
Eliciting Student Scratch Script Understandings
via Scratch Charades

Diana Franklin
∗
, Jean Salac

∗
, Cathy Thomas

†
, Zene Sekou

∗
, & Sue Krause

∗

∗
University of Chicago, Chicago, IL

†
Texas State University, San Marcos, TX, USA

{dmfranklin,salac,zene,sgkrause}@uchicago.edu;thomascat@txstate.edu

ABSTRACT
With many school districts nationwide integrating Computer Sci-

ence (CS) and Computational Thinking (CT) instruction at the K-8

level, it is crucial researchers closely inspect the relationship be-

tween program expression and student understandings.

In this study, we propose and report on our use of Scratch Cha-

rades, a game in which students act out Scratch scripts while others

build them. The purpose of Scratch Charades is to familiarize stu-

dents with scripts and blocks without the cognitive overhead of the

complex user interface. However, in this study, we also used it to

elicit student understandings about Scratch blocks and scripts to de-

sign mnemonics to help students debug their code. We propose two

building and/or debugging strategies based on our observations.

CCS CONCEPTS
• Social and professional topics→ Computer science educa-
tion; Computational thinking;

KEYWORDS
learning strategy, computational thinking, Scratch, elementary ed-

ucation

ACM Reference Format:
Diana Franklin

∗
, Jean Salac

∗
, Cathy Thomas

†
, Zene Sekou

∗
, & Sue Krause

∗
.

2020. Eliciting Student Scratch Script Understandings, via Scratch Cha-

rades. In The 51st ACM Technical Symposium on Computer Science Education
(SIGCSE ’20), March 11–14, 2020, Portland, OR, USA. ACM, New York, NY,

USA, 7 pages. https://doi.org/10.1145/3328778.3366911

1 INTRODUCTION
Momentum has been building for integrating computer science

into elementary school classrooms. Providing access to comput-

ing curricula is just one part of the solution. It is critical for com-

puter science instruction to be effective for a broad spectrum of

students. Diverse learners significantly underperform white peers

with higher socio-economic status on important academic mark-

ers [4, 14, 15]. Recent work [18] has shown strong correlations

between overall school academic performance and learning in a

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

SIGCSE ’20, March 11–14, 2020, Portland, OR, USA
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-6793-6/20/03.

https://doi.org/10.1145/3328778.3366911

computer science curriculum built on open-ended projects designed

using a Constructionist pedagogical approach [7].

Computational Thinking instruction in elementary school often

uses Scratch, a visual block-based language with an integrated

development environment[11]. Each command or instruction is

called a block, and it can be dragged into code sequences called

scripts. Each script begins with an event. For any Scratch learning

experience, there are three distinct but related components: the

Scratch language, the Scratch development environment, and the

curriculum. In this paper, we focus on the Scratch language. In

particular, this study has two purposes.

First, this study introduces our first experience with Scratch

Charades, designed to allow students to learn the Scratch program-

ming language outside of the Scratch development environment.

While similar to existingmethods of demonstrating how codeworks

through human demonstration, it gamifies this to allow students to

engage in the activity in a different way than a demonstration.

Second, observations of students playing the game were used to

inform the design of instructional supports for struggling learners.

In order to improve instruction for students who needmore support,

it is important to find out what aspects of Scratch are sources of

confusion, defined as a mismatch between what students think a
script should do and what a script actually does. If we can elicit

students’ early impressions of blocks and scripts, this can guide

the development of activities, teacher materials, and debugging

strategies. Activities can be developed that hone in on specific

common issues to highlight how the scripts actually work. Teacher

materials can highlight common student mistakes, allowing them

to anticipate and recognize the source of specific problems. Finally,

debugging strategies can be created that explicitly direct students to

look for commonmistakes. More precisely, we use Scratch Charades

to answer this question: “For what Scratch blocks or code do novice

students’ interpretations diverge from the Scratch implementation?

And in what ways?”

In this study, we use Scratch Charades, a Scratch-based Charades

game, to elicit early interpretation of Scratch blocks and scripts. We

focus both on students who act out given scripts and who construct

the scripts for code they see acted out. Our experiments identified

several common mismatches between student interpretations and

Scratch implementation at a block, loop, and script level. And, while

experienced instructors will be familiar with these mistakes, this

identifies them in a methodical manner and uses those typical

mistakes to create building / debugging strategies to help students.

The contributions of this paper are:

• The introduction and refinement of Scratch Charades, a for-

malized game students can play with each other with specific

Paper Session: Scratch SIGCSE ’20, March 11–14, 2020, Portland, OR, USA

780

https://doi.org/10.1145/3328778.3366911
https://doi.org/10.1145/3328778.3366911

student roles and materials to introduce new concepts prior

to use in the Scratch programming environment.

• Identification of differences in interpretation of the meaning

of Scratch blocks between students and Scratch.

• Identification of differences in interpretation of the meaning

of Scratch repeat loops between students and Scratch.

• Mistakes that students make in building sequential and loop-

based scripts.

• Creation of two building and/or debugging strategies based

on the mistakes observed.

We find that some of the most common sources of confusion are:

• What point in direction does

• Which blocks’ actions persist and which “reset”

• The timing relationship between consecutive blocks

• How to interpret multi-block repeat loops

The rest of the paper is organized as follows. We next present

Scratch Charades itself, followed by background, related work (Sec-

tion 3) and theoretical framework (Section 4). Section 5 contains

the methods. In results, Section 6, we present both the observations

and the debugging strategies created from those results. Finally, we

describe future work and conclusions in Section 7 and 8.

2 SCRATCH CHARADES
Aversion of Scratch Charades has been played in classrooms around

the world. As a demonstration, one person acts out a script in order

to help them better understand the connection between the blocks

and the actions that result from them. The difference between our

formalized Scratch Charades game and typical similar demonstra-

tions is that during demonstrations, the audience can see the script

being acted out. In this game version, only the actor sees the script

- the audience members are active game participants, using blocks

to build the scripts they see in order to make explicit any lack of

understanding.

Like in Charades, one person is responsible for acting while

others attempt to guess what they are acting out. Two roles were

defined: actor, whose goal is to correctly act out a given Scratch

script, and builders, whose goal is to recreate the script they saw

acted out using LEGO Scratch blocks. Students were placed into

groups of three, with the a single actor and two builders each round.

The actor role rotated each round.

In each round, the actor draws the top card from a stack of cards

ordered by difficulty (see Figure 1). The actor acts out the script on

that card. The actor has a “Hello!” say bubble card, a green flag card,

and their body for acting out commands. Four signs are attached to

the four walls of the classroom, with 0°, 90°, 180°, and -90° hung up

to correspond with the four directions on the point in direction
blocks.

The builders have a set of LEGOs, each with a Scratch block

sticker on it. They build the script and ask the actor to check it. The

builders continue until their script matches the one on the actor’s

card. Actors can act the script out multiple times in order to assist

the builders.

Blocks chosen for Scratch Charades are shown in Table 2. These

are specifically chosen because they are very useful in simple

Scratch projects and they can be acted out (unlike change costume).

However, some do involve concepts not yet covered in 4th grade,

Figure 1: Scratch Charades card

so we chose what we believed would be the simplest form of each

action. For example, turning is very useful. There are two turns

to choose from: Turn a number of degrees or point to an absolute

location. Because 4th grade students may not have learned degrees

yet, we chose point to and placed signs on the wall indicating the lo-

cation. To make a sprite smaller, there are also two choices: change

size by (negative number) and set size to (percentage). Because

neither negative numbers nor percentages have necessarily been

covered by 4th grade, we chose change size by with light instruction

on negative being smaller and positive being larger.

3 BACKGROUND AND RELATED WORK
Computational Thinking instruction at the elementary-school level

often uses Scratch, a visual block-based language with an inte-

grated development environment. Scratch was designed with the

philosophy of “low floors, high ceilings,” which is intended to allow

students with very little background to create projects quickly (low

floors) but have the complexity to provide opportunities for deep

learning through very complex projects (high ceilings). Designed

to support a Constructionist philosophy [7], students in many dif-

ferent settings and age groups have successfully created projects

with Scratch [17, 3]. We also know that some students are able

to create projects but not yet understand the underlying code [1].

For any Scratch learning experience, there are three distinct but

related components: the Scratch language, the Scratch development

environment, and the curriculum.

For example, some challenges, like initialization, is affected by the

programming environment itself, and the lack of a single “starting

point” for a program as well as beginning in the same state as

the prior execution ended [5] or the role of user input [20]. Some

challenges may be conceptual, separate from Scratch, such as loops,

sequence, or variables [6, 18, 20, 8]. Finally, the language itself

can be challenging, with some blocks or aspects of the Scratch

interface above grade level for students on the younger end of the

recommended grade level [9].

Paper Session: Scratch SIGCSE ’20, March 11–14, 2020, Portland, OR, USA

781

In this study, we remove the Scratch programming environment

in order to focus on the language itself and capture students’ initial

understandings through their actions.

4 THEORETICAL FRAMEWORK
In our theoretical framework, we draw from two bodies of work.

First, we view the programming language as the learning interface

for the student. Second, we utilize Scratch Charades as a window

into students’ thinking.

4.1 Language as Learning Interface
Programming language design has increasingly been viewed as

an HCI endeavor, especially in the area of computer science learn-

ers. As Andy Ko posited in 2014, “Programming languages are the

least usable, but most powerful human-computer interfaces ever in-

vented” [10]. The Quorum programming language was specifically

designed for the user, using empirical studies on novice students to

choose syntax [19].

This view is supported by Constructivism, which posits that all

learners interpret new knowledge through the lens of their own

understanding [16]. This can sometimes be a benefit, utilizing prior

knowledge to gain new knowledge, as with analogies. However,

this can be a hindrance if the new construct is similar to existing

knowledge but with important distinctions.

4.2 Manipulatives
Using manipulatives allows students to explore and express their

thinking [13]. Diverse students may struggle to explain orally or

express key ideas and concepts in writing [21, 22]. Manipulatives

provide a response mode that is observable [2], thereby allowing

students with limitations in expressive language, either oral or

written, to show what they know. As teachers observe students’

engagement with manipulatives, student thinking becomes overt,

providing teachers with opportunities to scaffold instruction and

enhance student learning. Manipulatives may also support students

in recognizing and negotiating their own misconceptions [12].

Students Grade(s) Hisp Af Am Low-SES

14 4,5 N/A 91.6% 77.7%

24 4 95.6% N/A 89.4%

Table 1: Participant School Demographics. The student col-
umn is the number of students who gave consent to be ob-
served. Other information is at the school level.

5 METHODS
In this study, we used students playing Scratch Charades in order to

elicit students’ understandings or interpretations of Scratch scripts.

In this section, we describe the study design, how observations

were performed, and the analysis performed on the observational

data.

move __ steps

point in direction __

change size by __

say __

play sound __ until done

repeat __

when green flag clicked

when sprite clicked

wait __ seconds

Table 2: Blocks included in Scratch Charades

5.1 Study Design
43 fourth and fifth grade students from two public schools in a

major metropolitan school district participated in this study. The

classrooms were drawn from schools with a high percentage of

low-SES (Socioeconomic), underrepresented minority students, as

shown in Table 1. There was no specific criteria students had to

meet in order to be eligible for observation. In all five classes, all

students were given the opportunity to participate but only those

whose parents had signed consent forms were observed. Before the

study took place, none of the students had instruction on Scratch in

the classrooms. However, some students may have been introduced

to Scratch in other settings.

5.2 Observations
Researchers served as observer-participants. That is, their main

goal was to observe, but they also interacted with the students.

Observers focused on one or two groups and observed several

types of interesting events such as interpersonal interactions, de-

bugging strategies, and when actions did not match Scratch blocks.

Researchers described each observation in prose, noted whether it

related to the actor or builder, the script number, and details on the

mismatch. Because observers were monitoring multiple groups, the

list may not represent all instances of differences between student

interpretations and script execution. Observers also explained con-

cepts to students if the students did not self-correct their mistakes.

In this paper, we focus on two aspects of game play. First, we

analyze the instances when the actor’s actions did not match the

script or when the builders’ interpretation of the code did not match

actors’ actions. Second, we describe the revisions we have made to

Scratch Charades as a result of these trials.

5.3 Analysis
Data was first filtered to retain only instances of mismatches be-

tween actions and scripts, removing observations about interper-

sonal interactions and debugging strategies. The first classroom

of data, two researchers open coded the observations to create a

coding scheme. A first-level categorization emerged, sorting ob-

servations into individual blocks, sequence, loop, and event cate-

gories. Block-level observations are misunderstandings about indi-

vidual blocks, whereas sequence, loops, and event categories refer

to misunderstandings about how blocks interact with each other.

Instances within each category were further sorted and merged to

create sub-categories. Once the coding was set, the two researchers

Paper Session: Scratch SIGCSE ’20, March 11–14, 2020, Portland, OR, USA

782

Figure 2: Some studentswould turn their bodies back to their
original position before moving 1 step.

independently coded the second class of data, with a inter-rater

reliability score of 93.10% (27/29). The final class was coded by a

single researcher.

6 RESULTS
We present our results by high-level category - individual blocks,

sequence, loop, and event categories. We present the counts to

provide insight into how often different misunderstandings were

observed. However, our study was not designed to imply that these

are the rates at which misunderstandings of this nature occur in

large populations.

Observation Actor Builder

Instances Instances

point in direction

Pointed but did not turn body 14 –

Did not hold position before next action 9 –

Pointed incorrect direction 4 –

change size by

Did not hold position before next action 5 –

Mixed up -10 and 10 2 1

other

Incorrect block – 2

Table 3: Individual Block Observations

6.1 Individual Blocks
The two blocks that led to confusion were point in direction
and change size by. The most common observation, with 14

instances, was that when acting the point in direction block,
students pointed in the correct direction but did not turn their

whole body to face that direction. The instructions directed the

students to turn their whole body to model the behavior of sprites

in Scratch.

Another common observation was that the student acting did

not hold the action of the previous block before moving to the next

block. For example, in the sequence in Figure 2, students would

point to 90
◦
and then turn back to the front of the room before mov-

ing one step. Instead, they should have pointed to 90
◦
and taken one

step in that direction. This occurred with the change size by block
as well, in which students would “shrink” or “grow” as directed

but then return to their normal height before the next action. In

Scratch, some blocks have the format do X for Y seconds or

play __ until done. Some students seemed to have attached this

interpretation to the point and change size blocks even though it

was not explicitly directed. It is worth noting that this misconcep-

tion was only seen with these two blocks. For blocks such as move
1 step, there were no observed instances of a student stepping

forward and then stepping back.

In the change size by and point in direction blocks, stu-
dents also had difficulty interpreting the arguments. point in
direction could direct the student to point to 0°, 90°, 180°, or -90°.

change size by could direct the student to change size by 10
(grow larger) or change size by -10 (grow smaller).

Finally, there were two instances of builders using an incorrect

block. In one case, the builders used a move 1 step block instead

of the correct change size by -10. In the other case, a student

used the block to close the repeat loop as a “stop,” placing it at the

end of the script.

6.1.1 Individual Blocks Discussion. There were three points of con-
fusion related to blocks. We now provide suggestions on how in-

struction or activities that could help students with these concepts.

Meaning of point in direction. - in order to make clear that point
in direction is rotation of the sprite, rather than pointing, a

teacher could have students do a Scratch Charades activity, pointing

out that you point with your nose, not with your finger. An alter-

native would be to use a 2-d picture without arms on a whiteboard

instead of humans. They can have a discussion with students about

what it means, with the four directions labeled on the four edges

of the whiteboard. However, an important question is whether this

misconception is because students acted out the blocks, and whether
the interpretation would be clear within Scratch. We believe that

this shows the imprecision of this command in general; it is not

clear what it would mean for a sun sprite or a flower sprite to point

in a specific direction. This is an instance in which the game exposed
the misunderstanding, not caused it.

Change size by parameters. - in order to make it easier for stu-

dents to act out different sizes, the class as a whole could decide

on what “small”, “medium”, and “large” should look like. Then the

teacher could explain that for this activity, change size by with

a positive number would make the actor one bigger from where

they began, and with a negative number would make them one

smaller. They could practice this as a group, having the teacher

say commands in different orders and having all students act it out

together, one block at a time.

Resetting actions. - Activities could be created with different

block sequences that depict blocks that do and do not reset each

time, along with questions or observations that students can make.

Students could then categorize instructions as those that stop auto-

matically and those that need another instruction to stop (like say
__ vs say for __ seconds).

6.2 Sequence
Sequence relates to placing blocks together to form an ordered

script. The majority of sequence errors were made by builders,

with many instances of students placing the correct blocks in an

Paper Session: Scratch SIGCSE ’20, March 11–14, 2020, Portland, OR, USA

783

Observation Actor Builder

Instances Instances

Out of order 3 9

Missing block 4 7

Concurrent actions 5 –

Opposite script order – 2

Table 4: Sequence Observations

Figure 3: A MESS debugging strategy for sequence errors

incorrect order or leaving out a block. For scripts that were or-

dered incorrectly, the most common occurrence was that students

switched the ordering of two blocks. For both categories, the errors

did not appear to be related to a specific type of block. There were

two instances of students building scripts with the correct sequence

of blocks but starting from the bottom rather than the top. This

could be due to the use of LEGOs for building the scripts as LEGOs

are traditionally built from the bottom up.

Amongst the actors, there were also instances of incorrect or-

dering and missing blocks, although these occurred less frequently.

Like with the building instances, there was no clear pattern to

which blocks were involved in these errors. Performing two actions

concurrently was the most common actor mistake. There were

three observed instances of students making a sound and changing

size at the same time. In another instance, a student changed sized

while pointing to 180
◦
. There was only one instance not involving

changing size in which a student lifted the green flag and stepped

forward simultaneously.

6.2.1 Sequence Discussion. These results have identified several

different types of errors students can make in sequential code. The

biggest misconception was the belief that two instructions could

occur at the same time, which could affect how they build programs

or expect them to work. The different sequential mistakes could be

made explicit to students and presented as a debugging strategy

to give students a more methodical approach and more concrete

mistakes to look for when they encounter bugs in their own code.

We propose A MESS (See Figure 3), which provides a checklist of

common mistakes to look for in sequential code.

6.3 Loops
While students understood the general concept of loops, they had

different interpretations of the loops syntax, as shown in Figure 4.

The biggest source of confusion was when multiple instructions

Observation Actor Builder

Instances Instances

Treated multiple items in 5 4

repeat loop as multiple loops

Repeated block was outside loop 2 2

Did not repeat all blocks in loop 2 –

Bottom of repeat – 6

incorrectly / not placed

Table 5: Loop Observations

Figure 4: Common misinterpretation of loops

were placed within the loop. If the loop on the left of Figure 4 was

the one given, the most common alternate interpretation by the

actor was that the first instruction should be repeated followed by

the second instruction being repeated rather than repeating the

whole iteration. A similar (but opposite) phenomenon was seen in

builders - when the actor acted out the loop correctly (with the two

instructions alternated four times), some builders created separate

loops.

Students also got confused about what instructions were inside

versus outside the loop. Some students repeated instructions that

were after the loop, and others repeated only the first instruction,

effectively placing the second instruction out of the loop.

Builders had a challenge that does not exist in the interface

with Scratch - the LEGO top and bottom of the repeat block were

separate LEGOs, so they needed to place both of them for a single

conceptual instruction. Many students forgot to place the bottom

piece or placed it in the wrong location (above the beginning).

6.3.1 Loops Discussion. These results have identified several dif-

ferent types of errors students can make when constructing loops.

Because of the complexity of loops, it might be worth not only

presenting a debugging strategy but also having this be a build-

ing or planning strategy for loops. We propose Loop BASICs (See

Figure 5), which provides a checklist of common mistakes to look

for.

6.4 Events
Event misconceptions are those involving two Scratch event blocks

included in this activity: when green flag clicked and when
this sprite clicked. Both actors and builders had cases where a

starting event was not included, or where the wrong starting event

Paper Session: Scratch SIGCSE ’20, March 11–14, 2020, Portland, OR, USA

784

Figure 5: Loop BASICs building and debugging strategy for
loops

was used. Instances where an event was not included possibly

indicates a lack of understanding among the students that an event

is necessary or, more generally, that actions in programs need

something to trigger them.

6.4.1 Events Discussion. The original Scratch Charades rules do

not properly handle events. In Scratch, a sprite does not do its own

starting event. Instead, a user performs the starting event. In order

to make the role of events more clear, we are changing the game

play rules.

6.5 Scratch Charades challenges
We now present informal feedback from observers that was outside

of the formal protocol but, nonetheless, led to revisions for Scratch

Charades for this academic year.

Dexterity insufficient for LEGOs. Students had great difficulty

taking LEGOs apart. Some figured out that if they placed the LE-

GOs in a stair-step fashion, it was easier to take them apart. Un-

fortunately, this counteracts the goal of making the scripts look

like Scratch scripts. Scratch uses offsetting the blocks to visually

represent placing blocks inside loops and conditionals (like most

type-written, commercially-used languages). Using offsetting for

sequential scripts removes meaning from offsetting blocks.

Building script upwards, not downwards. As described in sequence,
one group built the script upwards, just as one would build a house

in LEGOs. This results in a script that is the opposite order of a

Scratch script.

Confusion about events. As described in the previous section,

some students forgot about the event block or used the wrong one.

Heavy reliance on observers. Students interacted with observers

more than anticipated. Thismost often consisted of helping students

put together and take apart LEGOs as well as helping the actor act

out blocks correctly.

As a result of these observations, we have made three major

changes to Scratch Charades.

Magnets, not LEGOs. Instead of using LEGOs, we are using mag-

nets. These are stiff enough to hold up to lots of play, can stick to

the tins in which we store the pieces for easy building, and are easy

to place and remove.

Added User role. There are now three different roles: Sprite, User,

and Builder. We suggest groups of 4-5 students. At any given time,

there is one sprite, one user, and at least two builders. This is for two

reasons. First, this makes the role of the event explicit. Second, this

allows every role to have a partner. The user and sprite can discuss

the card and how it should be / was acted, and the builders can

discuss how to build it. The hope is that less teacher intervention

will be necessary if students can discuss.

Separate play sessions. The scripts for Scratch Charades have

been split into two card sets - sequential cards and loop cards. This

way, the sequential cards can be used prior to using Scratch the first

time, and the loop cards can be saved until just prior to loops. Loops

were substantially more challenging than sequential code. Splitting

the cards would allow the introduction of loops to be delayed until

students’ concepts of sequential code were solid.

7 FUTURE WORK
There are two major areas for future work. The first is to experi-

ment with Scratch Charades as a learning strategy to understand

whether students learn Scratch more quickly or with less confusion

if they play Scratch Charades prior to using the Scratch develop-

ment environment. The second is to evaluate the use of the A MESS

and Loop BASICs debugging / building strategies. Do students use

these when looking for mistakes? Can they be used as a script to

help each other, allowing them to collaboratively problem solve

rather than needing individual help from the teacher?

8 CONCLUSIONS
We have found that while students understand the concept of se-

quential and loop-based code very easily, a few commonly-used

Scratch blocks can lead to confusion, and students may not un-

derstand the details of loop syntax. In this paper, we presented

interpretations observed in student enactments of simple Scratch

scripts that diverge from Scratch implementation, along with pro-

posed guidance for mitigating the common mistakes. We presented

two debugging strategies that students can use, one for sequential

errors and one for loop-based errors. Finally, we introduced Scratch

Charades, a game that can be used to introduce students to these

concepts.

Future work could evaluate the effectiveness of these two debug-

ging strategies, as well as investigate the use of Scratch Charades as

an educational intervention for getting students started in Scratch.

9 ACKNOWLEDGEMENTS
We would like to thank all of the teachers who opened their class-

rooms and the students who played Scratch Charades while we

observed. This material is based upon work supported by the Na-

tional Science Foundation under Grant Nos. 1660871, 1738758, and

1760055.

REFERENCES
[1] John B Biggs and Kevin F Collis. Evaluating the quality of learning: The SOLO

taxonomy (Structure of the Observed Learning Outcome). Academic Press, 2014.

[2] CAST. Universal Design for Learning Guidelines version 2.2. 2018. url: http:
//udlguidelines.cast.org.

[3] Community Statistics At a Glance. url: https://scratch.mit.edu/statistics/.

Paper Session: Scratch SIGCSE ’20, March 11–14, 2020, Portland, OR, USA

785

http://udlguidelines.cast.org
http://udlguidelines.cast.org
https://scratch.mit.edu/statistics/

[4] Lara M Talpey Ludger Woessmann Eric A Hanushek Paul E Peterson. The
unwavering SES achievement gap: Trends in US student performance. url: https:
//www.hks.harvard.edu/publications/unwavering- ses- achievement- gap-

trends-us-student-performance.

[5] Diana Franklin et al. “Initialization in Scratch: Seeking Knowledge Transfer”.

In: Proceedings of the 47th ACM Technical Symposium on Computing Science
Education. SIGCSE ’16. Memphis, Tennessee, USA: ACM, 2016, pp. 217–222.

isbn: 978-1-4503-3685-7. doi: 10.1145/2839509.2844569. url: http://doi.acm.

org/10.1145/2839509.2844569.

[6] Shuchi Grover and Satabdi Basu. “Measuring Student Learning in Introductory

Block-Based Programming: ExaminingMisconceptions of Loops, Variables, and

Boolean Logic”. In: Proceedings of the 2017 ACM SIGCSE Technical Symposium
on Computer Science Education. SIGCSE ’17. Seattle, Washington, USA: ACM,

2017, pp. 267–272. isbn: 978-1-4503-4698-6. doi: 10.1145/3017680.3017723. url:

http://doi.acm.org/10.1145/3017680.3017723.

[7] Idit Ed Harel and Seymour Ed Papert. Constructionism. Ablex Publishing, 1991.
[8] Felienne Hermans et al. “Thinking out of the Box: Comparing Metaphors for

Variables in Programming Education”. In: Proceedings of the 13th Workshop in
Primary and Secondary Computing Education. WiPSCE ’18. Potsdam, Germany:

ACM, 2018, 8:1–8:8. isbn: 978-1-4503-6588-8. doi: 10.1145/3265757.3265765.

url: http://doi.acm.org/10.1145/3265757.3265765.

[9] Charlotte Hill et al. “Floors and Flexibility: Designing a Programming Environ-

ment for 4Th-6th Grade Classrooms”. In: Proceedings of the 46th ACM Technical
Symposium on Computer Science Education. SIGCSE ’15. Kansas City, Missouri,

USA: ACM, 2015, pp. 546–551. isbn: 978-1-4503-2966-8. doi: 10.1145/2676723.

2677275. url: http://doi.acm.org/10.1145/2676723.2677275.

[10] Andrew Ko. Programming languages are the least usable, but most powerful
human-computer interfaces ever invented. 2014. url: https://medium.com/bits-

and- behavior/programming- languages- are- the- least- usable- but-most-

powerful-human-computer-interfaces-ever-invented-7509348dedc.

[11] John Maloney et al. “The Scratch Programming Language and Environment”.

In: Trans. Comput. Educ. 10.4 (Nov. 2010), 16:1–16:15. issn: 1946-6226. doi:

10.1145/1868358.1868363. url: http://doi.acm.org/10.1145/1868358.1868363.

[12] S. C. Marley and K. J. Carbonneau. “Theoretical Perspectives and Empirical Ev-

idence Relevant to Classroom Instruction with Manipulatives”. In: Educational
Psychology Review 26.1 (2014), pp. 1–7.

[13] B. M. Moskal and M. E. Magone. “Making Sense of What Students Know:

Examining the Referents, Relationships and Modes Students Displayed in

Response to a Decimal Task”. In: Educational Studies in Mathematics 43.3 (2000),
pp. 313–335.

[14] NAEP Nations Report Card. url: https://nces.ed.gov/nationsreportcard/glossary.
aspx#basic.

[15] NAEP Nations Report Card - National Assessment of Educational Progress - NAEP.
url: https://nces.ed.gov/nationsreportcard/?src=ft.

[16] Jean Piaget. “Piaget’s theory”. In: Piaget and his school. Springer, 1976, pp. 11–
23.

[17] Mitchel Resnick et al. “Scratch: Programming for all.” In: Commun. Acm 52.11

(2009), pp. 60–67.

[18] Jean Salac et al. “An Analysis Through an Equity Lens of the Implementation

of Computer Science in K-8 Classrooms in a Large, Urban School District”.

In: Proceedings of the 50th ACM Technical Symposium on Computer Science
Education. SIGCSE ’19. Minneapolis, MN, USA: ACM, 2019, pp. 1150–1156.

isbn: 978-1-4503-5890-3. doi: 10.1145/3287324.3287353. url: http://doi.acm.

org/10.1145/3287324.3287353.

[19] Andreas Stefik and Susanna Siebert. “An Empirical Investigation into Program-

ming Language Syntax”. In: ACM Transactions on Computing Education 13.4

(2013).

[20] Alaaeddin Swidan, Felienne Hermans, and Marileen Smit. “Programming Mis-

conceptions for School Students”. In: Proceedings of the 2018 ACM Conference
on International Computing Education Research. ICER ’18. Espoo, Finland: ACM,

2018, pp. 151–159. isbn: 978-1-4503-5628-2. doi: 10.1145/3230977.3230995. url:

http://doi.acm.org/10.1145/3230977.3230995.

[21] C. N. Thomas et al. “Applying a Universal Design for Learning framework

to mediate the language demands of mathematics”. In: Reading and Writing
Quarterly 31.3 (2015), pp. 207–234.

[22] C. N. Thomas et al. Applying a Universal Design for Learning framework to meet
the language demands of science. Leiden, 2018.

Paper Session: Scratch SIGCSE ’20, March 11–14, 2020, Portland, OR, USA

786

https://www.hks.harvard.edu/publications/unwavering-ses-achievement-gap-trends-us-student-performance
https://www.hks.harvard.edu/publications/unwavering-ses-achievement-gap-trends-us-student-performance
https://www.hks.harvard.edu/publications/unwavering-ses-achievement-gap-trends-us-student-performance
https://doi.org/10.1145/2839509.2844569
http://doi.acm.org/10.1145/2839509.2844569
http://doi.acm.org/10.1145/2839509.2844569
https://doi.org/10.1145/3017680.3017723
http://doi.acm.org/10.1145/3017680.3017723
https://doi.org/10.1145/3265757.3265765
http://doi.acm.org/10.1145/3265757.3265765
https://doi.org/10.1145/2676723.2677275
https://doi.org/10.1145/2676723.2677275
http://doi.acm.org/10.1145/2676723.2677275
https://medium.com/bits-and-behavior/programming-languages-are-the-least-usable-but-most-powerful-human-computer-interfaces-ever-invented-7509348dedc
https://medium.com/bits-and-behavior/programming-languages-are-the-least-usable-but-most-powerful-human-computer-interfaces-ever-invented-7509348dedc
https://medium.com/bits-and-behavior/programming-languages-are-the-least-usable-but-most-powerful-human-computer-interfaces-ever-invented-7509348dedc
https://doi.org/10.1145/1868358.1868363
http://doi.acm.org/10.1145/1868358.1868363
https://nces.ed.gov/nationsreportcard/glossary.aspx#basic
https://nces.ed.gov/nationsreportcard/glossary.aspx#basic
https://nces.ed.gov/nationsreportcard/?src=ft
https://doi.org/10.1145/3287324.3287353
http://doi.acm.org/10.1145/3287324.3287353
http://doi.acm.org/10.1145/3287324.3287353
https://doi.org/10.1145/3230977.3230995
http://doi.acm.org/10.1145/3230977.3230995

	Abstract
	1 Introduction
	2 Scratch Charades
	3 Background and Related Work
	4 Theoretical Framework
	4.1 Language as Learning Interface
	4.2 Manipulatives

	5 Methods
	5.1 Study Design
	5.2 Observations
	5.3 Analysis

	6 Results
	6.1 Individual Blocks
	6.2 Sequence
	6.3 Loops
	6.4 Events
	6.5 Scratch Charades challenges

	7 Future Work
	8 Conclusions
	9 Acknowledgements

