Paper Session: Scratch

SIGCSE ’20, March 11-14, 2020, Portland, OR, USA

Eliciting Student Scratch Script Understandings
via Scratch Charades

Diana Franklin*, Jean Salac*, Cathy Thomas', Zene Sekou*, & Sue Krause*
“University of Chicago, Chicago, IL
T Texas State University, San Marcos, TX, USA
{dmfranklin,salac,zene,sgkrause}@uchicago.edu;thomascat@txstate.edu

ABSTRACT

With many school districts nationwide integrating Computer Sci-
ence (CS) and Computational Thinking (CT) instruction at the K-8
level, it is crucial researchers closely inspect the relationship be-
tween program expression and student understandings.

In this study, we propose and report on our use of Scratch Cha-
rades, a game in which students act out Scratch scripts while others
build them. The purpose of Scratch Charades is to familiarize stu-
dents with scripts and blocks without the cognitive overhead of the
complex user interface. However, in this study, we also used it to
elicit student understandings about Scratch blocks and scripts to de-
sign mnemonics to help students debug their code. We propose two
building and/or debugging strategies based on our observations.

CCS CONCEPTS

« Social and professional topics — Computer science educa-
tion; Computational thinking;

KEYWORDS

learning strategy, computational thinking, Scratch, elementary ed-
ucation

ACM Reference Format:

Diana Franklin®, Jean Salac*, Cathy Thomas', Zene Sekou*, & Sue Krause*.
2020. Eliciting Student Scratch Script Understandings, via Scratch Cha-
rades. In The 51st ACM Technical Symposium on Computer Science Education
(SIGCSE °20), March 11-14, 2020, Portland, OR, USA. ACM, New York, NY,
USA, 7 pages. https://doi.org/10.1145/3328778.3366911

1 INTRODUCTION

Momentum has been building for integrating computer science
into elementary school classrooms. Providing access to comput-
ing curricula is just one part of the solution. It is critical for com-
puter science instruction to be effective for a broad spectrum of
students. Diverse learners significantly underperform white peers
with higher socio-economic status on important academic mark-
ers [4, 14, 15]. Recent work [18] has shown strong correlations
between overall school academic performance and learning in a

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SIGCSE °20, March 11-14, 2020, Portland, OR, USA

© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6793-6/20/03.

https://doi.org/10.1145/3328778.3366911

780

computer science curriculum built on open-ended projects designed
using a Constructionist pedagogical approach [7].

Computational Thinking instruction in elementary school often
uses Scratch, a visual block-based language with an integrated
development environment[11]. Each command or instruction is
called a block, and it can be dragged into code sequences called
scripts. Each script begins with an event. For any Scratch learning
experience, there are three distinct but related components: the
Scratch language, the Scratch development environment, and the
curriculum. In this paper, we focus on the Scratch language. In
particular, this study has two purposes.

First, this study introduces our first experience with Scratch
Charades, designed to allow students to learn the Scratch program-
ming language outside of the Scratch development environment.
While similar to existing methods of demonstrating how code works
through human demonstration, it gamifies this to allow students to
engage in the activity in a different way than a demonstration.

Second, observations of students playing the game were used to
inform the design of instructional supports for struggling learners.
In order to improve instruction for students who need more support,
it is important to find out what aspects of Scratch are sources of
confusion, defined as a mismatch between what students think a
script should do and what a script actually does. If we can elicit
students’ early impressions of blocks and scripts, this can guide
the development of activities, teacher materials, and debugging
strategies. Activities can be developed that hone in on specific
common issues to highlight how the scripts actually work. Teacher
materials can highlight common student mistakes, allowing them
to anticipate and recognize the source of specific problems. Finally,
debugging strategies can be created that explicitly direct students to
look for common mistakes. More precisely, we use Scratch Charades
to answer this question: “For what Scratch blocks or code do novice
students’ interpretations diverge from the Scratch implementation?
And in what ways?”

In this study, we use Scratch Charades, a Scratch-based Charades
game, to elicit early interpretation of Scratch blocks and scripts. We
focus both on students who act out given scripts and who construct
the scripts for code they see acted out. Our experiments identified
several common mismatches between student interpretations and
Scratch implementation at a block, loop, and script level. And, while
experienced instructors will be familiar with these mistakes, this
identifies them in a methodical manner and uses those typical
mistakes to create building / debugging strategies to help students.

The contributions of this paper are:

e The introduction and refinement of Scratch Charades, a for-
malized game students can play with each other with specific

https://doi.org/10.1145/3328778.3366911
https://doi.org/10.1145/3328778.3366911

Paper Session: Scratch

student roles and materials to introduce new concepts prior
to use in the Scratch programming environment.

o Identification of differences in interpretation of the meaning
of Scratch blocks between students and Scratch.

o Identification of differences in interpretation of the meaning
of Scratch repeat loops between students and Scratch.

o Mistakes that students make in building sequential and loop-
based scripts.

o Creation of two building and/or debugging strategies based
on the mistakes observed.

We find that some of the most common sources of confusion are:

e What point in direction does

e Which blocks’ actions persist and which “reset”

o The timing relationship between consecutive blocks
e How to interpret multi-block repeat loops

The rest of the paper is organized as follows. We next present
Scratch Charades itself, followed by background, related work (Sec-
tion 3) and theoretical framework (Section 4). Section 5 contains
the methods. In results, Section 6, we present both the observations
and the debugging strategies created from those results. Finally, we
describe future work and conclusions in Section 7 and 8.

2 SCRATCH CHARADES

A version of Scratch Charades has been played in classrooms around
the world. As a demonstration, one person acts out a script in order
to help them better understand the connection between the blocks
and the actions that result from them. The difference between our
formalized Scratch Charades game and typical similar demonstra-
tions is that during demonstrations, the audience can see the script
being acted out. In this game version, only the actor sees the script
- the audience members are active game participants, using blocks
to build the scripts they see in order to make explicit any lack of
understanding.

Like in Charades, one person is responsible for acting while
others attempt to guess what they are acting out. Two roles were
defined: actor, whose goal is to correctly act out a given Scratch
script, and builders, whose goal is to recreate the script they saw
acted out using LEGO Scratch blocks. Students were placed into
groups of three, with the a single actor and two builders each round.
The actor role rotated each round.

In each round, the actor draws the top card from a stack of cards
ordered by difficulty (see Figure 1). The actor acts out the script on
that card. The actor has a “Hello!” say bubble card, a green flag card,
and their body for acting out commands. Four signs are attached to
the four walls of the classroom, with 0°, 90°, 180°, and -90° hung up
to correspond with the four directions on the point in direction
blocks.

The builders have a set of LEGOs, each with a Scratch block
sticker on it. They build the script and ask the actor to check it. The
builders continue until their script matches the one on the actor’s
card. Actors can act the script out multiple times in order to assist
the builders.

Blocks chosen for Scratch Charades are shown in Table 2. These
are specifically chosen because they are very useful in simple
Scratch projects and they can be acted out (unlike change costume).
However, some do involve concepts not yet covered in 4th grade,

781

SIGCSE ’20, March 11-14, 2020, Portland, OR, USA

clicked

when

play sound Meow v until done
= QD
iG] #one

When Green Flag clicked:

1. Play sound Meow
2. Say Hello!
3. Move 1 step

Figure 1: Scratch Charades card

so we chose what we believed would be the simplest form of each
action. For example, turning is very useful. There are two turns
to choose from: Turn a number of degrees or point to an absolute
location. Because 4th grade students may not have learned degrees
yet, we chose point to and placed signs on the wall indicating the lo-
cation. To make a sprite smaller, there are also two choices: change
size by (negative number) and set size to (percentage). Because
neither negative numbers nor percentages have necessarily been
covered by 4th grade, we chose change size by with light instruction
on negative being smaller and positive being larger.

3 BACKGROUND AND RELATED WORK

Computational Thinking instruction at the elementary-school level
often uses Scratch, a visual block-based language with an inte-
grated development environment. Scratch was designed with the
philosophy of “low floors, high ceilings,” which is intended to allow
students with very little background to create projects quickly (low
floors) but have the complexity to provide opportunities for deep
learning through very complex projects (high ceilings). Designed
to support a Constructionist philosophy [7], students in many dif-
ferent settings and age groups have successfully created projects
with Scratch [17, 3]. We also know that some students are able
to create projects but not yet understand the underlying code [1].
For any Scratch learning experience, there are three distinct but
related components: the Scratch language, the Scratch development
environment, and the curriculum.

For example, some challenges, like initialization, is affected by the
programming environment itself, and the lack of a single “starting
point” for a program as well as beginning in the same state as
the prior execution ended [5] or the role of user input [20]. Some
challenges may be conceptual, separate from Scratch, such as loops,
sequence, or variables [6, 18, 20, 8]. Finally, the language itself
can be challenging, with some blocks or aspects of the Scratch
interface above grade level for students on the younger end of the
recommended grade level [9].

Paper Session: Scratch

In this study, we remove the Scratch programming environment
in order to focus on the language itself and capture students’ initial
understandings through their actions.

4 THEORETICAL FRAMEWORK

In our theoretical framework, we draw from two bodies of work.
First, we view the programming language as the learning interface
for the student. Second, we utilize Scratch Charades as a window
into students’ thinking.

4.1 Language as Learning Interface

Programming language design has increasingly been viewed as
an HCI endeavor, especially in the area of computer science learn-
ers. As Andy Ko posited in 2014, “Programming languages are the
least usable, but most powerful human-computer interfaces ever in-
vented” [10]. The Quorum programming language was specifically
designed for the user, using empirical studies on novice students to
choose syntax [19].

This view is supported by Constructivism, which posits that all
learners interpret new knowledge through the lens of their own
understanding [16]. This can sometimes be a benefit, utilizing prior
knowledge to gain new knowledge, as with analogies. However,
this can be a hindrance if the new construct is similar to existing
knowledge but with important distinctions.

4.2 Manipulatives

Using manipulatives allows students to explore and express their
thinking [13]. Diverse students may struggle to explain orally or
express key ideas and concepts in writing [21, 22]. Manipulatives
provide a response mode that is observable [2], thereby allowing
students with limitations in expressive language, either oral or
written, to show what they know. As teachers observe students’
engagement with manipulatives, student thinking becomes overt,
providing teachers with opportunities to scaffold instruction and
enhance student learning. Manipulatives may also support students
in recognizing and negotiating their own misconceptions [12].

l Students [Grade(s) [Hisp [Af Am [Low-SES ‘
14 4,5 N/A 91.6% 77.7%
24 4 95.6% N/A 89.4%
Table 1: Participant School Demographics. The student col-

umn is the number of students who gave consent to be ob-
served. Other information is at the school level.

5 METHODS

In this study, we used students playing Scratch Charades in order to
elicit students’ understandings or interpretations of Scratch scripts.
In this section, we describe the study design, how observations
were performed, and the analysis performed on the observational
data.

782

SIGCSE ’20, March 11-14, 2020, Portland, OR, USA

move __ steps
point in direction
change size by __
say __
play sound __ until done

repeat __
when green flag clicked
when sprite clicked
wait __ seconds

Table 2: Blocks included in Scratch Charades

5.1 Study Design

43 fourth and fifth grade students from two public schools in a
major metropolitan school district participated in this study. The
classrooms were drawn from schools with a high percentage of
low-SES (Socioeconomic), underrepresented minority students, as
shown in Table 1. There was no specific criteria students had to
meet in order to be eligible for observation. In all five classes, all
students were given the opportunity to participate but only those
whose parents had signed consent forms were observed. Before the
study took place, none of the students had instruction on Scratch in
the classrooms. However, some students may have been introduced
to Scratch in other settings.

5.2 Observations

Researchers served as observer-participants. That is, their main
goal was to observe, but they also interacted with the students.

Observers focused on one or two groups and observed several
types of interesting events such as interpersonal interactions, de-
bugging strategies, and when actions did not match Scratch blocks.
Researchers described each observation in prose, noted whether it
related to the actor or builder, the script number, and details on the
mismatch. Because observers were monitoring multiple groups, the
list may not represent all instances of differences between student
interpretations and script execution. Observers also explained con-
cepts to students if the students did not self-correct their mistakes.

In this paper, we focus on two aspects of game play. First, we
analyze the instances when the actor’s actions did not match the
script or when the builders’ interpretation of the code did not match
actors’ actions. Second, we describe the revisions we have made to
Scratch Charades as a result of these trials.

5.3 Analysis

Data was first filtered to retain only instances of mismatches be-
tween actions and scripts, removing observations about interper-
sonal interactions and debugging strategies. The first classroom
of data, two researchers open coded the observations to create a
coding scheme. A first-level categorization emerged, sorting ob-
servations into individual blocks, sequence, loop, and event cate-
gories. Block-level observations are misunderstandings about indi-
vidual blocks, whereas sequence, loops, and event categories refer
to misunderstandings about how blocks interact with each other.
Instances within each category were further sorted and merged to
create sub-categories. Once the coding was set, the two researchers

Paper Session: Scratch

Provided code:
point in direction @

m’alpl

Common interpretation:
paint in dirsction @
point in direction ()

mom

Figure 2: Some students would turn their bodies back to their
original position before moving 1 step.

independently coded the second class of data, with a inter-rater
reliability score of 93.10% (27/29). The final class was coded by a
single researcher.

6 RESULTS

We present our results by high-level category - individual blocks,
sequence, loop, and event categories. We present the counts to
provide insight into how often different misunderstandings were
observed. However, our study was not designed to imply that these
are the rates at which misunderstandings of this nature occur in
large populations.

Observation Actor Builder
Instances | Instances
point in direction
Pointed but did not turn body 14 -
Did not hold position before next action 9 -
Pointed incorrect direction 4 -
change size by
Did not hold position before next action 5 -
Mixed up -10 and 10 2 1
other
Incorrect block - 2

Table 3: Individual Block Observations

6.1 Individual Blocks

The two blocks that led to confusion were point in direction
and change size by. The most common observation, with 14
instances, was that when acting the point in direction block,
students pointed in the correct direction but did not turn their
whole body to face that direction. The instructions directed the
students to turn their whole body to model the behavior of sprites
in Scratch.

Another common observation was that the student acting did
not hold the action of the previous block before moving to the next
block. For example, in the sequence in Figure 2, students would
point to 90° and then turn back to the front of the room before mov-
ing one step. Instead, they should have pointed to 90° and taken one
step in that direction. This occurred with the change size by block
as well, in which students would “shrink” or “grow” as directed
but then return to their normal height before the next action. In

783

SIGCSE ’20, March 11-14, 2020, Portland, OR, USA

Scratch, some blocks have the format do X for Y seconds or
play __ until done. Some students seemed to have attached this
interpretation to the point and change size blocks even though it
was not explicitly directed. It is worth noting that this misconcep-
tion was only seen with these two blocks. For blocks such as move
1 step, there were no observed instances of a student stepping
forward and then stepping back.

In the change size by and point in direction blocks, stu-
dents also had difficulty interpreting the arguments. point in
direction could direct the student to point to 0°, 90°, 180°, or -90°.
change size by could direct the student to change size by 10
(grow larger) or change size by -10 (grow smaller).

Finally, there were two instances of builders using an incorrect
block. In one case, the builders used a move 1 step block instead
of the correct change size by -10. In the other case, a student
used the block to close the repeat loop as a “stop,” placing it at the
end of the script.

6.1.1 Individual Blocks Discussion. There were three points of con-
fusion related to blocks. We now provide suggestions on how in-
struction or activities that could help students with these concepts.

Meaning of point in direction. - in order to make clear that point
in direction is rotation of the sprite, rather than pointing, a
teacher could have students do a Scratch Charades activity, pointing
out that you point with your nose, not with your finger. An alter-
native would be to use a 2-d picture without arms on a whiteboard
instead of humans. They can have a discussion with students about
what it means, with the four directions labeled on the four edges
of the whiteboard. However, an important question is whether this
misconception is because students acted out the blocks, and whether
the interpretation would be clear within Scratch. We believe that
this shows the imprecision of this command in general; it is not
clear what it would mean for a sun sprite or a flower sprite to point
in a specific direction. This is an instance in which the game exposed
the misunderstanding, not caused it.

Change size by parameters. - in order to make it easier for stu-
dents to act out different sizes, the class as a whole could decide
on what “small”, “medium”, and “large” should look like. Then the
teacher could explain that for this activity, change size by with
a positive number would make the actor one bigger from where
they began, and with a negative number would make them one
smaller. They could practice this as a group, having the teacher
say commands in different orders and having all students act it out
together, one block at a time.

Resetting actions. - Activities could be created with different
block sequences that depict blocks that do and do not reset each
time, along with questions or observations that students can make.
Students could then categorize instructions as those that stop auto-
matically and those that need another instruction to stop (like say
__vssay for seconds).

6.2 Sequence

Sequence relates to placing blocks together to form an ordered
script. The majority of sequence errors were made by builders,
with many instances of students placing the correct blocks in an

Paper Session: Scratch

Observation Actor Builder
Instances | Instances
Out of order 3 9
Missing block 4 7
Concurrent actions 5 -
Opposite script order - 2

Table 4: Sequence Observations

Debugging: Analyze your code to find A MESS!

Arguments: Check inputs in white circles

M issing: Check for missing blocks
E xtra: Check for extra blocks
Scrambled: Check block order

Swapped: Check for wrong block
Figure 3: A MESS debugging strategy for sequence errors

incorrect order or leaving out a block. For scripts that were or-
dered incorrectly, the most common occurrence was that students
switched the ordering of two blocks. For both categories, the errors
did not appear to be related to a specific type of block. There were
two instances of students building scripts with the correct sequence
of blocks but starting from the bottom rather than the top. This
could be due to the use of LEGOs for building the scripts as LEGOs
are traditionally built from the bottom up.

Amongst the actors, there were also instances of incorrect or-
dering and missing blocks, although these occurred less frequently.
Like with the building instances, there was no clear pattern to
which blocks were involved in these errors. Performing two actions
concurrently was the most common actor mistake. There were
three observed instances of students making a sound and changing
size at the same time. In another instance, a student changed sized
while pointing to 180°. There was only one instance not involving
changing size in which a student lifted the green flag and stepped
forward simultaneously.

6.2.1 Sequence Discussion. These results have identified several
different types of errors students can make in sequential code. The
biggest misconception was the belief that two instructions could
occur at the same time, which could affect how they build programs
or expect them to work. The different sequential mistakes could be
made explicit to students and presented as a debugging strategy
to give students a more methodical approach and more concrete
mistakes to look for when they encounter bugs in their own code.
We propose A MESS (See Figure 3), which provides a checklist of
common mistakes to look for in sequential code.

6.3 Loops

While students understood the general concept of loops, they had
different interpretations of the loops syntax, as shown in Figure 4.
The biggest source of confusion was when multiple instructions

784

SIGCSE ’20, March 11-14, 2020, Portland, OR, USA

Observation Actor Builder
Instances | Instances
Treated multiple items in 5 4
repeat loop as multiple loops
Repeated block was outside loop 2 2
Did not repeat all blocks in loop 2 -
Bottom of repeat - 6
incorrectly / not placed

Table 5: Loop Observations

Provided code:

Common interpretation:

4 4
movoom
- CD i

Figure 4: Common misinterpretation of loops

were placed within the loop. If the loop on the left of Figure 4 was
the one given, the most common alternate interpretation by the
actor was that the first instruction should be repeated followed by
the second instruction being repeated rather than repeating the
whole iteration. A similar (but opposite) phenomenon was seen in
builders - when the actor acted out the loop correctly (with the two
instructions alternated four times), some builders created separate
loops.

Students also got confused about what instructions were inside
versus outside the loop. Some students repeated instructions that
were after the loop, and others repeated only the first instruction,
effectively placing the second instruction out of the loop.

Builders had a challenge that does not exist in the interface
with Scratch - the LEGO top and bottom of the repeat block were
separate LEGOs, so they needed to place both of them for a single
conceptual instruction. Many students forgot to place the bottom
piece or placed it in the wrong location (above the beginning).

6.3.1 Loops Discussion. These results have identified several dif-
ferent types of errors students can make when constructing loops.
Because of the complexity of loops, it might be worth not only
presenting a debugging strategy but also having this be a build-
ing or planning strategy for loops. We propose Loop BASICs (See
Figure 5), which provides a checklist of common mistakes to look
for.

6.4 Events

Event misconceptions are those involving two Scratch event blocks
included in this activity: when green flag clicked and when
this sprite clicked. Both actors and builders had cases where a
starting event was not included, or where the wrong starting event

Paper Session: Scratch

Loop BASICs
for building and debugging

B efore: What blocks are before the loop?

A fter: What blocks are after the loop?

S plit: Should the loop be split? Do the blocks
alternate, or repeat first, then repeat second?

| nside: Are all the blocks inside the loop
supposed to repeat?

Count: How many times should loop repeat?

Figure 5: Loop BASICs building and debugging strategy for
loops

was used. Instances where an event was not included possibly
indicates a lack of understanding among the students that an event
is necessary or, more generally, that actions in programs need
something to trigger them.

6.4.1 Events Discussion. The original Scratch Charades rules do
not properly handle events. In Scratch, a sprite does not do its own
starting event. Instead, a user performs the starting event. In order
to make the role of events more clear, we are changing the game
play rules.

6.5 Scratch Charades challenges

We now present informal feedback from observers that was outside
of the formal protocol but, nonetheless, led to revisions for Scratch
Charades for this academic year.

Dexterity insufficient for LEGOs. Students had great difficulty
taking LEGOs apart. Some figured out that if they placed the LE-
GOs in a stair-step fashion, it was easier to take them apart. Un-
fortunately, this counteracts the goal of making the scripts look
like Scratch scripts. Scratch uses offsetting the blocks to visually
represent placing blocks inside loops and conditionals (like most
type-written, commercially-used languages). Using offsetting for
sequential scripts removes meaning from offsetting blocks.

Building script upwards, not downwards. As described in sequence,
one group built the script upwards, just as one would build a house
in LEGOs. This results in a script that is the opposite order of a
Scratch script.

Confusion about events. As described in the previous section,
some students forgot about the event block or used the wrong one.

Heavy reliance on observers. Students interacted with observers
more than anticipated. This most often consisted of helping students
put together and take apart LEGOs as well as helping the actor act
out blocks correctly.

As a result of these observations, we have made three major
changes to Scratch Charades.

Magnets, not LEGOs. Instead of using LEGOs, we are using mag-
nets. These are stiff enough to hold up to lots of play, can stick to
the tins in which we store the pieces for easy building, and are easy
to place and remove.

785

SIGCSE ’20, March 11-14, 2020, Portland, OR, USA

Added User role. There are now three different roles: Sprite, User,
and Builder. We suggest groups of 4-5 students. At any given time,
there is one sprite, one user, and at least two builders. This is for two
reasons. First, this makes the role of the event explicit. Second, this
allows every role to have a partner. The user and sprite can discuss
the card and how it should be / was acted, and the builders can
discuss how to build it. The hope is that less teacher intervention
will be necessary if students can discuss.

Separate play sessions. The scripts for Scratch Charades have
been split into two card sets - sequential cards and loop cards. This
way, the sequential cards can be used prior to using Scratch the first
time, and the loop cards can be saved until just prior to loops. Loops
were substantially more challenging than sequential code. Splitting
the cards would allow the introduction of loops to be delayed until
students’ concepts of sequential code were solid.

7 FUTURE WORK

There are two major areas for future work. The first is to experi-
ment with Scratch Charades as a learning strategy to understand
whether students learn Scratch more quickly or with less confusion
if they play Scratch Charades prior to using the Scratch develop-
ment environment. The second is to evaluate the use of the A MESS
and Loop BASICs debugging / building strategies. Do students use
these when looking for mistakes? Can they be used as a script to
help each other, allowing them to collaboratively problem solve
rather than needing individual help from the teacher?

8 CONCLUSIONS

We have found that while students understand the concept of se-
quential and loop-based code very easily, a few commonly-used
Scratch blocks can lead to confusion, and students may not un-
derstand the details of loop syntax. In this paper, we presented
interpretations observed in student enactments of simple Scratch
scripts that diverge from Scratch implementation, along with pro-
posed guidance for mitigating the common mistakes. We presented
two debugging strategies that students can use, one for sequential
errors and one for loop-based errors. Finally, we introduced Scratch
Charades, a game that can be used to introduce students to these
concepts.

Future work could evaluate the effectiveness of these two debug-
ging strategies, as well as investigate the use of Scratch Charades as
an educational intervention for getting students started in Scratch.

9 ACKNOWLEDGEMENTS

We would like to thank all of the teachers who opened their class-
rooms and the students who played Scratch Charades while we
observed. This material is based upon work supported by the Na-
tional Science Foundation under Grant Nos. 1660871, 1738758, and
1760055.

REFERENCES

[1] John B Biggs and Kevin F Collis. Evaluating the quality of learning: The SOLO
taxonomy (Structure of the Observed Learning Outcome). Academic Press, 2014.

[2] CAST. Universal Design for Learning Guidelines version 2.2. 2018. URL: http:
//udlguidelines.cast.org.

[3] Community Statistics At a Glance. URL: https://scratch.mit.edu/statistics/.

http://udlguidelines.cast.org
http://udlguidelines.cast.org
https://scratch.mit.edu/statistics/

Paper Session: Scratch

(9]

[10]

[11]

Lara M Talpey Ludger Woessmann Eric A Hanushek Paul E Peterson. The
unwavering SES achievement gap: Trends in US student performance. URL: https:
//www.hks.harvard.edu/publications/unwavering- ses- achievement- gap-
trends-us-student-performance.

Diana Franklin et al. “Initialization in Scratch: Seeking Knowledge Transfer”.
In: Proceedings of the 47th ACM Technical Symposium on Computing Science
Education. SIGCSE ’16. Memphis, Tennessee, USA: ACM, 2016, pp. 217-222.
ISBN: 978-1-4503-3685-7. DOI: 10.1145/2839509.2844569. URL: http://doi.acm.
org/10.1145/2839509.2844569.

Shuchi Grover and Satabdi Basu. “Measuring Student Learning in Introductory
Block-Based Programming: Examining Misconceptions of Loops, Variables, and
Boolean Logic”. In: Proceedings of the 2017 ACM SIGCSE Technical Symposium
on Computer Science Education. SIGCSE ’17. Seattle, Washington, USA: ACM,
2017, pp. 267-272. 1sBN: 978-1-4503-4698-6. pOI: 10.1145/3017680.3017723. URL:
http://doi.acm.org/10.1145/3017680.3017723.

Idit Ed Harel and Seymour Ed Papert. Constructionism. Ablex Publishing, 1991.
Felienne Hermans et al. “Thinking out of the Box: Comparing Metaphors for
Variables in Programming Education”. In: Proceedings of the 13th Workshop in
Primary and Secondary Computing Education. WiPSCE ’18. Potsdam, Germany:
ACM, 2018, 8:1-8:8. 1SBN: 978-1-4503-6588-8. DOI: 10.1145/3265757.3265765.
URL: http://doi.acm.org/10.1145/3265757.3265765.

Charlotte Hill et al. “Floors and Flexibility: Designing a Programming Environ-
ment for 4Th-6th Grade Classrooms”. In: Proceedings of the 46th ACM Technical
Symposium on Computer Science Education. SIGCSE *15. Kansas City, Missouri,
USA: ACM, 2015, pp. 546-551. 1SBN: 978-1-4503-2966-8. DOI: 10.1145/2676723.
2677275. URL: http://doi.acm.org/10.1145/2676723.2677275.

Andrew Ko. Programming languages are the least usable, but most powerful
human-computer interfaces ever invented. 2014. URL: https://medium.com/bits-
and- behavior/programming - languages - are - the - least - usable - but - most -
powerful-human-computer-interfaces-ever-invented-7509348dedc.

John Maloney et al. “The Scratch Programming Language and Environment”.
In: Trans. Comput. Educ. 10.4 (Nov. 2010), 16:1-16:15. 1SSN: 1946-6226. DOI:
10.1145/1868358.1868363. URL: http://doi.acm.org/10.1145/1868358.1868363.

786

(12]

[13]

[21]

[22]

SIGCSE ’20, March 11-14, 2020, Portland, OR, USA

S. C. Marley and K. J. Carbonneau. “Theoretical Perspectives and Empirical Ev-
idence Relevant to Classroom Instruction with Manipulatives”. In: Educational
Psychology Review 26.1 (2014), pp. 1-7.

B. M. Moskal and M. E. Magone. “Making Sense of What Students Know:
Examining the Referents, Relationships and Modes Students Displayed in
Response to a Decimal Task”. In: Educational Studies in Mathematics 43.3 (2000),
pp. 313-335.

NAEP Nations Report Card. UrL: https://nces.ed.gov/nationsreportcard/glossary.
aspx#basic.

NAEP Nations Report Card - National Assessment of Educational Progress - NAEP.
URL: https://nces.ed.gov/nationsreportcard/?src=ft.

Jean Piaget. “Piaget’s theory”. In: Piaget and his school. Springer, 1976, pp. 11—
23.

Mitchel Resnick et al. “Scratch: Programming for all.” In: Commun. Acm 52.11
(2009), pp. 60-67.

Jean Salac et al. “An Analysis Through an Equity Lens of the Implementation
of Computer Science in K-8 Classrooms in a Large, Urban School District”.
In: Proceedings of the 50th ACM Technical Symposium on Computer Science
Education. SIGCSE ’19. Minneapolis, MN, USA: ACM, 2019, pp. 1150-1156.
ISBN: 978-1-4503-5890-3. DoI: 10.1145/3287324.3287353. URL: http://doi.acm.
org/10.1145/3287324.3287353.

Andreas Stefik and Susanna Siebert. “An Empirical Investigation into Program-
ming Language Syntax”. In: ACM Transactions on Computing Education 13.4
(2013).

Alaaeddin Swidan, Felienne Hermans, and Marileen Smit. “Programming Mis-
conceptions for School Students”. In: Proceedings of the 2018 ACM Conference
on International Computing Education Research. ICER *18. Espoo, Finland: ACM,
2018, pp. 151-159. 1SBN: 978-1-4503-5628-2. DOI: 10.1145/3230977.3230995. URL:
http://doi.acm.org/10.1145/3230977.3230995.

C. N. Thomas et al. “Applying a Universal Design for Learning framework
to mediate the language demands of mathematics”. In: Reading and Writing
Quarterly 31.3 (2015), pp. 207-234.

C.N. Thomas et al. Applying a Universal Design for Learning framework to meet
the language demands of science. Leiden, 2018.

https://www.hks.harvard.edu/publications/unwavering-ses-achievement-gap-trends-us-student-performance
https://www.hks.harvard.edu/publications/unwavering-ses-achievement-gap-trends-us-student-performance
https://www.hks.harvard.edu/publications/unwavering-ses-achievement-gap-trends-us-student-performance
https://doi.org/10.1145/2839509.2844569
http://doi.acm.org/10.1145/2839509.2844569
http://doi.acm.org/10.1145/2839509.2844569
https://doi.org/10.1145/3017680.3017723
http://doi.acm.org/10.1145/3017680.3017723
https://doi.org/10.1145/3265757.3265765
http://doi.acm.org/10.1145/3265757.3265765
https://doi.org/10.1145/2676723.2677275
https://doi.org/10.1145/2676723.2677275
http://doi.acm.org/10.1145/2676723.2677275
https://medium.com/bits-and-behavior/programming-languages-are-the-least-usable-but-most-powerful-human-computer-interfaces-ever-invented-7509348dedc
https://medium.com/bits-and-behavior/programming-languages-are-the-least-usable-but-most-powerful-human-computer-interfaces-ever-invented-7509348dedc
https://medium.com/bits-and-behavior/programming-languages-are-the-least-usable-but-most-powerful-human-computer-interfaces-ever-invented-7509348dedc
https://doi.org/10.1145/1868358.1868363
http://doi.acm.org/10.1145/1868358.1868363
https://nces.ed.gov/nationsreportcard/glossary.aspx#basic
https://nces.ed.gov/nationsreportcard/glossary.aspx#basic
https://nces.ed.gov/nationsreportcard/?src=ft
https://doi.org/10.1145/3287324.3287353
http://doi.acm.org/10.1145/3287324.3287353
http://doi.acm.org/10.1145/3287324.3287353
https://doi.org/10.1145/3230977.3230995
http://doi.acm.org/10.1145/3230977.3230995

	Abstract
	1 Introduction
	2 Scratch Charades
	3 Background and Related Work
	4 Theoretical Framework
	4.1 Language as Learning Interface
	4.2 Manipulatives

	5 Methods
	5.1 Study Design
	5.2 Observations
	5.3 Analysis

	6 Results
	6.1 Individual Blocks
	6.2 Sequence
	6.3 Loops
	6.4 Events
	6.5 Scratch Charades challenges

	7 Future Work
	8 Conclusions
	9 Acknowledgements

