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Abstract—The rapid mainstream adoption of cloud computing
and the corresponding spike in the energy usage of big data
systems make the efficient management of cloud computing
resources a more pressing issue than ever before. To this end,
numerous online algorithms such as Receding Horizon Control
and Online Balanced Descent have been designed. However
it is difficult for cloud service providers to select the best
control algorithm dynamically for resource provisioning when
confronted with consumer resource demands that are notoriously
unpredictable and volatile. Furthermore, it highly possible that
it might not be the case for any one algorithm to consistently
perform well over the months-long contract period. In this
paper, we first exemplify the need to address non-stationarity
in cloud computing by showcasing traces from MS Azure. We
then develop a novel meta-algorithm that combines change
point detection and online optimization. The new algorithm is
shown to outperform existing solutions in real-world trace-driven
simulations.

I. INTRODUCTION

The usage of cloud computing services has skyrocketed in
popularity among enterprises because of its ability to scale
quickly in a cost effective manner. With local IT hosting, there
are large overheads in the time needed to get a system up and
running, as well as in the costs of purchasing equipment and
hiring specialists to fix unexpected system failures. However
with cloud computing, these issues are taken care of by the
cloud service provider which leaves the subscribing enterprise
with only usage costs that scale linearly with the size of
the subscription. As a result, 83% of enterprise computing
workloads will be hosted via cloud computing by 2020 [1].
Therefore, our main goal is to improve the performance of
resource provisioning for cloud service providers.

Cloud service providers incur different types of costs in
provisioning resources to their clients. Operational costs are
those that directly depend on the amount of resources provided
which can include electricity and cooling costs, amortized
hardware costs, and service level agreement violation penal-
ties. On the other hand, switching costs depend on the changes
in provisioning decisions and can include extra wear and tear
on the hardware induced by starting up and shutting down
servers and other equipment [2]. Notably, switching costs
considerably complicate the resource provisioning problem by
coupling its decisions in time.

In addition to dealing with time-coupled decisions, cloud
service providers must also account for consumer resource

demands that are unpredictable and often volatile over the
long service contract periods. Proposed prediction models for
workload demands include a plethora of approaches such as
Exponential Smoothing [3], [4], Markov Chains [5], AutoRe-
gressive [6] and Autoregressive Moving Average [7], [8], Holt-
Winter [9], Naive Bayes [7], Neural Networks [10] and Pattern
Matching [11]. Because of the high uncertainty in demands
and the necessity to satisfy them in real-time, resources must
be provisioned in an online manner.

Online control for provisioning IT resources is an active
area of research with many proposed algorithms that not only
achieve strong theoretical results but also perform well in
practice. The main objective for any online algorithm is to
make cost-effective decisions despite uncertain knowledge of
the future. Many popular algorithms rely heavily on predic-
tions with variants on model predictive control [2], [8], [12]-
[16]. Other algorithms avoid dependency on potentially noisy
predictions by instead utilizing realistic models to make smart
threshold triggered provisioning decisions [17]-[19] or employ
gradient descent techniques [20], [21].

However, the diversity of consumer resource demand char-
acteristics makes selecting an appropriate control algorithm
non-trivial since each algorithmic approach has its strengths
and weaknesses. For example, model predictive control can
take advantage of accurate predictions but can perform poorly
when the predictions inaccurate; whereas, online gradient
descent is immune to inaccurate predictions and can obtain
near optimal performance if the demand varies slowly over
time.

There have been various meta-algorithms designed specif-
ically for combining the decisions made by several control
algorithms. These include: Follow the Leader (FTL) [22]
which uses the actions from the best current performing algo-
rithm; Weighted Majority Algorithm (WMA) [23] which uses
a weighted average of the algorithms where the weights are
updated at each round according to each of their performances
in the previous round; and many other variants based off of
them. They attempt to gradually learn which control algorithm
is the best to rely on and have recently been proposed for cloud
resource provisioning in [24] and show great potential if the
switching costs between algorithms is taken into account.

On the other hand, cloud resource demands can have sudden
unexpected shifts in its statistical characteristics. Fortunately,
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Fig. 1. Average CPU utilization for nine different Microsoft Azure virtual machines over a one month contract period.

detecting when these changes happen has a long rich history  Non-stationary CPU Utilization

in the Statistics literature called Change Point Detection [25].

Therefore, this paper aims to improve algorithm selection
meta-algorithms for cloud resource provisioning by:

1) Presenting a set of real world traces that capture the wide
variety of non-stationarity behaviors present in resource
demand in the cloud, specifically the sudden changes in
demand patterns (Section II).

Designing a novel meta-algorithm that utilizes change-
point detection to effectively select which algorithm to
follow while taking into account previous performance
(Section IV).

Evaluating the meta-algorithm’s performance through
real-world trace based simulations of CPU allocation of
MS Azure virtual machines (Section V).

2)

3)

II. MOTIVATION AND BACKGROUND
Change Point Detection

Consider a time series data stream S = {z1,...,2,...}
that consists of an infinite sequence of elements x;, where
x; 18 a d dimensional vector that arrives at time ¢. The time
series data stream S is said to be stationary if its statistical
properties are all constant over time. Change point detection
is popular in application areas such as medical condition
monitoring, climate change detection, speech recognition and
image analysis [25]. In the case of cloud resource demands,
unsupervised learning algorithms for change point detection
are particularly attractive because they are capable of han-
dling a wide variety of different situations without requiring
computationally expensive training for each situation. Online
unsupervised methods for change point detection include
subspace, Bayesian, kernel-based, graph-based and clustering
approaches. In particular, clustering methods do not have any
restrictions on the time series data they permit.

To motivate the need for change point detection, we show
real-world CPU utilization traces for virtual machines from
the the Microsoft Azure Public Dataset [9] which contains the
CPU utilization of over two million virtual machines (VMs).
For each VM, the minimum, maximum and average percent
utilization is reported every five minutes. We identified a set of
241 candidate VM traces from examining 1003 of them that
exhibited extremely non-stationary behavior. Nine of them are
displayed in Figure 1. Notice that each of them has very visible
and distinct sudden changes in its CPU utilization and have
a time dependent mean. Thus, they are not stationary. These
abrupt changes may represent transitions between states that
underlie the generation of the data. This gives strong evidence
that utilizing change point detection is necessary in making
cost-effective resource provisioning decisions.

Online Algorithm Selection

Online algorithm selection has its origins in the well stud-
ied Prediction with Expert Advice problem from theoretical
computer science [26] where a learner tries to make the best
decision in deciding an asset portfolio from the advice of
the several experts. The goal is to do as well as the best
expert in hindsight. Many different algorithms have been
developed for this problem; the most popular are Follow
the Leader (FTL) [22] which uses the actions from the best
current performing expert, and Weighted Majority Algorithm
(WMA) [23] which uses a weighted average of the experts
where the weights are updated at each round according to each
of their performances in the previous round. [24] developed
a version of the FTL that can account for switching costs
between consecutive actions whereas the original problem
does not include this type of cost.



III. PROBLEM FORMULATION
Model

Consider a cloud service provider that needs to continually
provision resources to meet a dynamically changing demand
from its subscribers in an online manner over a time horizon
T. At every time instance ¢ € {1,...,T}, applications of a
cloud service subscriber have requests on different resources
like network, CPU or memory. Let y; € R™ be the vector of
demands at time instance ¢ where each dimension represents
a type of resource requested, and let x; € X be the vector of
resources provisioned in the constrained provisioning action
space X € R".

In provisioning z, the cloud service provider experiences
operational costs and switching costs. Operational costs may
include the monetary cost of reserving and using virtual
machines, amortized capitol costs and energy expenditure
in running local resources, as well as delay cost such as
revenue loss and service level agreement violation penalties
for under-provisioning resources. The operational costs are
modeled by a convex function f(x¢,y;) of the demand y;
and provisioned resources ;. This form of function is general
enough to capture a wide range of parametrized cost models
for server power consumption [27]-[29] and latency [30]-[32].
Switching costs account for wear and tear as well as delay
from the startup and shutdown of servers, as well as cost due
to virtual machine migration and data transfer. These costs are
modeled with a general norm of the difference in consecutive
provisioning decisions «/||x; — x¢—1||, where « represents the
cost per unit of changing decisions. The resulting optimization
problem that the cloud service provider needs to solve is:

T
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t=1

min
{z1,...,.z7}eX
where xg is a given initial point. Let the optimal solution to
(1) be denoted by (z7,...,z%).

Online Optimization

If the demands ¥, . . ., yr are known a priori, the optimiza-
tion problem (1) can be solved effectively. However in the
context of cloud computing, this is not the case. Because of
the insufficient available information at each time instance, the
cloud service provider must solve an online version of (1) with
the goal of approximating the optimal solution (x7,...z%).

In practice, a cloud service provider has access to and
can exploit predictions of future demands. Let gy, be the
prediction of the next w time instances of y; from time instant
7. At each time instant ¢ € {1,...T}:

1) The cloud service provider utilizes the prediction of
future demands §y|¢, - - - , Us4—1)¢ to make an allocation
decision z; € X.

2) The true demand y; is subsequently revealed and the
cloud service provider incurs the cost f(z, y) +al|z: —
Tt—1 || .

Thus, the total cost of a given online algorithm A, denoted by
C(A,y1.1), is given by:

=

S (£t ) +allst -2 )

t=1
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where 23! = z.
IV. ONLINE ALGORITHMS

Online Control Algorithms

Traditionally, the online learning community considers op-
timization problems in which the algorithm has no access to
future information. Algorithms such as online gradient descent
(OGD) [33] can achieve great success by utilizing only the
gradient of the objective function at the previous time instant.
OGD performs particularly well when the offline optimal
choice z; at each time instant ¢ does not fluctuate significantly
over the given time horizon.

Despite the stringent assumptions of the online learning the-
ory community, in practice predictions are available in a wide
variety of applications. In particular, model predictive control
takes advantage of access to future information. A popular
algorithm paradigm, Receding Horizon Control (RHC) [2], at
each time step optimizes its decision under the assumption
that the predictions it uses have no error.

However, algorithms that heavily rely on predictions are
sensitive to noisy or potentially corrupted information. A
generalized variant of RHC, Committed Horizon Control
(CHC) [34], uses the notion that predictions deteriorate the
further they look into the future, and attempts to mitigate the
impact of noisy predictions by averaging actions over several
time steps.

Another recent algorithm, Online Balanced Descent
(OBD) [35], instead utilizes the observation that the next step
prediction usually is fine and utilizes only one step ahead
predictions. The main idea of the algorithm is to project
onto an appropriate sublevel set of the current predicted cost
f(x,9:). The sublevel set is chosen so that the operating cost
and the switching cost are balanced.

Each of the described algorithms, OGD, RHC, CHC and
OBD, has their own strengths and weakness. Choosing an
optimal algorithm is non-trivial, which motivates the use of
meta-algorithms for algorithm selection.

Online Algorithm Selection

Online algorithm selection has its origins in the well-known
Prediction with Expert Advice problem in which there are
k experts, and over a sequence of rounds the player has to
choose which of the experts to take advice from [26]. A natural
solution is the Follow the Leader (FTL) algorithm, which at
each time instance ¢ chooses to follow the advice of the expert
with the best cumulative performance thus far.

Another popular algorithm is the Weighted Majority (WM)
algorithm. At each timestep, the algorithm has a vector of
weights wy, . . ., wg for how much weight is given to an expert.
The better an expert, the higher its weight.

A recent meta-algorithm was developed specifically for the
cloud resource provisioning environment [24]. It is a variant



Algorithm 1 Weighted Majority (WM)

1: Initialize selected algorithm, A4 € T'.
cfort=1,...,7 do

Receive xii) from every algorithm 7 € T'.

= wfal
_w(l)

2

3

4:  Calculate and implement x;* =

5. Update all weights by a factor of B éxcept algorithm
arg minier {f(z{”,y) + allz” — 2", | |

6: end for

of FTL that also takes into account the switching cost. See
Algorithm 3. The meta-algorithm only decides which control
algorithm’s actions it will implement periodically. While [24]
has shown to perform well, they do not take into account the
likely non-stationarity of the resource demands.

Algorithm 2 Periodic Follow the Closest Leader (PFCL)
1: Initialize selected algorithm, A € T.
2: fort=1,...,7T do
3:  if t mod m = 0 then
4 Select A i= arg min {ca, Y1) + allzt, — 2, ||}
5o endif ©
6:  Receive xil) from every algorithm 7 € I
7
8:

Implement 7.
end for

Change Point Weighted Majority

The proposed Change Point Weighted Majority (CPWM)
meta-algorithm builds on the traditional Weighted Majority
algorithm by incorporating a simple change point detection
algorithm similar to [36] which utilizes the change points by
partitioning the time horizon into epochs in an online manner.

The change point detection algorithm relies on a clustering
approach to detect potential shifts in an online manner. For
each time instant ¢, the moving average [i; and moving
standard deviation & are calculated using a window of size w.
If the point (i, ¢) is significantly far enough from the cluster
of previous points {(fi1,51), (fi2,62),- .., (fit—1,6¢—1)}, then
the point y; is flagged as a potential change point.

The weights for CPWM are updated similarly to WM except
that the decisions of which algorithm performed the best is
based on the accumulated cost during its current epoch instead
of just the last time step.

Also, instead of weighting the implemented decision x;“
based on all of the algorithms in I', it uses only a time
dependent subset I'y C I' where I'; contains k; control
algorithms. The time dependent set I'; holds only the k;
algorithms that have the lowest accumulated cost since the
beginning of the entire time horizon plus the cost of switching
to its action. This is very similar to how the control algorithms
are evaluated in PFCL, except here the best k; are placed into
a set for WM instead of just implementing the best.

Within each epoch, number of algorithms k; remains con-
stant which is decided at the first time step of the epoch, i.e.

when the change point detection algorithm determined that a
new epoch has started. It chooses k; that minimizes the cost
of the previous time step’s weighted decision and holds that
constant for the rest of the epoch.

Algorithm 3 Change Point Weighted Majority (CPWM)
1: Initialize selected algorithm, A4 € T.
2: fort=1,...,T do
3:  Receive zgl) from every algorithm 7 € I'.
Sier, wiey”

4:  Calculate and implement z;* = o
. . . Lier, Wi
5:  if y; is a change point then
: T+t P
. . Pier, Wil1® oy
7: Pick k; := arg mingeqry {f (”’ Vi1
i€Ty, _)tfl(_
A Zzel“k Wi 1T
8 allr — :
+ || t—1 Ez‘el‘k wil—l H
9: end if

10  Update all weights by a factor of 5 except algorithm
arg miniert {C(Za yT:t)}'

11: Ft+1 =0

122 forj=1,...,k do

13: Select Ft+1 = Ft+1 Uarg miniep\le {C(Z, yl:t—l)

14: +alzt O |}
: t—1 t—1

15:  end for

16: end for

V. PERFORMANCE EVALUATION
Simulation Setup

Suppose that at every time step ¢, once every 5 minutes, a
cloud provider needs to decide how much CPU z; to allocate
to a given VM. The amount of CPU is expressed as a fraction
of the 5 minute interval a CPU is devoted to the VM. The
cost incurred to the cloud service provider for supplying CPU
linearly increases with ¢ as the per unit cost due to operational
expenses such as electricity and cooling. From the perspective
of the client, the VM demands y; CPU which is unknown
before the allocation decision is made. If the demand y; is
larger than the allocation z;, then the provider incurs a cost in
the form of lost revenue or service agreement penalties. This
cost increases linearly with the size of the demand deficit by
unit cost p. However, if the allocation is not less than the
demand, then no cost is incurred. The provider also incurs
switching cost a when changing CPU allocation decisions
between time slots. Each VM is simulated to run for 30 days
and changes its demand quantities y; every 5 minutes based
on the CPU usage traces in the Azure Public Dataset [9]. The
starting point x is set to zero. The operational cost coefficient
c is set to $0.0005/(5-min-core) which is sized according to the
electricity consumption of a 1400 W server hosting 24 virtual
cores at $0.07/kWh. The insufficient allocation cost coefficient
p is set to $0.0035/(5-min-core) which is sized from the current
pricing of an Azure Av2 Standard 8-core VM for $0.333/hour.
The switching cost parameter « is set to $0.036/(5-min-core)



TABLE I
META ALGORITHM PERFORMANCE ACROSS VMS

A Best Meta-Alg | Better than Offline Select
WM 10 0
PFTL 60 0
CPWM 171 145

which has a maximum cost equivalent to running the CPU for
6 hours.

For the algorithms which utilize predictions, we utilize the
Naive prediction model that predicts the previous demand ;1
for all future time instances. At each 5-min timeslot, each
prediction model gives CPU demand predictions for the next
288 5-minute (1 day’s worth) timeslots. The online algorithms
available for the Meta-algorithm to choose from include the
following: RHC utilizing naive predictions, individual ver-
sions of OBD utilizing predictions with 21 different stepsize
settings, and individual versions of OGD with 21 different
stepsize settings. The stepsizes used in OBD and OGD are
n=2%:Vk € {-10,...,10}. The discount rate 3 for CPWM
was set to 272 which was found to perform best among the
VMs from the set 2% for i € {1,...,10}.

We use three baselines to evaluate our meta-algorithm. The
first is an impractical one called “Offline Selection” which
picks the best algorithm in hindsight. And the second is
the widely known Weighted Majority Algorithm (WM) [23]
which makes a decision based on the weighted average among
different algorithms. The discount rate 3 was set to 27 which
was found to perform best among the VMs from the set 2% for
i € {1,...,10}. The third was PFCL where the commitment
duration to stick to a particular online algorithm is set to be
144 5-minute (1/2 day’s worth) timeslots.

Results

The performances of the meta algorithms are shown in Table
I as the number of times each meta-algorithm was the best
when run with the 241 virtual machines traces. The proposed
CPWM algorithm achieved the lowest cost among the 171
traces which amounts to 71% of them. The table also shows the
number of times that each algorithm beat the single best offline
selected control algorithm. The CPWM outperformed the best
offline selected control algorithm for more than 60% of the
trials, even though neither Weighted Majority nor Periodic
Follow the Leader was able to break through that barrier.

Figure 2 displays one of the tested virtual machines to
showcase how CPWM can outperform all others. The CPU
utilization trace is shown in Figure 2a along with its marked
change points and average utilization between each consec-
utive pair of change points. The accumulated cost over time
for each meta-algorithm is shown in Figure 2b. Notice that
all of them started out performing very similarly until around
day 3 when there was many sudden shifts in the utilization.
Afterwards, CPWM broke away more and more after each
sudden change due to its ability to readjust to the new

utilization patterns, whereas the other meta-algorithms could
not.

VI. CONCLUSION

In this paper, we incorporate change point detection into
control algorithm selection for cloud resource provisioning.
We first demonstrate the need for change point detection
by showcasing real-world virtual machine traces from the
MS Azure Public Dataset [9]. Each displayed trace shows
very sudden shifts in CPU usage patterns which need to be
accounted for when choosing which control algorithm to run.
We modify the widely used Weighted Majority Algorithm
to utilize detected changes in resource demand so that it
can adjust how it updates its weights. Simulated results on
real-world traces show that this new meta-algorithm can beat
existing solutions and can even beat the best single control
algorithm chosen in hindsight.
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