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Abstract

Modern deep learning frameworks support a variety of hard-
ware, including CPU, GPU, and other accelerators, to perform
computation. In this paper, we study how to schedule jobs
over such interchangeable resources — each with a different
rate of computation — to optimize performance while pro-
viding fairness among users in a shared cluster. We demon-
strate theoretically and empirically that existing solutions
and their straightforward modifications perform poorly in
the presence of interchangeable resources, which motivates
the design and implementation of AlloX. At its core, AlloX
transforms the scheduling problem into a min-cost bipartite
matching problem and provides dynamic fair allocation over
time. We theoretically prove its optimality in an ideal, offline
setting and show empirically that it works well in the on-
line scenario by incorporating with Kubernetes. Evaluations
on a small-scale CPU-GPU hybrid cluster and large-scale
simulations highlight that AlloX can reduce the average job
completion time significantly (by up to 95% when the sys-
tem load is high) while providing fairness and preventing
starvation.
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1 Introduction

Inrecent years, deep learning (DL) is gaining rapid popularity
in various application domains, including computer vision,
speech recognition, etc. Deep learning training is typically
compute-intensive. As a result, GPUs are more popular in
deep learning clusters. Nonetheless, CPUs can still be used
to perform such computation, albeit at a slower speed. At the
same time, Google has developed Tensor Processing Units
(TPUs) for its Al systems [39], while Microsoft is relying
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Table 1. A motivating example. PT stands for processing
time in minutes.

| User [JobID | PT on GPU [ PT on CPU |

User 1 J1 10 15
User 2 J2 8 10
User 1 J3 10 50
User 2 J4 5 75
User 1 J5 10 15
User 2 J6 10 15
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Figure 1. Inefficiency from ignoring interchangeability.

on FPGAs [24]. Indeed, most modern frameworks support
heterogeneous computation devices [9, 12, 45, 56].

Given that they are all computation hardware, it is possible
to use them in an interchangeable manner by maintaining
multiple configurations in modern cluster managers such
as Kubernetes [6]. For example, if a job typically has a CPU
configuration (1 CPU, 12 GB Memory), the same job can have
another GPU configuration such as (1 GPU, 2GB Memory).

The central problem we address in this paper is how to pick
the configuration for each job and order the jobs to optimize
performance objectives such as the average job completion
time while providing fairness among multiple users. Fur-
thermore, this needs to be done in an online manner with
minimal user effort.

Let us consider a simple example in Table 1, where two
users share a small cluster of two CPUs and two GPUs, to
illustrate the crux of the problem. Each user has 3 jobs queued
up at the beginning that can be processed on either CPUs or
GPUs with the processing times (PT).

Figure 1 compares an existing solution and the optimal
solution for this example. Equal Share in Figure (1a) repre-
sents a typical fair sharing solution used in modern cluster
managers [6, 34] that is unaware of resource interchange-
ability and picks resources for jobs in a fair manner across
all resources. Essentially, it divides CPUs and GPUs equally
between the two users and schedules the jobs in a First-
Come-First-Served (FCFS) manner. When it is the turn for a
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particular job to run, this job picks its “favorite” resource (the
one resulting in a shorter processing time) if that resource is
available, otherwise it picks the other resource. Overall, the
average job completion time using this approach is % min-
utes. In contrast, Figure (1b) illustrates the optimal solution.
By judicious scheduling, the average job completion time is
reduced to %6 minutes, a 59% improvement. The makespan is
also reduced by 76%. Similar poor behavior is demonstrated
by extensions of existing solutions as well (§2.2).

The key challenge, however, is achieving such benefits
in practice. Indeed, there are significant algorithmic and
systems challenges in the presence of multiple job configu-
rations. From the algorithmic perspective, while minimizing
the average job completion time is relatively easy when jobs
have only one configuration [42], we prove that the problem
is APX-hard in this context.! At the same time, while the
Dominant Resource Fairness (DRF) allocation and its vari-
ants [17, 27-29, 51, 63] provide desirable properties, there
exists a hard trade-off among the fundamental properties
with multiple job configurations; we show that DRF fails
to maintain most of its properties in the presence of inter-
changeable resources. Finally, we note that job scheduling
over interchangeable resources more challenging than ex-
isting work on heterogeneous resources [29, 57, 68], where
jobs are assumed to have the same speedup when running
on different resources.

From a systems design perspective, existing systems heav-
ily rely on users to provide key information such as which
configuration to use, even though many users may not have
the expertise or system-level insights to do so. Even if they
do, the best configuration for a given job still depends on
the presence of other jobs in the cluster. To this end, we
want to design a solution that can automatically pick the
best configuration for a given job at a given point in time.

Overall, in this paper, we make the following contributions
in tackling these challenges by designing AlloX.

e Motivated by experimental results on a real system,
we identify a new job scheduling and resource alloca-
tion problem and analyze the inefficiencies of existing
solutions (§2). Specifically, we show that most existing
solutions may lead to arbitrarily poor performance
when jobs have multiple configurations.

e We design AlloX to optimize performance and provide
dynamic fair allocation (§3). Our key idea is to trans-
form the multi-configuration job scheduling problem
into a min-cost bipartite matching, which can be solved
in polynomial time. It provides the optimal solution
in simplified settings and outperforms all baselines
significantly in general settings. AlloX dynamically
schedules jobs from the users that are furthest from
their fair share.

!An APX-hard problem is an NP-hard problem that does not have any
efficient approximation solution.

e We implement AlloX on Kubernetes (§4). Besides the
scheduling algorithm, AlloX profiles jobs in an online
manner to automatically decide job configurations and
estimate job processing times. Both are necessary in-
puts for the scheduling algorithm.

e We conduct experimental and numerical evaluations
to show AlloX’s performance improvements using Ten-
sorFlow workloads (§5). Results highlight that AlloX
reduces the average job completion time significantly,
provides fairness among users, and prevents starva-
tion.

2 Background & Motivation
2.1 Interchangeable Resources

Interchangeability at the application level. Frameworks
like Tensorflow [9], PyTorch [52] and Caffe [2] are capable
of leveraging both CPUs and GPUs. To support interchange-
ability at the application level, the frameworks need to have
a simple configuration. For example, they need to indicate
all variables and operations on GPUs (or CPUs) in Tensor-
flow. Since accelerators like GPUs are becoming popular for
data-intensive and compute-intensive applications, we be-
lieve that there will be more frameworks that support the
interchangeability in the near future. Furthermore, hetero-
geneous resources have interchangeability and do not need
any modification at the application level. Table 2 summarizes

the interchangeability on various resources.
Table 2. Interchangeability support in frameworks for dif-

ferent computation resources.

’ Resources \ Frameworks ‘
CPU & GPU Tensorflow, Caffe, PyTorch, Matlab,
Chainer [58], TVM [16]
FPGA & GPU CNNLab [70], PaddlePaddle [8],

TVM [16]
TPU, CPU, & GPU | Tensorflow, TVM [16]

Distinct speedup rates for different applications. Although

GPUs are in wide use for different deep learning applications
[18, 19, 21, 22, 30], different jobs obtain distinct speedups
by using GPUs w.r.t. CPUs (Figure (2a)). The speedup rate
is how much GPU can reduce the job processing time, i.e.,
job processing time on a particular CPU divided by that on
GPU.

While GPUs are generally more efficient for machine learn-
ing jobs (with a speedup rate larger than 1), they are more
expensive. Figure (2) shows that the normalized costs (the
cost ratio between GPUs and CPUs divided by the speedup)
vary a lot. When the normalized cost is greater than 1, using
GPU is not cost-effective.

The ineffectiveness of using GPUs in some jobs is due
to several reasons. First, modern frameworks such as Ten-
sowFlow are not good at speeding up memory networks like
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Figure 2. GPUs provide distinct speedups and costs. When
GPUs are overloaded, we should move workload with low
speedup rates to CPUs.
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Figure 3. Most of Microsoft Azure users (92.6% of 5,958
users) have average CPU utilization under 20%.

Bidirectional LSTM (Bi-LSTM) [4]. RNN models are often up-
dated for each training example for the dependency between
two timeframes, which creates difficulty for parallel comput-
ing [37]. Second, for the large data input like video-analytics
(vid.) [7], GPUs are not effective when the bottleneck is in
memory and I/O for processing the large data.

GPUs can be fast but they are expensive, while CPUs
are available and abundant. In addition to being cost-
effective for some jobs, CPUs are often under-utilized in large
clusters. To this end, we analyzed the Azure Public Dataset
[1, 23], which recorded CPU utilization of 5,958 users over
30 days. We found that more than 90% users use less than
20% of their allocated CPU (Figure 3). Because jobs can be
executed on CPUs when GPUs are busy, we could utilize the
available CPUs before spending a lot to add more, expensive
GPUs.

2.2 Inefficiencies of Existing Solutions

While existing cluster schedulers do not support interchange-
able resources (Table 3), it is not trivial to extend existing
schedulers to handle both performance and fairness in the
presence of multiple configurations. Usually, jobs are pre-
configured to run on either CPUs or GPUs, therefore systems
do not have the flexibility to determine whether to place a
job on CPU or GPU.

Table 3. Popular resource managers with GPU support.

’ Systems \ Algorithm \ Interchangeability‘
YARN [60] Fair, DRF | No
Kubernetes [6] Best effort | No
Mesos [34] DRF No
Spark [67] Fair No

Consider a simple setup where n users share a system con-
sisting of interchangeable resources and each user submits
their jobs over time. Each job has up to k configurations to
run. For simplicity of presentation, we restrict our attention
to two configurations: CPU and GPU; however, our algorithm
and analysis can be readily extended to more configurations,
and even additional scenarios such as networking interfaces
or storage devices.

A job scheduler for interchangeable resources needs to
decide (i) the configuration to use for each job and (ii) the
order of jobs to optimize performance and fairness objec-
tives. While the latter has been studied extensively in recent
works [17, 27, 28, 31, 32], the former is a new challenge. In
this section, we revisit existing algorithms and their straight-
forward extensions for this new problem to illustrate their
inefficiencies and demonstrate why we need new algorithms.

Best Fit (BF). As performance is often the main focus, it
is natural to pick the configuration (CPU or GPU) for each
job that gives the best performance, also known the Best
Fit (BF) algorithm. The problem is that the load on CPU
and GPU can be largely unbalanced. For example, GPUs can
be overloaded resulting in huge waiting time, while CPUs
are little used. The imbalance has a profound impact on job
completion time, especially when the system load is high.
Therefore, picking the most effective configuration for each
Jjob may result in low utilization and high job waiting time.
To deal with this problem, the interchangeability scheduler
must enable fall-back from overloaded GPUs to CPUs and
vice versa. The challenge is how to do it efficiently.

Join the Shortest Queue (JSQ+). The inefficiency of BF
comes from the lack of the consideration of the system load
in the configuration selection. Therefore, a better approach
could be a modified Join the Shortest Queue (JSQ+). Assume
users know the current waiting time on each resource in real
time. On the arrival of a job, the scheduler picks the resource
that has the shortest completion time, i.e., the sum of waiting
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Figure 4. Inefficiency of JSQ+.

time and the processing time of the job on the corresponding
resource. In this way, loads can be more balanced because as
the load on some resource increases, its longer waiting time
would force new jobs to be placed on other resources.?

The key drawback of JSQ+ is that it is short-sighted: each
job attempts to minimize its own completion time without
considering its impact on later jobs. Consider an example
with 2 CPUs and 2 GPUs. Assume there are 4 jobs, all arrive at
the beginning but in the order of Job 1, 2, 3, 4. The processing
time can be shown in a matrix:

40 50
40 50
p= 40 160
40 160

In this matrix, the i-th row consists of job i’s processing
times on GPUs and CPUs, respectively. Under JSQ+, Job 1
first picks a GPU, and then Job 2 picks the other GPU. After
that, Job 3 and Job 4 have no choices but to pick CPUs, as
shown in Figure 4a with an average completion time (AJCT)
of 100 minutes. Clearly, the optimal solution is to put Job 3
and 4 on GPUs and Jobs 1 and 2 on CPUs, which can reduce
the AJCT from 100 minutes to 45 minutes as Figure 4b.

Shortest Job First (SJF). The sub-optimality of BF and JSQ+
implies that we cannot just let each user pick her own job
configurations. Therefore, the scheduler needs to coordinate
the decisions, where Shortest Job First (SJF) [20] is widely
used.

When there are multiple configurations for each job, we
can extend SJF to SJF+ to handle jobs with multiple config-
urations: for each type of resource, maintain a queue of all
available jobs. The jobs are sorted based on the processing
time on this resource in an increasing order. Whenever a
resource becomes available, schedule the first job in the cor-
responding queue and remove the job from all queues. When
multiple resources become available simultaneously, first
schedule the job with the shortest processing time.

While SJF is optimal for only 1 configuration [20], its per-
formance can be arbitrarily bad for multiple configurations.
Consider the following processing time matrix:

2JSQ+ is different than the vanilla JSQ because the processing time of the
same job on different resources varies.

CPU2
CPU1
GPU2
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time time
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Figure 5. Inefficiency of SJF+.
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Under SJF+, there are two queues for GPU and CPU, re-
spectively. The order in both queues is Job 1, Job 2, Job 3,
Job 4. Therefore, Job 1 and 2 are placed on GPUs first. Then
Job 3 and 4 are scheduled on CPUs. This is shown in Fig-
ure 5, resulting in an AJCT of 50 minutes. In contrast, the
optimal solution places Jobs 3 and 4 on GPUs and Jobs 1
and 2 on CPUs, reducing the AJCT to 20 minutes. The root
cause is while Jobs 3 and 4 are longer (disadvantage in SJF+),
the processing time reduction of using GPU is much larger
(overlooked by SJF+).

Summary. When jobs have multiple configurations, even if
jobs arrive at the same time, the problem is more challenging
than that with single configuration because we need to con-
sider the processing time reduction among configurations,
which may contradict with other factors, e.g., the length of
the job. Therefore, algorithms that perform well for single
configuration job scheduling may result in arbitrarily bad
performance in the new problem.

3 Algorithm Design

In this section, we design a scheduler that works with ap-
plications that can run on interchangeable resources, e.g.,
CPUs and GPUs. For applications that only can run either on
CPUs or GPUs, we can assume that they take infinite time
to complete on the non-executable resource.

Minimizing the average job completion time with multiple
configurations is APX-hard by a reduction from a maximum
bounded 3-dimensional matching problem. The details of
proof can be found in Section 3 of [35]. In other words, unless
P = NP, there is no polynomial-time approximation algo-
rithm with the approximation ratio bounded by a constant.
Therefore, we start with a simpler case where we can design
a polynomial-time optimal algorithm, and then extend the
algorithmic idea to the general case.

3.1 Optimal Approach for Queued Up Jobs

Assume all jobs arrive at the beginning and each job has one
configuration for CPU and one for GPU. If a job can only
run on GPU or CPU, we can set the processing time on the



other resource to be a very large number. We assume that
each job uses either an entire GPU or an entire CPU, which
is further discussed in Section 4.

For this simplified problem, we can transform the schedul-
ing and placement problem to a min-cost bipartite matching
problem, which can be solved efficiently [13, 25, 36]. Specifi-
cally, our algorithm consists of three steps: (i) generate input
for the min-cost bipartite matching problem based on job
information; (ii) solve the matching problem to obtain a so-
lution; (iii) convert the solution to a feasible scheduling and
placement.

i. Generate input for the matching problem. Our obser-
vation is that for each resource (a CPU or a GPU), a job
scheduled as the k-th last one contributes k times its pro-
cessing time to the total job completion time. Assume we
have three jobs of sizes 3, 4, and 5 to be scheduled on one
resource. If we schedule in the order, their completion times
are 3, 7, and 12, resulting in a total completion time of 22.
There is another way to calculate the total completion time
based on the waiting times. As the Job 1 is scheduled to be
the first one, i.e., there are two jobs waiting, it contributes
three times (two from waiting times of Jobs 2 and 3, and one
from Job 1’s own processing time), which is 9. Similarly, Job
2 contributes twice its processing time, which is 8. Job 3 is
the last job and contributes only its processing time 5. The
sum is also 22.

This observation allows us to obtain the contribution of
a job placed on machine i as the k-th last job to the total
completion time. Consider a simple example with 2 machines
(1 CPU and 1 GPU) shared by 3 jobs. The job processing time
can be represented by the following processing time matrix
P where each row contains processing time on CPU and
GPU. In this matrix, the first row represents that Job 1 takes
3 minutes on GPU or 4 minutes on CPU. The size of P is
n X m for n jobs over m machines.

3 4
P=14 o6
5 10

Based on the processing time matrix P, we can generate
the following cost matrix Q of size n X (nm):

Q=[P 2P --- nP|.
For our example,

(G 1) (C1) (G2 (C2) (G3) (C3)

3 4 6 8 9 12
Q= 4 6 8 12 12 18
5 10 10 20 15 30

The element (j, i, k), corresponding to (j, m (k— 1) +1i) in
the matrix, represents the cost of scheduling job j at machine
i (1 stands for GPU, and 2 stands for CPU) as k-th last job.
For example, the entry (2, 2, 3) represents Job 2 contributes

Figure 6. The corresponding min-cost bipartite matching.

12 minutes processing time if it is placed as the third last job
on GPU.

ii. Solve the matching problem. Given the matrix Q, we
can formulate the problem into a min-cost bipartite matching
problem in Figure 6 as follows.

On the right side of the bipartite graph, each node repre-
sents a job. For our example, there are three jobs. Each job
has a demand of 1 unit. On the left side, each node represents
a position on a machine. As we have two machines (one CPU
and one GPU) and 3 jobs, we need at most three positions
for each machine. For instance, G2 represents the second last
position on GPU. Because each position on a machine can
serve one job at most, it has a supply of 1 unit.

Each edge has a capacity of 1 and there is a one-to-one
correspondence between the cost of using that edge and the
entry from the matrix Q we generated. For example, the cost
from G2 to node Job2 is the entry at the second row and
(G, 2) column, which is 8.

This min-cost bipartite matching problem can be solved
in polynomial time with standard network flow algorithms
or Hungarian method [41, 50]. In the example, the optimal
cost is 17 and the matching is shown in a matrix M. Three
highlighted edges in Figure 6 are active to feed the demand.

(G,1) (C1) (G2 (C2) (G3) (C3)

0 1 0 0 0 0
M= 0 0 1 0 0 0
1 0 0 0 0 0

iii. Convert the matching solution to job scheduling.
The solution from the matching problem is converted as
follows. Each edge picked by the matching algorithm corre-
spond to the scheduling and placement of a job. For instance,
the edge between Job2 and G2 is picked, meaning Job 2 is
scheduled on GPU as the second last job. Similarly, Job3 is
connected to G1, meaning it is scheduled on GPU as the last
job. Job1 is connected to C1, so it is scheduled on CPU as
the last job. Combined the information, our algorithm places
Job2 and Job 3 on GPU and Job 2 is scheduled before Job 3,
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Figure 7. The scheduling from the corresponding min-cost
bipartite matching problem. The total completion time is 17.

while Job 1 is placed on CPU as the only job. This scheduling
and placement are shown in Figure 7.

Optimality. We have the following formal result of the per-
formance of this algorithm.

Lemma 3.1. When all jobs arrive at the same time, the opti-
mal solution can be found in polynomial time by solving the
corresponding min-cost bipartite matching problem.

The proof sketch is described below. A formal proof can
be found in the appendix. For the problem transformation,
each scheduling and placement solution corresponds to a
feasible solution of the matching problem. To see this, each
job has been placed on one and only one machine, meaning
the demand of each job node in the matching problem has
been met. In addition, no jobs have the same order at the
same machine, so the supply of each (machine, order) node
in the matching problem is at most 1.

Conversely, any feasible solution to the matching prob-
lem corresponds to an extended scheduling problem with
possibly dummy jobs. To do this, we first place jobs based on
the edges picked by the matching problem. Then we fill each
gap in the positions by a dummy job. Clearly, the insertion
of dummy jobs always increases the total completion time,
so there is no dummy job in the optimal solution. Therefore,
the optimal solution of the matching problem corresponds
to the optimal scheduling and placement solution.

Algorithm 1 Primitive AlloX without online arrivals

1: Generate the cost matrix Q
2: Solve the min-cost matching problem defined by Q to get the
matching matrix M

3: forj=1:ndo > n is the total # of jobs
4: fori=1:mdo > m is the total # of machines
5: fork=n:1do
6: if M(j,m(k — 1)+ i) = 1 then » Job j is scheduled
on machine i as the k-th last job
7: Add job j to the queue from machine i
8: end if
9: end for
10: end for
11: end for

3.2 Handling Online Arrivals

The algorithm described above requires all jobs to arrive at
the beginning. Here, we extend our idea in the previous sec-
tion to incorporate arrivals by updating the scheduling and
placement over time. This can be done whenever a resource
becomes available or periodically.

Figure 8. An illustration example that shows the impacts of
online arrivals and available time of a machine.

We focus on the case where preemption is not allowed,
because preemption is not well supported in many systems
such as Kubernetes. Even if it is supported, the overhead of
migration is often very high. We assume that the scheduler
has no information about future arrivals. The major differ-
ence with arrivals over time is that when we generate a new
schedule, some machines are occupied so new jobs need to
wait until current jobs finish. We use both the arrival time of
new jobs and the available time of machines (defined shortly)
to adjust the cost matrix Q for the matching problem.

Consider the example in Figure 8. Assume we generated
a schedule at time 0 and a job was placed on the machine i,
which is expected to finish at time 10 based on our estimation
detailed in Section 4.1. In other words, the available time of
machine i is w; = 10. Job j arrives at time 4 but the scheduler
was not triggered at that time. At time T = 6, we want to
update the schedule, while machine i is still busy. For Job j,
if it is scheduled as the next job on machine i,its (expected)
completion time comes from two parts: a waiting time of
(w; — aj) = 6 and the processing time p;; = 5. This gives an
expected completion time of 11.

Motivated by this, we define delay matrix D(j, i) = w(i) —
a(j), where a(j) is the arrival time of job j, and w(i) is the ear-
liest available time of machine i when it finishes its currently
allocated job(s). If machine i is idle, then w(i) = T, where
T is the current time. The cost matrix Q is calculated by
the following: Q = [P 2P nP|+[D D --- D],
where P is processing time matrix. The processing time can
be estimated with more details in Section 4.1 and we eval-
uated the impacts of estimation errors in Figure 17. Delay
matrix D is used to handle the non-preemption constraint.

3.3 Incorporating Fairness

3.3.1 Existing Fair Allocation Algorithms are
Insufficient

When multiple users share the same cluster, fairness is often
important in order to provide performance isolation and
to avoid starvation. In traditional multi-resource allocation
problem, where each job has only one configuration, there
are four main properties [28]:

e Efficiency (PE): No user can increase her performance
without hurting the performance of at least another
user.

o Sharing Incentive (SI): Each user is no worse by sharing
than using % of the system resources exclusively.

e Envy-Freeness (EF): No user prefers the allocation of
another user for better throughput.



e Strategy-proofness (SP): No user is able to benefit by
lying.

DREF [28] satisfies all four properties when each job has
only one configuration. Intuitively, one might expect to ex-
tend DREF to the allocation of interchangeable resources. One
straightforward extension is to pick the resource configu-
ration with the shortest processing time for each job and
then use DRF to allocate the resources by ignoring the inter-
changeability among resources, e.g., taking CPUs and GPUs
as different resource types. Unfortunately, this does not work.
Formally, we have the following lemma regarding this DRF
extension.

Lemma 3.2. If each job picks the configuration with shorter
processing time, there exist cases where DRF fails to provide
PE, SI or SP under multiple configurations.

Surprisingly, there is a hard tradeoff among these basic
properties. More details are in our preliminary theoretical
work [55]. In particular, we can show for any allocation, if it
provides sharing incentive and Pareto efficiency, it cannot
be strategyproof. Conversely, if it is strategyproof, sharing
incentive and Pareto efficiency cannot be provided simul-
taneously. There is one exception: if all jobs have the same
speedup by using GPUs, then the problem degenerates to a
traditional multi-resource allocation, where DRF can be ap-
plied. However, it is not true in practice as shown in Figure 2a.
Formally, we have the following impossibility result.

Lemma 3.3. No multi-configuration allocation can satisfy
(i) PE and SI, and (ii) SP simultaneously unless the relative
efficiency of CPU and GPU is the same for all jobs.

The proofs of Lemmas 3.2 and 3.3 are included in the
appendix.

Now we briefly discuss the intuition behind this lemma.
Consider the environment with CPU, GPU and memory de-
fined above. Two users i and j have the true relative efficiency
of GPU compared to CPU g; and g;, we assume g; < g;. Let
the reported relative efficiency be g. PE implies that user i
should utilize CPU first while user j utilizes GPU first. SI
requires that both users get at least %(1 +g;) and %(1 +9;)
computation, respectively. As a consequence, user i can re-
port a g; that g; = g, — &; for small §; > 0 to get more
resources, which is ensured by SI. User j can also manipulate
its demand to counter i’s movement by lowering its g; to
gj = gi + 8, for small 8, > 0. As a consequence, there does
not exists a point (g;, g;) where both users are satisfied.

3.3.2 Our Idea

AlloX maintains a progress for each user over time, which
is defined in the following way. For job i, denote its CPU
configuration by (c, me, p.), where c is the CPU demand, m,
is the memory demand, and p,. is the processing time on
CPU, and its GPU configuration by (g, mg, py), where g is
the GPU demand, m, is the memory demand, and pj is the

processing time on GPU. If p,. is smaller than p, (CPU is more
effective), we use the dominant share of the CPU configura-
tion d; = max{c/C, m./M}, where C and M are the CPU and
memory capacity of the cluster. The dominant share of CPU
configuration is the maximum of normalized CPU usage
and normalized memory usage. Otherwise, we use the domi-
nant share of the GPU configuration d; = max{g/G, m./M},
where G is the GPU capacity of the cluster.

The value of the job i is the dominant share d; at the
time of scheduling discounted if the job is not placed on
the more effective resource. For instance, if job i is more
effective on GPU but is placed on CPU, its value v; = i_id" =
Pg

pC
progress is the sum of values of all her jobs that are currently

running.

Consider a simple example where the job has CPU config-
uration (1, 4, 20) and GPU configuration (1, 2, 5). The system
capacity is (8, 2, 64) for CPU, GPU, and memory. Because
GPU provides a shorter processing time, the dominant share
of the job is % If the job is actually scheduled on GPU, its
value is % Otherwise, it is discounted by % (to é) because
running on CPU is 4 times slower than GPU. Over the execu-
tion of the job, either on CPU or GPU, its aggregated value
is the same. Actually, the progress of a user can be viewed
as her instantaneous throughput.

max{g/G, mg/M}, where p—i is the discount factor. A user’s

3.3.3 Incorporating Fairness into AlloX

AlloX provides a fairness knob and the system operator can
adjust its value « in [0, 1], which affects how many users
are taken into consideration when a scheduling is triggered.
For instance, with 20 users and @ = 0.3, only jobs from 6
users with lowest progress are considered for scheduling.
When o = 1, there is no fairness constraint and all users are
considered. The AlloX algorithm is based on Algorithm 1
and incorporates online arrivals and fairness considerations.

Lines 2-6 of Algorithm 2 prepares inputs for the matching
problem. In particular, it only considers jobs from [an] users
with the lowest progress. After solving the min-cost match-
ing problem in Line 7, the algorithm simply searches for the
first job scheduled on machine i. Specifically, the scheduler
checks all entries affiliated with the available machine i and
find a valid entry with largest k, which implies that the cor-
responding job w is scheduled first according on machine
i

Occasionally, the scheduler cannot find a valid job. It oc-
curs when no job is scheduled on the available machine based
on current jobs and system load. In this case, the algorithm
returns no job and the system waits until the next event such
as new job arrivals or a new machine becomes available.

Lemma 3.4. For static allocation, AlloX is Pareto-efficient. If
all jobs are identical and divisible within each individual user,
AlloX is envy-free and sharing-incentive under a = 0.



Algorithm 2 AlloX Scheduler

1: function ScHEDULENEXTJOB(available machine i)
Update users’ progress and get the set of users A, consisted
of [an] users with the lowest progress.

»

3: for all job j in the waiting queue from A, do
4: Add processing time of job j to matrix P
5: end for
6: Generate the delay matrix D and further the cost matrix Q;
7: Solve the min-cost matching problem defined by Q to get
the matching matrix M
8: fork=J:1 do > J is the total # of jobs in A,
9: forw=1:Jdo
10: if M(w, m(k — 1) +i) =1 then > w is first job
scheduled on machine i
11: schedule job w to machine i
12: Update available time w; and users’ progress
13: return job w
14: end if
15: end for
16 end for
17: return null

18: end function

The proof of this lemma is included in the appendix.

4 AlloX Implementation

We build AlloX based on Kubernetes using roughly 3000
lines of Go code for the resource manager and 1500 lines of
Python for its online job estimation tool. We pick Kubernetes
because it well supports clusters consisted of heterogeneous
resources such as CPU and GPU.

AlloX has three main components: Estimator, Scheduler,
and Placer (Figure 9). AlloX first uses the estimator to obtain
job characteristics. The scheduler then uses the algorithm
described in the previous section to decide which job to
be scheduled next and whether to place it on CPU or GPU.
Finally, the placer executes the schedule in the system.

4.1 Estimator

We propose an estimator that works for training jobs where
we know the number of iterations. The estimator predicts
jobs’ resource demands and their processing times on CPU
and GPU in an online manner. The completion time on each
resource is linearly estimated based the two small samples of
the job. Totally, there are four samples for each job on CPU
and GPU. In our experiment, the length of the sample jobs
is 3% of the real jobs. The estimation of completion times
is relatively accurate, especially for most machine learning
jobs that are iterative [61, 69]. Figure 10 shows the CDF of
estimation errors of 40 jobs through real experiments. The
mean absolute error is 8% and the standard deviation is 11%.

Similar to Gandiva [64], the estimator determines the
memory demands of jobs by monitoring the memory us-
age of their corresponding samples. Currently, GPUs in most
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Figure 9. The AlloX system has three main components:
Estimator, Scheduler, and Placer.
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Figure 10. CDF of the estimation errors from experiments.

clusters do not support fine-grained sharing among multiple
jobs [64], except for research efforts such as [66]. Therefore,
we consider a job using a whole GPU in AlloX. For CPU,
the estimator picks the maximum number of cores in a CPU
to optimize the performance of the job on CPU. Because
Kubernetes does not allow a container to have more than
1 CPU, AlloX does not give more CPU cores than a single
physical CPU has either.

4.2 Scheduler

Kubernetes does not support fair allocation or job scheduling.
As aresult, we cannot simply modify some existing scheduler
for our algorithm. Instead, we implement our scheduler from
scratch using the kube-scheduler APIL.

Jobs arrive in a single queue in kube-scheduler. Given
the set of available jobs, the scheduler decides which job
to run. kube-scheduler receives the estimated processing
times of the CPU and GPU configurations from the estima-
tor and passes them to AlloX scheduler via kubectl. AlloX
scheduling procedure is activated prior to Pod Admission. If
the job is not admitted, it is sent back to the waiting queue.
In addition to our scheduling algorithm, we implement other
methods described in Section 5.1.1.

We add fairness support to kube-scheduler by updating
the progress of all users over time (§3.3.2). schedulerCache



in kube-scheduler captures the snapshot of the whole sys-

tem. When there is an update from the system, schedulerCache

is notified and AlloX checks if a job gets resources or finishes.
If a job receives allocated resources, the progress of that user
is increased accordingly. Recall that if a job is running with
the unfavorable configuration (with longer processing time),
its value is discounted. If a job finishes, we deduct its value
from the progress of the corresponding user.

4.3 Placer

The placer dynamically configures proper containers and
executes jobs within these containers. In the current Kuber-
netes system, jobs are configured to run on CPU or GPU
ahead of time; hence, they do not need the placer. This is
another new component added. To enable the resource place-
ment, it is also required to have a change at application level.
In our experiments, we added a configuration function that
allows the scheduler to control their runtime resource.

4.4 Operational Issues

Scalability. The network flow problem for job scheduling
can be solved in polynomial time. Using the Hungarian al-
gorithm, the computation complexity is O((mn)*), where m
is the number of nodes and n is the number of jobs. If the
scheduling interval has to be very short, this approach may
be too slow. There are several solutions to this problem. We
suggest using one of the three solutions, i.e., parallel pro-
gramming, divide-and-conquer, or a heuristic. However, the
latter two may not retain the optimality of AlloX.

Using multiple cores of GPU to solve the Hungarian al-
gorithm is one of the best ways to speed up the solver and
retain the optimal solution [46]. We evaluated the GPU ver-
sion of Hungarian algorithm and find out that it can solve a
problem with 100 nodes and 10 queued up jobs at 0.2 seconds
using NVIDIA Quadro P4000.

Kubernetes supports multiple schedulers in the same clus-
ter; therefore, we can divide a large cluster into multiple
small ones [6] to conquer. However, although both the two
aforementioned solutions can speed up the solvers and re-
tain the optimality, they just solve the scalability issue up to
some certain level. Therefore, we suggest using a heuristic
solution. The idea here is to get performance close to AlloX
but do not starve the jobs.

In the heuristic solution, AlloX picks the shortest jobs
across CPU and GPU first. Additionally, if a job is waiting
beyond a timeout, it will be prioritized. We call this algo-
rithm AlloX+. The computational complexity of AlloX+ is
O(mnlog(n)). We tested the heuristic algorithm of AlloX+
on 1000 jobs and 10000 nodes, showing that it can schedule
these jobs in sub-second level (0.7 seconds). We show that
performance of AlloX+ can be close to AlloX in the Section 5.

Generality of estimator. Our estimator in Section 4.1 is not
general enough to handle all type of applications. In fact,

there is already a large body of research on this problem. Op-
timus proposes using an inverse linear function to estimate
the complete times of deep learning jobs [53].

For distributed jobs with large data input, we can use
Ernest [61] or Cherrypick [10]. For pipelining jobs like SQL
queries, an estimator like progress indicators are applied
[14, 47]. For jobs that have multiple similar tasks, we can
estimate resource demand and completions using ParaTimer
[48] and Paralax [49].

Minimum CPU per job. When developing our scheduler,
we realized all jobs running on GPUs also require (a small
amount of) CPU for proper execution. AlloX addresses this
by reserving a small number (one by default) of CPU cores
for GPU jobs. As the number of CPU cores in a cluster is often
large, this change has little impacts on the performance.

Job profiling overhead. Before a job is scheduled, its sample
jobs must be completed first. To this end, AlloX prioritizes all
sample jobs. Because these sample jobs are relatively small,
the overhead is minimal. AlloX also sets a limit on resources
for sample jobs to reserve enough resources for the real
jobs. In addition, if a sample job is significantly longer than
others, we do not need to complete it as it already indicates
the original job is very long. We can adjust the sample job
size to balance the overheads and estimation accuracy.

Low utilization with small a. The fairness parameter, «,
allows the explicit tradeoff between fairness and perfor-
mance. When « is small, the small set of users may not
have jobs or want to wait for better resources, e.g., there
are available CPUs but they prefer GPUs. This results in
low resource utilization. To deal with this, AlloX temporally
increases a to include more users who need the available
resources.

Resource availability. While it is sufficient to use estimated
processing times in the scheduling algorithm, resource avail-
ability needs to be obtained separately over time because
there may be significant estimation errors. By default, Kuber-
netes periodically checks the health and updates from each
node. Therefore, resource availability can be collected to-
gether with the current health check without additional over-
heads. If we need to inquire the availability information from
all nodes very frequently, it might still lead to significant com-
munication overheads for large-scale clusters. In this case,

the information of nodes and jobs (schedulercache.NodeInfo)

are cached in kube-scheduler and can be updated via events.

5 Evaluation

We evaluate AlloX through both experiments on real systems
and numerical simulations. Our key takeaways are:



o AlloX reduces the average job completion time by as
much as 95% compared to existing methods and base-
lines in various settings.

e AlloX achieves comparable performance of SRPT (an
unrealistic lower bound) under a wide range of set-
tings.

e AlloX provides fairness among users comparable to
existing fair allocation and prevents starvation.

5.1 Experimental Methodology

Cluster. We setup Kubernetes with GPU support on a cluster
of one master node, 8 CPU workers, and 4 GPU workers.
The master node coordinates the workers and runs the job
estimation tool. Each CPU worker is a xI170r server from
Cloudlab [3] with 20 virtual CPU cores and 64GB RAM. Each
GPU node is a p2.xlarge instance from Amazon EC2 with 1
K80 GPU, 4 CPU cores and 61GB RAM. This cluster setup
mimics a hybrid cloud that has traditional CPU nodes local
and expensive GPU nodes on public clouds. Furthermore,
We do not run distributed jobs on the cluster so that there
is no strict requirement on network bandwidth. There are 4
users, which is increased in the simulations.

Workload. Each user has 10 popular Tensorflow jobs, e.g.,
Googlenet, Lenet, and Alexnet. The job configurations such
as batch sizes and batch numbers are different, resulting in
the speedup rates of using one GPU versus one CPU ranging
from 1.8 to 10. For jobs on CPU, the number of threads is set
at 19 to best utilize the virtual cores while leaving one core
for other services on each node. We run a small sampling
job for each real job to obtain the parameters for both CPU
and GPU configurations, as we discussed in Section 4.1. The
total overhead of sampling jobs is 3% of the real jobs. We
vary the settings in Section 5.3 to evaluate the impacts.

Simulator. To evaluate AlloX at a larger scale, we imple-
ment a Java-based cluster simulator, which emulates the
cluster with multiple resources, e.g., CPU, GPU, and mem-
ory. We validate the accuracy of the simulator by comparing
its results to those from real experiments over the cluster
(Figure 11). There are 20 GPUs, 20 CPUs with 20 cores each,
and 1280 GB RAM. Since GPU memory is small, RAM is not
the bottleneck when we run the same jobs on CPUs.

For numerical simulations, we use the workload trace from
the Google cluster [5] to generate arrival times for Tensor-
flow jobs. There are 10 users and over 1000 jobs for each
user. By default, the fairness level « is set at 0.1, meaning,
we schedule jobs from the 1/10 of all users who have the
least progress whenever a node becomes available. The esti-
mation errors are around 10% and their profiling overheads
are 3% of the corresponding real jobs as we discussed in Sec-
tion 4.1. The impacts of the fairness level, estimation errors,
and overheads are studied in Sections 5.2.4, 5.3.1, and 5.3.2,
respectively.
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Metrics. To evaluate the performance, we measure the av-
erage completion time of all jobs under AlloX and baseline
algorithms. We use standard deviation of progresses across
users to evaluate fairness. For starvation, we focus on the
progress of users with longer jobs.

5.1.1 Baselines

We compare AlloX to the following methods.

ES (equal share with shortest job first): ES divides all re-
sources equally among users statically. For a particular user,
whenever a resource becomes available, ES picks the job with
the shortest processing time on this resource. For instance,
if all jobs prefer GPUs, ES first fills up all available GPUs
with shortest jobs based on their processing time on GPU,
and then fills available CPUs with the shortest jobs using
CPU configurations. ES needs the estimator to predict the
processing time in different configurations.

DREFF (online DRF with FCFS): Whenever a resource be-
comes available, DRFF schedules the first job of the user with
the least dominant share. Jobs are processed in a First-Come-
First-Served manner within every user. For job configura-
tion, we assume users have some preference. If all jobs prefer
GPUs, DRFF always picks the GPU configuration. DRFF does
not need the estimator to pick the configuration.

DRFS (DRF with shortest job first): DRFS is similar to
DRFF, but within each user, jobs are scheduled in a shortest-
job-first manner. Therefore, the estimator is needed. Each
user relies on the estimation to pick whether CPU or GPU
for each job configuration.

DRFA: DRFA uses some average speedup rate to convert
GPU resources to the corresponding CPU ones, e.g., if the
speedup rate is 10, 1 GPU is considered 10 CPU. Then the
problem is simplified to the original multi-resource allocation
without interchangeable resources, and online DRF is applied.
Within each user, jobs are processed in a shortest-job-first
manner, and therefore the estimator is needed.

SRPT: At any time, the job with the shortest remaining
processing time is executed, which requires preemption. This
approach is unrealistic in many real systems such as Kuber-
netes because jobs cannot be paused and moved from one
resource to another, or even a different resource, without
large overheads. However, SRPT is good at minimizing the
average job completion time, and therefore serves as a goal
for AlloX to achieve. Note that AlloX used in this section
does not use preemption for conservative evaluations of the
improvements.

AlloX+: A heuristic version of AlloX. AlloX+ first prio-
tizes the jobs with waiting times beyond a time-out. If jobs
are not timed out, AlloX+ picks the shortest job first.

5.2 AlloX Performance

We first evaluate AlloX through real experiments and vali-
date the accuracy of the simulator in Section 5.2.1. Results
from the simulator are discussed in Section 5.2.2.
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Figure 13. [Simulation] AlloX and AlloX+ outperform oth-
ers and are not far from SRPT in large-scale simulations.
They even outperform SRPT for the longest jobs.

5.2.1 Experiments on a Cluster

Figure 11 illustrates the average job completion time un-
der AlloX and other baselines through experiments and the
simulator we developed. First, Allox reduces the average
completion time significantly compared to other baselines.
In particular, DRFF and DRFS do not fully utilize the CPU
resources as shown in Figure 12, therefore incur longer wait-
ing time. ES and DRFA reduce the waiting time by increasing
the CPU utilization (Figure 12). Although AlloX has similar
CPU and GPU utilization compared to DRFA and ES, AlloX
outperforms DRFA and ES by better job scheduling and con-
figuration selection. This is highlighted by the significant
reduction in job processing time.

Figure 11 validates that the completion times in simula-
tions and experiments are consistently similar. This allows
us to perform larger-scale evaluations using the simulator.

5.2.2 Simulation Results

Figure 13 shows our simulation results. With a larger scale
and more jobs, AlloX («¢ = 0.1) consistently outperforms
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Figure 14. [Simulation] AlloX consistently maintains the
best performance and small disparity across users’ progress.

DRFF, DRES, ES, and DRFA even more, reducing the comple-
tion time by 95%, 84%, 88%, and 53%, respectively. Impres-
sively, AlloX is not far (30%) from SRPT that only minimizes
the average completion time without considering fairness,
and with preemption allowed. When we focus on the longest
1% jobs, AlloX has even larger improvements and beats SRPT.
This is not surprising because SRPT prioritizes shorter jobs.
The heuristic-based algorithm (AlloX+) with low scheduling
latency is also much better than other baselines.

To provide more details regarding the comparison, we
show the job arrivals, average job completion time, and the
standard deviation of progresses across users over time in
Figure 14. The average completion times of AlloX and SRPT
are consistently better over time compared to other base-
lines. Note the completion time is shown on a logarithmic
scale. When the arrival rates are high, the completion time
of other baselines are much higher than that of AlloX. Not
surprisingly, DRFF cannot process the jobs fast enough so
queues are built up. This highlights by effective scheduling
and configuration selection, AlloX processes jobs faster and
therefore allows high arrival rates.

The figure also shows the disparity across users’ progress
over time. In this case, SRPT and DRFA are much worse
than AlloX, while DRFF, DRFS, and ES are a little better than
AlloX (all users progress at similar, but much slower rates
compared to AlloX). While the disparity in SRPT is intuitive,
DREFA fails to provide fairness because it ignores the different
speedups of users, and instead use some averaged value to
allocate resources.
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5.2.3 Starvation

In extreme cases, some users may starve under schedulers
like SRPT. Figure 15 shows the number of completed jobs
of the user with longer jobs than others. As expected, SRPT
performs the worst with the least number of jobs finished.
In contrast, AlloX provides the best progress of this user
because it maintains fairness and is more effective than other
baselines.

5.2.4 Performance and Fairness Trade-offs

Figure 16 shows the trade-offs between performance (aver-
age completion time) and fairness. We vary the parameter «
from 0.1 to 1 (smaller means fairer) and compare the perfor-
mance with ES and SRPT. This shows with larger a, AlloX
approaches SRPT in performance. The small gap (9%) be-
tween AlloX and SRPT when « = 1 is due to the fact SRPT
is preemptive at no cost while AlloX does not allow preemp-
tion. However, the unfairness in terms of standard deviation
of users’ progress also increases with larger «. Normally, a
small @ around 0.2 is good at providing large performance
improvements at little cost of fairness.

5.3 Sensitivity Analysis
5.3.1 Estimation Errors

Figure 17 evaluates the impacts of misestimations on the
performance. Though DRFF does not need the estimation,
its performance is so poor that we compare AlloX with a
stronger baseline ES. We do not compare with DRFA because
it is not practical to know the average speedup rate. In spite
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of large estimation errors, AlloX still provides large improve-
ments that are similar to SRPT. This highlights the value of
incorporating (even noisy) estimation.

5.3.2 Profiling Overhead

Estimations require running profiling jobs with some over-
head. Figure 18 evaluates the impacts of profiling overheads
on performance. Recall in our experiments have profiling
overheads at 3%. As DRFF does not require estimation, its
performance is unchanged. With large overheads, the per-
formance of all other solutions degrades. However, AlloX
provides consistent, significant improvements compared to
other baselines. In practice, for long and iterative machine
learning jobs, it is reasonable to use small sampling jobs. We
can also obtain the runtime estimation from users [29, 59],
which may lead to further improvements.

6 Related Work

Resource configurations. Currently, developers or (data)
scientists select job configurations based on their own expe-
rience and/or some recommendations. Recently, there have
been some works on selecting cloud virtual machine (VM)
configurations such as Paris [65], Ernest [61], and CherryP-
ick [10]. While these focus on picking the number of VMs
of different types, the estimation tool in AlloX decides the
configuration over interchangeable resources automatically.

Resource managers. Given users’ resource demands, YARN
[60] and other allocation tools [54, 62] fit the submitted jobs
when there are available resources. In contrast, AlloX does
not ask users to submit their resource demands ahead. In-
stead, AlloX configures the jobs for users and submits the



jobs for scheduling automatically without users’ involve-
ment. Finally, none of the existing GPU cluster managers
[33, 53, 64] consider interchangeable resources.

Multi-resource job scheduling. While job schedulers tradi-
tionally deal with a single resource [11, 38, 68], modern clus-
ter resource managers, e.g., Mesos [34], YARN [60], and oth-
ers [54, 62], employ multi-resource schedulers [26, 28, 31, 32]
to handle multiple types of resources and optimize diverse
objectives. These objectives can be fairness (e.g., DRF [28]),
efficiency (e.g., Tetris [31]), performance (e.g., [26]), or com-
binations of different objectives (e.g., BoPF [44], Carbyne
[32] and Quincy [38]). However, none of these focus on inter-
changeable resources. To the best of our knowledge, AlloX
is the first multi-resource job scheduler over interchange-
able resources (CPUs and GPUs) for both performance and
fairness.

Heterogeneous resources. Recent schedulers also deal with
jobs with placement constraints, e.g., Kubernetes [6] han-
dling resource constraints in a best-effort manner and Choosy
[29] in a fair way. In addition, Phoenix [57] focuses on mini-
mizing the job response time, and Late [68] improves MapRe-
duce job response time in heterogeneous environments. They
mainly focus on the resource constraints and implicitly as-
sume that the speed-up rates among nodes are identical.
Hence, none of them deal with interchangeable resources.

There are a few works on interchangeable resources like
pLayer [40] and TetriSched [59]. pLayer does resource place-
ment for each layer of artificial neural networks, while AlloX
performs both inter-job scheduling and resource placement.
The most related work is probably TetriSched [59]. Com-
pared to TetriSched which focuses on deadlines only, AlloX
considers both performance and fairness. TetriSched formu-
lates the problem as a Mixed Integer Linear Programming
(MILP), which cannot be solved in polynomial time so far.
In contrast, AlloX solves a linear programming with low
complexity. In addition, TetriSched does not provide fairness
and may lead to starvation, while AlloX explicitly balances
performance and fairness, and prevents starvation. Finally,
TetriSched simply assumes estimations needed are known
beforehand, while AlloX obtains the information in an online
and automatic manner. Beyond GPU/CPU systems, hetero-
geneous resources have been studied, e.g., heterogeneous
computing, power and cooling resources for sustainable data
centers [43], heterogeneous energy storage systems for elec-
tricity market [15].

7 Concluding Remarks

In this paper, we design and implement AlloX, a system that
minimizes the average job completion time in CPU-GPU
hybrid clusters while providing fairness among users and
preventing starvation. AlloX profiles and schedules jobs in
an automatic and online manner. Our algorithm solves a
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min-cost bipartite matching problem and obtains the corre-
sponding placement and scheduling decisions. It provides
an optimal solution in simplified settings and outperforms
all baselines significantly in general settings. Evaluations
highlight that AlloX can significantly improve system perfor-
mance while maintaining fairness among users. The problem
studied in this paper is a generalization of the traditional job
scheduling and fair resource allocation problems, and can
be applied beyond computational resources, e.g., to differ-
ent network interfaces and storage devices. Extending the
algorithmic study and system design to these resources is
our ongoing work.

Future directions. Having more than two interchangeable
resources such as multiple GPU types raises challenges at
both the estimator and scheduler. It increases the overheads
for the estimator and adds more computing dimensions to the
scheduler. We leave these challenges as future work. Another
extension to AlloX would be working with distributed jobs
that require the combination of intra-job and inter-job sched-
uling. Furthermore, if jobs can be preempted and switched
from this resource to another, it would be interesting to find
an algorithm that beats shortest remaining time first (SRPT).
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A Appendix
A.1 Proof of Lemma 3.1

Let the optimal solution be OPT(:). The proof follows two
steps: first we show that any scheduling instance S can be
transformed into a corresponding bipartite matching prob-
lem M; then we prove their optimal solutions are indeed
equivalent.

Let gf and cf be the machine-position variables, where g and
c represent the GPU and CPU machines, i is the machine id
and k is the position index counted backward from the end.
Let J; represent job j. Define graph M = (N, E), where N
consists of nodes gl’.‘,cf and J; for all i, j, k and E consists of
all pairs in (glk,]]) and (cf,]J) for all i, j, k. Define the cost
for edge (gf,]j) ((cf,]j)) as kp; (kpﬁ), wherep; (kpi) is the
processing time of job j on GPU (CPU). By definition, M is a
bipartite graph.

Now we show that any feasible scheduling for problem S
has a valid matching in the corresponding M. To see this,
notice that for any feasible scheduling, each job is scheduled
only once and there is a unique ordering on each machine.
For any job j thatis placed on g; (c;), let its order be r (counted
backward from the end of g;), then in graph M from M,



consider the edge set P from (g7, J;) ((c], J;)) for all j and its
corresponding i and r. Clearly, P is matching as all nodes in
Jj are connected and each of them has a unique destination.
Now we show that the the total completion time in S is
equivalent to the total cost in M. To see this, consider any
job j that is placed on g; (c;) with order r counted backward.
Then obviously, there are exactly r jobs will be consuming
Pg(pc) computation time on machine i based on the place-
ment of job j, so the total completion time of this placement
is exactly the cost of the corresponding edge in MS. So the
total cost of the two instance will also be the same. We have
OPT(S) > OPT(M®).

Conversely, we show that any valid matching in graph G
corresponds to a feasible extended scheduling problem S’
by allowing adding ’dummy jobs’ with 0 processing times.
Firstly, we add n dummy jobs on each machine. Then for all
edges (g}, J;) (¢}, J;)) picked in M problem, simply replace
the r;;, last dummy job on g; (c;) with job J;. Since the cost
of using the edge is equivalent to the computation time of
the corresponding placement. OPT(MS) > OPT(S").
However, with extra dummy jobs, the total completion time
will be nondecreasing, OPT(S’) > OPT(S). So we have
OPT(S) = OPT(MS).

A.2 Proof of Lemma 3.2

Consider a simple case with n users, and each user has identi-
cal jobs. The speedup of using a GPU versus a CPU is (1 + €)
for all jobs. Clearly, users would choose the configuration
that runs faster, which are the GPU configurations in this
case. By the allocation with DRF, all GPUs are shared equally
among users while all CPUs remain idle. Assuming other
resources such as the memory is not the bottleneck, the allo-
cation is not Pareto efficient because CPUs can be utilized to
improve the progress of all users. This allocation does not
provide sharing incentive because every user is worse than
equal sharing, where each user has some CPUs in addition
to the same amount of GPUs allocated. Finally, if some user
lies that she prefers CPUs, she will get all the CPU nodes and
progress faster than others. This violates strategy-proofness.

A.3 Proof of Lemma 3.3

Consider two users A and B. Both have identical jobs. The
speedup of user A’s jobs is 4 = 2, while the speedup of user
B’s jobs is fp = 4. Assume computation is the bottleneck for
both users. The system has the same amount of CPUs and
GPUs, normalized to 1.

We first consider the sharing incentive (SI) and Pareto
efficiency (PE) properties. SI requires user A gets at least
%(1 +2) = % computational resources (CPUs and GPUs com-
bined), while user B gets at least %(1 +4) = % computational
resources. From PE, we know that user A should use CPUs
first while user B should use GPUs first because 4 < fp.
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Because GPUs are more effective, user A should get all the
CPUs and some fraction of GPUs.

Note PE also requires that there should not be any leftover
CPUs or GPUs if computation is the system bottleneck. Let
A’s share on GPU be x. Then B’s share on GPU is 1—x. By the
sharing incentive property, for user A, we have 2x + 1 > %
ie,x > }1; for user B, we have 4(1 — x) > g, where we have
x < %. Therefore SI and PE requires ;i <x< %.

If both users report truthfully, assuming at the final alloca-
tion, 36 > 0s.t. x+8 < 2, we show it is not strategyproof for
user A. Specifically, we show that by lying about her speedup
ratio, user A can always get at least (% — o) fraction of GPU
for any small o > 0.

To see this, let user A report 8, = 4 — € for some small
€ > 0 instead of the true value 2. By the SI property, user A
needs to get at least %(1 + 4 — €) computational resources.
As she has a lower speedup ratio than user B, she will get all
CPU, therefore the computational resources from GPUs are
%(1 +4 —¢€)—1=1.5—-0.5¢. This implies that user A needs
to get at least % fraction of GPU, which approaches
arbitrary close to % with decreasing €. Therefore, there exists
an ¢ that user A can use to get at least (% — o) fraction of
GPU. Thus, to make sure user A has no incentive to lie, the
allocation has to provide at least % fraction of GPU to user
A.

Similarly, user B can report i = 2 + € to increase her
allocation on GPUs. If she reports , = 3, B can get at least %
GPU. Clearly, there is not enough GPU to share as % + % > 1.
So no allocation can be strategyproof.

A.4 Proof of Lemma 3.4

Pareto-efficiency comes from the fact that AlloX is optimal
for static scheduling. So clearly no one can increase her
completion time without hurting others’ performance.

With assumption of divisibility and a = 0. AlloX will
maintain a strict fairness allocation, where the progress of all
users are equal all the time. To show envy-freeness, consider
arbitrary two users and compare their dominant resources. If
the type of their dominant resources is the same, then from
the equality of progress, their allocation of that resource is
also the same, so there won’t be envyness. If they have dif-
ferent dominant resources, then by switching their resource,
both users will have less resource in their dominant resource,
which in return make their progress worse.

By contradiction, if sharing-incentive is not satisfied, then
there exists a user whose progress is worse than equal shar-
ing. But by the equality of progress and subsequently equality
of dominant share, this means all users will be worse than
equal sharing. However, this is not possible as the allocation
is Pareto-efficient.
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