of Australian hydroclimatic extremes
in 2010/11

The previous sections make the case that SSS is a
useful ocean variable for understanding precipitation
over Australia. Here we look more closely at the utility
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FIG. 7. Case study of 2010/11 extreme hydroclimatic events of Australia (Brisbane flood), during a co-occurring La Nifia and nIOD

event. Bimonthly means from July-August 2010 to January-February 2011 of (a),(e),(i),(m) sea surface temperature anomaly (SST
anomaly; shaded; °C) overlaid by 10-m surface winds (vectors; ms ™), (b),(f),(j),(n) sea surface salinity anomaly (SSS anomaly; shaded;
psu) overlaid by seasonal climatology of sea surface salinity (SSS; contour), (c),(g),(k),(0) moisture flux divergence anomaly (MFD;

mm day

!: shaded) overlaid by the divergent component of moisture flux anomaly (kgm~'s™'; vectors), and (d),(h),(1),(p) Australian

precipitation anomaly (mm day '). Here, the red circle is the location of Brisbane, which was severely affected by this flood event.

of SSS for the extreme hydroclimatic events in Australia.
In particular, the flooding event in Brisbane and southern
Queensland happened during the co-occurring La Nifia
and nIOD events of 2010/11. This case study serves the
purpose of exploring the role of SSS anomaly over the
Indo-Pacific region as a precursor for enormous moisture
export for extreme precipitation events.

During this co-occurring La Nifia and nIOD event, a
strong SST anomaly developed in the eastern tropical
Indian Ocean near the island of Java/Sumatra and the
equatorial Pacific Ocean, as shown by the bimonthly
evolution maps (Fig. 7, first column). The SST anomaly
in the Indian Ocean shows a strong nIOD pattern during
November-December (Fig. 7i). Similarly, the anoma-
lous cooling of the equatorial Pacific Ocean during July—
August (Fig. 7a) peaks during November—February
(Figs. 7i,m). The signatures of the SST anomaly pat-
tern are aligned with the surface wind anomaly (Fig. 7,
first column) and indicate the intensification of west-
erlies (easterlies) over the eastern tropical Indian
(equatorial Pacific) Ocean. At the same time, a positive
SSS anomaly organizes in the equatorial (5°S-5°N)

Indian and Pacific Ocean (Indo-Pacific warm pool) and
also in the extratropical region of the Indian (60°-110°E,
30°-40°S) and the Pacific Ocean (100°-170°W, 20°-40°S),
showing intense evaporation during the co-occurring La
Nifia and nIOD event (Fig. 7, second column). The de-
velopment of intense anomalous freshening (negative
SSS anomaly) is also apparent around the western coast
of Australia and is an indication of more intense pre-
cipitation perhaps associated with strong Indonesian
Throughflow (ITF) (Feng et al. 2015).

During the co-occurring La Nifia and nIOD event of
2010/11, a large amount of moisture originates from the
Pacific Ocean in July—August and is transported toward
the Australian continent (Fig. 7, third column). It is
observed that during this event, there are four branches
supplying moisture that converge over eastern Australia
(Fig. 7, third column). The first branch of moisture is
over northeast Australia and has a pathway that comes
directly from the equatorial Pacific. The second branch
converges over southeast Australia and originates from
the extratropical Pacific over the Tasman Sea. The third
branch of moisture shows convergence over western
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FI1G. 8. Schematic illustration of the extreme hydroclimatic events of Australia during
November—-December 2010 (Brisbane floods in eastern Australia). The presence of a high-salinity
signal in the Indian and Pacific Oceans around 10°S-10°N shows a region of high evaporation.
This extra moisture (green arrows) is transported toward the region indicating freshening in the
ocean and the Australian landmass as shown by the vectors of atmospheric moisture transport
(yellow arrows). In this figure the moisture transported from the high salinity region in the Indian
Ocean converges over the ocean to the northwest of Australia, whereas the moisture transported
from the high salinity region of Pacific Ocean converges over the east coast of Australia.

Australia and originates from the eastern tropical Indian
Ocean. The fourth branch of moisture transport emerges
during November-February (Figs. 7k,0), from the ex-
tratropical southeastern Indian Ocean. The anomalously
high supply of moisture from this branch directly con-
verges over the west coast of Australia (Figs. 7k,0) and
also causes a freshening in the adjacent eastern Indian
Ocean (Figs. 7j,n).

The emergence of the moisture transport corresponds
with the positive SSS anomaly, which is apparent in the
prior season and intensifies with the evolution of the co-
occurring La Nifia and nIOD event. Moreover, the
convergence of the first, second, and third branches of
moisture supply is associated with the effect of La Nifia
and nIOD as shown by previous studies (Risbey et al.
2009; Ummenhofer et al. 2009; Cai et al. 2011). However,
the substantial moisture convergence and freshening on
the west coast of Australia coincide with the Ningaloo
Nifio and the co-occurring La Nifia and nIOD event.
During Ningaloo Nifio, the Leeuwin Current intensified,
and the west coast of Australia experienced anomalously
warm SST and intensification of surface winds (Figs. 7i,m)
(Feng et al. 2013; Pearce and Feng 2013; Kataoka et
al. 2014).

The combination of events (i.e., co-occurring La Nifia
and nIOD with Ningaloo Nifio) draws anomalously
high moisture that converges over the Australian
continent and results in heavy precipitation. A large
part of the moisture comes from the Pacific Ocean and
causes heavy precipitation over the east coast of
Australia (Figs. 7L,p and 8) and, in particular, across

southern Queensland. Similarly, the precipitation
over western Australia is driven by moisture transport
from the Indian Ocean (Figs. 71,p and 8). This study
shows that the source of moisture for intense precip-
itation over Australia emerges in the ocean in prior
seasons with anomalously high positive SSS anomaly.
The suggested role of long-term ocean warming in
contributing to the severity of the Queensland floods
event during 2010/11 (Ummenhofer et al. 2015) is
consistent with a local intensification of the hydro-
logical cycle, as evidenced by the strong SSS signal
shown here.

8. The relative contributions of the Indian and the
Pacific Ocean toward Australian rainfall

The relative contributions of the Indian and the
Pacific Ocean to moisture transport over Australia are
shown in Fig. 9 for all seasons during mean climatolog-
ical conditions and co-occurring ENSO and IOD events.
Here, the net moisture transport (given in Sv; 1Sv =
10°m>®s ™) is the spatial integration of MFD (mm day ')
over the continental area of Australia (Fig. 9). In the
mean climatology conditions during DJF (Fig. 9j), the
moisture transport of 0.074Sv (31% of the net moisture
transport) is over western Australia, showing that the
Indian Ocean is the primary source of mean moisture
supply for the west coast of Australia. However, the
Pacific Ocean, adjacent to the east coast of Australia,
has a transport of 0.054 Sv (Fig. 9j), which represents 22%
of the net moisture transport over Australia. Eastern and
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FIG. 9. Spatially integrated moisture flux divergence (Sv; 1 Sv = 10°m®s~') over the Australian continent for western (113°~125°E, 15°-
31°S), northern (125°-142°E, 11°-18°S), eastern (142°-154°E, 11°-31°S), southern (113°-154°E, 31°-44°S), and central (125°-142°E, 18°-
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western Australia combined result in 53% of the net
moisture transport from the Pacific and the Indian Ocean.
The remaining 47 % of moisture can be attributed to the
transport toward northern Australia from the Southern
Ocean sector (Fig. 3k) and also local recycling.

In contrast, during co-occurring El Nifio and pIOD
events, the whole of Australia is anomalously dry due
to the high divergence of moisture in all seasons. In
JJA (0.003Sv) and SON (0.006 Sv), western Australia
experiences a weak convergence of atmospheric moisture,

which is supplied by the Indian Ocean from north of
30°S (Fig. 4). During the co-occurring La Nifia and
nlOD event, there is an anomalously high convergence
of moisture over the Australian landmass (Fig. 9): the
Indian (Pacific) Ocean is the primary source of moisture
over western (eastern) Australia during DJF (JJA and
SON) (Fig. 5). The anomalous moisture transport by
the Indian and the Pacific Ocean during the DJF season
of co-occurring La Nifia and nIOD events is 0.012Sv
(i-e., 39%) and 0.005Sv (i.e., 16%) of the net moisture
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transport over Australia with associated convergence
(Fig. 91).

This analysis shows that the tropical Indian Ocean on
the western coast and the tropical Pacific Ocean on the
eastern coast of Australia are the primary source regions
for the moisture supply. It is worth mentioning that the
southern sector of the Indian Ocean also contributes to
the mean and anomalous (La Nifia and nIOD event)
transport of moisture toward the Australian landmass
(Figs. 3 and 5).

9. Discussion

Previous studies have concentrated on the changes
in SST during ENSO and IOD events for monitoring
or anticipating terrestrial precipitation anomalies. This
study brings a new perspective on the link between SSS
and Australian precipitation via pathways of atmo-
spheric moisture transport during these events. A com-
posite analysis is carried out for the ENSO and 10D
events to establish the link between SSS anomalies and
Australian precipitation. The resultant maps included
here demonstrate that the high- and low-SSS regions are
associated with convergence and divergence of the at-
mospheric moisture flux. The pattern of positive SSS
anomaly during ENSO and IOD events provides an
insight into the oceanic sources of moisture transport
toward Australia. However, the MFD variations in the
atmosphere are not perfectly aligned with the SSS
anomaly signals in the ocean. The correlation between
SSS and MFD anomalies is likely to be further improved
by accounting for oceanic advection. We would expect
the oceanic advection anomalies associated with surface
wind variations to be the primary source of difference in
longer-term pattern correlations along with the tempo-
ral lead/lag, as evidenced by the displaced maxima of
MFD and SSS anomalies in the seasonal climatology
(e.g., Figs. 3a,b).

This study shows that the anomalous moisture trans-
port during ENSO and IOD events significantly affects
the mean moisture transport toward land from the ad-
jacent ocean basins. The anomalous moisture transport
during co-occurring El Nifio and pIOD (La Nina and
nlOD) events oppose (reinforces) the mean moisture
transport. The effect from co-occurring ENSO and IOD
events (Figs. 4 and 5) is more intense than the pure
events (Figs. B1-B4). In a broad sense, the combined
effect of ENSO and the IOD on Australian rainfall is
generally more extreme than either on its own (Risbey
et al. 2009). During co-occurring El Nifio and pIOD
events, we find the ocean north of Australia supplies a
large amount of moisture, which is associated with the
positive SSS anomaly there. However, the strong
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atmospheric subsidence over Australia makes it less
likely to precipitate over the land (Taschetto et al. 2011).

In contrast, during the La Nifa event, the moisture
transport associated with the positive SSS anomaly in
the Indo-Pacific warm pool region coincides with strong
atmospheric convergence over land, resulting in anom-
alously wet conditions over Australia. In the case of pure
events, the anomalies generated by the ENSO events
(Figs. B1 and B2) have a stronger hydrological response
than the IOD events (Figs. B3 and B4). This suggests
that among the large-scale drivers for Australian rain-
fall, ENSO is the key player at interannual time scales
that has broad influence and impact, both on the ocean
and atmosphere (Risbey et al. 2009).

Our results also suggest that changes that occur in the
SSS of the preceding season are associated with the
convergence and divergence of atmospheric moisture
during the development of ENSO and IOD events (e.g.,
Figs. 4 and 5). These changes in the SSS are also ob-
served in the case study of the extreme hydroclimatic
events in eastern Australia that resulted in the 2010/11
Brisbane floods (Fig. 7). This result shows that the or-
ganization of moisture transport is well captured by the
changes in SSS. The emergence of an SSS anomaly sig-
nature in the preceding season, and its intensification in
subsequent seasons (Figs. 4 and 5), suggests that SSS can
be used as a potential predictor for terrestrial rainfall
over Australia. The potential use of SSS as a precursor
for terrestrial precipitation has also been demonstrated
for the Sahel and the U.S. Midwest region (Li et al.
2016a,b).

Some preliminary analysis of Australian rainfall pre-
diction using SSS is shown in Fig. B5S and Fig. 10.
Figure BS, similar to Fig. 6, shows a slight improvement
in the correlation when the SSS anomaly leads MFD by
one month. Further, the leading mode of empirical or-
thogonal function (EOF1) of Australian rainfall during
DJF shows that the rainfall is highly distributed over
northern Australia and extends southeastward (Fig. 10a)
with an explained variance of 32%.

Similarly, the EOF1 of SSS in the preceding season
(i.e., SON; Fig. 10b), shows strong loading of SSS in the
western Pacific warm pool region (150°E-160°W, 10°S—
10°N), which is strengthened in the concurrent season
(i.e., DJF; Fig. 10c), suggesting the signature of ENSO
development. The variance explained by the EOF1 of
SON and DJF SSS is 18.56% and 19.23% respectively.
The regression of the principal component time series
(PC1) associated with the EOF1 of (SON and DJF) SSS
with the MFD and the divergent component of moisture
flux (vectors) is shown in Figs. 10b and 10c, respectively.
The regression pattern of significant moisture transport
toward Australia originates in the prior season (SON)
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FIG. 10. Leading mode of empirical orthogonal function (EOF1) of (a) DJF rainfall over Australia and (b) SON

SSS over the whole domain (40°E-100°W, 50°S-10°N) overlaid by the vectors of moisture transport estimated from
the regression of divergent component of moisture flux of SON onto the leading principal component (PC1) as-
sociated with the EOF1 of SON SSS; the colored field over Australia is the regressed pattern of SON MFD onto the
PC1 of SON SSS where blue and red represents convergence and divergence respectively. (¢) Asin (b), but for DJF
SSS, DJF moisture transport vectors, and DJF MFD. (d) Normalized PC1 time series of DJF rainfall (red), SON
SSS (gray thick), and DJF SSS (black dashed). The correlation coefficients rson and rpyr represent the correlation
between the PC1 of DJF rainfall and the SSS anomaly of SON and DJF; respectively. Asterisks (thick black vectors)
indicate the statistical significance of correlation coefficient and (regression) at 95% from a two-tailed Student’s

1 test.

and becomes more intense in the concurrent season
(DJF). This moisture transport (Figs. 10b,c) is associ-
ated with the SSS loading and converges/diverges over
Australia, resembling the ENSO and 10D pattern, as
shown in Figs. 4 and 5. This analysis suggests that the
positive (negative) loading of SSS in the Indo-Pacific
warm pool region is associated with the La Nifia and
nlOD (El Nifio and pIOD) event and hence the con-
vergence (divergence) of moisture transport toward
land. These results show a clear path of atmospheric
moisture transport originates from the Indo-Pacific warm
pool toward Australia at these times.

The signatures of ENSO and IOD events are also
apparent in the SSS anomaly, as shown in Fig. 2 and also
in Fig. B6, which shows that a modest, yet significant,

anticorrelation exists between them. The correlation
between the PC1 of the SSS anomaly for the study re-
gion (40°E-100°W, 50°S-10°N) and the Nifio-3.4 index
is —0.65 (significant at 95% confidence) and is —0.40
(significant at 95% confidence) in the case of DMI
during the SON season.

It is also worth mentioning the diversity present within
the ENSO events, as discussed by Santoso et al. (2017).
They show that the extreme El Nifio event of 2015/16
has distinct features as compared to previous extreme El
Nifio events of 1982/83 and 1997/98. During the El Nifio
event of 2015/16 record-breaking warm SST anomalies
were present in the central Pacific, whereas in 1982/83
and 1997/98 SST anomalies peak toward the far eastern
Pacific. Moreover, the 2015/16 El Nifio corresponds to
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FIG. B1. Seasonal composite mean during pure El Nifio of (a),(e),(i),(m) sea surface temperature anomaly (SST anomaly; shaded; °C)

overlaid by 10-m anomalous surface winds (vectors;ms™

1, (b),(£),(j),(n) sea surface salinity anomaly (SSS anomaly; shaded; psu) overlaid
by seasonal climatology of sea surface salinity (SSS, contour), (c),(g),(k),(0) moisture flux divergence anomaly (MFD; mm day "~
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(mm day ). Black dots indicate regions that are statistically significant at 95%, thick black vectors are statistically significant at 90%, and
thick magenta vectors are statistically significant at 95% from Hotelling’s T-square test.

heavy rainfall in the Nifio-4 region (160°E-150°W and
5°S-5°N) as compared to the 1982/83 and 1997/98 events,
which showed intense precipitation over the eastern
equatorial Pacific (Nifio-3 region; 150°-90°W, 5°S-5°N).
Similarly, the extreme La Nifia event of 1998/99 is dif-
ferent than the subsequent La Nifia of 1999/2000. The
former one starts from an extremely warm condition
associated with the 1997/98 El Nifio and thus requires a
significantly large cooling to get started, whereas the
latter one does not require further cooling. This shows
the diversity within the ENSO events (Santoso et al. 2017).
Such diversity can also be seen with the IOD events co-
occurring with the ENSO events in which extreme El Nifio
events have occurred with notable pIODs (e.g., 2015/16).
In contrast, extreme La Nifia events were accompanied by
neutral and weak IODs (Santoso et al. 2017). Therefore,
by taking the ENSO/IOD diversity (e.g., eastern and
central Pacific ENSO) into account, the relationship be-
tween SSS and rainfall over land can be further improved.

It is worth mentioning that the moisture originates
in the prior season (SON) and leaves an imprint on the
SSS and contributes to the terrestrial precipitation over

Australia in the following season (DJF). This relation-
ship can be further inferred from the correlation analysis
between the PC1 of DJF rainfall and the (SON and DJF)
SSS (Fig. 10d). A significant correlation (r = 0.32 at 95%
confidence) exists between the PC1 of DJF rainfall and
the PC1 of SON SSS, which further increased to 0.43
when both the fields are from the concurrent season
(DJF). This analysis suggests that there is a significant
link between DJF rainfall of Australia and the SSS
through atmospheric moisture transport. This analysis
warrants further investigation about the oceanic source
regions (anomalously high SSS regions), for atmo-
spheric moisture, that can be used for the prediction of
Australian rainfall.

The land surface processes during ENSO and 10D
events also affect the precipitation and convergence/
divergence of atmospheric moisture (Evans et al. 2011,
2017; Decker et al. 2015; Holgate et al. 2019; Zhao et al.
2019). The large-scale dynamics translate into local land
surface processes that are influenced by vegetation, soil
moisture, irrigation, orography, and so on. Furthermore,
due to the uncertainty in estimating £ — P (evaporation
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FI1G. B2. Seasonal composite mean during pure La Nifa of (a),(e),(i),(m) sea surface temperature anomaly (SST anomaly; shaded; °C)
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(mm day ™ 1). Black dots indicate regions that are statistically significant at 95%, thick black vectors are statistically significant at 90%, and

thick magenta vectors are statistically significant at 95% from Hotelling’s 7-square test.

minus precipitation) from the present generation re-
analysis products, SSS appears to be an additional new
variable to evaluate the £ — P field (Yu et al. 2017).
However, our study does not account for the modification
of upper-ocean salinity by oceanic processes (i.e., advec-
tion, diffusion, and vertical entrainment), as mentioned by
Yu (2011), that are beyond the scope of the present study.

The use of satellites for monitoring SSS, evaporation,
and precipitation on a global scale is also gaining at-
tention. Satellite data from ESA/Soil Moisture and
Ocean Salinity (SMOS) and Soil Moisture Active
Passive (SMAP) missions reveal potential implications
of monitoring SSS from space to understand the global
hydrological cycle and the ocean circulation from the
mesoscale through the gyre, basin, and global scales
(Reul et al. 2014; Rast et al. 2014; Srokosz and Banks
2019). Moreover, recent studies show that SSS is a po-
tential precursor for the prediction of ENSO and IOD
events along with the terrestrial precipitation (Li et al.
2016a,b; J. Li et al. 2016; Hackert et al. 2019). The as-
similation of SSS in the numerical model can improve
the forecast of these events that eventually improve the

forecast of terrestrial precipitation. Further analysis is
required in this direction to use SSS to locate the oceanic
sources of moisture for Australia that could aid rainfall
prediction in varied climatic conditions. Therefore, we
see the substantial utility in the continuous monitoring
of the ocean surface and subsurface salinity through
in situ and spaceborne measurements to understand
Earth’s hydrological cycle from global to regional scales.

10. Conclusions

This study investigates the ENSO and IOD impact on
SSS, atmospheric moisture transport, and precipitation
over Australia, and establishes the links among them.
The link between SSS and Australian precipitation is
further illustrated in the schematic of the extreme
hydroclimatic conditions of Australia during 2010/11
austral summer (Fig. 8). Apart from the local recycling
processes over the ocean surface, we show that the
source of moisture transport from ocean to land can be
identified by monitoring SSS. Importantly, the signature
of anomalous positive SSS appears in the Indo-Pacific
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(mm day 1). Black dots indicate regions that are statistically significant at 95%, thick black vectors are statistically significant at 90%, and

thick magenta vectors are statistically significant at 95% from Hotelling’s 7T-square test.

warm pool region and over northern Australia prior to
the monsoon rainfall season (DJF) (Figs. 4f,j, 5f,j, and
7f,j). Similarly, the mean moisture transport over the
Australian continent is profoundly linked with the mean
SSSin the Indo-Pacific basin (Fig. 3, columns 1,2, and 3).
Moreover, a large part of the mean monsoonal moisture
that converges over Australia during DJF comes pri-
marily from the Indian Ocean (Fig. 9j).

We show that with the evolution of ENSO and IOD
events, a characteristic SSS anomaly signature in the
Indo-Pacific Ocean emerges and is accompanied by
moisture flux divergence anomalies. Moreover, the pat-
tern correlation between SSS anomaly and moisture flux
divergence progressively increases with the strengthening
of the ENSO and IOD events. During co-occurring
El Nifio and pIOD events in DJF, anomalous dry con-
ditions prevail over Australia (Fig. 4) due to the
divergence of moisture flux. In contrast, during co-
occurring La Nifia and nlOD events, the Australian
continent is anomalously wet with the convergence of
moisture, particularly in the JJA, SON, and DJF periods
(Fig. 5, column 3 and 4). When these co-occurring events

peak, a maximum pattern correlation between MFD and
SSS is observed (Fig. 6).

Finally, these results show that SSS variability is per-
haps most directly linked with atmospheric moisture
transport at seasonal and interannual time scales and at
regional scales (Fig. 10). The long-term trends (on time
scales of decades) in SSS that have been used for evi-
dence of hydrological intensification are more complex
because oceanic advection and mixing have a cumula-
tive impact on SSS variability. However, the utility of
SSS on regional spatial and temporal scales of months
rather than decades, such as the case study of the ex-
treme hydroclimatic event of the year 2010/11, exem-
plifies the scale separation nicely.
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FIG. B4. Seasonal composite mean during pure nIOD of (a),(e),(i),(m) sea surface temperature anomaly (SST anomaly; shaded; °C)

overlaid by 10-m anomalous surface winds (vectors; ms 1), (b),(f),(j),(n) sea surface salinity anomaly (SSS anomaly; shaded; psu) overlaid
by seasonal climatology of sea surface salinity (SSS; contour), (c),(g),(k),(0) moisture flux divergence anomaly (MFD; mm day ~'; shaded)
overlaid by the divergent component of moisture flux anomaly (kgm s~ !; vectors), and (d),(h),(1),(p) Australian precipitation anomaly
(mm day ). Black dots indicate regions that are statistically significant at 95%, thick black vectors are statistically significant at 90%, and

thick magenta vectors are statistically significant at 95% from Hotelling’s 7-square test.
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APPENDIX A

Hotelling’s T-Square Test for Significance Testing of
Composite Means

The term X ; is the number of years chosen for ENSO
and IOD events, here i represents season (MAM, JJA,
SON, and DJF), and j represents the year of the event;

Y is the total number of years for seasonal average
(i.e., k = 57 years for each ith season in our study); and
w1 is the composite mean of X;; (i.e., the composite
mean of each season from the selected years of ENSO
and IOD events). Let u, be the seasonally average
anomaly of Yy from all 57 years (i.e., the long-term
seasonal mean).

The null hypothesis is Hy: u; = u, against the alter-
nate hypothesis Hy: uy # uo.

We are going to demonstrate the significance testing
for co-occurring El Nifio and pIOD cases during the
MAM season as an example.

Here X;; are the total number of each season for this
event. We further denote this as Xyiam,j, where j rep-
resents years (1963/64, 1972/73, 1976/77, 1977/78, 1982/
83, 1987/88, 1991/92, 1994/95, 1997/98, 2002/03, 2006/07,
2015/16).
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FIG. B5 . Pattern correlation analysis of seasonal composite mean of spatially normalized SSS anomaly (leading by 1 month) and MFD
anomaly with their respective standard deviation during co-occurring El Nifio and pIOD (red) and co-occurring La Nifia and nIOD (blue)
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shown at the bottom in all panels. The correlation coefficients that are statistically significant at 95% from a two-tailed Student’s ¢ test are
marked with asterisks.

where nyam = 12 (i.e., the number of MAM seasons J=nviam )
during co-occurring El Nifio and pIOD events). IZ{ (XMAMJ — )
N ,
k=57 * Myam — 1
Y,
B 12'1 MAM,k s X
Ha 57 7 )y Yvians ~ #2)
§2 == ,
where k£ = 57 is the total number of years in our study. Y 57-1
w-
(a) Nino3.4—SON SSSpey—SON(r=—0.65) (b) DMI—SON SSSpg—SON(r=—0.40%)
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FIG. B6. Normalized time series of the Nifio-3.4 index (red) and DMI (red) with the PC1 of SSS (gray) during
SON with the correlation coefficient r in parentheses where the asterisk represents significance at 95% from a two-
tailed Student’s ¢ test.
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here §? and S are the sample variances.

2= (XnMAMj —1)S; + (Ynamk 71)S§
’ XnMAMj Y mamk — 2

where SIZ, is the pooled variance, X,maw; is the number
of MAM seasons for compositing during co-occurring El
Nifio and pIOD event (i.e., 12), and Y,pamx is the total
number of MAM season in our study period (i.e., 57).

t= B ~t
1 1 XnMAM/ Y mamk 2
S (" o)
P
XnMAM/‘ YnMAMk

This test statistic will be t-distributed with X,,pam; +
Y.mamx — 2 degrees of freedom. The null hypothesis
will be rejected if the test statistic “‘#”” exceeds the critical
value from the ¢ table with X,,pam;j + Yamamc — 2 at a/2
significance level (i.e., [t] > fx,y v+ Yovam—2.a/2)-

APPENDIX B

Pure ENSO and 10D Events

Generally, IOD coincides with ENSO, which means
pIOD is followed by El Nifio, and nIOD is followed by
La Nina; these sequences of events are known as co-
occurring ENSO and IOD events. In the case of pure
ENSO, there will be no signal of IOD in the Indian
Ocean, but the Pacific Ocean exhibits a strong signal of
ENSO. We also categorized our study based on co-
occurring and pure events.

a. Pure El Niiio and La Nifia case

In our study, there are a total of 13 cases of pure
ENSO in which seven events are pure El Nifio (1965/66,
1969/70, 1979/80, 1986/87, 2004/05,2009/10, and 2014/15)
and six events are pure La Nina (1985/86, 1988/89, 1995/
96, 1999/2000, 2000/01, and 2008/09) The selection of
these events is based on the threshold criteria, as de-
scribed in the methods section (section 2b).

The pure El Nifio events (Fig. B1) are markedly dif-
ferent from the co-occurring El Nifio and pIOD events
in terms of strength of salinity and moisture transport.
The salinity and moisture transport signals during pure
ENSO events are relatively weak as compared to co-
occurring ENSO and IOD events.

During pure El Nifio events in DJF (Fig. B1), the
Australian continent is not as dry as it is during co-
occurring El Nifio and pIOD events (Fig. 4). Similarly,
in the case of pure La Nifa events (Fig. B2) during SON,
the Australian continent is not as wet as it is in co-
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occurring La Nifia and nIOD events (Fig. 5). Moreover,
during DJF, the pattern of precipitation over Australia
during pure La Nifia events is more toward the eastern
half from north to south Australia. Whereas, during co-
occurring La Nifia and nlOD events, the Australian
precipitation is more on the east-west coast of Australia.

b. Pure pIOD/nlOD case

In our study, there are seven cases of pure IOD events
from the selection criteria described in the methods
section (section 2b). Out of 7 events of pure IOD, three
are pure pIOD (1961, 1966, and 2012), and four are
nIOD cases (1980, 1981, 1992, and 2001).

The cases of pure pIOD (Fig. B3) and nIOD (Fig. B4)
events show relatively weak signals of salinity and
moisture transport as compared to pure ENSO and co-
occurring ENSO and IOD events. This suggests the
relative importance of ENSO events as compared to
IOD events to modulate oceanic and atmospheric fields.
During pure pIOD (nIOD), southeast Australia in SON
is anomalously dry (wet). Similarly, during the pIOD
event in DJF northern (eastern) Australia is anoma-
lously dry (wet), and vice versa for the nIOD event.

The pattern correlation of the seasonal composite
mean of normalized SSS anomaly leading by 1 month
and the MFD anomaly during co-occurring El Nifio/
pIOD and co-occurring La Nifla/nIOD is shown in Fig.
BS. The normalized time series of the Nifio-3.4 index
and dipole mode index with PC1 of SSS during SON is
shown in Fig. B6.
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