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Abstract
Modern deep learning frameworks support a variety of hard-

ware, including CPU, GPU, and other accelerators, to perform

computation. In this paper, we study how to schedule jobs

over such interchangeable resources – each with a different

rate of computation – to optimize performance while pro-

viding fairness among users in a shared cluster. We demon-

strate theoretically and empirically that existing solutions

and their straightforward modifications perform poorly in

the presence of interchangeable resources, which motivates

the design and implementation of AlloX. At its core, AlloX

transforms the scheduling problem into a min-cost bipartite

matching problem and provides dynamic fair allocation over

time. We theoretically prove its optimality in an ideal, offline

setting and show empirically that it works well in the on-

line scenario by incorporating with Kubernetes. Evaluations

on a small-scale CPU-GPU hybrid cluster and large-scale

simulations highlight that AlloX can reduce the average job

completion time significantly (by up to 95% when the sys-

tem load is high) while providing fairness and preventing

starvation.
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1 Introduction
In recent years, deep learning (DL) is gaining rapid popularity

in various application domains, including computer vision,

speech recognition, etc. Deep learning training is typically

compute-intensive. As a result, GPUs are more popular in

deep learning clusters. Nonetheless, CPUs can still be used

to perform such computation, albeit at a slower speed. At the

same time, Google has developed Tensor Processing Units

(TPUs) for its AI systems [39], while Microsoft is relying
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Table 1. A motivating example. PT stands for processing

time in minutes.

User Job ID PT on GPU PT on CPU

User 1 J1 10 15

User 2 J2 8 10

User 1 J3 10 50

User 2 J4 5 75

User 1 J5 10 15

User 2 J6 10 15

User 1 User 2
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Figure 1. Inefficiency from ignoring interchangeability.

on FPGAs [24]. Indeed, most modern frameworks support

heterogeneous computation devices [9, 12, 45, 56].

Given that they are all computation hardware, it is possible

to use them in an interchangeable manner by maintaining

multiple configurations in modern cluster managers such

as Kubernetes [6]. For example, if a job typically has a CPU

configuration (1 CPU, 12 GBMemory), the same job can have

another GPU configuration such as (1 GPU, 2GB Memory).

The central problemwe address in this paper is how to pick
the configuration for each job and order the jobs to optimize

performance objectives such as the average job completion

time while providing fairness among multiple users. Fur-

thermore, this needs to be done in an online manner with

minimal user effort.

Let us consider a simple example in Table 1, where two

users share a small cluster of two CPUs and two GPUs, to

illustrate the crux of the problem. Each user has 3 jobs queued

up at the beginning that can be processed on either CPUs or

GPUs with the processing times (PT).

Figure 1 compares an existing solution and the optimal

solution for this example. Equal Share in Figure (1a) repre-

sents a typical fair sharing solution used in modern cluster

managers [6, 34] that is unaware of resource interchange-

ability and picks resources for jobs in a fair manner across

all resources. Essentially, it divides CPUs and GPUs equally

between the two users and schedules the jobs in a First-

Come-First-Served (FCFS) manner. When it is the turn for a
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particular job to run, this job picks its “favorite” resource (the

one resulting in a shorter processing time) if that resource is

available, otherwise it picks the other resource. Overall, the

average job completion time using this approach is
181

6
min-

utes. In contrast, Figure (1b) illustrates the optimal solution.

By judicious scheduling, the average job completion time is

reduced to
76

6
minutes, a 59% improvement. The makespan is

also reduced by 76%. Similar poor behavior is demonstrated

by extensions of existing solutions as well (§2.2).

The key challenge, however, is achieving such benefits

in practice. Indeed, there are significant algorithmic and

systems challenges in the presence of multiple job configu-

rations. From the algorithmic perspective, while minimizing

the average job completion time is relatively easy when jobs

have only one configuration [42], we prove that the problem

is APX-hard in this context.
1
At the same time, while the

Dominant Resource Fairness (DRF) allocation and its vari-

ants [17, 27–29, 51, 63] provide desirable properties, there

exists a hard trade-off among the fundamental properties

with multiple job configurations; we show that DRF fails

to maintain most of its properties in the presence of inter-

changeable resources. Finally, we note that job scheduling

over interchangeable resources more challenging than ex-

isting work on heterogeneous resources [29, 57, 68], where

jobs are assumed to have the same speedup when running

on different resources.

From a systems design perspective, existing systems heav-

ily rely on users to provide key information such as which

configuration to use, even though many users may not have

the expertise or system-level insights to do so. Even if they

do, the best configuration for a given job still depends on

the presence of other jobs in the cluster. To this end, we

want to design a solution that can automatically pick the

best configuration for a given job at a given point in time.

Overall, in this paper, wemake the following contributions

in tackling these challenges by designing AlloX.

• Motivated by experimental results on a real system,

we identify a new job scheduling and resource alloca-

tion problem and analyze the inefficiencies of existing

solutions (§2). Specifically, we show that most existing

solutions may lead to arbitrarily poor performance

when jobs have multiple configurations.

• We design AlloX to optimize performance and provide

dynamic fair allocation (§3). Our key idea is to trans-

form the multi-configuration job scheduling problem

into amin-cost bipartitematching, which can be solved

in polynomial time. It provides the optimal solution

in simplified settings and outperforms all baselines

significantly in general settings. AlloX dynamically

schedules jobs from the users that are furthest from

their fair share.

1
An APX-hard problem is an NP-hard problem that does not have any

efficient approximation solution.

• We implement AlloX on Kubernetes (§4). Besides the

scheduling algorithm, AlloX profiles jobs in an online

manner to automatically decide job configurations and

estimate job processing times. Both are necessary in-

puts for the scheduling algorithm.

• We conduct experimental and numerical evaluations

to showAlloX’s performance improvements using Ten-

sorFlow workloads (§5). Results highlight that AlloX

reduces the average job completion time significantly,

provides fairness among users, and prevents starva-

tion.

2 Background & Motivation
2.1 Interchangeable Resources
Interchangeability at the application level. Frameworks

like Tensorflow [9], PyTorch [52] and Caffe [2] are capable

of leveraging both CPUs and GPUs. To support interchange-

ability at the application level, the frameworks need to have

a simple configuration. For example, they need to indicate

all variables and operations on GPUs (or CPUs) in Tensor-

flow. Since accelerators like GPUs are becoming popular for

data-intensive and compute-intensive applications, we be-

lieve that there will be more frameworks that support the

interchangeability in the near future. Furthermore, hetero-

geneous resources have interchangeability and do not need

any modification at the application level. Table 2 summarizes

the interchangeability on various resources.

Table 2. Interchangeability support in frameworks for dif-

ferent computation resources.

Resources Frameworks

CPU & GPU Tensorflow, Caffe, PyTorch, Matlab,

Chainer [58], TVM [16]

FPGA & GPU CNNLab [70], PaddlePaddle [8],

TVM [16]

TPU, CPU, &GPU Tensorflow, TVM [16]

Distinct speedup rates for different applications. Although
GPUs are in wide use for different deep learning applications

[18, 19, 21, 22, 30], different jobs obtain distinct speedups

by using GPUs w.r.t. CPUs (Figure (2a)). The speedup rate

is how much GPU can reduce the job processing time, i.e.,

job processing time on a particular CPU divided by that on

GPU.

While GPUs are generallymore efficient formachine learn-

ing jobs (with a speedup rate larger than 1), they are more

expensive. Figure (2) shows that the normalized costs (the

cost ratio between GPUs and CPUs divided by the speedup)

vary a lot. When the normalized cost is greater than 1, using

GPU is not cost-effective.

The ineffectiveness of using GPUs in some jobs is due

to several reasons. First, modern frameworks such as Ten-

sowFlow are not good at speeding up memory networks like
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(a) Speedups from Nvidia K80 GPU versus Intel Xeon E5 2.4

GHz 20-core CPU.
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(b)Normalized costs using GPU node (p2.xlarge) versus CPUs

(c5.large) on EC2.

Figure 2. GPUs provide distinct speedups and costs. When

GPUs are overloaded, we should move workload with low

speedup rates to CPUs.
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Figure 3. Most of Microsoft Azure users (92.6% of 5,958

users) have average CPU utilization under 20%.

Bidirectional LSTM (Bi-LSTM) [4]. RNN models are often up-

dated for each training example for the dependency between

two timeframes, which creates difficulty for parallel comput-

ing [37]. Second, for the large data input like video-analytics

(vid.) [7], GPUs are not effective when the bottleneck is in

memory and I/O for processing the large data.

GPUs can be fast but they are expensive, while CPUs
are available and abundant. In addition to being cost-

effective for some jobs, CPUs are often under-utilized in large

clusters. To this end, we analyzed the Azure Public Dataset

[1, 23], which recorded CPU utilization of 5,958 users over

30 days. We found that more than 90% users use less than

20% of their allocated CPU (Figure 3). Because jobs can be

executed on CPUs when GPUs are busy, we could utilize the

available CPUs before spending a lot to add more, expensive

GPUs.

2.2 Inefficiencies of Existing Solutions
While existing cluster schedulers do not support interchange-

able resources (Table 3), it is not trivial to extend existing

schedulers to handle both performance and fairness in the

presence of multiple configurations. Usually, jobs are pre-

configured to run on either CPUs or GPUs, therefore systems

do not have the flexibility to determine whether to place a

job on CPU or GPU.

Table 3. Popular resource managers with GPU support.

Systems Algorithm Interchangeability

YARN [60] Fair, DRF No

Kubernetes [6] Best effort No

Mesos [34] DRF No

Spark [67] Fair No

Consider a simple setup where n users share a system con-

sisting of interchangeable resources and each user submits

their jobs over time. Each job has up to k configurations to

run. For simplicity of presentation, we restrict our attention

to two configurations: CPU andGPU; however, our algorithm

and analysis can be readily extended to more configurations,

and even additional scenarios such as networking interfaces

or storage devices.

A job scheduler for interchangeable resources needs to

decide (i) the configuration to use for each job and (ii) the

order of jobs to optimize performance and fairness objec-

tives. While the latter has been studied extensively in recent

works [17, 27, 28, 31, 32], the former is a new challenge. In

this section, we revisit existing algorithms and their straight-

forward extensions for this new problem to illustrate their

inefficiencies and demonstrate why we need new algorithms.

Best Fit (BF). As performance is often the main focus, it

is natural to pick the configuration (CPU or GPU) for each

job that gives the best performance, also known the Best

Fit (BF) algorithm. The problem is that the load on CPU

and GPU can be largely unbalanced. For example, GPUs can

be overloaded resulting in huge waiting time, while CPUs

are little used. The imbalance has a profound impact on job

completion time, especially when the system load is high.

Therefore, picking the most effective configuration for each
job may result in low utilization and high job waiting time.
To deal with this problem, the interchangeability scheduler

must enable fall-back from overloaded GPUs to CPUs and

vice versa. The challenge is how to do it efficiently.

Join the Shortest Queue (JSQ+). The inefficiency of BF

comes from the lack of the consideration of the system load

in the configuration selection. Therefore, a better approach

could be a modified Join the Shortest Queue (JSQ+). Assume

users know the current waiting time on each resource in real

time. On the arrival of a job, the scheduler picks the resource

that has the shortest completion time, i.e., the sum of waiting

3
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Figure 4. Inefficiency of JSQ+.

time and the processing time of the job on the corresponding

resource. In this way, loads can be more balanced because as

the load on some resource increases, its longer waiting time

would force new jobs to be placed on other resources.
2

The key drawback of JSQ+ is that it is short-sighted: each
job attempts to minimize its own completion time without

considering its impact on later jobs. Consider an example

with 2 CPUs and 2 GPUs. Assume there are 4 jobs, all arrive at

the beginning but in the order of Job 1, 2, 3, 4. The processing

time can be shown in a matrix:

P =


40 50

40 50

40 160

40 160


In this matrix, the i-th row consists of job i’s processing
times on GPUs and CPUs, respectively. Under JSQ+, Job 1

first picks a GPU, and then Job 2 picks the other GPU. After

that, Job 3 and Job 4 have no choices but to pick CPUs, as

shown in Figure 4a with an average completion time (AJCT)

of 100 minutes. Clearly, the optimal solution is to put Job 3

and 4 on GPUs and Jobs 1 and 2 on CPUs, which can reduce

the AJCT from 100 minutes to 45 minutes as Figure 4b.

Shortest Job First (SJF). The sub-optimality of BF and JSQ+

implies that we cannot just let each user pick her own job

configurations. Therefore, the scheduler needs to coordinate

the decisions, where Shortest Job First (SJF) [20] is widely

used.

When there are multiple configurations for each job, we

can extend SJF to SJF+ to handle jobs with multiple config-

urations: for each type of resource, maintain a queue of all

available jobs. The jobs are sorted based on the processing

time on this resource in an increasing order. Whenever a

resource becomes available, schedule the first job in the cor-

responding queue and remove the job from all queues. When

multiple resources become available simultaneously, first

schedule the job with the shortest processing time.

While SJF is optimal for only 1 configuration [20], its per-

formance can be arbitrarily bad for multiple configurations.

Consider the following processing time matrix:

2
JSQ+ is different than the vanilla JSQ because the processing time of the

same job on different resources varies.
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Figure 5. Inefficiency of SJF+.

P =


10 20

10 20

20 90

20 90


Under SJF+, there are two queues for GPU and CPU, re-

spectively. The order in both queues is Job 1, Job 2, Job 3,

Job 4. Therefore, Job 1 and 2 are placed on GPUs first. Then

Job 3 and 4 are scheduled on CPUs. This is shown in Fig-

ure 5, resulting in an AJCT of 50 minutes. In contrast, the

optimal solution places Jobs 3 and 4 on GPUs and Jobs 1

and 2 on CPUs, reducing the AJCT to 20 minutes. The root

cause is while Jobs 3 and 4 are longer (disadvantage in SJF+),

the processing time reduction of using GPU is much larger

(overlooked by SJF+).

Summary. When jobs have multiple configurations, even if

jobs arrive at the same time, the problem is more challenging

than that with single configuration because we need to con-

sider the processing time reduction among configurations,

which may contradict with other factors, e.g., the length of

the job. Therefore, algorithms that perform well for single

configuration job scheduling may result in arbitrarily bad

performance in the new problem.

3 Algorithm Design
In this section, we design a scheduler that works with ap-

plications that can run on interchangeable resources, e.g.,

CPUs and GPUs. For applications that only can run either on

CPUs or GPUs, we can assume that they take infinite time

to complete on the non-executable resource.

Minimizing the average job completion time with multiple

configurations is APX-hard by a reduction from a maximum

bounded 3-dimensional matching problem. The details of

proof can be found in Section 3 of [35]. In other words, unless

P = NP , there is no polynomial-time approximation algo-

rithm with the approximation ratio bounded by a constant.

Therefore, we start with a simpler case where we can design

a polynomial-time optimal algorithm, and then extend the

algorithmic idea to the general case.

3.1 Optimal Approach for Queued Up Jobs
Assume all jobs arrive at the beginning and each job has one

configuration for CPU and one for GPU. If a job can only

run on GPU or CPU, we can set the processing time on the

4



other resource to be a very large number. We assume that

each job uses either an entire GPU or an entire CPU, which

is further discussed in Section 4.

For this simplified problem, we can transform the schedul-

ing and placement problem to a min-cost bipartite matching

problem, which can be solved efficiently [13, 25, 36]. Specifi-

cally, our algorithm consists of three steps: (i) generate input

for the min-cost bipartite matching problem based on job

information; (ii) solve the matching problem to obtain a so-

lution; (iii) convert the solution to a feasible scheduling and

placement.

i. Generate input for the matching problem. Our obser-
vation is that for each resource (a CPU or a GPU), a job

scheduled as the k-th last one contributes k times its pro-

cessing time to the total job completion time. Assume we

have three jobs of sizes 3, 4, and 5 to be scheduled on one

resource. If we schedule in the order, their completion times

are 3, 7, and 12, resulting in a total completion time of 22.

There is another way to calculate the total completion time

based on the waiting times. As the Job 1 is scheduled to be

the first one, i.e., there are two jobs waiting, it contributes

three times (two from waiting times of Jobs 2 and 3, and one

from Job 1’s own processing time), which is 9. Similarly, Job

2 contributes twice its processing time, which is 8. Job 3 is

the last job and contributes only its processing time 5. The

sum is also 22.

This observation allows us to obtain the contribution of

a job placed on machine i as the k-th last job to the total

completion time. Consider a simple example with 2 machines

(1 CPU and 1 GPU) shared by 3 jobs. The job processing time

can be represented by the following processing time matrix

P where each row contains processing time on CPU and

GPU. In this matrix, the first row represents that Job 1 takes

3 minutes on GPU or 4 minutes on CPU. The size of P is

n ×m for n jobs overm machines.

P =


3 4

4 6

5 10


Based on the processing time matrix P , we can generate

the following cost matrix Q of size n × (nm):

Q =
[
P 2P · · · nP

]
.

For our example,

Q =
©­«
(G, 1) (C, 1) (G, 2) (C, 2) (G, 3) (C, 3)

3 4 6 8 9 12

4 6 8 12 12 18

5 10 10 20 15 30

ª®¬
The element (j, i,k), corresponding to

(
j,m ∗ (k − 1)+ i

)
in

the matrix, represents the cost of scheduling job j at machine

i (1 stands for GPU, and 2 stands for CPU) as k-th last job.

For example, the entry (2, 2, 3) represents Job 2 contributes

G1

C1

G2

C2

G3

C3

Job1

Job2

Job3

4

8

5

Figure 6. The corresponding min-cost bipartite matching.

12 minutes processing time if it is placed as the third last job

on GPU.

ii. Solve the matching problem. Given the matrix Q , we
can formulate the problem into a min-cost bipartite matching

problem in Figure 6 as follows.

On the right side of the bipartite graph, each node repre-

sents a job. For our example, there are three jobs. Each job

has a demand of 1 unit. On the left side, each node represents

a position on a machine. As we have two machines (one CPU

and one GPU) and 3 jobs, we need at most three positions

for each machine. For instance, G2 represents the second last

position on GPU. Because each position on a machine can

serve one job at most, it has a supply of 1 unit.

Each edge has a capacity of 1 and there is a one-to-one

correspondence between the cost of using that edge and the

entry from the matrixQ we generated. For example, the cost

from G2 to node Job2 is the entry at the second row and

(G, 2) column, which is 8.

This min-cost bipartite matching problem can be solved

in polynomial time with standard network flow algorithms

or Hungarian method [41, 50]. In the example, the optimal

cost is 17 and the matching is shown in a matrixM . Three

highlighted edges in Figure 6 are active to feed the demand.

M =
©­«
(G, 1) (C, 1) (G, 2) (C, 2) (G, 3) (C, 3)

0 1 0 0 0 0

0 0 1 0 0 0

1 0 0 0 0 0

ª®¬
iii. Convert the matching solution to job scheduling.
The solution from the matching problem is converted as

follows. Each edge picked by the matching algorithm corre-

spond to the scheduling and placement of a job. For instance,

the edge between Job2 and G2 is picked, meaning Job 2 is

scheduled on GPU as the second last job. Similarly, Job3 is

connected toG1, meaning it is scheduled on GPU as the last

job. Job1 is connected to C1, so it is scheduled on CPU as

the last job. Combined the information, our algorithm places

Job2 and Job 3 on GPU and Job 2 is scheduled before Job 3,

5
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Figure 7. The scheduling from the corresponding min-cost

bipartite matching problem. The total completion time is 17.

while Job 1 is placed on CPU as the only job. This scheduling

and placement are shown in Figure 7.

Optimality. We have the following formal result of the per-

formance of this algorithm.

Lemma 3.1. When all jobs arrive at the same time, the opti-
mal solution can be found in polynomial time by solving the
corresponding min-cost bipartite matching problem.

The proof sketch is described below. A formal proof can

be found in the appendix. For the problem transformation,

each scheduling and placement solution corresponds to a

feasible solution of the matching problem. To see this, each

job has been placed on one and only one machine, meaning

the demand of each job node in the matching problem has

been met. In addition, no jobs have the same order at the

same machine, so the supply of each (machine, order) node

in the matching problem is at most 1.

Conversely, any feasible solution to the matching prob-

lem corresponds to an extended scheduling problem with

possibly dummy jobs. To do this, we first place jobs based on

the edges picked by the matching problem. Then we fill each

gap in the positions by a dummy job. Clearly, the insertion

of dummy jobs always increases the total completion time,

so there is no dummy job in the optimal solution. Therefore,

the optimal solution of the matching problem corresponds

to the optimal scheduling and placement solution.

Algorithm 1 Primitive AlloX without online arrivals

1: Generate the cost matrix Q
2: Solve the min-cost matching problem defined by Q to get the

matching matrixM
3: for j = 1 : n do ▷ n is the total # of jobs

4: for i = 1 : m do ▷m is the total # of machines

5: for k = n : 1 do
6: if M(j,m(k − 1) + i) = 1 then ▷ Job j is scheduled

on machine i as the k-th last job

7: Add job j to the queue from machine i
8: end if
9: end for
10: end for
11: end for

3.2 Handling Online Arrivals
The algorithm described above requires all jobs to arrive at

the beginning. Here, we extend our idea in the previous sec-

tion to incorporate arrivals by updating the scheduling and

placement over time. This can be done whenever a resource

becomes available or periodically.

Figure 8. An illustration example that shows the impacts of

online arrivals and available time of a machine.

We focus on the case where preemption is not allowed,

because preemption is not well supported in many systems

such as Kubernetes. Even if it is supported, the overhead of

migration is often very high. We assume that the scheduler

has no information about future arrivals. The major differ-

ence with arrivals over time is that when we generate a new

schedule, some machines are occupied so new jobs need to

wait until current jobs finish. We use both the arrival time of

new jobs and the available time of machines (defined shortly)

to adjust the cost matrix Q for the matching problem.

Consider the example in Figure 8. Assume we generated

a schedule at time 0 and a job was placed on the machine i ,
which is expected to finish at time 10 based on our estimation

detailed in Section 4.1. In other words, the available time of

machine i is ωi = 10. Job j arrives at time 4 but the scheduler

was not triggered at that time. At time T = 6, we want to

update the schedule, while machine i is still busy. For Job j,
if it is scheduled as the next job on machine i ,its (expected)
completion time comes from two parts: a waiting time of

(ωi − aj ) = 6 and the processing time pji = 5. This gives an

expected completion time of 11.

Motivated by this, we define delay matrix D(j, i) = ω(i) −
a(j), where a(j) is the arrival time of job j , andω(i) is the ear-
liest available time of machine i when it finishes its currently

allocated job(s). If machine i is idle, then ω(i) = T , where
T is the current time. The cost matrix Q is calculated by

the following: Q =
[
P 2P · · · nP

]
+
[
D D · · · D

]
,

where P is processing time matrix. The processing time can

be estimated with more details in Section 4.1 and we eval-

uated the impacts of estimation errors in Figure 17. Delay

matrix D is used to handle the non-preemption constraint.

3.3 Incorporating Fairness
3.3.1 Existing Fair Allocation Algorithms are

Insufficient
When multiple users share the same cluster, fairness is often

important in order to provide performance isolation and

to avoid starvation. In traditional multi-resource allocation

problem, where each job has only one configuration, there

are four main properties [28]:

• Efficiency (PE): No user can increase her performance

without hurting the performance of at least another

user.

• Sharing Incentive (SI): Each user is no worse by sharing
than using

1

n of the system resources exclusively.

• Envy-Freeness (EF): No user prefers the allocation of

another user for better throughput.
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• Strategy-proofness (SP): No user is able to benefit by

lying.

DRF [28] satisfies all four properties when each job has

only one configuration. Intuitively, one might expect to ex-

tend DRF to the allocation of interchangeable resources. One

straightforward extension is to pick the resource configu-

ration with the shortest processing time for each job and

then use DRF to allocate the resources by ignoring the inter-

changeability among resources, e.g., taking CPUs and GPUs

as different resource types. Unfortunately, this does not work.

Formally, we have the following lemma regarding this DRF

extension.

Lemma 3.2. If each job picks the configuration with shorter
processing time, there exist cases where DRF fails to provide
PE, SI or SP under multiple configurations.

Surprisingly, there is a hard tradeoff among these basic

properties. More details are in our preliminary theoretical

work [55]. In particular, we can show for any allocation, if it

provides sharing incentive and Pareto efficiency, it cannot

be strategyproof. Conversely, if it is strategyproof, sharing

incentive and Pareto efficiency cannot be provided simul-

taneously. There is one exception: if all jobs have the same

speedup by using GPUs, then the problem degenerates to a

traditional multi-resource allocation, where DRF can be ap-

plied. However, it is not true in practice as shown in Figure 2a.

Formally, we have the following impossibility result.

Lemma 3.3. No multi-configuration allocation can satisfy
(i) PE and SI, and (ii) SP simultaneously unless the relative
efficiency of CPU and GPU is the same for all jobs.

The proofs of Lemmas 3.2 and 3.3 are included in the

appendix.

Now we briefly discuss the intuition behind this lemma.

Consider the environment with CPU, GPU and memory de-

fined above. Two users i and j have the true relative efficiency

of GPU compared to CPU дi and дj , we assume дi < дj . Let
the reported relative efficiency be д̃. PE implies that user i
should utilize CPU first while user j utilizes GPU first. SI

requires that both users get at least
1

2
(1 + дi ) and

1

2
(1 + дj )

computation, respectively. As a consequence, user i can re-

port a д̃i that д̃i = д̃д − δ1 for small δ1 > 0 to get more

resources, which is ensured by SI. User j can also manipulate

its demand to counter i’s movement by lowering its д̃j to
д̃j = д̃i + δ2 for small δ2 > 0. As a consequence, there does

not exists a point (д̄i , д̄j ) where both users are satisfied.

3.3.2 Our Idea
AlloX maintains a progress for each user over time, which

is defined in the following way. For job i , denote its CPU
configuration by (c,mc ,pc ), where c is the CPU demand,mc
is the memory demand, and pc is the processing time on

CPU, and its GPU configuration by (д,mд,pд), where д is

the GPU demand,mд is the memory demand, and pд is the

processing time on GPU. Ifpc is smaller thanpд (CPU is more

effective), we use the dominant share of the CPU configura-

tion di = max{c/C,mc/M}, whereC andM are the CPU and

memory capacity of the cluster. The dominant share of CPU

configuration is the maximum of normalized CPU usage

and normalized memory usage. Otherwise, we use the domi-

nant share of the GPU configuration di = max{д/G,mc/M},

where G is the GPU capacity of the cluster.

The value of the job i is the dominant share di at the
time of scheduling discounted if the job is not placed on

the more effective resource. For instance, if job i is more

effective on GPU but is placed on CPU, its value vi =
pд
pc
di =

pд
pc

max{д/G,mд/M}, where
pд
pc

is the discount factor. A user’s

progress is the sum of values of all her jobs that are currently

running.

Consider a simple example where the job has CPU config-

uration (1, 4, 20) and GPU configuration (1, 2, 5). The system
capacity is (8, 2, 64) for CPU, GPU, and memory. Because

GPU provides a shorter processing time, the dominant share

of the job is
1

2
. If the job is actually scheduled on GPU, its

value is
1

2
. Otherwise, it is discounted by

1

4
(to

1

8
) because

running on CPU is 4 times slower than GPU. Over the execu-

tion of the job, either on CPU or GPU, its aggregated value

is the same. Actually, the progress of a user can be viewed

as her instantaneous throughput.

3.3.3 Incorporating Fairness into AlloX
AlloX provides a fairness knob and the system operator can

adjust its value α in [0, 1], which affects how many users

are taken into consideration when a scheduling is triggered.

For instance, with 20 users and α = 0.3, only jobs from 6

users with lowest progress are considered for scheduling.

When α = 1, there is no fairness constraint and all users are

considered. The AlloX algorithm is based on Algorithm 1

and incorporates online arrivals and fairness considerations.

Lines 2-6 of Algorithm 2 prepares inputs for the matching

problem. In particular, it only considers jobs from ⌈αn⌉ users
with the lowest progress. After solving the min-cost match-

ing problem in Line 7, the algorithm simply searches for the

first job scheduled on machine i . Specifically, the scheduler
checks all entries affiliated with the available machine i and
find a valid entry with largest k , which implies that the cor-

responding job w is scheduled first according on machine

i .
Occasionally, the scheduler cannot find a valid job. It oc-

curs when no job is scheduled on the available machine based

on current jobs and system load. In this case, the algorithm

returns no job and the system waits until the next event such

as new job arrivals or a new machine becomes available.

Lemma 3.4. For static allocation, AlloX is Pareto-efficient. If
all jobs are identical and divisible within each individual user,
AlloX is envy-free and sharing-incentive under α = 0.
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Algorithm 2 AlloX Scheduler

1: function ScheduleNextJob(available machine i)
2: Update users’ progress and get the set of usersAα consisted

of ⌈αn⌉ users with the lowest progress.

3: for all job j in the waiting queue from Aα do
4: Add processing time of job j to matrix P
5: end for
6: Generate the delay matrix D and further the cost matrix Q ;

7: Solve the min-cost matching problem defined by Q to get

the matching matrixM
8: for k = J : 1 do ▷ J is the total # of jobs in Aα
9: forw = 1 : J do
10: if M(w,m(k − 1) + i) = 1 then ▷ w is first job

scheduled on machine i
11: schedule jobw to machine i
12: Update available time ωi and users’ progress

13: return jobw
14: end if
15: end for
16: end for
17: return null

18: end function

The proof of this lemma is included in the appendix.

4 AlloX Implementation
We build AlloX based on Kubernetes using roughly 3000

lines of Go code for the resource manager and 1500 lines of

Python for its online job estimation tool. We pick Kubernetes

because it well supports clusters consisted of heterogeneous

resources such as CPU and GPU.

AlloX has three main components: Estimator, Scheduler,
and Placer (Figure 9). AlloX first uses the estimator to obtain

job characteristics. The scheduler then uses the algorithm

described in the previous section to decide which job to

be scheduled next and whether to place it on CPU or GPU.

Finally, the placer executes the schedule in the system.

4.1 Estimator
We propose an estimator that works for training jobs where

we know the number of iterations. The estimator predicts

jobs’ resource demands and their processing times on CPU

and GPU in an online manner. The completion time on each

resource is linearly estimated based the two small samples of

the job. Totally, there are four samples for each job on CPU

and GPU. In our experiment, the length of the sample jobs

is 3% of the real jobs. The estimation of completion times

is relatively accurate, especially for most machine learning

jobs that are iterative [61, 69]. Figure 10 shows the CDF of

estimation errors of 40 jobs through real experiments. The

mean absolute error is 8% and the standard deviation is 11%.

Similar to Gandiva [64], the estimator determines the

memory demands of jobs by monitoring the memory us-

age of their corresponding samples. Currently, GPUs in most
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Figure 9. The AlloX system has three main components:

Estimator, Scheduler, and Placer.
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Figure 10. CDF of the estimation errors from experiments.

clusters do not support fine-grained sharing among multiple

jobs [64], except for research efforts such as [66]. Therefore,

we consider a job using a whole GPU in AlloX. For CPU,

the estimator picks the maximum number of cores in a CPU

to optimize the performance of the job on CPU. Because

Kubernetes does not allow a container to have more than

1 CPU, AlloX does not give more CPU cores than a single

physical CPU has either.

4.2 Scheduler
Kubernetes does not support fair allocation or job scheduling.

As a result, we cannot simplymodify some existing scheduler

for our algorithm. Instead, we implement our scheduler from

scratch using the kube-scheduler API.
Jobs arrive in a single queue in kube-scheduler. Given

the set of available jobs, the scheduler decides which job

to run. kube-scheduler receives the estimated processing

times of the CPU and GPU configurations from the estima-

tor and passes them to AlloX scheduler via kubectl. AlloX
scheduling procedure is activated prior to Pod Admission. If
the job is not admitted, it is sent back to the waiting queue.

In addition to our scheduling algorithm, we implement other

methods described in Section 5.1.1.

We add fairness support to kube-scheduler by updating

the progress of all users over time (§3.3.2). schedulerCache
8



in kube-scheduler captures the snapshot of the whole sys-

tem.When there is an update from the system, schedulerCache
is notified and AlloX checks if a job gets resources or finishes.

If a job receives allocated resources, the progress of that user

is increased accordingly. Recall that if a job is running with

the unfavorable configuration (with longer processing time),

its value is discounted. If a job finishes, we deduct its value

from the progress of the corresponding user.

4.3 Placer
The placer dynamically configures proper containers and

executes jobs within these containers. In the current Kuber-

netes system, jobs are configured to run on CPU or GPU

ahead of time; hence, they do not need the placer. This is

another new component added. To enable the resource place-

ment, it is also required to have a change at application level.

In our experiments, we added a configuration function that

allows the scheduler to control their runtime resource.

4.4 Operational Issues
Scalability. The network flow problem for job scheduling

can be solved in polynomial time. Using the Hungarian al-

gorithm, the computation complexity is O((mn)3), wherem
is the number of nodes and n is the number of jobs. If the

scheduling interval has to be very short, this approach may

be too slow. There are several solutions to this problem. We

suggest using one of the three solutions, i.e., parallel pro-

gramming, divide-and-conquer, or a heuristic. However, the

latter two may not retain the optimality of AlloX.

Using multiple cores of GPU to solve the Hungarian al-

gorithm is one of the best ways to speed up the solver and

retain the optimal solution [46]. We evaluated the GPU ver-

sion of Hungarian algorithm and find out that it can solve a

problem with 100 nodes and 10 queued up jobs at 0.2 seconds

using NVIDIA Quadro P4000.

Kubernetes supports multiple schedulers in the same clus-

ter; therefore, we can divide a large cluster into multiple

small ones [6] to conquer. However, although both the two

aforementioned solutions can speed up the solvers and re-

tain the optimality, they just solve the scalability issue up to

some certain level. Therefore, we suggest using a heuristic

solution. The idea here is to get performance close to AlloX

but do not starve the jobs.

In the heuristic solution, AlloX picks the shortest jobs

across CPU and GPU first. Additionally, if a job is waiting

beyond a timeout, it will be prioritized. We call this algo-

rithm AlloX+. The computational complexity of AlloX+ is

O(mnloд(n)). We tested the heuristic algorithm of AlloX+

on 1000 jobs and 10000 nodes, showing that it can schedule

these jobs in sub-second level (0.7 seconds). We show that

performance of AlloX+ can be close to AlloX in the Section 5.

Generality of estimator. Our estimator in Section 4.1 is not

general enough to handle all type of applications. In fact,

there is already a large body of research on this problem. Op-

timus proposes using an inverse linear function to estimate

the complete times of deep learning jobs [53].

For distributed jobs with large data input, we can use

Ernest [61] or Cherrypick [10]. For pipelining jobs like SQL

queries, an estimator like progress indicators are applied

[14, 47]. For jobs that have multiple similar tasks, we can

estimate resource demand and completions using ParaTimer

[48] and Paralax [49].

Minimum CPU per job. When developing our scheduler,

we realized all jobs running on GPUs also require (a small

amount of) CPU for proper execution. AlloX addresses this

by reserving a small number (one by default) of CPU cores

for GPU jobs. As the number of CPU cores in a cluster is often

large, this change has little impacts on the performance.

Job profiling overhead. Before a job is scheduled, its sample

jobs must be completed first. To this end, AlloX prioritizes all

sample jobs. Because these sample jobs are relatively small,

the overhead is minimal. AlloX also sets a limit on resources

for sample jobs to reserve enough resources for the real

jobs. In addition, if a sample job is significantly longer than

others, we do not need to complete it as it already indicates

the original job is very long. We can adjust the sample job

size to balance the overheads and estimation accuracy.

Low utilization with small α . The fairness parameter, α ,
allows the explicit tradeoff between fairness and perfor-

mance. When α is small, the small set of users may not

have jobs or want to wait for better resources, e.g., there

are available CPUs but they prefer GPUs. This results in

low resource utilization. To deal with this, AlloX temporally

increases α to include more users who need the available

resources.

Resource availability. While it is sufficient to use estimated

processing times in the scheduling algorithm, resource avail-

ability needs to be obtained separately over time because

there may be significant estimation errors. By default, Kuber-

netes periodically checks the health and updates from each

node. Therefore, resource availability can be collected to-

gether with the current health check without additional over-

heads. If we need to inquire the availability information from

all nodes very frequently, it might still lead to significant com-

munication overheads for large-scale clusters. In this case,

the information of nodes and jobs (schedulercache.NodeInfo)
are cached in kube-scheduler and can be updated via events.

5 Evaluation
We evaluate AlloX through both experiments on real systems

and numerical simulations. Our key takeaways are:
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• AlloX reduces the average job completion time by as

much as 95% compared to existing methods and base-

lines in various settings.

• AlloX achieves comparable performance of SRPT (an

unrealistic lower bound) under a wide range of set-

tings.

• AlloX provides fairness among users comparable to

existing fair allocation and prevents starvation.

5.1 Experimental Methodology
Cluster. We setup Kuberneteswith GPU support on a cluster

of one master node, 8 CPU workers, and 4 GPU workers.

The master node coordinates the workers and runs the job

estimation tool. Each CPU worker is a xl170r server from
Cloudlab [3] with 20 virtual CPU cores and 64GB RAM. Each

GPU node is a p2.xlarge instance from Amazon EC2 with 1

K80 GPU, 4 CPU cores and 61GB RAM. This cluster setup

mimics a hybrid cloud that has traditional CPU nodes local

and expensive GPU nodes on public clouds. Furthermore,

We do not run distributed jobs on the cluster so that there

is no strict requirement on network bandwidth. There are 4

users, which is increased in the simulations.

Workload. Each user has 10 popular Tensorflow jobs, e.g.,

Googlenet, Lenet, and Alexnet. The job configurations such

as batch sizes and batch numbers are different, resulting in

the speedup rates of using one GPU versus one CPU ranging

from 1.8 to 10. For jobs on CPU, the number of threads is set

at 19 to best utilize the virtual cores while leaving one core

for other services on each node. We run a small sampling

job for each real job to obtain the parameters for both CPU

and GPU configurations, as we discussed in Section 4.1. The

total overhead of sampling jobs is 3% of the real jobs. We

vary the settings in Section 5.3 to evaluate the impacts.

Simulator. To evaluate AlloX at a larger scale, we imple-

ment a Java-based cluster simulator, which emulates the

cluster with multiple resources, e.g., CPU, GPU, and mem-

ory. We validate the accuracy of the simulator by comparing

its results to those from real experiments over the cluster

(Figure 11). There are 20 GPUs, 20 CPUs with 20 cores each,

and 1280 GB RAM. Since GPU memory is small, RAM is not

the bottleneck when we run the same jobs on CPUs.

For numerical simulations, we use the workload trace from

the Google cluster [5] to generate arrival times for Tensor-

flow jobs. There are 10 users and over 1000 jobs for each

user. By default, the fairness level α is set at 0.1, meaning,

we schedule jobs from the 1/10 of all users who have the

least progress whenever a node becomes available. The esti-

mation errors are around 10% and their profiling overheads

are 3% of the corresponding real jobs as we discussed in Sec-

tion 4.1. The impacts of the fairness level, estimation errors,

and overheads are studied in Sections 5.2.4, 5.3.1, and 5.3.2,

respectively.

Metrics. To evaluate the performance, we measure the av-
erage completion time of all jobs under AlloX and baseline

algorithms. We use standard deviation of progresses across
users to evaluate fairness. For starvation, we focus on the

progress of users with longer jobs.

5.1.1 Baselines
We compare AlloX to the following methods.

ES (equal share with shortest job first): ES divides all re-

sources equally among users statically. For a particular user,

whenever a resource becomes available, ES picks the job with

the shortest processing time on this resource. For instance,

if all jobs prefer GPUs, ES first fills up all available GPUs

with shortest jobs based on their processing time on GPU,

and then fills available CPUs with the shortest jobs using

CPU configurations. ES needs the estimator to predict the

processing time in different configurations.

DRFF (online DRF with FCFS): Whenever a resource be-

comes available, DRFF schedules the first job of the user with

the least dominant share. Jobs are processed in a First-Come-

First-Served manner within every user. For job configura-

tion, we assume users have some preference. If all jobs prefer

GPUs, DRFF always picks the GPU configuration. DRFF does

not need the estimator to pick the configuration.

DRFS (DRF with shortest job first): DRFS is similar to

DRFF, but within each user, jobs are scheduled in a shortest-

job-first manner. Therefore, the estimator is needed. Each

user relies on the estimation to pick whether CPU or GPU

for each job configuration.

DRFA: DRFA uses some average speedup rate to convert

GPU resources to the corresponding CPU ones, e.g., if the

speedup rate is 10, 1 GPU is considered 10 CPU. Then the

problem is simplified to the original multi-resource allocation

without interchangeable resources, and online DRF is applied.

Within each user, jobs are processed in a shortest-job-first

manner, and therefore the estimator is needed.

SRPT: At any time, the job with the shortest remaining
processing time is executed, which requires preemption. This

approach is unrealistic in many real systems such as Kuber-

netes because jobs cannot be paused and moved from one

resource to another, or even a different resource, without

large overheads. However, SRPT is good at minimizing the

average job completion time, and therefore serves as a goal

for AlloX to achieve. Note that AlloX used in this section

does not use preemption for conservative evaluations of the

improvements.

AlloX+: A heuristic version of AlloX. AlloX+ first prio-

tizes the jobs with waiting times beyond a time-out. If jobs

are not timed out, AlloX+ picks the shortest job first.

5.2 AlloX Performance
We first evaluate AlloX through real experiments and vali-

date the accuracy of the simulator in Section 5.2.1. Results

from the simulator are discussed in Section 5.2.2.
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Figure 11. [Cluster] AlloX reduces the average job comple-

tion time. For each algorithm, the first bar shows results

from experiments, and the second bar is from our simulator.
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Figure 13. [Simulation] AlloX and AlloX+ outperform oth-

ers and are not far from SRPT in large-scale simulations.

They even outperform SRPT for the longest jobs.

5.2.1 Experiments on a Cluster
Figure 11 illustrates the average job completion time un-

der AlloX and other baselines through experiments and the

simulator we developed. First, Allox reduces the average

completion time significantly compared to other baselines.

In particular, DRFF and DRFS do not fully utilize the CPU

resources as shown in Figure 12, therefore incur longer wait-

ing time. ES and DRFA reduce the waiting time by increasing

the CPU utilization (Figure 12). Although AlloX has similar

CPU and GPU utilization compared to DRFA and ES, AlloX

outperforms DRFA and ES by better job scheduling and con-

figuration selection. This is highlighted by the significant

reduction in job processing time.

Figure 11 validates that the completion times in simula-

tions and experiments are consistently similar. This allows

us to perform larger-scale evaluations using the simulator.

5.2.2 Simulation Results
Figure 13 shows our simulation results. With a larger scale

and more jobs, AlloX (α = 0.1) consistently outperforms

Figure 14. [Simulation] AlloX consistently maintains the

best performance and small disparity across users’ progress.

DRFF, DRFS, ES, and DRFA even more, reducing the comple-

tion time by 95%, 84%, 88%, and 53%, respectively. Impres-

sively, AlloX is not far (30%) from SRPT that only minimizes

the average completion time without considering fairness,

and with preemption allowed. When we focus on the longest

1% jobs, AlloX has even larger improvements and beats SRPT.

This is not surprising because SRPT prioritizes shorter jobs.

The heuristic-based algorithm (AlloX+) with low scheduling

latency is also much better than other baselines.

To provide more details regarding the comparison, we

show the job arrivals, average job completion time, and the

standard deviation of progresses across users over time in

Figure 14. The average completion times of AlloX and SRPT

are consistently better over time compared to other base-

lines. Note the completion time is shown on a logarithmic

scale. When the arrival rates are high, the completion time

of other baselines are much higher than that of AlloX. Not

surprisingly, DRFF cannot process the jobs fast enough so

queues are built up. This highlights by effective scheduling

and configuration selection, AlloX processes jobs faster and

therefore allows high arrival rates.

The figure also shows the disparity across users’ progress

over time. In this case, SRPT and DRFA are much worse

than AlloX, while DRFF, DRFS, and ES are a little better than

AlloX (all users progress at similar, but much slower rates

compared to AlloX). While the disparity in SRPT is intuitive,

DRFA fails to provide fairness because it ignores the different

speedups of users, and instead use some averaged value to

allocate resources.
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Figure 16. [Simulation] Performance and fairness trade-off.

A larger α reduces completion times at the cost of fairness.

5.2.3 Starvation
In extreme cases, some users may starve under schedulers

like SRPT. Figure 15 shows the number of completed jobs

of the user with longer jobs than others. As expected, SRPT

performs the worst with the least number of jobs finished.

In contrast, AlloX provides the best progress of this user

because it maintains fairness and is more effective than other

baselines.

5.2.4 Performance and Fairness Trade-offs
Figure 16 shows the trade-offs between performance (aver-

age completion time) and fairness. We vary the parameter α
from 0.1 to 1 (smaller means fairer) and compare the perfor-

mance with ES and SRPT. This shows with larger α , AlloX
approaches SRPT in performance. The small gap (9%) be-

tween AlloX and SRPT when α = 1 is due to the fact SRPT

is preemptive at no cost while AlloX does not allow preemp-

tion. However, the unfairness in terms of standard deviation

of users’ progress also increases with larger α . Normally, a

small α around 0.2 is good at providing large performance

improvements at little cost of fairness.

5.3 Sensitivity Analysis
5.3.1 Estimation Errors
Figure 17 evaluates the impacts of misestimations on the

performance. Though DRFF does not need the estimation,

its performance is so poor that we compare AlloX with a

stronger baseline ES. We do not compare with DRFA because

it is not practical to know the average speedup rate. In spite
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Figure 17. AlloX is robust to estimation errors.
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Figure 18. Impacts of profiling overheads.

of large estimation errors, AlloX still provides large improve-

ments that are similar to SRPT. This highlights the value of

incorporating (even noisy) estimation.

5.3.2 Profiling Overhead
Estimations require running profiling jobs with some over-

head. Figure 18 evaluates the impacts of profiling overheads

on performance. Recall in our experiments have profiling

overheads at 3%. As DRFF does not require estimation, its

performance is unchanged. With large overheads, the per-

formance of all other solutions degrades. However, AlloX

provides consistent, significant improvements compared to

other baselines. In practice, for long and iterative machine

learning jobs, it is reasonable to use small sampling jobs. We

can also obtain the runtime estimation from users [29, 59],

which may lead to further improvements.

6 Related Work
Resource configurations. Currently, developers or (data)
scientists select job configurations based on their own expe-

rience and/or some recommendations. Recently, there have

been some works on selecting cloud virtual machine (VM)

configurations such as Paris [65], Ernest [61], and CherryP-

ick [10]. While these focus on picking the number of VMs

of different types, the estimation tool in AlloX decides the

configuration over interchangeable resources automatically.

Resourcemanagers. Given users’ resource demands, YARN

[60] and other allocation tools [54, 62] fit the submitted jobs

when there are available resources. In contrast, AlloX does

not ask users to submit their resource demands ahead. In-

stead, AlloX configures the jobs for users and submits the
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jobs for scheduling automatically without users’ involve-

ment. Finally, none of the existing GPU cluster managers

[33, 53, 64] consider interchangeable resources.

Multi-resource job scheduling. While job schedulers tradi-

tionally deal with a single resource [11, 38, 68], modern clus-

ter resource managers, e.g., Mesos [34], YARN [60], and oth-

ers [54, 62], employ multi-resource schedulers [26, 28, 31, 32]

to handle multiple types of resources and optimize diverse

objectives. These objectives can be fairness (e.g., DRF [28]),

efficiency (e.g., Tetris [31]), performance (e.g., [26]), or com-

binations of different objectives (e.g., BoPF [44], Carbyne

[32] and Quincy [38]). However, none of these focus on inter-

changeable resources. To the best of our knowledge, AlloX

is the first multi-resource job scheduler over interchange-

able resources (CPUs and GPUs) for both performance and

fairness.

Heterogeneous resources. Recent schedulers also deal with
jobs with placement constraints, e.g., Kubernetes [6] han-

dling resource constraints in a best-effortmanner andChoosy

[29] in a fair way. In addition, Phoenix [57] focuses on mini-

mizing the job response time, and Late [68] improves MapRe-

duce job response time in heterogeneous environments. They

mainly focus on the resource constraints and implicitly as-

sume that the speed-up rates among nodes are identical.

Hence, none of them deal with interchangeable resources.

There are a few works on interchangeable resources like

µLayer [40] and TetriSched [59]. µLayer does resource place-
ment for each layer of artificial neural networks, while AlloX

performs both inter-job scheduling and resource placement.

The most related work is probably TetriSched [59]. Com-

pared to TetriSched which focuses on deadlines only, AlloX

considers both performance and fairness. TetriSched formu-

lates the problem as a Mixed Integer Linear Programming

(MILP), which cannot be solved in polynomial time so far.

In contrast, AlloX solves a linear programming with low

complexity. In addition, TetriSched does not provide fairness

and may lead to starvation, while AlloX explicitly balances

performance and fairness, and prevents starvation. Finally,

TetriSched simply assumes estimations needed are known

beforehand, while AlloX obtains the information in an online

and automatic manner. Beyond GPU/CPU systems, hetero-

geneous resources have been studied, e.g., heterogeneous

computing, power and cooling resources for sustainable data

centers [43], heterogeneous energy storage systems for elec-

tricity market [15].

7 Concluding Remarks
In this paper, we design and implement AlloX, a system that

minimizes the average job completion time in CPU-GPU

hybrid clusters while providing fairness among users and

preventing starvation. AlloX profiles and schedules jobs in

an automatic and online manner. Our algorithm solves a

min-cost bipartite matching problem and obtains the corre-

sponding placement and scheduling decisions. It provides

an optimal solution in simplified settings and outperforms

all baselines significantly in general settings. Evaluations

highlight that AlloX can significantly improve system perfor-

mance while maintaining fairness among users. The problem

studied in this paper is a generalization of the traditional job

scheduling and fair resource allocation problems, and can

be applied beyond computational resources, e.g., to differ-

ent network interfaces and storage devices. Extending the

algorithmic study and system design to these resources is

our ongoing work.

Future directions. Having more than two interchangeable

resources such as multiple GPU types raises challenges at

both the estimator and scheduler. It increases the overheads

for the estimator and addsmore computing dimensions to the

scheduler. We leave these challenges as future work. Another

extension to AlloX would be working with distributed jobs

that require the combination of intra-job and inter-job sched-

uling. Furthermore, if jobs can be preempted and switched

from this resource to another, it would be interesting to find

an algorithm that beats shortest remaining time first (SRPT).
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A Appendix
A.1 Proof of Lemma 3.1
Let the optimal solution be OPT (·). The proof follows two
steps: first we show that any scheduling instance S can be

transformed into a corresponding bipartite matching prob-

lemMS
; then we prove their optimal solutions are indeed

equivalent.

Let дki and cki be the machine-position variables, where д and
c represent the GPU and CPU machines, i is the machine id

and k is the position index counted backward from the end.

Let Jj represent job j. Define graph M = (N , E), where N

consists of nodes дki ,c
k
i and Jj for all i, j,k and E consists of

all pairs in (дki , Jj ) and (cki , Jj ) for all i, j,k . Define the cost

for edge (дki , Jj ) ((c
k
i , Jj )) as kp

j
д (kp jc ), where p

j
д (kp jc ) is the

processing time of job j on GPU (CPU). By definition,M is a

bipartite graph.

Now we show that any feasible scheduling for problem S

has a valid matching in the corresponding MS
. To see this,

notice that for any feasible scheduling, each job is scheduled

only once and there is a unique ordering on each machine.

For any job j that is placed onдi (ci ), let its order be r (counted
backward from the end of дi ), then in graph M from MS

,
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consider the edge set P from (дri , Jj ) ((c
r
i , Jj )) for all j and its

corresponding i and r . Clearly, P is matching as all nodes in

Jj are connected and each of them has a unique destination.

Now we show that the the total completion time in S is

equivalent to the total cost in MS
. To see this, consider any

job j that is placed on дi (ci ) with order r counted backward.

Then obviously, there are exactly r jobs will be consuming

pд(pc ) computation time on machine i based on the place-

ment of job j , so the total completion time of this placement

is exactly the cost of the corresponding edge in MS
. So the

total cost of the two instance will also be the same. We have

OPT (S) ≥ OPT (MS).

Conversely, we show that any valid matching in graph G
corresponds to a feasible extended scheduling problem S′

by allowing adding ’dummy jobs’ with 0 processing times.

Firstly, we add n dummy jobs on each machine. Then for all

edges (дri , Jj ) ((c
r
i , Jj )) picked inM

S
problem, simply replace

the rth last dummy job on дi (ci ) with job Jj . Since the cost
of using the edge is equivalent to the computation time of

the corresponding placement. OPT (MS) ≥ OPT (S′).

However, with extra dummy jobs, the total completion time

will be nondecreasing, OPT (S′) ≥ OPT (S). So we have

OPT (S) = OPT (MS).

A.2 Proof of Lemma 3.2
Consider a simple case with n users, and each user has identi-

cal jobs. The speedup of using a GPU versus a CPU is (1+ ϵ)
for all jobs. Clearly, users would choose the configuration

that runs faster, which are the GPU configurations in this

case. By the allocation with DRF, all GPUs are shared equally

among users while all CPUs remain idle. Assuming other

resources such as the memory is not the bottleneck, the allo-

cation is not Pareto efficient because CPUs can be utilized to

improve the progress of all users. This allocation does not

provide sharing incentive because every user is worse than

equal sharing, where each user has some CPUs in addition

to the same amount of GPUs allocated. Finally, if some user

lies that she prefers CPUs, she will get all the CPU nodes and

progress faster than others. This violates strategy-proofness.

A.3 Proof of Lemma 3.3
Consider two users A and B. Both have identical jobs. The

speedup of userA’s jobs is βA = 2, while the speedup of user

B’s jobs is βB = 4. Assume computation is the bottleneck for

both users. The system has the same amount of CPUs and

GPUs, normalized to 1.

We first consider the sharing incentive (SI) and Pareto

efficiency (PE) properties. SI requires user A gets at least

1

2
(1 + 2) = 3

2
computational resources (CPUs and GPUs com-

bined), while user B gets at least
1

2
(1 + 4) = 5

2
computational

resources. From PE, we know that user A should use CPUs

first while user B should use GPUs first because βA < βB .

Because GPUs are more effective, user A should get all the

CPUs and some fraction of GPUs.

Note PE also requires that there should not be any leftover

CPUs or GPUs if computation is the system bottleneck. Let

A’s share on GPU be x . Then B’s share on GPU is 1−x . By the
sharing incentive property, for user A, we have 2x + 1 ≥ 3

2
,

i.e., x ≥ 1

4
; for user B, we have 4(1 − x) ≥ 5

2
, where we have

x ≤ 3

8
. Therefore SI and PE requires

1

4
≤ x ≤ 3

8
.

If both users report truthfully, assuming at the final alloca-

tion, ∃δ > 0 s.t. x+δ < 3

8
, we show it is not strategyproof for

userA. Specifically, we show that by lying about her speedup

ratio, user A can always get at least ( 3

8
− σ ) fraction of GPU

for any small σ > 0.

To see this, let user A report β ′
A = 4 − ϵ for some small

ϵ > 0 instead of the true value 2. By the SI property, user A
needs to get at least

1

2
(1 + 4 − ϵ) computational resources.

As she has a lower speedup ratio than user B, she will get all
CPU, therefore the computational resources from GPUs are

1

2
(1 + 4 − ϵ) − 1 = 1.5 − 0.5ϵ . This implies that user A needs

to get at least
1.5−0.5ϵ

4−ϵ fraction of GPU, which approaches

arbitrary close to
3

8
with decreasing ϵ . Therefore, there exists

an ϵ that user A can use to get at least ( 3

8
− σ ) fraction of

GPU. Thus, to make sure user A has no incentive to lie, the

allocation has to provide at least
3

8
fraction of GPU to user

A.
Similarly, user B can report β ′

B = 2 + ϵ to increase her

allocation on GPUs. If she reports β ′
B = 3, B can get at least

2

3

GPU. Clearly, there is not enough GPU to share as
3

8
+ 2

3
> 1.

So no allocation can be strategyproof.

A.4 Proof of Lemma 3.4
Pareto-efficiency comes from the fact that AlloX is optimal

for static scheduling. So clearly no one can increase her

completion time without hurting others’ performance.

With assumption of divisibility and α = 0. AlloX will

maintain a strict fairness allocation, where the progress of all

users are equal all the time. To show envy-freeness, consider

arbitrary two users and compare their dominant resources. If

the type of their dominant resources is the same, then from

the equality of progress, their allocation of that resource is

also the same, so there won’t be envyness. If they have dif-

ferent dominant resources, then by switching their resource,

both users will have less resource in their dominant resource,

which in return make their progress worse.

By contradiction, if sharing-incentive is not satisfied, then

there exists a user whose progress is worse than equal shar-

ing. But by the equality of progress and subsequently equality

of dominant share, this means all users will be worse than

equal sharing. However, this is not possible as the allocation

is Pareto-efficient.
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